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Abstract
Given a graph G = (V , E), the 3-path partition problem is to find a minimum collec-
tion of vertex-disjoint paths each of order at most 3 to cover all the vertices of V . The
previous best approximation algorithm for the 3-path partition problem has a perfor-
mance ratio 13/9, which is based on a simple local search strategy.We propose a more
involved local search and show by an amortized analysis that it is a 4/3-approximation;
we also design an instance to illustrate that the approximation ratio is tight.

Keywords Path partition · Path cover · Local search · Approximation algorithms ·
Amortized analysis

1 Introduction

Motivated by the data integrity of communication in wireless sensor networks and
several other applications, the k- path partition (kPP) problem was first considered
by Yan et al. (1997). Given a simple graph G = (V , E) (we consider only simple
graphs and we drop “simple” hereafter), with n = |V | and m = |E |, the order of a
simple path in G is the number of vertices on the path and it is called a k-path if its
order is k. The kPP problem is to find a minimum collection of vertex-disjoint paths
each of order at most k such that every vertex is on some path in the collection.
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Clearly, the 2PP problem is exactly the Maximum Matching problem, which is
solvable in O(m

√
n log(n2/m)/ log n)-time (Goldberg and Karzanov 2004). For each

k ≥ 3, kPP is NP-hard (Garey and Johnson 1979). We point out the key phrase “at
most k” in the problem definition, that ensures the existence of a feasible solution for
any given graph; on the other hand, if one asks for a path partition in which every path
has an order exactly k, the problem is called Pk-partitioning and is also NP-complete
for any fixed constant k ≥ 3 (Garey and Johnson 1979), even on bipartite graphs of
maximum degree three (Monnot and Toulouse 2007). To the best of our knowledge,
there is no prior approximation algorithmwith proven performance for the general kPP
problem, except the trivial k-approximation using all 1-paths. For 3PP, Monnot and
Toulouse (2007) proposed a 3/2-approximation, based on two maximum matchings;
recently, Chen et al. (2019b) presented an improved 13/9-approximation, based on a
simple local search strategy (which is briefly reviewed below).

The kPP problem is a generalization to the Path Cover problem (Franzblau and
Raychaudhuri 2002) (also called Path Partition), which is to find a minimum
collection of vertex-disjoint paths that together cover all the vertices in the graph.
Path Cover contains the Hamiltonian Path problem (Garey and Johnson 1979)
as a special case, and thus it is NP-hard and it is outside APX unless P = NP.

The kPP problem is also closely related to the well-known Set Cover prob-
lem. Given a collection of subsets C = {S1, S2, . . . , Sm} of a finite ground set
U = {x1, x2, . . . , xn}, an element xi ∈ S j is said to be covered by the subset S j ,
and a set cover is a collection of subsets which together cover all the elements of the
ground setU . The Set Cover problem asks to find aminimum set cover. Set Cover
is one of the first problems proven to be NP-hard (Garey and Johnson 1979), and is
also one of the most studied optimization problems for the approximability (Johnson
1974) and inapproximability (Raz and Safra 1997; Feige 1998; Vazirani 2003). The
variant of Set Cover in which every given subset has size at most k is called k- Set
Cover, which is APX-complete and admits a 4/3-approximation for k = 3 (Duh and
Fürer 1997) and an (Hk − 196

390 )-approximation for k ≥ 4 (Levin 2006), where Hk is
the k-th harmonic number.

To see the connection between kPP and k- Set Cover, we may take the vertex set
V of the given graph as the ground set, and an �-path with � ≤ k as a subset; then the
kPP problem is the same as asking for a minimum exact set cover. That is, the kPP
problem is a special case of the minimum Exact Cover problem (Karp 1972), for
which unfortunately there is no approximation result that we may borrow. Existing
approximations for (non-exact) k- Set Cover do not readily apply to kPP, because in
a feasible set cover, an element of the ground set could be covered by multiple subsets.
There is a way to enforce the exactness requirement in the Set Cover problem, by
expanding the given collection C to include all the proper subsets of each given subset
S j ∈ C. However, in an instance graph of kPP, not every subset of vertices on a path
is traceable, and hence such an expanding technique does not apply. In summary, kPP
and k- Set Cover share some similarities, but none contains the other as a special
case.

In this paper, we study the 3PP problem. The authors of the 13/9-approximation
(Chen et al. 2019b) first presented an O(nm)-time algorithm to compute a k-path
partition with the least 1-paths, for any k ≥ 3; then they applied an O(n3)-time local
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search strategy to find three 2-paths that can be replaced by two 3-paths, until not
possible. We aim to design better approximations for 3PPwith provable performance,
and we achieve a 4/3-approximation. Our algorithm starts with a 3-path partition with
the least 1-paths, then it applies a more involved local search scheme to repeatedly
search for a collection of 2- and 3-paths that can be replaced by a strictly smaller
collection of new 2- and 3-paths, so as to reduce the size of the 3-path partition, until
not possible. One thus may view our local search as a refinement of the previous
work; using a slightly more complex amortized analysis, we are able to prove the
performance ratio 4/3.

The rest of the paper is organized as follows. In Sect. 2 we present the local search
scheme for searching a candidate collection of 2- and 3-paths. The amortized analysis
and the proof of the performance of the algorithm are done in Sect. 3, and at the end
we design an instance to show that the approximation ratio 4/3 is tight. We conclude
the paper in Sect. 4.

