
Journal of Combinatorial Optimization (2023) 45:24
https://doi.org/10.1007/s10878-022-00928-0

Faster algorithms for k-subset sum and variations

Antonis Antonopoulos1 · Aris Pagourtzis1 · Stavros Petsalakis1 ·
Manolis Vasilakis1

Accepted: 26 October 2022 / Published online: 1 December 2022
© The Author(s) 2022

Abstract
We present new, faster pseudopolynomial time algorithms for the k-Subset Sum
problem, defined as follows: given a set Z of n positive integers and k targets t1, . . . , tk ,
determine whether there exist k disjoint subsets Z1, . . . , Zk ⊆ Z , such that �(Zi) =
ti , for i = 1, . . . , k. Assuming t = max{t1, . . . , tk} is the maximum among the given
targets, a standard dynamic programming approach based on Bellman’s algorithm can
solve the problem in O(ntk) time. We build upon recent advances on Subset Sum
due to Koiliaris and Xu, as well as Bringmann, in order to provide faster algorithms
for k-Subset Sum. We devise two algorithms: a deterministic one of time complexity
Õ(nk/(k+1)tk) and a randomised one of Õ(n+ tk) complexity. Additionally, we show
how these algorithms can be modified in order to incorporate cardinality constraints
enforced on the solution subsets. We further demonstrate how these algorithms can be
used in order to cope with variations of k-Subset Sum, namely Subset Sum Ratio,
k-Subset Sum Ratio and Multiple Subset Sum.

Keywords Color coding · FFT · k-Subset Sum · Multiple Knapsack · Multiple
Subset Sum · Pseudopolynomial algorithms · Subset Sum

An extended abstract of this article was presented at the 15th Frontiers of Algorithmics Workshop (FAW
2021) (Antonopoulos et al. 2021).

B Manolis Vasilakis
mvasilakis@corelab.ntua.gr

Antonis Antonopoulos
aanton@corelab.ntua.gr

Aris Pagourtzis
pagour@cs.ntua.gr

Stavros Petsalakis
spetsalakis@corelab.ntua.gr

1 School of Electrical and Computer Engineering, National Technical University of Athens, 15780
Athens, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-022-00928-0&domain=pdf
https://orcid.org/0000-0002-1368-6334
https://orcid.org/0000-0002-6220-3722
https://orcid.org/0000-0001-7825-2839
http://orcid.org/0000-0001-6505-2977

24 Page 2 of 21 Journal of Combinatorial Optimization (2023) 45 :24

1 Introduction

One of Karp’s (1972) 21 NP-complete problems, Subset Sum has seen astound-
ing progress with respect to its pseudopolynomial time solvability over the last few
years. Koiliaris and Xu (2019) and Bringmann (2017) have presented pseudopolyno-
mial algorithms resulting in substantial improvements over the long-standing standard
approach of Bellman (1957), and the improvement by Pisinger (1999).

Equal Subset Sum is a closely related algorithmic problem with applications
to computational biology (Cieliebak et al. 2003b; Cieliebak and Eidenbenz 2004),
computational social choice (Lipton et al. 2004), and cryptography (Voloch 2017), to
name a few. Additionally, it is related to important theoretical concepts such as the
complexity of search problems in the class TFNP (Papadimitriou 1994). This problem
can be solved in Õ(n + t) time1 (where t is a bound for the sums we are interested
in) by a simple extension of Bellman’s (1957) algorithm, as it only asks for any two
disjoint subsets of equal sum s, for some s ≤ t , hence one can exploit the following
disjointness property: if there exists a pair of sets with equal sum s ≤ t , then by
removing their common elements, one can produce two disjoint sets of equal sum
s′ ≤ s ≤ t . Therefore, the algorithm terminates as soon as a sum is produced for a
second time and by using this property as well as an appropriate tree data structure,
we can bound the total running time by the number of all the possible distinct subset
sums up to t , hence obtaining an Õ(n + t) algorithm.

A generalisation of Subset Sum is the problem that asks for k disjoint subsets the
sums of which are respectively equal to targets ti , i = 1 . . . k, henceforth referred to
as the k-Subset Sum problem. One can see that even in the case of k = 2 and t1 = t2,
which is closely related to Equal Subset Sum, the problem seems to escalate in
complexity, since the aforementioned disjointness property does not hold any more.
A special case of particular interest is when the sum of targets equals the sum of the
input elements, that is, we ask for a partition of the input set to subsets of particular
sums. Yet another interesting special case is when we want to partition the input set to
k subsets of equal sum, i.e. all ti ’s are equal to the sum of the input elements divided
by k.

k-Subset Sum finds applications in a variety of fields, including, but not limited to,
scheduling and (fair) resource allocation (Schreiber et al. 2018), sports team realign-
ment (Recalde et al. 2018), as well as balanced control and treatment group formation
for medical studies, focus groups for market research, and controlled sampling for
opinion polling. Furthermore, since it generalises several subset sum problems, such
as k- way Number Partitioning and Multiple Subset Sum, by enforcing car-
dinality constraints, one could use it to solve a number of other meaningful problems
(Tsai 1992).

1.1 Related work

Equal Subset Sum as well as its optimisation version called Subset Sum
Ratio (Bazgan et al. 2002) are closely related to problems appearing in many sci-

1 Õ notation ignores polylogarithmic factors.

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 3 of 21 24

entific areas. Some examples include the Partial Digest problem, which comes
from computational biology (Cieliebak et al. 2003b; Cieliebak and Eidenbenz 2004),
the allocation of individual goods (Lipton et al. 2004), tournament construction (Khan
2017), and a variation of Subset Sum, called Multiple Integrated Sets SSP, which
finds applications in the field of cryptography (Voloch 2017). Furthermore, it is related
to important concepts in theoretical computer science; for example, a restricted ver-
sion of Equal Subset Sum lies in a subclass of the complexity class TFNP, namely
in PPP (Papadimitriou 1994), a class consisting of search problems that always have
a solution due to some pigeonhole argument, and no polynomial time algorithm is
known for this restricted version.

Equal Subset Sum has been proven NP-hard by Woeginger and Yu (1992) and
several variations have been proven NP-hard by Cieliebak et al. (2003a, 2008). A
1.324-approximation algorithm has been proposed for Subset Sum Ratio in Woeg-
inger and Yu (1992), while several FPTASs have appeared in bibliography (Bazgan
et al. 2002; Nanongkai 2013;Melissinos and Pagourtzis 2018; Alonistiotis et al. 2022).

As far as exact algorithms are concerned, recent progress has shown that Equal
Subset Sum can be solved probabilistically in O∗(1.7088n) time (Mucha et al. 2019),
which is faster than a standard “meet-in-the-middle” approach yielding an O∗(3n/2) ≤
O∗(1.7321n) time algorithm. Additionally, as explained earlier, an exact solution can
be obtained in pseudopolynomial Õ(n+t) time using an extension ofBellman’s (1957)
algorithm, when an upper bound t on the sums is provided in the input. However, these
techniques do not seem to apply to k-Subset Sum, mainly due to the fact that we
cannot assume the minimality of the involved subsets. To the best of our knowledge,
no pseudopolynomial time algorithm substantially faster than the standard O(ntk)
dynamic programming approach was known for k-Subset Sum prior to this work.

Equal Subset Sum and k-Subset Sum are tightly connected to Subset Sum,
which has seen impressive advances recently, due to Koiliaris and Xu (2019) who gave
a deterministic Õ(

√
nt) algorithm, where n is the number of input elements and t is

the target, and by Bringmann (2017) who gave a Õ(n + t) randomised algorithm. Jin
and Wu proposed a simpler randomised algorithm (Jin and Wu 2018) achieving the
same bounds as (Bringmann 2017), which however seems to only solve the decision
version of the problem. Both of these algorithms are essentially optimal under SETH
(Abboud et al. 2022). Recently, Bringmann and Nakos (2020) have presented an
O(|St (Z)|4/3poly(log t)) algorithm, where St (Z) is the set of all subset sums of the
input set Z that are smaller than t , based on top-k convolution.

