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Abstract

We present new, faster pseudopolynomial time algorithms for the k-SUBSET SuUM
problem, defined as follows: given a set Z of n positive integers and k targets ¢1, . . ., t,
determine whether there exist k disjoint subsets Zy, ..., Zy € Z, such that ¥(Z;) =
ti,fori =1,..., k. Assuming = max{ty, ..., fx} is the maximum among the given
targets, a standard dynamic programming approach based on Bellman’s algorithm can
solve the problem in O (nt*) time. We build upon recent advances on SUBSET SUM
due to Koiliaris and Xu, as well as Bringmann, in order to provide faster algorithms
for k-SUBSET SUM. We devise two algorithms: a deterministic one of time complexity
O (n*/®+D¢ky and a randomised one of O (n + %) complexity. Additionally, we show
how these algorithms can be modified in order to incorporate cardinality constraints
enforced on the solution subsets. We further demonstrate how these algorithms can be
used in order to cope with variations of k.-SUBSET SUM, namely SUBSET SUM RATIO,
k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM.
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1 Introduction

One of Karp’s (1972) 21 NP-complete problems, SUBSET SUM has seen astound-
ing progress with respect to its pseudopolynomial time solvability over the last few
years. Koiliaris and Xu (2019) and Bringmann (2017) have presented pseudopolyno-
mial algorithms resulting in substantial improvements over the long-standing standard
approach of Bellman (1957), and the improvement by Pisinger (1999).

EQUAL SUBSET SUM is a closely related algorithmic problem with applications
to computational biology (Cieliebak et al. 2003b; Cieliebak and Eidenbenz 2004),
computational social choice (Lipton et al. 2004), and cryptography (Voloch 2017), to
name a few. Additionally, it is related to important theoretical concepts such as the
complexity of search problems in the class TFNP (Papadimitriou 1994). This problem
can be solved in O (n + t) time! (where 7 is a bound for the sums we are interested
in) by a simple extension of Bellman’s (1957) algorithm, as it only asks for any two
disjoint subsets of equal sum s, for some s < ¢, hence one can exploit the following
disjointness property: if there exists a pair of sets with equal sum s < ¢, then by
removing their common elements, one can produce two disjoint sets of equal sum
s’ < s < t. Therefore, the algorithm terminates as soon as a sum is produced for a
second time and by using this property as well as an appropriate tree data structure,
we can bound the total running time by the number of all the possible distinct subset
sums up to 7, hence obtaining an O (n + ) algorithm.

A generalisation of SUBSET SUM is the problem that asks for k disjoint subsets the
sums of which are respectively equal to targets #;,i = 1...k, henceforth referred to
as the k-SUBSET SUM problem. One can see that even in the case of k = 2 and #; = 12,
which is closely related to EQUAL SUBSET SUM, the problem seems to escalate in
complexity, since the aforementioned disjointness property does not hold any more.
A special case of particular interest is when the sum of targets equals the sum of the
input elements, that is, we ask for a partition of the input set to subsets of particular
sums. Yet another interesting special case is when we want to partition the input set to
k subsets of equal sum, i.e. all #;’s are equal to the sum of the input elements divided
by k.

k-SUBSET SUM finds applications in a variety of fields, including, but not limited to,
scheduling and (fair) resource allocation (Schreiber et al. 2018), sports team realign-
ment (Recalde et al. 2018), as well as balanced control and treatment group formation
for medical studies, focus groups for market research, and controlled sampling for
opinion polling. Furthermore, since it generalises several subset sum problems, such
as k- WAY NUMBER PARTITIONING and MULTIPLE SUBSET SUM, by enforcing car-
dinality constraints, one could use it to solve a number of other meaningful problems
(Tsai 1992).

1.1 Related work

EQUAL SUBSET SUM as well as its optimisation version called SUBSET SUM
RATIO (Bazgan et al. 2002) are closely related to problems appearing in many sci-

1 0 notation ignores polylogarithmic factors.
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entific areas. Some examples include the PARTIAL DIGEST problem, which comes
from computational biology (Cieliebak et al. 2003b; Cieliebak and Eidenbenz 2004),
the allocation of individual goods (Lipton et al. 2004), tournament construction (Khan
2017), and a variation of SUBSET SuUM, called Multiple Integrated Sets SSP, which
finds applications in the field of cryptography (Voloch 2017). Furthermore, it is related
to important concepts in theoretical computer science; for example, a restricted ver-
sion of EQUAL SUBSET SUM lies in a subclass of the complexity class TENP, namely
in PPP (Papadimitriou 1994), a class consisting of search problems that always have
a solution due to some pigeonhole argument, and no polynomial time algorithm is
known for this restricted version.

EQUAL SUBSET SUM has been proven NP-hard by Woeginger and Yu (1992) and
several variations have been proven NP-hard by Cieliebak et al. (2003a, 2008). A
1.324-approximation algorithm has been proposed for SUBSET SUM RATIO in Woeg-
inger and Yu (1992), while several FPTASs have appeared in bibliography (Bazgan
etal. 2002; Nanongkai 2013; Melissinos and Pagourtzis 2018; Alonistiotis et al. 2022).

As far as exact algorithms are concerned, recent progress has shown that EQUAL
SUBSET SUM can be solved probabilistically in O*(1.7088") time (Mucha et al. 2019),
which is faster than a standard “meet-in-the-middle” approach yielding an 0*(3"/?) <
0*(1.7321") time algorithm. Additionally, as explained earlier, an exact solution can
be obtained in pseudopolynomial O (n+t) time using an extension of Bellman’s (1957)
algorithm, when an upper bound ¢ on the sums is provided in the input. However, these
techniques do not seem to apply to k-SUBSET SUM, mainly due to the fact that we
cannot assume the minimality of the involved subsets. To the best of our knowledge,
no pseudopolynomial time algorithm substantially faster than the standard O (nt*)
dynamic programming approach was known for k-SUBSET SUM prior to this work.

