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Abstract
Minimum Submodular Cost Submodular Cover problem (MIN-SCSC) often occurs
naturally in the areas of combinatorial optimization and particularly machine learning.
It is well-known that the greedy algorithm proposed by Wan et al. yields a ρH(δ)-
approximation for an integer-valued submodular function f , where ρ is the curvature
of submodular cost function c, δ is the maximum value of f over all singletons and
H(δ) is the δ-th harmonic number (Wan et al. in Comput Optim Appl 45(2):463–
474). In this paper, we first extend MIN-SCSC to Minimum Submodular Cost Non-
submodular Cover problem and analyze the performances of the widely used greedy
algorithm for integer-valued and fraction-valued potential functions respectively. In
addition, we also study MIN-SCSC with fraction-valued potential functions, with a
new analysis of the performance ratio of the greedy algorithm, improving upon the
result of Wan et al. (2010).

Keywords Greedy algorithm · Performance ratio · Submodular function ·
Submodular cover

1 Introduction

Let f : 2V → R+ be a normalizedmonotone set function defined on the ground set V .
Let c : 2V → R+ be a non-negative cost function. Let� f = {A ⊆ V | f (A) = f (V )}
be the set of all feasible subsets, where f is called potential function. We consider the
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following combinatorial optimization problem:

min c(A)

s.t. A ∈ � f

There exists a large body of literature studying the above problem and there is a
beautiful line of research in this field. When c is a linear function and f is a submod-
ular function, the above problem is known as Minimum Submodular Cover problem.
The greedy algorithm proposed by Wolsey (1982) produces an H(δ)-approximation
solution for Submodular Set Covering problem, where δ is the maximum value of f
over all singletons and H(δ) is the δ-th harmonic number. This captures many combi-
natorial optimization applications such as Minimum Set Cover, MinimumHitting Set,
Minimum Vertex Cover, Minimum Subset Interconnection Design and their corre-
sponding weighted versions, to name a few; see e.g. (Du et al 2012; Feige 1996; Fujito
2000; Hongjie et al. 2011). When f is non-submodular, there exist several known
results for real-world applications, including Network Steiner Tree (Du et al. 2008),
Connected Dominating Set (Du et al 2012; Du et al. 2008), MOC-CDS problem in
wireless sensor networks (Hongjie et al. 2011) and Connected Dominating Set with
Labeling (Yang et al. 2020). In our prior work, defined some parameters (DR gap and
DR ratio) to measure how far a set function is from being submodular, we propose a
unified analysis framework for Minimum Non-submodular Cover problem (Shi et al.
2021).

However, there exist plenty of situations in which the cost function c is sub-
modular and the potential function f is submodular or non-submodular. When c
is submodular, inspired by Wan et al. (2010) established a similar result of ρH(δ)

for the minimum submodular cover problem with a submodular cost, where ρ =
max

S:min−cost cover

∑
e∈S c(e)
c(S)

is the curvature of the cost function; a general result on

fraction-valued submodular cover was also presented, however, it depends on two
additional hypothesis which make their method a little impractical for real-world
problems. Iyer and Bilmes (2013) investigated two optimization problems — mini-
mum submodular cover with a submodular cost (MIN-SCSC) and maximization of
a submodular function with a submodular knapsack (MAX-SCSK) which were inti-
mately connected and proved that any approximation algorithm for MAX-SCSK can
be used to provide guarantees for MIN-SCSC. Nevertheless, as far as we know, there
seems no study in the literature concerning minimum non-submodular cover problem
with a submodular cost.
In this paper, we extend the potential function from submodular function to non-
submodular one and first investigate Minimum Submodular Cost Non-submodular
Cover problem (MIN-SCNSC). In addition, we also study MIN-SCSC with fraction-
valued potential functions. Our main contributions are summarized as follows:

• Weanalyze the performance of the greedy algorithm forMIN-SCNSCwith integer-
valued and fraction-valued potential functions respectively, with a theoretical
analysis (Theorem 1).
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• We give a new analysis for MIN-SCSC with fraction-valued potential functions,
expanding the scope of application of Wan et al. (2010) (Theorem 2).