Multiple Subset Sum is a special case of Multiple Knapsack, both of which
have attracted considerable attention. RegardingMultiple Subset Sum, Caprara et
al. present a PTAS for the case where all targets are the same (Caprara et al. 2000), and
subsequently in Caprara et al. (2003) they introduce a 3/4 approximation algorithm.
TheMultiple Knapsack problem has been more intensively studied in recent years
as applications for it arise naturally (in fields such as transportation, industry, and
finance, to name a few). Some notable studies on variations of the problem are given
by Lahyani et al. (2019) and Dell’Amico et al. (2019). Special cases and variants of
Multiple Subset Sum, such as the k-Subset Sum problem, have been studied
in Cieliebak et al. (2003a, 2008) where simple pseudopolynomial algorithms were
proposed.

123

24 Page 4 of 21 Journal of Combinatorial Optimization (2023) 45 :24

1.2 Our contribution

We first present two algorithms for k-Subset Sum: a deterministic one of complexity
Õ(nk/(k+1)tk) and a randomised one of complexity Õ(n + tk). Then, we describe
the necessary modifications required in order to solve k-Subset Sum in the case
where there exist some cardinality constraints regarding the solution subsets. We sub-
sequently show how these ideas can be extended to solve the decision versions of
Subset Sum Ratio, k-Subset Sum Ratio and Multiple Subset Sum.

Our algorithms extend and build upon the algorithms and techniques proposed by
Koiliaris and Xu (2019) and Bringmann (2017) for Subset Sum. In particular, we
make use of FFT computations, modular arithmetic and color-coding, among others.

We start by presenting some necessary background in Sect. 2. Then, we present
the two k-Subset Sum algorithms in Sect. 3, followed by the two algorithms for the
cardinality constrained version of the problem in Sect. 4. We next show how these
algorithms can be used to efficiently decide multiple related subset problems. Finally,
we conclude the paper by presenting some directions for future work.

2 Preliminaries

2.1 Notation

We largely follow the notation used in Koiliaris and Xu (2019) and Bringmann (2017).

• Let [x] = {0, . . . , x} denote the set of integers in the interval [0, x].
• Given a set Z ⊆ N, we denote:

– the sum of its elements by �(Z) = ∑
z∈Z z.

– the characteristic polynomial of Z by fZ (x) = ∑
z∈Z xz .

– the k-modified characteristic polynomial of Z by f kZ (
−→x) = ∑

z∈Z
∑k

i=1 x
z
i ,

where −→x = (x1, . . . , xk).
– the set of all subset sums of Z up to t by St (Z) = {�(X) | X ⊆ Z} ∩ [t].

• For two sets X ,Y ⊆ N, let

– X ⊕ Y = {x + y | x ∈ X ∪ {0}, y ∈ Y ∪ {0}} denote the sumset or pairwise
sum of sets X and Y .

– X ⊕t Y = (X ⊕Y)∩ [t] denote the t-capped sumset or t-capped pairwise sum
of sets X and Y . Note that t > 0.

• The pairwise sum operations can be extended to sets of multiple dimensions.
Formally, let X ,Y ⊆ N

k . Then, X ⊕ Y = {(x1 + y1, . . . , xk + yk)}, where
(x1, . . . , xk) ∈ X ∪ {0}k and (y1, . . . , yk) ∈ Y ∪ {0}k .

2.2 Using FFT for subset sum

Given two sets A, B ⊆ N and an upper bound t > 0, one can compute the t-capped
pairwise sum set A ⊕t B using FFT to get the monomials of the product f A · fB that

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 5 of 21 24

have exponent ≤ t . This operation can be completed in time O(t log t). Observe that
the coefficients of each monomial xi represent the number of pairs (a, b) that sum up
to i , where a ∈ A ∪ {0} and b ∈ B ∪ {0}.

Also note that an FFT operation can be extended to polynomials of multiple vari-
ables. Thus, assuming an upper bound t for the exponents involved, it is possible to
compute f kA · f kB in O(tk log t) time.

Lemma 1 Given two sets of points S, T ⊆ [t]k one can use multidimensional FFT to
compute the set of pairwise sums (that are smaller than t) in time O(tk log t).

As shown in Cormen et al. (2009),Ch. 30 given two sets of points S, T ⊆ [t]k
one can pipeline k one-dimensional FFT operations in order to compute a multi-
dimensional FFT in time O(tk log t).

3 k-subset sum

In this section we propose algorithms that build on the techniques of Koiliaris and
Xu (2019) and Bringmann (2017) in order to solve k-Subset Sum: given a set Z of
n positive integers and k targets t1, . . . , tk , determine whether there exist k disjoint
subsets Z1, . . . , Zk ⊆ Z , such that �(Zi) = ti , for i = 1, . . . , k. Note that k is fixed
and not part of the input. For the rest of this section, assume that Z = {z1, . . . , zn} is
the input set, t1, . . . , tk are the given targets and t = max{t1, . . . , tk}.

Themain challenge in our approach is the fact that the existence of subsets summing
up to the target numbers (or any other pair of numbers) does not imply the disjointness
of said subsets. Hence, it is essential to guarantee the disjointness of the resulting
subsets through the algorithm.

Note that one can extend Bellman’s classic dynamic programming algorithm for
Subset Sum (Bellman 1957) to solve this problem in O(ntk) time, as seen in algo-
rithm 1, where we solve the special case k = 2. Similarly, the algorithm can be
extended to apply for any arbitrary k.

Algorithm 1 Bellman(Z , t1, t2)
Input : A set Z = {z1, . . . , zn} of positive integers and targets t1, t2 ≤ �(Z).
Output : True if there are two disjoint subsets Z1, Z2 ⊆ Z , with �(Z1) = t1 and �(Z2) = t2, else false.
1: t ← max{t1, t2}
2: initialise table T [t][t][n] ← f alse everywhere
3: T [0][0][0] ← true Initially, only (∅, ∅) is possible.
4: for ni = 1, . . . , n do
5: for (i, j) ∈ [t] × [t] do
6: if T [i][j][ni − 1] = true then
7: T [i][j][ni] = true zni /∈ Z1 ∪ Z2
8: T [i + zi][j][ni] = true zni ∈ Z1
9: T [i][j + zi][ni] = true zni ∈ Z2
10: return T [t1][t2][n]

123

24 Page 6 of 21 Journal of Combinatorial Optimization (2023) 45 :24

3.1 Solving k-subset sum in deterministic Õ(nk/(k+1)tk) time

In this subsectionwe showhow to decide k-Subset Sum in Õ(nk/(k+1)tk) time,where
t = max{t1, . . . , tk}. To this end, we extend the algorithm proposed by Koiliaris and
Xu (2019).Wefirst describe briefly the original algorithm for completeness and clarity.

The algorithm recursively partitions the input set S into two subsets of equal size
and returns all pairwise sums of those sets, along with cardinality information for each
sum. This is achieved using FFT for pairwise sums as discussed in Sect. 2.

Using properties of congruence classes, it is possible to further capitalise on the
efficiency of FFT for subset sums as follows. Given bound t , partition the elements of
the initial set into congruence classes mod b, for some integer b > 0. Subsequently,
divide the elements by b and keep their quotient, hence reducing the size of the max-
imum exponent value from t to t/b. One can compute the t-capped sum of the initial
elements by computing the t/b-capped sum of each congruence class and combining
the results of each such operation in a final t-capped FFT operation, taking into account
the remainder of each congruence class w.r.t. the number of elements (cardinality) of
each subset involved. In order to achieve this, it is necessary to keep cardinality infor-
mation for each sum (or monomial) involved, which can be done by adding another
variable with minimal expense in complexity.