EQUAL SUBSET SUM and k-SUBSET SUM are tightly connected to SUBSET SuM,
which has seen impressive advances recently, due to Koiliaris and Xu (2019) who gave
a deterministic O (y/nt) algorithm, where 7 is the number of input elements and 7 is
the target, and by Bringmann (2017) who gave a O (n + 1) randomised algorithm. Jin
and Wu proposed a simpler randomised algorithm (Jin and Wu 2018) achieving the
same bounds as (Bringmann 2017), which however seems to only solve the decision
version of the problem. Both of these algorithms are essentially optimal under SETH
(Abboud et al. 2022). Recently, Bringmann and Nakos (2020) have presented an
0(|S,(Z)|4/3p01y(logt)) algorithm, where S;(Z) is the set of all subset sums of the
input set Z that are smaller than ¢, based on top-k convolution.

MULTIPLE SUBSET SUM is a special case of MULTIPLE KNAPSACK, both of which
have attracted considerable attention. Regarding MULTIPLE SUBSET SUM, Caprara et
al. present a PTAS for the case where all targets are the same (Caprara et al. 2000), and
subsequently in Caprara et al. (2003) they introduce a 3/4 approximation algorithm.
The MULTIPLE KNAPSACK problem has been more intensively studied in recent years
as applications for it arise naturally (in fields such as transportation, industry, and
finance, to name a few). Some notable studies on variations of the problem are given
by Lahyani et al. (2019) and Dell’ Amico et al. (2019). Special cases and variants of
MULTIPLE SUBSET SUM, such as the k-SUBSET SUM problem, have been studied
in Cieliebak et al. (2003a, 2008) where simple pseudopolynomial algorithms were
proposed.
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1.2 Our contribution

We first present two algorithms for k-SUBSET SUM: a deterministic one of complexity
é(nk/ *k+Dky and a randomised one of complexity O(n + 1%). Then, we describe
the necessary modifications required in order to solve k-SUBSET SUM in the case
where there exist some cardinality constraints regarding the solution subsets. We sub-
sequently show how these ideas can be extended to solve the decision versions of
SUBSET SUM RATIO, k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM.

Our algorithms extend and build upon the algorithms and techniques proposed by
Kaoiliaris and Xu (2019) and Bringmann (2017) for SUBSET SUM. In particular, we
make use of FFT computations, modular arithmetic and color-coding, among others.

We start by presenting some necessary background in Sect.2. Then, we present
the two k-SUBSET SUM algorithms in Sect. 3, followed by the two algorithms for the
cardinality constrained version of the problem in Sect.4. We next show how these
algorithms can be used to efficiently decide multiple related subset problems. Finally,
we conclude the paper by presenting some directions for future work.

2 Preliminaries
2.1 Notation

We largely follow the notation used in Koiliaris and Xu (2019) and Bringmann (2017).

e Let [x] ={0, ..., x} denote the set of integers in the interval [0, x].
e Given aset Z C N, we denote:

— the sum of its elements by X(Z) = ZzeZ Z.

the characteristic polynomial of Z by fz(x) =Y., x°.

— the k-modified characteristic polynomial of Z by f§ (%) = Yoez Zf; X5
where ¥ = (X1, ..., Xk).

the set of all subset sums of Zup tot by §;(Z) = {Z(X) | X C Z} N [t].

e Fortwosets X, Y C N, let

- XY ={x+y|xeXU{0},y € YU/{0}} denote the sumset or pairwise
sum of sets X and Y.

- X&;Y = (X®Y)N[t] denote the t-capped sumset or t-capped pairwise sum
of sets X and Y. Note that # > 0.

e The pairwise sum operations can be extended to sets of multiple dimensions.
Formally, let X,Y C NK. Then, X @ Y = {(x1 + y1, ..., Xk + yr)}, where
(x1,...,xx) € XU {0} and (y1, ..., yx) € Y U {0}k

2.2 Using FFT for subset sum

Given two sets A, B € N and an upper bound ¢ > 0, one can compute the t-capped
pairwise sum set A &; B using FFT to get the monomials of the product f4 - fp that
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have exponent < 7. This operation can be completed in time O(f log 7). Observe that
the coefficients of each monomial x’ represent the number of pairs (a, b) that sum up
toi, wherea € AU {0} and b € B U {0}.

Also note that an FFT operation can be extended to polynomials of multiple vari-
ables. Thus, assuming an upper bound ¢ for the exponents involved, it is possible to
compute ff; . f{; in O(rFlog 1) time.

Lemma 1 Given two sets of points S, T C [t]k one can use multidimensional FFT to
compute the set of pairwise sums (that are smaller than t) in time O (t* log1).

As shown in Cormen et al. (2009),Ch. 30 given two sets of points S, T C [t]k
one can pipeline k one-dimensional FFT operations in order to compute a multi-
dimensional FFT in time O (¥ log?).

3 k-subset sum

In this section we propose algorithms that build on the techniques of Koiliaris and
Xu (2019) and Bringmann (2017) in order to solve k-SUBSET SUM: given a set Z of
n positive integers and k targets ?1, ..., tx, determine whether there exist k disjoint
subsets Z1, ..., Zy € Z,suchthat X(Z;) =t;,fori = 1, ..., k. Note that k is fixed
and not part of the input. For the rest of this section, assume that Z = {z1, ..., z,} is
the input set, 71, . ..,  are the given targets and t = max{ty, ..., fx}.

The main challenge in our approach is the fact that the existence of subsets summing
up to the target numbers (or any other pair of numbers) does not imply the disjointness
of said subsets. Hence, it is essential to guarantee the disjointness of the resulting
subsets through the algorithm.

Note that one can extend Bellman’s classic dynamic programming algorithm for
SUBSET SUM (Bellman 1957) to solve this problem in O (nt*) time, as seen in algo-
rithm 1, where we solve the special case k = 2. Similarly, the algorithm can be
extended to apply for any arbitrary k.