The outline of the paper is as follows. In Sect. 2, we consider how MIN-SCSC
and MIN-SCNSC occur in real-world problems and how they generalize a series of
important optimization problems. In Sect. 3, we give the definitions of two parameters
as well as two important lemmata. In Sect. 4, we propose a greedy algorithm for MIN-
SCNSC, with a theoretical analysis for integer-valued and fraction-valued potential
functions respectively. In Sect. 5,we showanewanalysis forMIN-SCSCwith fraction-
valued potential functions. Sect. 6 contains the concluding remarks and future works.

2 Motivation

In this section, we first give two real-world problems which can be formulated as
MinimumSubmodular Cost Submodular Cover problem, and then introduce two other
examples which can be cast as Minimum Submodular Cost Non-submodular Cover
problem.

2.1 Social influence spread (Kempe et al. 2003)

In Independent Cascade (IC) model, let directed graph G = (V , A, p) denote a social
network, where V is the set of users and A is the set of social relations between users.
Any uv ∈ A is assigned with a probability such that when u is active, v is activated
by u with probability puv . Consider a submodular cost function c : 2V → R+. Then
the objective is to find a set S ⊆ V with minimum cost such that users in S influences
all users in G. Let I (S) be the set of active nodes obtained from the seed set S at the
end of the diffusion process and its cardinality be |I (S)|. Define expected influence
spread function σ(S) = E[I (S)] as the potential function and it’s easy to verity that
σ is submodular (Kempe et al. 2003). Then the problem can be cast as Minimum
Submodular Cost Submodular Cover problem.

2.2 Sensor placement (Krause and Guestrin 2005; Krause et al. 2008)

Sensor placement problem is to choose sensor locations A from a given set of possible
locations V . Denote by f (A) = I (XA; XV \A) as the mutual information between the
chosen locations A and the locations V \A which are not selected. Note that while f
is non-monotone, it can be shown to approximately monotone. Alternatively, we can
also define the mutual information between a set of chosen sensors XA and a quantity
of interest C as f (A) = I (XA;C) assuming that XA are conditionally independent
given C . Both these functions are submodular (Krause and Guestrin 2005). In many
real-world settings, the cost of placing a sensor depends on the specific location. If the
cost involved is submodular, thenwe canmodel this problem asMinimumSubmodular
Cost Submodular Cover problem; that is, find a set of sensorswithminimal cooperative
cost such that the sensors cover all the possible locations. In fact, submodularity of cost
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function is reasonable because there is basically a discount when purchasing sensors
in bulk.

2.3 Minimumweight connected dominating set (Du et al 2012; Du et al. 2008)

The objective of Minimum Weight Connected Dominating Set problem is to find a
minimum weight connected dominating set (CDS) of a given connected graph. This
problem often occurs in wireless communication, playing a crucial important role.
Specifically, given an input connected graph G = (V , E). Consider a subset A ⊆ V .
Let τ(A) be the set of edges incident to A. Denote by #(G, τ (A)) the number of
connected components in the graph (G, τ (A)) and #G[A] the number of connected
components of the induced subgraph G[A]. Then the potential function is defined
by f (A) = |V | − #(G, τ (A)) − #G[A],∀A ⊆ V and it’s easy to verity that f is a
normalized monotone non-submodular function (Du et al. 2008). And A is a CDS of
G iff f (A) = |V | − 2 = f (V ). If the non-negative weight function w is submodular,
then the problem can be phrased as Minimum Submodular Cost Non-submodular
Cover problem.

2.4 Subset selection (Das and Kempe 2011)

The subset selection problem is to select a subset of random variables with minimum
total cost from a large set, in order to obtain the best prediction of another variable
of interest. The problem has been widely studied, especially in feature selection,
sparse approximation, compressed sensing in the areas of machine learning and signal
processing.Define the squaredmultiple correlation R2 as the potential function f , then
f is non-submodular (Das and Kempe 2011). If the cost function c is submodular,
then we can formulate this real-world problem as Minimum Submodular Cost Non-
submodular Cover problem.
We refer the readers to Du et al (2012) for more examples in the field of combina-
torial optimization. In the context of machine learning and data mining, there exist
a number of applications occurring naturally, including machine translation, video
summarization, probabilistic inference, recommendation systems, etc.