Thus, the overall complexity of FFT operations for each congruence class l ∈
{0, 1, . . . , b − 1} is O((t/b)nl log nl log t), where nl denotes the number of the ele-
ments belonging to said congruence class. Combining these classes takes O(bt log t)
time so the final complexity is O(t log t(n log nb + b)). Setting b = �√n log n� gives

O(
√
n log n t log t) = Õ(

√
n t). After combining the sums in the final step, we end

up with a polynomial that contains each realisable sum represented by a monomial,
the coefficient of which represents the number of different (not necessarily disjoint)
subsets that sum up to the corresponding sum.

Our algorithmbegins by using themodified characteristic polynomialswe proposed
in the preliminaries, thereby representing each z ∈ Z as�k

i=1x
z
i in the base polynomial

at the leaves of the recursion.We also use additional dimensions for the cardinalities of
the subsets involved; each cardinality is represented by the exponent of some xi , with
index i greater than k. We then proceed with using multi-variate FFT in each step of
the recursion in an analogous manner as in the original algorithm, thereby producing

polynomialswith terms x
t ′1
1 . . . x

t ′k
k x

c1
k+1 . . . xck2k , each ofwhich corresponds to a 2k-tuple

of disjoint subsets of sums t ′1, . . . , t ′k and cardinalities c1, . . . , ck respectively.
This results in FFT operations on tuples of 2k dimensions, having k dimensions

of max value t/b, and another k dimensions of max value nl which represent the
cardinalities of the involved subsets, requiring O(nkl (t/b)

k log(nl) log(nl t/b)) time
for congruence class l ∈ {0, 1, . . . , b − 1}.

The above procedure is implemented in Algorithm 2, while the main algorithm is
Algorithm3,which combines the results from each congruence class, taking additional
O(btk log t) time.

Lemma 2 There is a term x
t ′1
1 . . . x

t ′k
k in the polynomial returned by Algorithm 3 if and

only if there exist k disjoint subsets Z1, . . . , Zk ⊆ Z such that �(Zi) = t ′i .

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 7 of 21 24

Proof We observe that each of the terms of the form x
t ′1
1 . . . x

t ′k
k has been produced at

some point of the recursion via an FFT operation combining two terms that belong
to different subtrees, ergo containing different elements in each subset involved. As
such, t ′1, . . . , t ′k are sums of disjoint subsets of Z . ��
Theorem 1 Given a set Z = {z1, . . . , zn} ⊆ N of size n and targets t1, . . . , tk , Algo-
rithm 3 can decide k-Subset Sum in time Õ(nk/(k+1)tk), where t = max{t1, . . . , tk}.
Proof The correctness of the algorithm stems from Lemma 2.

Complexity The overall complexity of the algorithm, stemming from the computation
of subset sums inside the congruence classes and the combination of those sums, is

O

(

tk log t

(
nk log n

bk
+ b

))

= Õ(nk/(k+1)tk),

where the right-hand side is obtained by setting b = k+1
√
nk log n. ��

Algorithm 2 DisjointSC(S, t)
Input : A set S of n positive integers and an upper bound integer t .
Output : The set Z ⊆ (St (S))k × [n]k of all k-tuples of subset sums occurring from disjoint subsets of S

up to t , along with their respective cardinality information.
1: if S = {s} then
2: return {0}2k ∪ {(s, 0, . . . , 0

︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

k−1

)} ∪ . . . ∪ {(0, . . . , 0
︸ ︷︷ ︸

k−1

, s, 0, . . . , 0
︸ ︷︷ ︸

k−1

, 1)}

3: T ← an arbitrary subset of S of size � n2 �
4: return DisjointSC(T , t) ⊕ DisjointSC(S \ T , t)

Algorithm 3 DisjointSS(Z , t)
Input : A set Z of n positive integers and an upper bound integer t .
Output : The set S ⊆ (St (Z))k of all k-tuples of subset sums up to t occurring from disjoint subsets of Z .
1: b ← � k+1

√
nk log n�

2: for l ∈ [b − 1] do
3: Sl ← Z ∩ {x ∈ N | x ≡ l (mod b)}
4: Ql ← {�x/b� | x ∈ Sl }
5: R(Ql) ← DisjointSC(Ql , �t/b�)
6: Rl ← {(z1b + j1l, . . . , zkb + jk l) | (z1, . . . , zk , j1, . . . , jk) ∈ R(Ql)}
7: return R0 ⊕t · · · ⊕t Rb−1

3.2 Solving k-subset sum in randomised Õ(n+ tk) time

We will show that one can decide k-Subset Sum in Õ(n + tk) time, where
t = max{t1, . . . , tk}, by building upon the techniques used in Bringmann (2017). In
particular, wewill present an algorithm that successfully detects, with high probability,
whether there exist k disjoint subsets each summing up to ti respectively. In compar-
ison to the algorithm of Bringmann (2017), a couple of modifications are required,
which we will first briefly summarise prior to presenting the complete algorithm.

123

24 Page 8 of 21 Journal of Combinatorial Optimization (2023) 45 :24

• In our version of ColorCoding, the number of repetitions of randompartitioning
is increased, without asymptotically affecting the complexity of the algorithm,
since it remains O(log(1/δ)).

• In our version of ColorCoding, after each partition of the elements, we execute
the FFT operations on the k-modified characteristic polynomials of the resulting
sets. Thus, for each element si we introduce k points (si , 0, . . . , 0), . . ., (0, . . . , si),
represented by polynomial xsi1 + . . . + xsik . Hence ColorCoding returns a set
of points, each of which corresponds to k sums, realisable by disjoint subsets of
the initial set.

• Algorithm ColorCodingLayer needs no modification, except that now the
FFToperations concern sets of points and not sets of integers, hence the complexity
analysis differs. Additionally, the algorithm returns a set of points, each of which
corresponds to realisable sums by disjoint subsets of the l-layer input instance.

• The initial partition of the original set to l-layer instances remains as is, and the
FFT operations once more concern sets of points instead of sets of integers.

3.2.1 Small cardinality solutions

We will first describe the modified procedure ColorCoding for solving k-Subset
Sum if the solution size is small, i.e., an algorithm that, given an integer c, finds k-
tuples of sums (�(Y1), . . . , �(Yk)), where �(Yi) ≤ t and Yi ⊆ Z are disjoint subsets
of input set Z of cardinality at most c, and determines with high probability whether
there exists a tuple (t1, . . . , tk) among them, for some given values ti .

We randomly partition our initial set Z to c2 subsets Z1, . . . , Zc2 , i.e., we assign
each z ∈ Z to a set Zi where i is chosen independently and uniformly at random from
{1, . . . , c2}. We say that this random partition splits Y ⊆ Z if |Y ∩ Zi | ≤ 1,∀i . If
such a split occurs, the set returned by ColorCoding will contain2 �(Y). Indeed,
by choosing the element of Y for those Zi that |Y ∩ Zi | = 1 and 0 for the rest, we
successfully generate k-tuples containing �(Y) through the pairwise sum operations.
The algorithm returns only valid sums, since no element is used more than once in
each sum, because each element is assigned uniquely to a Zi for each distinct partition.

Our intended goal is thus, for any k random disjoint subsets, to have a partition
that splits them all. Such a partition allows us to construct a k-tuple consisting of all
their respective sums through the use of FFT. Hence, the question is to determine how
many random partitions are required to achieve this with high probability.

The answer is obtained by observing that the probability to split a subset Y is the
same as having |Y | different balls in |Y | distinct bins, when throwing |Y | balls into c2
different bins, as mentioned in Bringmann (2017). Next, we compute the probability
to split k random disjoint subsets Y1, . . . ,Yk in the same partition.

2 In this context, “contain” is used to denote that �(Y) = si for some i in a k-tuple s = (s1, . . . , sk) ∈ S,
where S is the resulting set of ColorCoding.