Algorithm 1 Bellman(Z, t1, t2)

Input: Aset Z = {zy, ..., zu} of positive integers and targets t1, t, < X(Z).

Output : True if there are two disjoint subsets Z1, Zy € Z, with ¥(Z1) = t] and X(Zp) = 17, else false.
1: t < max{t|, rp}

2: initialise table T'[t][t][n] <= false everywhere

3: T[0][0][0] < true > Initially, only (¥, #) is possible.
4:forn; =1,...,ndo

5 for (i, j) € [t] x [t] do

6 if T[i][j][n; — 1] = true then

7: Tlij1n;] = true >z € Z1UZ
8 Tli + 2101 = true > 2n; € Z)
9 T[illj + zillni] = true >n; € 22

10: return 7T'[11][t>][n]
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3.1 Solving k-subset sum in deterministic O(n*/ +V ) time

In this subsection we show how to decide k-SUBSET SuM in O (n*/®*D %) time, where
t = max{t{, ..., tx}. To this end, we extend the algorithm proposed by Koiliaris and
Xu (2019). We first describe briefly the original algorithm for completeness and clarity.

The algorithm recursively partitions the input set S into two subsets of equal size
and returns all pairwise sums of those sets, along with cardinality information for each
sum. This is achieved using FFT for pairwise sums as discussed in Sect. 2.

Using properties of congruence classes, it is possible to further capitalise on the
efficiency of FFT for subset sums as follows. Given bound ¢, partition the elements of
the initial set into congruence classes mod b, for some integer b > 0. Subsequently,
divide the elements by b and keep their quotient, hence reducing the size of the max-
imum exponent value from ¢ to 7/b. One can compute the #-capped sum of the initial
elements by computing the 7 /b-capped sum of each congruence class and combining
the results of each such operation in a final #-capped FFT operation, taking into account
the remainder of each congruence class w.r.t. the number of elements (cardinality) of
each subset involved. In order to achieve this, it is necessary to keep cardinality infor-
mation for each sum (or monomial) involved, which can be done by adding another
variable with minimal expense in complexity.

Thus, the overall complexity of FFT operations for each congruence class [ €
{0,1,...,b —1}is O((¢/b)n; logn; logt), where n; denotes the number of the ele-
ments belonging to said congruence class. Combining these classes takes O (bt logt)
time so the final complexity is O (¢ log t("lo% + b)). Setting b = | /nlogn] gives
O(ynlogntlogt) = O(y/nt). After combining the sums in the final step, we end
up with a polynomial that contains each realisable sum represented by a monomial,
the coefficient of which represents the number of different (not necessarily disjoint)
subsets that sum up to the corresponding sum.

Our algorithm begins by using the modified characteristic polynomials we proposed
in the preliminaries, thereby representing each z € Z as Zf: X7 in the base polynomial
at the leaves of the recursion. We also use additional dimensions for the cardinalities of
the subsets involved; each cardinality is represented by the exponent of some x;, with
index i greater than k. We then proceed with using multi-variate FFT in each step of
the recursion in an analogous manner as in the original algorithm, thereby producing

. . 1 I . .
polynomials with terms x,' ... x; x| ... x3;, each of which corresponds to a 2k-tuple
of disjoint subsets of sums t{, e, t,é and cardinalities c1, . . ., cx respectively.

This results in FFT operations on tuples of 2k dimensions, having k dimensions
of max value 7/b, and another k dimensions of max value n; which represent the
cardinalities of the involved subsets, requiring O(né‘(t/b)k log(n;) log(n;t /b)) time
for congruence class/ € {0, 1,...,b — 1}.

The above procedure is implemented in Algorithm 2, while the main algorithm is
Algorithm 3, which combines the results from each congruence class, taking additional
O (bt* log t) time.

Lemma 2 There is a term xi' . x,tck in the polynomial returned by Algorithm 3 if and
only if there exist k disjoint subsets Z1, ..., Zy C Z such that ¥(Z;) = tl-’.
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’

Proof We observe that each of the terms of the form xi' e x,ik has been produced at
some point of the recursion via an FFT operation combining two terms that belong
to different subtrees, ergo containing different elements in each subset involved. As
such, 7, ..., #; are sums of disjoint subsets of Z. O

Theorem 1 Given a set Z = {z1, ..., Zn} < N of size n and targets t1, . .., ty, Algo-
rithm 3 can decide k-SUBSET SUM in time O (n*/*+V k) ywhere t = max{ty, ..., ;).

Proof The correctness of the algorithm stems from Lemma 2.

Complexity The overall complexity of the algorithm, stemming from the computation
of subset sums inside the congruence classes and the combination of those sums, is

kl B
0 <tk log (—” e +b)) = O(nk/kFD k),

where the right-hand side is obtained by setting b = “/n¥ log n. i

Algorithm 2 DisjointSC(S,t)
Input : A set S of n positive integers and an upper bound integer ¢.
Output : The set Z C (S (S ))k X [n]k of all k-tuples of subset sums occurring from disjoint subsets of S
up to ¢, along with their respective cardinality information.
1: if S = {s} then
2: return {0}2%X U {(s,0,...,0,1,0,...,00}U...U{(©,...,0,5,0,...,0, 1)}
N— —— N— — —— N— —

k—1 k—1 k—1 k—1
3: T < an arbitrary subset of S of size L%J
4: return DisjointSC(T,t) @ DisjointSC(S\T,1t)

Algorithm 3 DisjointSS(Z, 1)

Input : A set Z of n positive integers and an upper bound integer 7.