3 Preliminaries

Define [n] := {1, 2, · · · , n} for a positive integer n ≥ 1. Let V = [n] be a ground set,
a set function f : 2V → R is submodular if for every S, T ⊆ V , f (S) + f (T ) ≥
f (S ∪ T ) + f (S ∩ T ). For any S, T ⊆ V , we use �T f (S) = f (S ∪ T ) − f (S)

to denote the marginal gain when add set T to S. For i ∈ V ,we use the shorthand
�i f (S) for�{i} f (S). Equivalently, f is submodular if it has diminishing returns (DR)
property: �i f (S) ≥ �i f (T ) for S ⊆ T ⊆ V \{i}. f is monotone (non-decreasing)
if f (S) ≤ f (T ) for any S ⊆ T ⊆ V or �i f (S) ≥ 0 for any S ⊆ V , i ∈ V \S.
f is normalized if f (∅) = 0. Every set function f can be normalized by setting
g(S) = f (S) − f (∅). A normalized monotone submodular set function is called a
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polymatroid function. Throughout the paper, we assume that f is given via a value
oracle; that is, given a set S ⊆ V , the oracle returns the function value of f (S).

In the following, we define the total curvature for submodular function and the DR
ratio for general set function. And we also provide two lemmta which will be used
later in the analysis part.

Definition 1 (total curvature, Conforti and Cornuéjols (1984)) Let f : 2V → R+ be
a polymatroid function, the total curvature is defined as α = 1 − mini∈V �i f (V \{i})

f ({i}) .

Definition 2 (DR ratio, Shi et al. (2021)) Let f : 2V → R+ be a monotone set
function. The DR ratio of f is the largest scalar ξ ∈ [0, 1] such that

�i f (S) ≥ ξ�i f (T ), ∀S ⊆ T ⊆ V \{i}.

Remark 1 Note that 0 ≤ α ≤ 1. If α = 0, then f is a modular function. If α = 1,
we say that f is fully curved. In this paper, we consider the submodular function with
α 
= 1. With regard to the DR ratio, f is submodular iff ξ = 1.

Lemma 3.1 If f : 2V → R+ is a polymatroid function with the total curvature α 
= 1,
then for any S ⊆ V ,

f (S) ≤
∑

i∈S
f ({i}) and

∑

i∈S
f ({i}) ≤ 1

1 − α
f (S).

Proof It holds obviously that f (S) ≤ ∑
i∈S f ({i}) by the submodularity of f . Now

we prove the second inequality. First, we claim that

f (S) ≥
∑

i∈S
�i f (V \{i}).

Let S = {i1, · · · , ik},

f (S) = �i1 f (∅) + �i2 f ({i1}) + · · · + �ik f ({i1, · · · , ik−1})
≥ �i1 f (V \{i1}) + �i2 f (V \{i2}) + · · · + �ik f (V \{ik}) (submodularity of f )

=
∑

i∈S
�i f (V \{i}).

By the definition of the total curvature of f , we have �i f (V \{i}) ≥ (1 − α) f ({i}).
Therefore, f (S) ≥ (1 − α)

∑
i∈S f ({i}). This completes the proof. ��

Lemma 3.2 Let f : 2V → R+ be a monotone set function with the DR ratio ξ 
= 0,
then for any S, T ⊆ V ,

�S f (T ) ≤ 1

ξ

∑

i∈S
�i f (T ).
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Proof Let S = {i1, · · · , ik},

�S f (T ) = f (S ∪ T ) − f (T )

= �i1 f (T ) + �i2 f (T ∪ {i1}) + · · · + �ik f (T ∪ {i1, · · · , ik−1})
≤ �i1 f (T ) + 1