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 9 of 21 24

The probability that a split occurs at a randompartition for k randomdisjoint subsets
Y1, . . . ,Yk ⊆ Z is

Pr[all Yi are split] =
k∏

i=1

Pr[Yi is split]

= c2 − 1

c2
· · · c

2 − (|Y1| − 1)

c2
· · · c

2 − 1

c2
· · · c

2 − (|Yk | − 1)

c2

≥
(
c2 − (|Y1| − 1)

c2

)|Y1|
· · ·

(
c2 − (|Yk | − 1)

c2

)|Yk |

≥
(

1 − 1

c

)c

· · ·
(

1 − 1

c

)c

≥
(
1

2

)2

· · ·
(
1

2

)2

= 1

4k

Hence, for β = 4k/(4k − 1), r = �logβ(1/δ)� repetitions yield the desired success
probability of 1− (1− 1/4k)r ≥ 1− δ. In other words, after r random partitions, for
any k random disjoint subsets Y1, . . . ,Yk , there exists, with probability at least 1− δ,
a partition that splits them all.

Algorithm 4 ColorCoding(Z , t, c, δ)
Input : A set Z of positive integers, an upper bound t , a size bound c ≥ 1 and an error probability δ > 0.
Output : A set S ⊆ (St (Z))k containing any (�(Y1), . . . , �(Yk)) with probability at least 1 − δ, where

Y1, . . . , Yk ⊆ Z disjoint subsets with �(Y1), . . . , �(Yk) ≤ t and |Y1|, . . . , |Yk | ≤ c.
1: S ← ∅
2: β ← 4k/(4k − 1)
3: for j = 1, . . . , �logβ(1/δ)� do
4: randomly partition Z = Z1 ∪ Z2 ∪ · · · ∪ Zc2
5: for i = 1, . . . , c2 do
6: Z ′

i ← (Zi × {0}k−1) ∪ . . . ∪ ({0}k−1 × Zi)

7: S j ← Z ′
1 ⊕t · · · ⊕t Z ′

c2
8: S ← S ∪ S j
9: return S

Lemma 3 Given a set Z of positive integers, a sum bound t, a size bound c ≥ 1
and an error probability δ > 0, ColorCoding(Z , t, k, δ) returns a set S con-
sisting of any k-tuple (�(Y1), . . . , �(Yk)) with probability at least 1 − δ, where
Y1, . . . ,Yk ⊆ Z are disjoint subsets with �(Y1), . . . , �(Yk) ≤ t and |Y1|, . . . , |Yk | ≤
c, in O(c2 log(1/δ)tk log t) time.

Proof As we have already explained, if there exist k disjoint subsets Y1, . . . ,Yk ⊆ Z
with�(Y1), . . . , �(Yk) ≤ t and |Y1|, . . . , |Yk | ≤ c, our algorithmguarantees that with
probability at least 1− δ, there exists a partition that splits them all. Subsequently, the
FFT operations on the corresponding points produces the k-tuple.

Complexity The algorithm performs O(log (1/δ)) repetitions. To compute a pair-
wise sum of k variables up to t , O(tk log t) time is required. In each repetition,

123

24 Page 10 of 21 Journal of Combinatorial Optimization (2023) 45 :24

c2 pairwise sums are computed. Hence, the total complexity of the algorithm is
O(c2 log(1/δ)tk log t). ��

3.2.2 Solving k-subset sum for l-layer instances

In this part, we will prove that we can use the algorithm ColorCodingLayer from
Bringmann (2017), to successfully solve k-Subset Sum for l-layer instances, defined
below.

For l ≥ 1, we call (Z , t) an l-layer instance if Z ⊆ [t/l, 2t/l] or Z ⊆ [0, 2t/l] and
l ≥ n. In both cases, Z ⊆ [0, 2t/l] and for anyY ⊆ Z with�(Y) ≤ t , we have |Y | ≤ l.
The algorithm of Bringmann (2017) successfully solves the Subset Sum problem for
l-layer instances.Wewill show that by calling themodified ColorCoding algorithm
and modifying the FFT operations so that they concern sets of points, the algorithm
successfully solves k-Subset Sum in such instances.

Algorithm 5 ColorCodingLayer(Z , t, l, δ)

Input : An l-layer instance (Z , t) and an error probability δ ∈ (0, 1/2k+1].
Output : A set S ⊆ (St (Z))k containing any (�(Y1), . . . , �(Yk)) with probability at least 1 − δ, where

Y1, . . . , Yk ⊆ Z disjoint subsets with �(Y1), . . . , �(Yk) ≤ t .
1: if l < log(l/δ) then return ColorCoding(Z , t, l, δ)
2: m ← l/ log(l/δ) rounded up to the next power of 2
3: randomly partition Z = Z1 ∪ Z2 ∪ · · · ∪ Zm
4: γ ← 6 log(l/δ)
5: for j = 1, . . . ,m do
6: S j ← ColorCoding(Z j , 2γ t/l, γ, δ/l)

7: for h = 1, . . . , logm do combine S j in a binary-tree-like way

8: for j = 1, . . . ,m/2h do
9: S j ← S2 j−1 ⊕2h ·2γ t/l S2 j
10: return S1 ∩ [t]k

Wewill nowprove the correctness of the algorithm. Let X1, . . . , Xk ⊆ Z be disjoint
subsets with �(X1), . . . , �(Xk) ≤ t . By Bringmann (2017), Claim 3.3, we have that
Pr[|Yi | ≥ 6 log (l/δ)] ≤ δ/l, where Yi = Y ∩ Zi , for any Y ⊆ Z with at most l
elements. Hence, the probability that |X j

i | ≤ 6 log (l/δ), for all i = 1, . . . ,m and
j = 1, . . . , k is

Pr

⎡

⎣
m∧

i=1

k∧

j=1

|X j
i | ≤ 6 log (l/δ)

⎤

⎦ ≥ 1 −
⎛

⎝
m∑

i=1

k∑

j=1

Pr
[
|X j

i | > 6 log(l/δ)
]
⎞

⎠

≥ 1 − kmδ/l.

ColorCoding computes (�(X1
i), . . . , �(Xk

i)) with probability at least 1− δ. This
happens for all i with probability at least 1−mδ/l. Then, combining the resulting sets
indeed yields the k-tuple (�(X1), . . . , �(Xk)). The total error probability is at most
(k + 1)mδ/l. Assume that δ ∈ (0, 1/2k+1]. Since l ≥ 1 and δ ≤ 1/2k+1, we have

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 11 of 21 24

log (l/δ) ≥ (k + 1). Hence, the total error probability is bounded by δ. This gives the
following.

Lemma 4 Given an l-layer instance (Z , t), upper bound t and error probability δ ∈
(0, 1/2k+1], ColorCodingLayer(Z , t, l, δ) solves k-Subset Sum with sum at

most t in time O
(
tk log t log

k+2(l/δ)
lk−1

)
with probability at least 1 − δ.

Complexity The time required to compute the sets of k-tuples S1, . . . , Sm by calling
ColorCoding is

O(mγ 2 log(l/δ)(γ t/l)k log(γ t/l)) = O

(
γ k+2

lk−1 t
k log t

)

= O

(
logk+2(l/δ)

lk−1 tk log t

)

.

Combining the resulting sets costs

O

⎛

⎝
logm∑

h=1

m

2h
(2hγ t/l)k log(2hγ t/l)

⎞

⎠ = O

⎛

⎝
logm∑

h=1

2h(k−1)

mk−1 tk log t

⎞

⎠

= O

⎛

⎝ tk log t

mk−1

logm∑

h=1

(
2k−1

)h
⎞

⎠

= O

(
tk log t

mk−1

(
2k−1

)logm
)

= O(tk log t),

since for c > 1, we have that O
(∑n

k=0 c
k
) = O(cn), which is dominated by the

computation of S1, . . . , Sm .

Hence, ColorCodingLayer has total complexity O
(
tk log t · logk+2(l/δ)

lk−1

)
.