Output : Theset S € (SZ(Z))k of all k-tuples of subset sums up to # occurring from disjoint subsets of Z.
1: b« |_k+x1/nk logn]

2:forl e[b—1]do

3 S« ZNn{xeN|x=I[(modb)}

4 Qp < {lx/b] | x € 8}

5 R(Q;) < DisjointSC(Qy, [t/b])

6: Ry <—{@ib+jil,....zkb+ kD) | 1o 2h J1s -4 Jk) € R(QDY

7: return Ry ®; --- B¢ Rp—1

3.2 Solving k-subset sum in randomised 6(n + t%) time

We will show that one can decide k-SUBSET SUM in é(n + ik ) time, where
t = max{f, ..., t}, by building upon the techniques used in Bringmann (2017). In
particular, we will present an algorithm that successfully detects, with high probability,
whether there exist k disjoint subsets each summing up to #; respectively. In compar-
ison to the algorithm of Bringmann (2017), a couple of modifications are required,
which we will first briefly summarise prior to presenting the complete algorithm.
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e Inourversionof ColorCoding, the number of repetitions of random partitioning
is increased, without asymptotically affecting the complexity of the algorithm,
since it remains O (log(1/6)).

e In our version of ColorCoding, after each partition of the elements, we execute
the FFT operations on the k-modified characteristic polynomials of the resulting
sets. Thus, for each element s; we introduce k points (s;, 0, ..., 0),...,(0, ..., s;),
represented by polynomial xi" + ...+ x,i". Hence ColorCoding returns a set
of points, each of which corresponds to k sums, realisable by disjoint subsets of
the initial set.

e Algorithm ColorCodingLayer needs no modification, except that now the
FFT operations concern sets of points and not sets of integers, hence the complexity
analysis differs. Additionally, the algorithm returns a set of points, each of which
corresponds to realisable sums by disjoint subsets of the /-layer input instance.

e The initial partition of the original set to /-layer instances remains as is, and the
FFT operations once more concern sets of points instead of sets of integers.

3.2.1 Small cardinality solutions

We will first describe the modified procedure ColorCoding for solving k-SUBSET
SuM if the solution size is small, i.e., an algorithm that, given an integer c, finds k-
tuples of sums (2(Y1), ..., 2(¥x)), where 2£(Y;) < tand Y; € Z are disjoint subsets
of input set Z of cardinality at most ¢, and determines with high probability whether
there exists a tuple (1, .. ., tx) among them, for some given values ¢;.

We randomly partition our initial set Z to ¢? subsets Zy, ..., Z., 1.e., we assign
each z € Z toaset Z; where i is chosen independently and uniformly at random from
{1, ..., c2}. We say that this random partition splits Y € Z if |[Y N Z;| < 1,Vi. If
such a split occurs, the set returned by ColorCoding will contain? 2 (Y). Indeed,
by choosing the element of Y for those Z; that |Y N Z;| = 1 and O for the rest, we
successfully generate k-tuples containing X (Y') through the pairwise sum operations.
The algorithm returns only valid sums, since no element is used more than once in
each sum, because each element is assigned uniquely to a Z; for each distinct partition.

Our intended goal is thus, for any k random disjoint subsets, to have a partition
that splits them all. Such a partition allows us to construct a k-tuple consisting of all
their respective sums through the use of FFT. Hence, the question is to determine how
many random partitions are required to achieve this with high probability.

The answer is obtained by observing that the probability to split a subset Y is the
same as having |Y| different balls in | Y| distinct bins, when throwing |Y | balls into 2
different bins, as mentioned in Bringmann (2017). Next, we compute the probability
to split k random disjoint subsets Y7, ..., Y in the same partition.

2 In this context, “contain” is used to denote that £ (Y) = s; for some i in a k-tuple s = (s1,...,5¢) € S,
where S is the resulting set of ColorCoding.
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The probability that a split occurs at a random partition for k random disjoint subsets
i,....Yx S Zis

k
Pr[all Y; are split] = l_[ Pr[Y; is split]
i=1
-1 == =1 =% -D
.. . SRR .

c C

Y Y,
A —(ri-D\" & —qnl -\
1\¢ 1\¢ 1\? 1\ 1
> (1= - ol = = > | — ol = —
- ¢ c) —\2 2 4k
Hence, for B = 4% /(4% — 1), r = [log,(1/8)] repetitions yield the desired success
probability of 1 — (1 — 1/4")’ > 1 — 4. In other words, after r random partitions, for

any k random disjoint subsets Y1, ..., Y%, there exists, with probability at least 1 — §,
a partition that splits them all.

c c

Algorithm 4 ColorCoding(Z,t, c, )

Input : A set Z of positive integers, an upper bound #, a size bound ¢ > 1 and an error probability § > 0.

Output : Aset S € (S,(Z))k containing any (2(Yy), ..., X (Yy)) with probability at least 1 — §, where
Yi,..., Y), C Z disjoint subsets with ©(Y7), ..., (Yy) <tand|Yq],..., Ykl < c.

1: S <0

2: B« 4kjak — )

3:forj=1,..., [logﬂ(l/ﬁ)'l do

4 randomly partition Z = Zj UZ U---U Z »
5: fori=1,..., 2 do
6: Zl < (Z; x o hu. L u o x z))
TS < Z & ® 7,

h C
8 S« SuUs;
9: return S

Lemma 3 Given a set Z of positive integers, a sum bound t, a size bound ¢ > 1
and an error probability § > 0, ColorCoding(Z,t,k,5) returns a set S con-
sisting of any k-tuple (X(Y1), ..., 2(Yx)) with probability at least 1 — 8, where
Yi,...,Yx C Z are disjoint subsets with X (Y1), ..., Z(Yx) <tand |Y1|, ..., |Yk| <
¢, in O(c*log(1/8)t* logt) time.

Proof As we have already explained, if there exist k disjoint subsets Yy, ..., Yy € Z
with 2(Y7), ..., 2(Yx) <tand|Y1|, ..., |Yk| < c,ouralgorithm guarantees that with
probability at least 1 — §, there exists a partition that splits them all. Subsequently, the
FFT operations on the corresponding points produces the k-tuple.