ξ
�i2 f (T ) + · · · + 1

ξ
�ik f (T )

≤ 1

ξ

∑

i∈S
�i f (T ),

where the first inequality follows from the definition of the DR ratio and the second
one from ξ ∈ (0, 1]. This completes the proof. ��

4 Minimum submodular cost non-submodular cover problem

In this section, we extend Minimum Submodular Cost Submodular Cover problem
(MIN-SCSC) to Minimum Submodular Cost Non-submodular Cover problem (MIN-
SCNSC) and propose a greedy algorithm for MIN-SCNSC, with an analysis of its
theoretical guarantees.

The greedy algorithm is in fact the same as that forMIN-SCSC andwewrite here for
the sake of completeness. It works as follows: starting with an empty set, at each step,
an element with maximal value on �x f (A)/c(x) is chosen and added to the current
set A. Finally, if the marginal gain of any element is zero (or the potential function
value of a set reaches the maximum value), the algorithm returns the greedy set. A
more formal description is described in Algorithm 1. In the following, we indicate that
Algorithm 1 is efficient and effective for solving MIN-SCNSC.

Algorithm 1 Greedy algorithm for MIN-SCNSC/MIN-SCSC

Input: A ground set V , a set function f : 2V → R+ and a polymatroid function c : 2V → R+.
Output: A greedy solution Ag .
1: A ← ∅.
2: while there exists x ∈ V such that �x f (A) > 0 do % or f (A) < f (V ).

select x ∈ V that maximizes �x f (A)
c(x) ;

A ← A ∪ {x}.
3: end while
4: return Ag ← A.

Lemma 4.1 (Du et al (2012)) Let f be a monotone submodular function, then� f can
be rephrased as:

� f = {A ⊆ V |�x f (A) = 0,∀x ∈ V }.

This is an equivalent definition of � f for polymatroid functions which explains
why Algorithm 1 is reasonable and correct for solving MIN-SCSC. It means that
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� f contains the maximal sets A under f ; that is, if A ∈ � f , then for any C ⊆
V , f (C ∪ A) = f (A). Denote by 
 f = {A ⊆ V |�x f (A) = 0,∀x ∈ V }. A
natural question is what conditions a non-submodular function should satisfy, then
� f = 
 f which enables Algorithm 1 efficient and effective for MIN-SCNSC. We
give our discovery in the following lemma.

Lemma 4.2 (Shi et al. (2021)) Let f be a monotone non-submodular function with
ξ 
= 0, then

� f = 
 f ,

where � f = {A ⊆ V | f (A) = f (V )} and 
 f = {A ⊆ V |�x f (A) = 0,∀x ∈ V }.

Proof If A ∈ � f , then for any x ∈ V ,

0 ≤ �x f (A) = f (A ∪ {x}) − f (A) ≤ f (V ) − f (A) = 0,

where the inequalities hold since f is monotone. Therefore, �x f (A) = 0,∀x ∈ V ,
i.e., A ∈ 
 f .

Conversely, if A ∈ 
 f , then

0 ≤ f (V ) − f (A) = �V \A f (A) ≤ 1

ξ

∑

x∈V \A
�x f (A) = 0,

where the first inequality follows from themonotonicity of f and the second one holds
by Lemma 3.2. That is, A ∈ � f . This completes the proof. ��

Lemma 4.2 indicates that Algorithm 1 can find a feasible solution for MIN-SCNSC
with the potential functions of ξ 
= 0. And Algorithm 1 can obtain a competitive
performance when it terminates, which is described in Theorem 1.

Theorem 1 If f is an integer-valued normalized monotone non-submodular function
with the DR ratio ξ 
= 0 and c is a polymatroid function with the total curvature
α 
= 1, then Algorithm 1 returns a solution whose objective function value never
exceeds 1

ξ
1

1−α
H( f (V )) times the optimal value. If f is fraction-valued, then greedy

value is at most 1
ξ

1
1−α

(1 + ln f (V )
f (V )− f (Ag−1)

) times the optimal value.