3.2.3 General case

It remains to show that for every instance (Z , t), we can construct l-layer instances
and take advantage of ColorCodingLayer in order to solve k-Subset Sum
for the general case. This is possible by partitioning set Z at t/2i for i =
1, . . . , �log n� − 1. Thus, we have O(log n) l-layers Z1, . . . , Z�log n�. On each layer
we run ColorCodingLayer and subsequently combine the results using pairwise
sums.

We will now prove the main theorem of this section.

Theorem 2 Given a set Z ⊆ N of size n and targets t1, . . . , tk , one can decide k-
Subset Sum in Õ(n + tk) time w.h.p., where t = max{t1, . . . , tk}.

123

24 Page 12 of 21 Journal of Combinatorial Optimization (2023) 45 :24

Algorithm 6 kSubsetSum(Z , δ, t)
Input : A set of positive integers Z of cardinality n, an upper bound t and an error probability δ.
Output : A set S ⊆ (St (Z))k containing any (�(Y1), . . . , �(Yk)) with probability at least 1 − δ, where

Y1, . . . , Yk ⊆ Z disjoint subsets with �(Y1), . . . , �(Yk) ≤ t .
1: partition Z into Zi ← Z∩(t/2i , t/2i−1] for i = 1, . . . , �log n�−1 and Z�log n� ← Z∩[0, t/2�log n�−1]
2: S ← ∅
3: for i = 1, . . . , �log n� do
4: Si ← ColorCodingLayer(Zi , t, 2

i , δ/�log n�)
5: S ← S ⊕t Si
6: return S

Proof Let X1, . . . , Xk ⊆ Z be k disjoint subsets with �(X1), . . . , �(Xk) ≤ t ,
and X j

i = X j ∩ Zi , for j = 1, . . . , k and i = 1, . . . , �log n�. Each call to
ColorCodingLayer returns a k-tuple (�(X1

i), . . . , �(Xk
i)) with probability at

least 1 − δ/�log n�, hence the probability that all calls return the corresponding k-
tuple is

Pr[ColorCodingLayer returns(�(X1
i), . . . , �(Xk

i)),∀i]

= 1 − Pr[some call fails] ≥ 1 −
�log n�∑

i=1

δ

�log n�

= 1 − �log n� · δ

�log n� = 1 − δ

If all calls return the corresponding k-tuple, the algorithm successfully constructs the
k-tuple (�(X1), . . . , �(Xk)). Thus, with probability at least 1 − δ, the algorithm
solves k-Subset Sum.

Complexity Reading the input requires �(n) time. In each of the �(log n) repeti-
tions of the algorithm, we make a call to ColorCodingLayer, plus compute
a pairwise sum. The computation of the pairwise sum requires O(tk log t) time
since it concerns k-tuples. For each call to ColorCodingLayer, we require

O

⎛

⎝tk log t
logk+2

(
2i log n

δ

)

2i(k−1)

⎞

⎠ time. Hence, the overall complexity is

O

⎛

⎝n + tk log t log n +
log n∑

i=1

tk log t
logk+2

(
2i log n

δ

)

2i(k−1)

⎞

⎠ = Õ(n + tk).
��

4 k-subset sumwith cardinality constraints

The algorithms presented in the previous section can be extended to a variation of the
k-Subset Sum problem, where along with the target values, the cardinality of the
respective solution sets is given as part of the input.

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 13 of 21 24

Therefore, consider ci , i = 1, . . . , k such that
∑

ci ≤ n, to be the desired cardinality
of set Zi , where �(Zi) = ti , and let c = max{c1, . . . , ck}. We seek to determine
whether there exist disjoint subsets Zi ⊆ Z , i = 1, . . . , k of sum �(Zi) = ti and
cardinality |Zi | = ci .

As it will become evident, the previously proposed algorithms for k-Subset Sum
can be slightly modified in order to cope with this additional restriction. The main
idea lies on the addition of extra variables in the resulting polynomial, each of which
represents the cardinality of one of the solution sets. This results in a blowup of the
order of O(ck) in the final complexity of the algorithms, since a variable is added for
each of the k subsets of the solution.

4.1 A deterministic approach

In the case of the deterministic algorithm proposed in Sect. 3.1, it suffices to modify
the procedure in line 6 of Algorithm 3.

Here, instead of simply reconstructing the actual partial sums obtained from ele-
ments belonging to the same congruence class, it is necessary to additionally keep
the relevant cardinality information. Subsequently, the final FFT operation takes into
account this information in order to verify the existence of a solution, thus requiring
additional time due to the extra variables.

Theorem 3 Given a set Z = {z1, . . . , zn} ⊆ N of size n, targets t1, . . . , tk and cardi-
nalities c1, . . . , ck , Algorithm7 candecide k-Subset Sumwith cardinality constraints

in time Õ(
k+1
√
nkck2 tk), where t = max{t1, . . . , tk} and c = max{c1, . . . , ck}.

Proof The correctness of the algorithm can be shown by analogous arguments as those
used in Lemma 2. In particular, in this case the subset cardinalities computed in each
congruence class are kept in order to verify the final cardinality of the solution subsets
obtained from the addition of elements belonging in different congruence classes.

Complexity The overall complexity of the algorithm, stemming from the computation
of subset sums inside the congruence classes and the combination of those sums, is

O

(
nk log n

bk
tk log t + btkck log(tc)

)

= O

(
nk log n

bk
tk log t + btkck log t

)

= O

(

tk log t

(
nk log n

bk
+ bck

))

= Õ(
k+1
√
nkck2 tk),

which is obtained by setting b = k+1
√

nk log n
ck

. ��

4.2 A randomised approach

With slight modifications, it is possible to successfully adapt the algorithm of Sect. 3.2
in order to consider the additional cardinality constraints of this section.

123

24 Page 14 of 21 Journal of Combinatorial Optimization (2023) 45 :24

Algorithm 7 CardDisjointSS(Z , t)
Input : A set Z of n positive integers, an upper bound integer t and a size bound c ≥ 1.
Output : The set S ⊆ (St (Z) × [c])k of all k-tuples of subset sums up to t along with their respective

cardinality on each dimension, occurring from disjoint subsets of Z with cardinality up to c.

1: b ← � k+1

√
nk log n

ck
�

2: for l ∈ [b − 1] do
3: Sl ← Z ∩ {x ∈ N | x ≡ l (mod b)}
4: Ql ← {�x/b� | x ∈ Sl }
5: R(Ql) ← DisjointSC(Ql , �t/b�)
6: Rl ← {(z1b + j1l, j1), . . . , (zkb + jk l, jk) | (z1, . . . , zk , j1, . . . , jk) ∈ R(Ql)}
7: return R0 ⊕t · · · ⊕t Rb−1

More specifically, there are two important remarks that lead to those modifications:

1. It is necessary to verify the cardinalities of the involved subsets in the result-
ing polynomial. This can be achieved by introducing additional variables, similar
to 4.1.

2. Whereas in the algorithm of Sect. 3.2 there was a necessity of partitioning the input
to layers in order to associate the cardinality of a subset with its target value, in
this case such a procedure is redundant, since the upper bound on the cardinality
of the sets is part of the input.

Following these remarks, we firstly modify the ColorCoding algorithm of the
previous section, in order to additionally return cardinality information for the involved
subsets. This does not affect the correctness of the algorithm whatsoever and only
incurs a blowup in the final complexity.

Algorithm 8 CardColorCoding(Z , t, c, δ)
Input : A set Z of positive integers, an upper bound t , a size bound c ≥ 1 and an error probability δ > 0.
Output : A set S ⊆ (St (Z))k × [c]k such that it contains any tuple (�(Y1), . . . , �(Yk), |Y1|, . . . , |Yk |)

with probability at least 1− δ, where Y1, . . . , Yk ⊆ Z disjoint subsets of Z with �(Y1), . . . , �(Yk) ≤ t
and |Y1|, . . . , |Yk | ≤ c.