Complexity The algorithm performs O (log (1/8)) repetitions. To compute a pair-
wise sum of k variables up to #, O(tKlogt) time is required. In each repetition,
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¢? pairwise sums are computed. Hence, the total complexity of the algorithm is
O (c*log(1/8)t* log1). O

3.2.2 Solving k-subset sum for /-layer instances

In this part, we will prove that we can use the algorithm ColorCodingLayer from
Bringmann (2017), to successfully solve k-SUBSET SUM for [-layer instances, defined
below.

Forl > 1,wecall (Z, t) anl-layer instance if Z C [t/l,2t/l]or Z C [0, 2¢/I] and
! > n.Inbothcases, Z C [0, 2¢t/l]andforany Y € Zwith X(Y) <t,wehave |Y| <.
The algorithm of Bringmann (2017) successfully solves the SUBSET SUM problem for
[-layer instances. We will show that by calling the modified ColorCoding algorithm
and modifying the FFT operations so that they concern sets of points, the algorithm
successfully solves k-SUBSET SUM in such instances.

Algorithm 5 ColorCodingLayer(Z,t,1,4)

Input : An /-layer instance (Z, t) and an error probability 6 € (0, l/2k+1].
Output : A set S C (S¢(2))¥ containing any (S(Y1), ..., 3 (Yy)) with probability at least 1 — 8, where
Yi...., Y}, C Z disjoint subsets with (Y1), ..., Z(Yy) <t

1: if [ < log(//8) then return ColorCoding(Z,t,1,§)

2: m < [/log(l/§) rounded up to the next power of 2

3: randomly partition Z = Z1 U Zp U---U Zy,

4: y < 6log(l/5)

Siforj=1,..., m do

6: §; « ColorCoding(Zj,2yt/l,y,8/)

T-forh=1,..., logm do > combine S in a binary-tree-like way
8 forj=1,..., m/2" do

9:

Sj < 82j—1 @y S2j
10: return Sy N [1]¥

We will now prove the correctness of the algorithm. Let X Lo ., Xk Zbe disjoint
subsets with £(X1), ..., E(Xk) < t. By Bringmann (2017), Claim 3.3, we have that
Pr[|Yi| = 6log(l/8)] < 8§/, where Y; = Y N Z;, for any ¥ € Z with at most /
elements. Hence, the probability that |XiJ | < 6log(/é), foralli = 1,...,m and
j=1,...,kis

m k m k
Pr| A\ A\IX/| <6log/o) | =1 ZZPr[|X{| > 610g(l/8)]
i=1j=1 i=1 j=1
> 1 — kmé/l.

ColorCoding computes (E(Xil), R E(Xf)) with probability at least 1 — 8. This
happens for all i with probability at least 1 —m§/l. Then, combining the resulting sets
indeed yields the k-tuple (X (X1), ..., (X¥)). The total error probability is at most
(k + 1)m8/I. Assume that § € (0, 1/25T1]. Since I > 1 and § < 1/2%*!, we have
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log (I/8) = (k + 1). Hence, the total error probability is bounded by §. This gives the
following.

Lemma 4 Given an l-layer instance (Z, t), upper bound t and error probability § €

(0, 1/2]“"1], ColorCodingLayer(Z,t,l,8) solves k-SUBSET SUM with sum at

k+2
most t in time O (tk logtlog;#) with probability at least 1 — 4.

Complexity The time required to compute the sets of k-tuples Sy, ..., S, by calling
ColorCodingis

yk+2
O (my*log(1/8)(yt/I)! log(yt/)) = O (lk—ltk logt)

1 k+2 1/8
:O(—Og (/)tklogt).

Jk—1

Combining the resulting sets costs

logm m logm h(k—l)
h k h _ k
10) ,; o vt/ log@Mye/h | = 0 1; " logt

k logm
t*logt —1\"
=0 mk—1 Z (2 )

-0 (S E)™)
o

= 0(/*log1),

since for ¢ > 1, we have that O (3_}_,c¥) = O(c"), which is dominated by the
computation of Sy, ..., Sy.

Hence, ColorCodingLayer has total complexity O (tk logt - M)
’ 1k—1 .

3.2.3 General case

It remains to show that for every instance (Z, t), we can construct /-layer instances
and take advantage of ColorCodingLayer in order to solve k-SUBSET SUM
for the general case. This is possible by partitioning set Z at r/2' for i =
1,..., [logn] — 1. Thus, we have O(logn) [-layers Zi, ..., Ziogn). On each layer
we run ColorCodingLayer and subsequently combine the results using pairwise
sums.

We will now prove the main theorem of this section.

Theorem 2 Given a set Z C N of size n and targets t1, ..., ty, one can decide k-
SUBSET SUM in O (n + t*) time w.h.p., where t = max{ti, ..., t}.
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Algorithm 6 kSubsetSum(Z, §, t)

Input : A set of positive integers Z of cardinality n, an upper bound ¢ and an error probability §.

Output : Aset S € (S,(Z))k containing any (2(Yy), ..., X (Y)) with probability at least 1 — §, where
Yi,..., Y, C Z disjoint subsets with Z(Y}), ..., Z(Yy) <t.

: partition Z into Z; < ZN(t/2',1/27"fori = 1, ..., [logn]—1land Z[iogx] < ZN[0, t/2M10871=1)

S <0

cfori=1,...,logn] do )

S; < ColorCodingLayer(Z;,t,2',8/[logn])

S <~ S&; S;

: return S

Proof Let X', ..., X% C Z be k disjoint subsets with =(X"), ..., Z(X%) < 1,
and X,.j = X' NnZ,forj =1,....,kandi = 1,...,[logn]. Each call to
ColorCodingLayer returns a k-tuple (E(Xil), e, E(X,’F)) with probability at
least 1 — §/[logn], hence the probability that all calls return the corresponding k-
tuple is

Pr[ColorCodingLayer returns(E(Xl-l), e, Z(X,]f)), Vi]
[logn]

8
= 1 — Pr[some call fails] > 1 — ; Mog ]
1 — [logn] ) 1-6
=1—[logn] - =1-
#1 Tlogn]

If all calls return the corresponding k-tuple, the algorithm successfully constructs the
k-tuple (Z(X1),..., 2(X%)). Thus, with probability at least 1 — &, the algorithm
solves k-SUBSET SUM.