Proof Let Ai = {x1, · · · , xi }, i = 0, 1, · · · , g be the successive sets returned by
Algorithm 1 and A0 = ∅. Let A∗ be the optimal solution for MIN-SCNSC. For
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i ∈ [g], denote by θi = c(xi )
�xi f (Ai−1)

.

g∑

i=1

c(xi ) =
g∑

i=1

c(xi )

�xi f (Ai−1)
�xi f (Ai−1)

=
g∑

i=1

θi ( f (Ai ) − f (Ai−1))

=
g∑

i=1

θi [( f (V ) − f (Ai−1)) − ( f (V ) − f (Ai ))].

Let li = f (V ) − f (Ai ) with f (V ) = l0 ≥ l1 ≥ · · · ≥ lg = 0, then we have

g∑

i=1

c(xi ) =
g∑

i=1

θi (li−1 − li ) ≤ max
i∈[g]{θi li−1}

g∑

i=1

(1 − li
li−1

).

For the quantity maxi∈[g]{θi li−1}, by the greedy rule, it’s easy to see that θi =
c(xi )

�xi f (Ai−1)
≤ c(y)

�y f (Ai−1)
,∀y ∈ A∗. Thus,

max
i∈[g]{θi li−1} ≤ c(y)

�y f (Ai−1)
( f (V ) − f (Ai−1))

= c(y)

�y f (Ai−1)
( f (A∗) − f (Ai−1))

= c(y)

�y f (Ai−1)
( f (A∗ ∪ Ai−1) − f (Ai−1))

≤ 1

ξ

∑

y∈A∗
�y f (Ai−1)

c(y)

�y f (Ai−1)
= 1

ξ

∑

y∈A∗
c(y)

≤ 1

ξ

1

1 − α
c(A∗),

where the second inequality follows from Lemma 3.2 and the last one from Lemma
3.1. Note that we do not consider whether �y f (Ai−1) = 0(i ∈ [g]) or not since this
quantity can be canceled out in line 4.
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For the quantity
∑g

i=1(1 − li
li−1

), if f is integral,

g∑

i=1

(1 − li
li−1

) = 1 +
g−1∑

i=1

(1 − li
li−1

)

≤ 1 +
g−1∑

i=1

li−1∑

j=li+1

1

j

= 1 +
g−1∑

i=1

(

li−1∑

j=1

1

j
−

li∑

j=1

1

j
)

= 1 +
g−1∑

i=1

(H(li−1) − H(li ))

= 1 + H(l0) − H(lg−1)

≤ H(l0) = H( f (V )).

Therefore,

c(Ag) ≤
g∑

i=1

c(xi ) ≤ 1

ξ

1

1 − α
H( f (V ))c(A∗).

If f is fractional,

g∑

i=1

(1 − li
li−1

) = 1 +
g−1∑

i=1

(1 − li
li−1

)

≤ 1 +
g−1∑

i=1

∫ li−1

li

1

s
ds

= 1 +
g−1∑

i=1

ln
li−1

li

= 1 + ln
l0

lg−1

= 1 + ln
f (V ) − f (A0)

f (V ) − f (Ag−1)
= 1 + ln

f (V )

f (V ) − f (Ag−1)
.

Therefore,

c(Ag) ≤
g∑

i=1

c(xi ) ≤ 1

ξ

1

1 − α

(

1 + ln
f (V )

f (V ) − f (Ag−1)

)

c(A∗).

This completes the proof. ��
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5 New analysis for minimum submodular cost submodular cover
problemwith fraction-valued potential functions

In this section, we present the approximation guarantee of the greedy algorithm for
MIN-SCSC with fraction-valued polymatroid functions, with a new analysis.

Let Ai = {x1, · · · , xi }, i = 0, 1, · · · , g be the successive sets returned by
Algorithm 1 and A0 = ∅. Let A∗ be the optimal solution for MIN-SCSC. For
i = 0, 1, · · · , g, denote by θi = c(xi )

�xi f (Ai−1)
and θ0 = 0. It’ obvious to see that

0 = θ0 < θ1 ≤ θ2 ≤ · · · ≤ θg.