1: S ← ∅
2: β ← 4k/(4k − 1)
3: for j = 1, . . . , �logβ(1/δ)� do
4: randomly partition Z = Z1 ∪ Z2 ∪ · · · ∪ Zc2
5: for i = 1, . . . , c2 do
6: Z ′

i ← (Zi × {0}k−1 × {1} × {0}k−1) ∪ . . . ∪ ({0}k−1 × Zi × {0}k−1 × {1})
7: S j ← Z ′

1 ⊕t · · · ⊕t Z ′
c2

8: S ← S ∪ S j
9: return S

Complexity The algorithm performs O(log (1/δ)) repetitions. To compute a pairwise
sum of k variables up to t along with the respective cardinality of each dimension,
O(tkck log(tc)) = O(tkck log t) time is required. In each repetition, c2 pairwise sums
are computed.Hence, the total complexity of the algorithm isO(ck+2 log(1/δ)tk log t).

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 15 of 21 24

Algorithm description In this paragraph, we briefly describe the algorithm that suc-
cessfully solves k-Subset Sum with cardinality constraints. The proposed algorithm
is called CardColorCodingLayer and is identical to Algorithm 5 of Sect. 3.2
with the following modifications:

(a) The calls to the ColorCoding algorithm on line 6 actually consider the
CardColorCoding algorithmpreviously described, hence the cardinality infor-
mation is included.

(b) The FFT operations now involve polynomials of 2k variables, since an additional
variable is considered for each subset, depicting its cardinality.

Thus, in contrast to Sect. 3.2 where we had to run a ColorCodingLayer algo-
rithm for eachdistinct layer, in this case, it suffices to runCardColorCodingLayer
(Z , t, c, δ).

Theorem 4 Given a set Z = {z1, . . . , zn} ⊆ N of size n, targets t1, . . . , tk and car-
dinalities c1, . . . , ck , as well as an error probability δ ∈ (0, 1/2k+1], Algorithm
CardColorCodingLayer can decide k-Subset Sumwith cardinality constraints
with probability at least 1 − δ in time Õ(n + tkck), where t = max{t1, . . . , tk} and
c = max{c1, . . . , ck}.

Proof The correctness analysis is not affected by the aforementioned modifications,
thus we only have to compute the complexity of the modified algorithm.

Complexity In order to read the input set, O(n) time is required. The cost of the m
calls to CardColorCoding is

O(mγ k+2 log(c/δ)(γ t/c)k log(γ t/c)) = O

(
γ 2k+2

ck−1 tk log t

)

= O

(
log2k+2(c/δ)

ck−1 tk log t

)

.

Combining the resulting sets costs

O

⎛

⎝
logm∑

h=1

m

2h
(2hγ t/c)kck log(2hγ tc/c)

⎞

⎠ = O

⎛

⎝
logm∑

h=1

2h(k−1)

mk−1 tkck log t

⎞

⎠

= O

⎛

⎝ tkck log t

mk−1

logm∑

h=1

(
2k−1

)h
⎞

⎠

= O

(
tkck log t

mk−1

(
2k−1

)logm
)

= O(tkck log t),

since for c > 1, it holds that O
(∑n

k=0 c
k
) = O(cn).

123

24 Page 16 of 21 Journal of Combinatorial Optimization (2023) 45 :24

Thus, the total complexity is

O

(

n + tk log t

(

ck + log2k+2(c/δ)

ck−1

))

= Õ(n + tkck)

��

5 Faster algorithms for multiple subset problems

The techniques developed in Sects. 3 and 4 can be further applied to give faster
pseudopolynomial algorithms for the decision version of the problems Subset Sum
Ratio, k-Subset Sum Ratio and Multiple Subset Sum. In this section we will
present how these algorithms can be used to efficiently solve these problems.

The algorithms we previously presented result in a polynomial P(x1, . . . , xk) con-
sisting of terms each of which corresponds to a k-tuple of realisable sums by disjoint
subsets of the initial input set Z . In other words, if there exists a term xs11 . . . xskk
in the resulting polynomial, then there exist disjoint subsets Z1, . . . , Zk ⊆ Z such
that �(Z1) = s1, . . . , �(Zk) = sk . Hereinafter, when we refer to a solution of a
k-Subset Sum input, we actually refer to this resulting polynomial, unless explicitly
stated otherwise.

It is important to note that, while the deterministic algorithm of Sect. 3.1 returns a
polynomial consisting of all terms corresponding to such k-tuples of realisable sums
by disjoint subsets, the randomised algorithm of Sect. 3.2 does not. However, that does
not affect the correctness of the following algorithms, since it suffices to guarantee
that the k-tuple corresponding to the optimal solution of the respective (optimisation)
problem is included with high probability. That indeed happens, since the resulting
polynomial consists of any viable term with high probability, as discussed previously.

5.1 Subset sum ratio

The first variation we will discuss is Subset Sum Ratio, which asks to determine,
given a set Z ⊆ N of size n and an upper bound t , what is the smallest ratio of sums
between any two disjoint subsets S1, S2 ⊆ Z , where �(S1),�(S2) ≤ t . This can be
solved in deterministic Õ(n2/3t2) time using the algorithm proposed in Sect. 3.1 by
simply iterating over the terms of the final polynomial that involve both parameters
x1 and x2 and checking the ratio of their exponents. Subset Sum Ratio can also
be solved with high probability in randomised Õ(n + t2) time using the algorithm
proposed in Sect. 3.2 instead.

5.2 k-subset sum ratio

An additional extension is the k-Subset Sum Ratio problem, which asks, given a
set Z ⊆ N of size n and k bounds t1, . . . , tk , to determine what is the smallest ratio
between the largest and smallest sum of any set of k disjoint subsets Z1, . . . , Zk ⊆ Z

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 17 of 21 24

such that �(Zi) ≤ ti . Similar to k-Subset Sum, an interesting special case is when
all ti ’s are equal, in which case we search for k subsets that are as similar as possible
in terms of sum.

Similarly,we can solve this in deterministic Õ(nk/(k+1)·tk)or randomised Õ(n+tk)
time by using the corresponding algorithm to solve k-Subset Sum and subsequently
iterating over the terms of the resulting polynomial that respect the corresponding
bounds, and finally evaluating the ratio of the largest to smallest exponent.

5.3 k-way number partitioning

Another closely related problem called k-way Number Partitioning asks, given
a set Z ⊆ N of size n, to partition its elements into k subsets Z1, . . . , Zk , whose
sums�(Zi) are as similar as possible. There are multiple different objective functions
which may be used in order to define this concept of similarity. For instance, one could
ask for the minimum difference between the largest and smallest sums, the minimum
ratio between the largest and smallest sums, the maximum possible smallest sum or
alternatively the minimum possible largest sum. Note that each of these objective
functions may lead to a different solution (Korf 2010).

In order to solve this problem for any of the previously mentioned objective func-
tions, it suffices to solve k-Subset Sum for t = max(Z)+ (�(Z)/k), where max(Z)

denotes the largest element of Z , while only considering the terms xs11 . . . xskk of the
final polynomial for which

∑
si = �(Z). This holds due to the fact that any candidate

solution involves sets of subset sum at most equal to t , since if there exists a solution
involving a subset Z ′ ⊆ Z with �(Z ′) > t , that means that in the same solution, there
exists a subset Z ′′ ⊆ Z such that �(Z ′′) < �(Z)/k, on which case, removing any
element from set Z ′ and adding it to the set Z ′′ results in a potentially better solution,
irrespective of the objective function used to define the concept of similarity.