Complexity Reading the input requires ®(n) time. In each of the ®(logn) repeti-
tions of the algorithm, we make a call to ColorCodingLayer, plus compute
a pairwise sum. The computation of the pairwise sum requires O (t*logr) time
since it concerns k-tuples. For each call to ColorCodingLayer, we require

logh+2 ﬂ#

o | logtW time. Hence, the overall complexity is

logn 10gk+2 (M)
O n+*logrlogn+ 3" *logi ’ =0 + 1%
grlog g 2itk—1) = :
i=1 O

4 k-subset sum with cardinality constraints
The algorithms presented in the previous section can be extended to a variation of the
k-SUBSET SUM problem, where along with the target values, the cardinality of the

respective solution sets is given as part of the input.

@ Springer



Journal of Combinatorial Optimization (2023) 45:24 Page130f21 24

Therefore, considerc;,i = 1, ..., ksuchthat)_ ¢; < n,tobe the desired cardinality
of set Z;, where X(Z;) = t;, and let ¢ = max{cy, ..., cx}. We seek to determine
whether there exist disjoint subsets Z; € Z,i = 1,...,k of sum X(Z;) = t; and

cardinality | Z;| = c¢;.

As it will become evident, the previously proposed algorithms for k-SUBSET SUM
can be slightly modified in order to cope with this additional restriction. The main
idea lies on the addition of extra variables in the resulting polynomial, each of which
represents the cardinality of one of the solution sets. This results in a blowup of the
order of O(c) in the final complexity of the algorithms, since a variable is added for
each of the k subsets of the solution.

4.1 A deterministic approach

In the case of the deterministic algorithm proposed in Sect. 3.1, it suffices to modify
the procedure in line 6 of Algorithm 3.

Here, instead of simply reconstructing the actual partial sums obtained from ele-
ments belonging to the same congruence class, it is necessary to additionally keep
the relevant cardinality information. Subsequently, the final FFT operation takes into
account this information in order to verify the existence of a solution, thus requiring
additional time due to the extra variables.

Theorem 3 Given a set Z = {z1, ..., zn} C Nofsize n, targets ty, ..., ty and cardi-
nalitiescy, . . ., ck, Algorithm7 can decide k-SUBSET SUM with cardinality constraints
. . ~  k+l1

in time O ("N nkck*tk), where t = max{ty, ..., t;} and ¢ = max{cy, ..., cx}

Proof The correctness of the algorithm can be shown by analogous arguments as those
used in Lemma 2. In particular, in this case the subset cardinalities computed in each
congruence class are kept in order to verify the final cardinality of the solution subsets
obtained from the addition of elements belonging in different congruence classes.

Complexity The overall complexity of the algorithm, stemming from the computation
of subset sums inside the congruence classes and the combination of those sums, is

k1 k1
0 (—” BN K logt + bitct log(tc)) -0 (” St logt + bt log f)

k

k1,
—0 (rk log t <” b‘;g" —i—bck))

— O("Vnkckthy,

. . . . k
which is obtained by setting b = “+}/2-108" i
C

4.2 Arandomised approach

With slight modifications, it is possible to successfully adapt the algorithm of Sect. 3.2
in order to consider the additional cardinality constraints of this section.
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Algorithm 7 CardDisjointSS(Z, 1)

Input : A set Z of n positive integers, an upper bound integer ¢ and a size bound ¢ > 1.

Output : The set S C (S;(Z) x [c])k of all k-tuples of subset sums up to ¢ along with their respective
cardinality on each dimension, occurring from disjoint subsets of Z with cardinality up to c.

1: b« LH,l/ Li(/:gnJ

2: forl € [b—1]do

3 S« ZNn{xeN|x=I[(modb)}

4 O < {lx/b] | x € S}

5 R(Q;) < DisjointSC(Qy, [t/b])

6: Ry <—{@ib+jil,j1), -, @b+ il ji) | @15 s 2k J1s -5 Ji) € R(QD}
7: return Ry @ --- B¢ Rp—1

More specifically, there are two important remarks that lead to those modifications:

1. It is necessary to verify the cardinalities of the involved subsets in the result-
ing polynomial. This can be achieved by introducing additional variables, similar
to4.1.

2. Whereas in the algorithm of Sect. 3.2 there was a necessity of partitioning the input
to layers in order to associate the cardinality of a subset with its target value, in
this case such a procedure is redundant, since the upper bound on the cardinality
of the sets is part of the input.

Following these remarks, we firstly modify the ColorCoding algorithm of the
previous section, in order to additionally return cardinality information for the involved
subsets. This does not affect the correctness of the algorithm whatsoever and only
incurs a blowup in the final complexity.

Algorithm 8 CardColorCoding(Z,t,c, )

Input : A set Z of positive integers, an upper bound 7, a size bound ¢ > 1 and an error probability § > 0.

Output : A set S C (S,(Z))k X [c]k such that it contains any tuple (X(Y1), ..., Z(Yg), |Y1l, ..., [Yk])
with probability at least 1 — 8, where Y1, ..., Y; C Z disjoint subsets of Z with (Y1), ..., 2(Yy) <t
and |Yy|,..., Y| <c.