Because for any i ∈ [g], θi > 0 as otherwise Algorithm 1 terminates, and for i =
2, · · · , g,

θi−1 = c(xi−1)

�xi−1 f (Ai−2)
≤ c(xi )

�xi f (Ai−2)
≤ c(xi )

�xi f (Ai−1)
= θi ,

where the first inequality holds by the greedy rule and the second one follows from
the submodularity of f .

Let m ≤ g be the first index i such that �y f (Ai ) = 0, y ∈ A∗; that is,
�y f (Ai−1) > 0,∀i ∈ [m] and �y f (Am) = �y f (Am+1) = · · · = �y f (Ag) = 0.

Theorem 2 If f is a fraction-valued polymatroid function and c is a polymatroid func-
tionwith the total curvatureα 
= 1, thenAlgorithm1 returns a solutionwhose objective
value is at most 1

1−α
(1 + ln λ) times the optimal value, where λ = min{λ1, λ2, λ3} is

one of three possible problem parameters and

λ1 = θg

θ1
, λ2 = f ({y})

�y f (Am−1)
, λ3 = f (V )

f (V ) − f (Ag−1)
.

Before proving Theorem 2, we need the following two lemmata.

Lemma 5.1
∑g

i=1 c(xi ) ≤ ∑
y∈A∗ ϕ(y), where ϕ(y) = ∑g

i=1 �y f (Ai−1)(θi −θi−1).

Proof

g∑

i=1

c(xi ) =
g∑

i=1

θi�xi f (Ai−1) =
g∑

i=1

θi ( f (Ai ) − f (Ai−1))

=
g∑

i=1

θi [( f (A∗) − f (Ai−1)) − ( f (A∗) − f (Ai ))]

=
g∑

i=1

θi ( f (A
∗) − f (Ai−1)) −

g∑

i=1

θi ( f (A
∗) − f (Ai )).
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Since

g∑

i=1

θi ( f (A
∗) − f (Ai )) =

g−1∑

i=1

θi ( f (A
∗) − f (Ai ))

=
g∑

i=2

θi−1( f (A
∗) − f (Ai−1)) =

g∑

i=1

θi−1( f (A
∗) − f (Ai−1)),

where the first equality follows from f (A∗) = f (Ag) and the last one from θ0 = 0.
We then have

g∑

i=1

c(xi ) =
g∑

i=1

θi ( f (A
∗) − f (Ai−1)) −

g∑

i=1

θi−1( f (A
∗) − f (Ai−1))

=
g∑

i=1

(θi − θi−1)( f (A
∗) − f (Ai−1))

=
g∑

i=1

(θi − θi−1)( f (A
∗ ∪ Ai−1) − f (Ai−1))

≤
g∑

i=1

(θi − θi−1)
∑

y∈A∗
�y f (Ai−1)

=
∑

y∈A∗

g∑

i=1

�y f (Ai−1)(θi − θi−1)

where the inequality follows from the submodularity of f . Let

ϕ(y) =
g∑

i=1

�y f (Ai−1)(θi − θi−1),

it means that
∑g

i=1 c(xi ) ≤ ∑
y∈A∗ ϕ(y). This completes the proof. ��

Lemma 5.2
∑g

i=1 c(xi ) ≤ ∑
y∈A∗ ψ(y), where ψ(y) = ∑g

i=1 θi (�y f (Ai−1) −
�y f (Ai )).