5.4 Multiple subset sum

Finally, we consider theMultiple Subset Sum problem that asks, given a set Z ⊆ N

of size n and k bounds t1, . . . , tk , to determine what is the maximum sum of sums of
any set of k disjoint subsets Z1, . . . , Zk of Z , such that �(Zi) ≤ ti . This problem is
a special case of the Multiple Knapsack problem and there is a simple reduction
of k-Subset Sum to it. It should be clear that the same techniques as those e.g. used
for k-Subset Sum Ratio apply directly to Multiple Subset Sum, leading to the
same time complexity bounds of Õ(nk/(k+1) · tk) deterministically and Õ(n + tk)
probabilistically.

5.5 Adding cardinality constraints

Note that for all of the presented algorithmic problems, if specific cardinalities for the
subsets involved in a solution are required, then we can obtain a solution by applying
the algorithms of Sect. 4 in an analogous manner. In this case, the resulting polynomial

123

24 Page 18 of 21 Journal of Combinatorial Optimization (2023) 45 :24

is of 2k variables, k of which are used to specify the cardinality of the subsets. Thus,
by checking those variables, it is possible to obtain a solution in this more restricted
version of the problems.

5.6 Counting versions

In the deterministic version of the algorithm, one can see that the coefficients in the
resulting polynomial correspond to the number of different solutions for each problem.
As such, the same techniques can be applied in order to solve the counting versions
of these problems. On the other hand, in the randomised version, more probabilistic
analysis is required in order to guarantee the correct computation of each count.

6 Future work

6.1 Possible optimisations regarding FFT

The algorithm of Sect. 3.1 as well as those presented in Sect. 4 involve the computation
of the possible sums bydisjoint subsets alongwith their respective cardinality. To do so,
we extend the FFT operations to multiple variables, each representing either a possible
subset sumor its cardinality. Hence, for k subsets and n elements, we proceedwith FFT
operations on variables x1, . . . , xk, xk+1, . . . , x2k , where the exponents of xi , i ≤ k
are in [t] for some given upper bound t , whereas the exponents of xi , i > k in [n].
Notice however that each element is used only on a single subset, hence for a term
xs11 . . . xskk xn1k+1 . . . xnk2k of the produced polynomial, it holds that si ≤ t and

∑
ni ≤ n.

This differs substantially from our analysis, where we essentially only assume that
ni ≤ n, which is significantly less strict. Hence, a stricter complexity analysis may be
possible on those FFT operations, resulting in a more efficient algorithm. However,
although this improvement might be useful for practical applications, no asymptotic
improvement can be achieved via this route.

Also notice that, in our proposed algorithms, each combination of valid sums
appears k! times. Thismeans that for every k disjoint subsets S1, . . . , Sk of the input set,
there are k! different terms in the resulting polynomial of the algorithm representing
the combination of sums�(S1), . . . , �(Sk). This increase on the number of terms does
not influence the asymptotic analysis of our algorithms, nevertheless can be restricted
(e.g. by sorting and pruning) for better performance. Additionally, one can limit the
FFT operations to different bounds for each variable, resulting in slightly improved
complexity analysiswithout changing the algorithmswhatsoever. In this paper, we pre-
ferred to analyse the complexity of the algorithms using t = max{t1, . . . , tk} for the
sake of simplicity, but one can alternatively obtain time complexities of Õ(nk/(k+1)T)

and Õ(n+ T) for the deterministic and the randomised algorithm respectively, where
T = ∏

ti . These can be further extended to the case where we additionally have
cardinality constraints.

123

Journal of Combinatorial Optimization (2023) 45 :24 Page 19 of 21 24

It remains to be seen whether there is a corresponding lower bound for the problem
based on popular conjectures such as (S)ETH; on the other hand, it seems that further
improvement would require a different algorithmic approach.

6.2 Extension of randomised algorithm for counting version

As we discussed in Sect. 5, one can use the same techniques as in the deterministic
version in order to solve the counting versions of each problem respectively. In the
case of the randomised algorithm, it is possible to obtain an approximation of these
counts (e.g. by using repetitions to compute the distribution of realisable sums), but it
remains open whether one can find the exact count (w.h.p) more efficiently.

6.3 Recovery of solution sets

The algorithms introduced in this paper solve the decision version of the k-Subset
Sum problem. In other words, their output is a binary response, indicating whether
there exist k disjoint subsets whose sums are equal to given values t1, . . . , tk respec-
tively (and their corresponding cardinalities are equal to c1, . . . , ck in the cardinality
constrained version of the problem). An extension of these algorithms could involve
the reconstruction of the k solution subsets. Koiliaris and Xu (2019) argue that one
can reconstruct the solution set of Subset Sum with only polylogarithmic overhead.
That is possible by carefully extracting the witnesses of each sum every time an FFT
operation is happening. These witnesses are actually the partial sums used to compute
the new sum. Thus, by reducing this problem to the reconstruction problem as men-
tioned in Aumann et al. (2011), they conclude that it is possible to compute all the
witnesses of an FFT operation without considerably increasing the complexity. That
is the case for one-dimensional FFT operations involving a single variable, so it may
be possible to use analogous arguments for multiple variables.

6.4 Extension of subset sum algorithm introduced by Jin andWu

Jin andWu introduced an efficient Õ(n+ t) randomised algorithm for solving Subset
Sum in Jin and Wu (2018). This algorithm is much simpler than Bringmann’s, while
actually providing a slightly better upper bound for the problem. It is interesting to
investigate whether this algorithm can be extended to cope with k-Subset Sum (and
the variations mentioned in Sect. 5), as was the case for Bringmann’s algorithm, since
that would result in a simpler alternative approach.

Acknowledgements Aris Pagourtzis and Stavros Petsalakis were supported in part by the PEVE 2020 basic
research support programme of the National Technical University of Athens.

Funding Open access funding provided by HEAL-Link Greece.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

123

24 Page 20 of 21 Journal of Combinatorial Optimization (2023) 45 :24

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abboud A, Bringmann K, Hermelin D, Shabtay D (2022) Seth-based lower bounds for subset sum and
bicriteria path. ACM Trans Algorithms 18(1):6. https://doi.org/10.1145/3450524

Alonistiotis G, Antonopoulos A,Melissinos N, Pagourtzis A, Petsalakis S, Vasilakis M (2022) Approximat-
ing subset sum ratio via subset sum computations. In: Combinatorial algorithms—33rd international
workshop, IWOCA 2022. Lecture Notes in computer science, vol 13270, pp 73–85. Springer, Cham.
https://doi.org/10.1007/978-3-031-06678-8_6

Antonopoulos A, Pagourtzis A, Petsalakis S, Vasilakis M (2021) Faster algorithms for k-subset sum and
variations. In: Frontiers of algorithmics, IJTCS-FAW 2021. Lecture notes in computer science, vol
12874, pp 37–52. Springer, Cham. https://doi.org/10.1007/978-3-030-97099-4_3

Aumann Y, Lewenstein M, Lewenstein N, Tsur D (2011) Finding witnesses by peeling. ACM Trans Algo-
rithms 7(2):1–15. https://doi.org/10.1145/1921659.1921670

Bazgan C, Santha M, Tuza Z (2002) Efficient approximation algorithms for the SUBSET-SUMS EQUAL-
ITY problem. J Comput Syst Sci 64(2):160–170. https://doi.org/10.1006/jcss.2001.1784

Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton
Bringmann K (2017) A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the

twenty-eighth annual ACM-SIAM symposium on discrete algorithms, SODA 2017, pp 1073–1084.
SIAM, Philadelphia. https://doi.org/10.1137/1.9781611974782.69

Bringmann K, Nakos V (2020) Top-k-convolution and the quest for near-linear output-sensitive subset sum.
In: Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing, STOC 2020,
pp 982–995. ACM, New York. https://doi.org/10.1145/3357713.3384308

Caprara A, Kellerer H, Pferschy U (2000) A PTAS for the multiple subset sum problemwith different knap-
sack capacities. Inf Process Lett 73(3–4):111–118. https://doi.org/10.1016/S0020-0190(00)00010-
7