1:S <0

2: B 4kjak —1)

3:forj=1,..., [logg(1/8)] do

4:  randomly partition Z = Zy UZp U---UZ»

5: fori = 1,...,c2d0

6: ZL < (Zi x (0D x (1) x (0 h uL U ot x Z x (0T x (1)

TS 2@ ® 7,

C

8: S« SUS;

9: return S

Complexity The algorithm performs O (log (1/6)) repetitions. To compute a pairwise
sum of k variables up to ¢ along with the respective cardinality of each dimension,
O (% ck log(tc)) = O (t*ck log t) time is required. In each repetition, 2 pairwise sums
are computed. Hence, the total complexity of the algorithm is O (¢ log(1/8)t* log 1).
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Algorithm description In this paragraph, we briefly describe the algorithm that suc-
cessfully solves k-SUBSET SUM with cardinality constraints. The proposed algorithm
is called CardColorCodingLayer and is identical to Algorithm 5 of Sect. 3.2
with the following modifications:

(a) The calls to the ColorCoding algorithm on line 6 actually consider the
CardColorCoding algorithm previously described, hence the cardinality infor-
mation is included.

(b) The FFT operations now involve polynomials of 2k variables, since an additional
variable is considered for each subset, depicting its cardinality.

Thus, in contrast to Sect. 3.2 where we had to run a ColorCodingLayer algo-
rithm for each distinct layer, in this case, it suffices torun CardColorCodingLayer
(Z,t,c, ).

Theorem 4 Given a set Z = {z1, ..., zn} C N of size n, targets t, ..., ty and car-
dinalities cy, ..., ck, as well as an error probability 5§ € (0, 1/2k+1], Algorithm
CardColorCodingLayer can decide k-SUBSET SUM with cardinality constraints
with probability at least 1 — § in time é(n + tkck), where t = max{ty, ..., t} and
¢ = max{cy, ..., ck}.

Proof The correctness analysis is not affected by the aforementioned modifications,
thus we only have to compute the complexity of the modified algorithm.

Complexity In order to read the input set, O (n) time is required. The cost of the m
calls to CardColorCoding is

)/2k+2
O (my***log(c/8)(yt /) log(yt/c)) = O ( = logr)

1 2k+2 S
=0 <—0g (c/ )tk log t) .

e
Combining the resulting sets costs
logm

m
o> 2—h(2hyt/c)kck log(2"ytc/c)
h=1

logm Zh(k l)

kck log ¢

logt k—1\"

( mk=1 (2 )

_ <tk klogt )10gm>
o (ke logt)

since for ¢ > 1, it holds that O (}_}_, c*) = O(c™).
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Thus, the total complexity is

1 2k+2 S 5
0] (n + logt <ck + ng—gc/)>> =0n+ tkck)
c

5 Faster algorithms for multiple subset problems

The techniques developed in Sects.3 and 4 can be further applied to give faster
pseudopolynomial algorithms for the decision version of the problems SUBSET SUM
RATIO, k-SUBSET SUM RATIO and MULTIPLE SUBSET SUM. In this section we will
present how these algorithms can be used to efficiently solve these problems.

The algorithms we previously presented result in a polynomial P (x1, ..., xg) con-
sisting of terms each of which corresponds to a k-tuple of realisable sums by disjoint
subsets of the initial input set Z. In other words, if there exists a term x‘f' ...x,i"
in the resulting polynomial, then there exist disjoint subsets Zi, ..., Zy € Z such
that £(Z;) = s1,..., 2(Zr) = si. Hereinafter, when we refer to a solution of a
k-SUBSET SUM input, we actually refer to this resulting polynomial, unless explicitly
stated otherwise.

It is important to note that, while the deterministic algorithm of Sect. 3.1 returns a
polynomial consisting of all terms corresponding to such k-tuples of realisable sums
by disjoint subsets, the randomised algorithm of Sect. 3.2 does not. However, that does
not affect the correctness of the following algorithms, since it suffices to guarantee
that the k-tuple corresponding to the optimal solution of the respective (optimisation)
problem is included with high probability. That indeed happens, since the resulting
polynomial consists of any viable term with high probability, as discussed previously.

5.1 Subset sum ratio

The first variation we will discuss is SUBSET SUM RATIO, which asks to determine,
given a set Z C N of size n and an upper bound ¢, what is the smallest ratio of sums
between any two disjoint subsets S1, S2 € Z, where X(S7), X(S2) < ¢. This can be
solved in deterministic O (n?/312) time using the algorithm proposed in Sect. 3.1 by
simply iterating over the terms of the final polynomial that involve both parameters
x1 and x» and checking the ratio of their exponents. SUBSET SUM RATIO can also
be solved with high probability in randomised O (n + ¢2) time using the algorithm
proposed in Sect. 3.2 instead.

5.2 k-subset sum ratio
An additional extension is the k<-SUBSET SUM RATIO problem, which asks, given a

set Z C N of size n and k bounds 71, ..., t;, to determine what is the smallest ratio
between the largest and smallest sum of any set of k disjoint subsets Z1, ..., Zy C Z
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such that £ (Z;) < t;. Similar to k-SUBSET SUM, an interesting special case is when
all #;’s are equal, in which case we search for k subsets that are as similar as possible
in terms of sum.

Similarly, we can solve this in deterministic O (n*/*+D %) or randomised O (n+r%)
time by using the corresponding algorithm to solve k-SUBSET SUM and subsequently
iterating over the terms of the resulting polynomial that respect the corresponding
bounds, and finally evaluating the ratio of the largest to smallest exponent.

5.3 k-way number partitioning

Another closely related problem called k-WAY NUMBER PARTITIONING asks, given
aset Z C N of size n, to partition its elements into k subsets Zy, ..., Z;, whose
sums X (Z;) are as similar as possible. There are multiple different objective functions
which may be used in order to define this concept of similarity. For instance, one could
ask for the minimum difference between the largest and smallest sums, the minimum
ratio between the largest and smallest sums, the maximum possible smallest sum or
alternatively the minimum possible largest sum. Note that each of these objective
functions may lead to a different solution (Korf 2010).