Proof According to the proof of Lemma 5.1, we have

g∑

i=1

c(xi ) ≤
∑

y∈A∗

g∑

i=1

�y f (Ai−1)(θi − θi−1)

=
∑

y∈A∗

[ g∑

i=1

θi�y f (Ai−1) −
g∑

i=1

θi−1�y f (Ai−1)

]
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Since

g∑

i=1

θi−1�y f (Ai−1) =
g∑

i=2

θi−1�y f (Ai−1) =
g−1∑

i=1

θi�y f (Ai ) =
g∑

i=1

θi�y f (Ai ),

where the first equality follows from θ0 = 0 and the last one from �y f (Ag) = 0. We
then have

g∑

i=1

c(xi ) ≤
∑

y∈A∗
[

g∑

i=1

θi�y f (Ai−1) −
g∑

i=1

θi�y f (Ai )]

=
∑

y∈A∗

g∑

i=1

θi (�y f (Ai−1) − �y f (Ai )).

Let

ψ(y) =
g∑

i=1

θi (�y f (Ai−1) − �y f (Ai )),

it means that
∑g

i=1 c(xi ) ≤ ∑
y∈A∗ ψ(y). This completes the proof. ��

We then give the proof of Theorem 2 in the following.

Proof of Theorem 2 First, according to Lemma 5.1, for any y ∈ A∗, we have

ϕ(y) =
g∑

i=1

�y f (Ai−1)(θi − θi−1).

By the greedy rule,

�y f (Ai−1)

c(y)
≤ �xi f (Ai−1)

c(xi )
= 1

θi
,∀i ∈ [g].

Thus,

ϕ(y) ≤ c(y)
g∑

i=1

(

1 − θi−1

θi

)

= c(y)

[

1 +
g∑

i=2

(

1 − θi−1

θi

)]

≤ c(y)(1 +
g∑

i=2

∫ θi

θi−1

1

s
ds) = c(y)(1 +

g∑

i=2

ln
θi

θi−1
) = c(y)(1 + ln

θg

θ1
).

Combining with Lemma 5.1, we have

g∑

i=1

c(xi ) ≤
∑

y∈A∗
ϕ(y) ≤ (1 + ln

θg

θ1
)

∑

y∈A∗
c(y). (1)
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Next, according to Lemma 5.2, for any y ∈ A∗, we have

ψ(y) =
g∑

i=1

θi (�y f (Ai−1) − �y f (Ai )).

Because m ≤ g is the first index i such that �y f (Ai ) = 0, then by the greedy rule,

θi = c(xi )

�xi f (Ai−1)
≤ c(y)

�y f (Ai−1)
,∀i ∈ [m].

Thus,

ψ(y) =
m∑

i=1

θi (�y f (Ai−1) − �y f (Ai ))

≤ c(y)
m∑

i=1

(

1 − �y f (Ai )

�y f (Ai−1)

)

= c(y)

[

1 +
m−1∑

i=1

(

1 − �y f (Ai )

�y f (Ai−1)

)]

≤ c(y)(1 +
m−1∑

i=1

∫ �y f (Ai−1)

�y f (Ai )

1

s
ds)

= c(y)

(

1 +
m−1∑

i=1

ln
�y f (Ai−1)

�y f (Ai )

)

= c(y)

(

1 + ln
�y f (A0)

�y f (Am−1)

)

= c(y)

(

1 + ln
f ({y})

�y f (Am−1)

)

.

Combining with Lemma 5.2, we have

g∑

i=1

c(xi ) ≤
∑

y∈A∗
ψ(y) ≤ (1 + ln

f ({y})
�y f (Am−1)

)
∑

y∈A∗
c(y). (2)
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Finally, analogous to the proof in Theorem 1, let li = f (V ) − f (Ai ), i =
0, 1, · · · , g, we have

g∑

i=1

c(xi ) =
g∑

i=1

θi (li−1 − li )

≤ max
i∈[g]{θi li−1}

g∑

i=1

(1 − li
li−1

)

≤ max
i∈[g]{θi li−1}(1 + ln

f (V )

f (V ) − f (Ag−1)
)

It’s easy to see that

max
i∈[g]{θi li−1} ≤ c(y)

�y f (Ai−1)
( f (V ) − f (Ai−1))

= c(y)

�y f (Ai−1)
( f (A∗) − f (Ai−1))

≤
∑

y∈A∗
�y f (Ai−1)

c(y)

�y f (Ai−1)
=

∑

y∈A∗
c(y)