Caprara A, Kellerer H, Pferschy U (2003) A 3/4-approximation algorithm for multiple subset sum. J
Heuristics 9(2):99–111. https://doi.org/10.1023/A:1022584312032

CieliebakM, Eidenbenz SJ (2004)Measurement errors make the partial digest problemNP-hard. In: LATIN
2004: theoretical informatics, 6th Latin American symposium. Lecture notes in computer science, vol
2976, pp 379–390. Springer, Berlin. https://doi.org/10.1007/978-3-540-24698-5_42

Cieliebak M, Eidenbenz SJ, Pagourtzis A (2003a) Composing equipotent teams. In: Fundamentals of com-
putation theory, 14th international symposium, FCT 2003. Lecture notes in computer science, vol
2751, pp 98–108. Springer, Berlin. https://doi.org/10.1007/978-3-540-45077-1_10

Cieliebak M, Eidenbenz SJ, Penna P (2003b) Noisy data make the partial digest problem NP-hard. In:
Algorithms in bioinformatics, third international workshop, WABI 2003. Lecture notes in computer
science, vol 2812, pp 111–123. Springer, Berlin. https://doi.org/10.1007/978-3-540-39763-2_9

Cieliebak M, Eidenbenz SJ, Pagourtzis A, Schlude K (2008) On the complexity of variations of equal sum
subsets. Nord J Comput 14(3):151–172

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press,
London

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3450524
https://doi.org/10.1007/978-3-031-06678-8_6
https://doi.org/10.1007/978-3-030-97099-4_3
https://doi.org/10.1145/1921659.1921670
https://doi.org/10.1006/jcss.2001.1784
https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.1145/3357713.3384308
https://doi.org/10.1016/S0020-0190(00)00010-7
https://doi.org/10.1016/S0020-0190(00)00010-7
https://doi.org/10.1023/A:1022584312032
https://doi.org/10.1007/978-3-540-24698-5_42
https://doi.org/10.1007/978-3-540-45077-1_10
https://doi.org/10.1007/978-3-540-39763-2_9

Journal of Combinatorial Optimization (2023) 45 :24 Page 21 of 21 24

Dell’Amico M, Delorme M, Iori M, Martello S (2019) Mathematical models and decomposition methods
for the multiple Knapsack problem. Eur J Oper Res 274(3):886–899. https://doi.org/10.1016/j.ejor.
2018.10.043

Jin C, Wu H (2018) A simple near-linear pseudopolynomial time randomized algorithm for subset sum.
In: 2nd Symposium on simplicity in algorithms (SOSA 2019), vol 69, pp 17. https://doi.org/10.4230/
OASIcs.SOSA.2019.17

Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations.
The IBM research symposia series, pp 85–103. Springer, Boston. https://doi.org/10.1007/978-1-4684-
2001-2_9

Khan MA (2017) Some problems on graphs and arrangements of convex bodies. PRISM. https://doi.org/
10.11575/PRISM/10182

Koiliaris K, Xu C (2019) Faster pseudopolynomial time algorithms for subset sum. ACMTrans Algorithms
15(3):40. https://doi.org/10.1145/3329863

Korf RE (2010) Objective functions for multi-way number partitioning. In: Proceedings of the third annual
symposium on combinatorial search, SOCS 2010. Stone Mountain, Atlanta, July 8–10, 2010. AAAI
Press

Lahyani R, Chebil K, Khemakhem M, Coelho LC (2019) Matheuristics for solving the multiple knapsack
problem with setup. Comput Ind Eng 129:76–89. https://doi.org/10.1016/j.cie.2019.01.010

Lipton RJ, Markakis E, Mossel E, Saberi A (2004) On approximately fair allocations of indivisible goods.
In: Proceedings of the 5th ACM conference on electronic commerce (EC-2004), pp 125–131. ACM,
New York. https://doi.org/10.1145/988772.988792

Melissinos N, Pagourtzis A (2018) A faster FPTAS for the subset-sums ratio problem. In: Computing and
combinatorics—24th international conference, COCOON 2018. Lecture notes in computer science,
vol 10976, pp 602–614. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_50

Mucha M, Nederlof J, Pawlewicz J, Wegrzycki K (2019) Equal-subset-sum faster than the meet-in-the-
middle. In: 27th Annual European symposium on algorithms, ESA. LIPIcs, vol 144, pp 73 (2019).
https://doi.org/10.4230/LIPIcs.ESA.2019.73

Nanongkai D (2013) Simple FPTAS for the subset-sums ratio problem. Inf Process Lett 113(19–21):750–
753. https://doi.org/10.1016/j.ipl.2013.07.009

Papadimitriou CH (1994) On the complexity of the parity argument and other inefficient proofs of existence.
J Comput Syst Sci 48(3):498–532. https://doi.org/10.1016/S0022-0000(05)80063-7

Pisinger D (1999) Linear time algorithms for knapsack problems with bounded weights. J Algorithms
33(1):1–14. https://doi.org/10.1006/jagm.1999.1034

Recalde D, Severín D, Torres R, Vaca P (2018) An exact approach for the balanced k-way partition-
ing problem with weight constraints and its application to sports team realignment. J Comb Optim
36(3):916–936. https://doi.org/10.1007/s10878-018-0254-1

Schreiber EL, Korf RE, Moffitt MD (2018) Optimal multi-way number partitioning. J ACM 65(4):24.
https://doi.org/10.1145/3184400

Tsai L (1992) Asymptotic analysis of an algorithm for balanced parallel processor scheduling. SIAM J
Comput 21(1):59–64. https://doi.org/10.1137/0221007

Voloch N (2017) MSSP for 2-d sets with unknown parameters and a cryptographic application. Contemp
Eng Sci 10:921–931. https://doi.org/10.12988/ces.2017.79101

Woeginger GJ, Yu Z (1992) On the equal-subset-sum problem. Inf Process Lett 42(6):299–302. https://doi.
org/10.1016/0020-0190(92)90226-L

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.ejor.2018.10.043
https://doi.org/10.1016/j.ejor.2018.10.043
https://doi.org/10.4230/OASIcs.SOSA.2019.17
https://doi.org/10.4230/OASIcs.SOSA.2019.17
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.1145/3329863
https://doi.org/10.1016/j.cie.2019.01.010
https://doi.org/10.1145/988772.988792
https://doi.org/10.1007/978-3-319-94776-1_50
https://doi.org/10.4230/LIPIcs.ESA.2019.73
https://doi.org/10.1016/j.ipl.2013.07.009
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1006/jagm.1999.1034
https://doi.org/10.1007/s10878-018-0254-1
https://doi.org/10.1145/3184400
https://doi.org/10.1137/0221007
https://doi.org/10.12988/ces.2017.79101
https://doi.org/10.1016/0020-0190(92)90226-L
https://doi.org/10.1016/0020-0190(92)90226-L

	Faster algorithms for k-subset sum and variations
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Preliminaries
	2.1 Notation
	2.2 Using FFT for subset sum

	3 k-subset sum
	3.1 Solving k-subset sum in deterministic tildeO(nk/(k+1) tk) time
	3.2 Solving k-subset sum in randomised tildeO(n + tk) time
	3.2.1 Small cardinality solutions
	3.2.2 Solving k-subset sum for l-layer instances
	3.2.3 General case

	4 k-subset sum with cardinality constraints
	4.1 A deterministic approach
	4.2 A randomised approach

	5 Faster algorithms for multiple subset problems
	5.1 Subset sum ratio
	5.2 k-subset sum ratio
	5.3 k-way number partitioning
	5.4 Multiple subset sum
	5.5 Adding cardinality constraints
	5.6 Counting versions

	6 Future work
	6.1 Possible optimisations regarding FFT
	6.2 Extension of randomised algorithm for counting version
	6.3 Recovery of solution sets
	6.4 Extension of subset sum algorithm introduced by Jin and Wu

	Acknowledgements
	References