In order to solve this problem for any of the previously mentioned objective func-
tions, it suffices to solve k-SUBSET SUM for t = max(Z) + (X(Z)/k), where max(Z)
denotes the largest element of Z, while only considering the terms x;" .. .x}:" of the
final polynomial for which )" s; = X(Z). This holds due to the fact that any candidate
solution involves sets of subset sum at most equal to ¢, since if there exists a solution
involving a subset Z’ C Z with X (Z’) > t, that means that in the same solution, there
exists a subset Z” C Z such that X(Z") < ¥(Z)/k, on which case, removing any
element from set Z’ and adding it to the set Z” results in a potentially better solution,
irrespective of the objective function used to define the concept of similarity.

5.4 Multiple subset sum

Finally, we consider the MULTIPLE SUBSET SUM problem that asks, givenaset Z C N
of size n and k bounds #q, ..., %, to determine what is the maximum sum of sums of
any set of k disjoint subsets Zy, ..., Z; of Z, such that ¥(Z;) < ¢;. This problem is
a special case of the MULTIPLE KNAPSACK problem and there is a simple reduction
of k-SUBSET SUM to it. It should be clear that the same techniques as those e.g. used
for k-SUBSET SUM RATIO apply directly to MULTIPLE SUBSET SUM, leading to the
same time complexity bounds of O (nk/*k+1) ¢k deterministically and O(n + %)
probabilistically.

5.5 Adding cardinality constraints
Note that for all of the presented algorithmic problems, if specific cardinalities for the

subsets involved in a solution are required, then we can obtain a solution by applying
the algorithms of Sect. 4 in an analogous manner. In this case, the resulting polynomial
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is of 2k variables, k of which are used to specify the cardinality of the subsets. Thus,
by checking those variables, it is possible to obtain a solution in this more restricted
version of the problems.

5.6 Counting versions

In the deterministic version of the algorithm, one can see that the coefficients in the
resulting polynomial correspond to the number of different solutions for each problem.
As such, the same techniques can be applied in order to solve the counting versions
of these problems. On the other hand, in the randomised version, more probabilistic
analysis is required in order to guarantee the correct computation of each count.

6 Future work
6.1 Possible optimisations regarding FFT

The algorithm of Sect. 3.1 as well as those presented in Sect. 4 involve the computation
of the possible sums by disjoint subsets along with their respective cardinality. To do so,
we extend the FFT operations to multiple variables, each representing either a possible
subset sum or its cardinality. Hence, for k subsets and n elements, we proceed with FFT
operations on variables xi, ..., Xk, Xk+1, - - . , X2k, Where the exponents of x;,i < k
are in [¢] for some given upper bound 7, whereas the exponents of x;,i > k in [n].
Notice however that each element is used only on a single subset, hence for a term
X' .x,?‘x,';jrl ... x5 of the produced polynomial, it holds that s; < ¢ and ) n; < n.
This differs substantially from our analysis, where we essentially only assume that
n; < n, which is significantly less strict. Hence, a stricter complexity analysis may be
possible on those FFT operations, resulting in a more efficient algorithm. However,
although this improvement might be useful for practical applications, no asymptotic
improvement can be achieved via this route.

Also notice that, in our proposed algorithms, each combination of valid sums
appears k! times. This means that for every k disjoint subsets Si, . . ., Sy of the input set,
there are k! different terms in the resulting polynomial of the algorithm representing
the combination of sums 2 (S1), ..., 2(Sk). This increase on the number of terms does
not influence the asymptotic analysis of our algorithms, nevertheless can be restricted
(e.g. by sorting and pruning) for better performance. Additionally, one can limit the
FFT operations to different bounds for each variable, resulting in slightly improved
complexity analysis without changing the algorithms whatsoever. In this paper, we pre-
ferred to analyse the complexity of the algorithms using t = max{z{, ..., tx} for the
sake of simplicity, but one can alternatively obtain time complexities of O (n*/*+DT)
and O (n + T) for the deterministic and the randomised algorithm respectively, where
T = []#. These can be further extended to the case where we additionally have
cardinality constraints.
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It remains to be seen whether there is a corresponding lower bound for the problem
based on popular conjectures such as (S)ETH; on the other hand, it seems that further
improvement would require a different algorithmic approach.

6.2 Extension of randomised algorithm for counting version

As we discussed in Sect. 5, one can use the same techniques as in the deterministic
version in order to solve the counting versions of each problem respectively. In the
case of the randomised algorithm, it is possible to obtain an approximation of these
counts (e.g. by using repetitions to compute the distribution of realisable sums), but it
remains open whether one can find the exact count (w.h.p) more efficiently.

6.3 Recovery of solution sets

The algorithms introduced in this paper solve the decision version of the k-SUBSET
SUM problem. In other words, their output is a binary response, indicating whether
there exist k disjoint subsets whose sums are equal to given values 1, .. ., #; respec-
tively (and their corresponding cardinalities are equal to cy, .. ., ¢t in the cardinality
constrained version of the problem). An extension of these algorithms could involve
the reconstruction of the k solution subsets. Koiliaris and Xu (2019) argue that one
can reconstruct the solution set of SUBSET SUM with only polylogarithmic overhead.
That is possible by carefully extracting the witnesses of each sum every time an FFT
operation is happening. These witnesses are actually the partial sums used to compute
the new sum. Thus, by reducing this problem to the reconstruction problem as men-
tioned in Aumann et al. (2011), they conclude that it is possible to compute all the
witnesses of an FFT operation without considerably increasing the complexity. That
is the case for one-dimensional FFT operations involving a single variable, so it may
be possible to use analogous arguments for multiple variables.

6.4 Extension of subset sum algorithm introduced by Jin and Wu

Jin and Wu introduced an efficient O (n + 1) randomised algorithm for solving SUBSET
SUM in Jin and Wu (2018). This algorithm is much simpler than Bringmann’s, while
actually providing a slightly better upper bound for the problem. It is interesting to
investigate whether this algorithm can be extended to cope with k-SUBSET SUM (and
the variations mentioned in Sect.5), as was the case for Bringmann’s algorithm, since
that would result in a simpler alternative approach.
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