Therefore,

g∑

i=1

c(xi ) ≤
(

1 + ln
f (V )

f (V ) − f (Ag−1)

) ∑

y∈A∗
c(y). (3)

Combining inequalities (1), (2) and (3), let λ1 = θg
θ1

, λ2 = f ({y})
�y f (Am−1)

, λ3 =
f (V )

f (V )− f (Ag−1)
, and denote by λ = min{λ1, λ2, λ3}, we have

c(Ag) ≤
g∑

i=1

c(xi ) ≤ (1 + ln λ)
∑

y∈A∗
c(y) ≤ 1

1 − α
(1 + ln λ)c(A∗),

where the last inequality follows from Lemma 3.1. This completes the proof. ��
Remark 2 Wan et al. (2010) presented a general result of ρH(δ) on integer-valued
submodular cover with a submodular cost; in fact, the curvature ρ they defined for
the submodular cost function can be expressed as ρ = 1

1−α
, which can be com-

puted efficiently in linear time. They also gave an approximation performance of
1+ρ ln f (V )

c(A∗) forMIN-SCSCwith fraction-valued potential functions with an assump-

tion1 whichmake it impractical for real-world problems, because one cannot guarantee

1 In fact, one of assumptions f (V ) ≥ opt is unnecessary, since we can get it by �x f (A)/c(x) ≥ 1. That
is, f (V ) = f (Ag) = ∑g

i=1 �xi f (Ai−1) ≥ ∑g
i=1 c(xi ) ≥ c(Ag) ≥ c(A∗) = opt .
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�x f (A)/c(x) ≥ 1 in each step in the course of the greedy algorithm; however, we
obtain a data-dependent approximation ratio without any additional hypothesis.

In the following,we show the approximation qualities forMIN-SCSCwith fraction-
valued potential functions between Wan et al. and ours. If Wan et al. do not inflict any
hypothesis upon this problem, then they only have the inequality:

c(xi ) ≤ ρc(A∗) li−1 − li
li−1

, i ∈ [g],

where li = f (V ) − f (Ai ). According to the proof of Theorem 2, their result is
reduced to ρ(1 + ln f (V )

f (V )− f (Ag−1)
) which is inferior to ours since we choose the

minimum among three approximation ratios of ρ(1 + ln θg
θ1

), ρ(1 + ln f ({y})
�y f (Am−1)

)

and ρ(1 + ln f (V )
f (V )− f (Ag−1)

), where ρ = 1
1−α

. On the other hand, under the same
hypothesis, we take two situations into consideration. The first is that the cost function
c is linear (i.e. ρ = 1), then our result beats that of Wan et al. This is because

1 + ln
f (V )

f (V ) − f (Ag−1)
≤ 1 + ln

f (V )

c(Ag)
≤ 1 + ln

f (V )

c(A∗)
,

where the first inequality follows from the hypothesis of �x f (A)
c(x) ≥ 1, thus, f (V ) −

f (Ag−1) = f (Ag)− f (Ag−1) ≥ c(Ag) and c(Ag) ≥ c(A∗) is based on the optimality
of A∗. The other is that c is submodular, then the approximation performances between
Wan et al. and ours depends on the real-world problems. Because c(Ag) ≥ c(A∗),
then

ρ ln
f (V )

f (V ) − f (Ag−1)
≤ ρ ln

f (V )

c(A∗)
;

however, ρ > 1. Thus, it is difficult to judge which one is better and it depends on the
concrete problems.

6 Conclusions and future works

In this paper, we first study Minimum Submodular Cost Non-submodular Cover
problem, with a theoretical analysis for integer-valued and fraction-valued potential
functions respectively. In addition, we give a new analysis for Minimum Submodular
Cost Submodular Cover problem with fraction-valued potential functions, improving
upon the result in Wan et al. (2010). As a future work, it would be interesting to
study some natural problems for which the DR ratio and the total curvature can be
estimated directly, and hence the performance ratio of the greedy algorithm can be
given explicitly which are no longer data-dependable.
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