2 A local search approximation algorithm

The 13/9-approximation proposed byChen et al. (2019b) applies a simple local search
strategy to iteratively find three 2-paths in the current solution that can be replaced by
two 3-paths (Operation 3- 0- By- 0- 2 inDefinition 1). Such a replacement operation
looks at only those six vertices covered by the three 2-paths, but no more. In our
more involved local search, we examine three more possibilities where three 2-paths
can be transferred into two 3-paths, either alone or with the help of a few other 2-
paths and/or 3-paths. Specifically, we look for the help either from a single 3-path
(Operation 3- 1- By- 0- 3 in Definition 1), or from a combination of a 2-path and a
3-path (Operation 4- 1- By- 1- 3 in Definition 1), or from a combination of a 2-path
and two 3-paths (Operation 4- 2- By- 1- 4 in Definition 1). We show that these three
additional replacement operations are sufficient to achieve the performance ratio of
4/3.

Starting with a 3-path partition with the least 1-paths, our approximation algorithm
repeatedly finds a certain collection of 2- and 3-paths in the current solution and
replaces it by another collection of one less new 2- and 3-paths. This way, the new
solution is better and the algorithm continues on until further reduction is impossible.

In Sect. 2.1 we present all the four replacement operations to be executed on the
3-path partition with the least 1-paths. The complete algorithm, denoted as Approx,
is summarized in Sect. 2.2.

2.1 Local operations

Throughout the local search, the 3-path partitions are maintained to have the least
1-paths. Our four local operations are designed so not to touch the 1-paths, ensuring
that the final 3-path partition still contains the least 1-paths. We remind the reader that
the local search algorithm is iterative, and every iteration ends after executing a local
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Fig. 1 A configuration of a
candidate collection for the
Operation 3- 0- By- 0- 2,
where blue solid edges are in Q
and black dashed edges are in E
but outside ofQ (Color figure
online)

operation. The algorithm terminates when none of the designed local operations is
applicable.

Definition 1 With respect to the current 3-path partitionQ, a local Operation i1-i2-
By- j1- j2, where j1 = i1 − 3 and j2 = i2 + 2, replaces a collection of i1 2-paths
and i2 3-paths inQ by a collection of j1 2-paths and j2 3-paths on the same subset of
2i1 + 3i2 vertices.

For ease of presentation, the collection of i1 2-paths and i2 3-paths in the current
3-path partition Q is referred to as a candidate collection; while the latter collection
of j1 2-paths and j2 3-paths on the same subset of 2i1 + 3i2 vertices is referred to as
a replacement collection.

We remark that by such a local Operation i1-i2- By- j1- j2, three 2-paths in the
candidate collection are transferred into two 3-paths, with the help of the other 2-paths
and the 3-paths in the candidate collection. One clearly sees that the achieved 3-path
partition contains exactly one less path than Q (since j1 + j2 = i1 + i2 − 1).

In the rest of this sectionwe determine the configurations for all the local operations.

2.1.1 Operation 3- 0- By- 0- 2

When three 2-paths ofQ can be connected into a 6-path in the graph G (see Fig. 1 for
an illustration), they form a candidate collection satisfying Definition 1. By removing
the middle edge on the 6-path, we achieve two 3-paths on the same six vertices which
replace the original three 2-paths. In the example illustrated in Fig. 1, using the two
edges (u1, v2), (u2, v3) ∈ E outside of Q (shown as black dashed), the Operation
3- 0- By- 0- 2 replaces the three 2-paths u1-v1, u2-v2, and u3-v3 of Q by two new
3-paths v1-u1-v2 and u2-v3-u3.

Another way to look at this candidate collection {u1-v1, u2-v2, u3-v3} is, supposing
the two 2-paths u2-v2 and u3-v3 are connected via the edge (u2, v3), the 2-path u1-v1
directly reaches it via the edge (u1, v2).

Assume a 3-path u-w-v ∈ Q. Clearly, if (u, v) ∈ E , then one can replace u-w-v
by w-v-u or v-u-w in Q so that the three vertices remain covered by the same path.
In this sense, we say that these three paths are equivalent to each other, and if needed,
any one of them can replace the other to present in Q (see Fig. 2 for an illustration).

2.1.2 Operation 3- 1- By- 0- 3

Consider a collection of three 2-paths u1-v1, u2-v2, u3-v3, and a 3-path u-w-v inQ. If
one of the 2-paths, say u1-v1, is adjacent to an endpoint of the 3-path, say (u1, u) ∈ E
(see Fig. 3 for an illustration), then we can remove the edge (u, w) while add the edge
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Fig. 2 If (u, v) ∈ E , then the
3-path u-w-v ∈ Q can be
replaced by either w-v-u or
v-u-w when needed, where blue
solid edges are in Q and black
dashed edges are in E but
outside ofQ (Color figure
online)

Fig. 3 A configuration of a
candidate collection for the
Operation 3- 1- By- 0- 3,
where blue solid edges are in Q
and black dashed edges are in E
but outside ofQ (Color figure
online)

(u, u1) to transfer the 2-path u1-v1 and the 3-path u-w-v into a new 3-path u-u1-v1 and
a new 2-path w-v. If follows that, when an Operation 3- 0- By- 0- 2 is applicable
to the three 2-paths u2-v2, u3-v3, and w-v, then the original collection {u1-v1, u2-v2,
u3-v3, u-w-v} is a candidate collection for applying an Operation 3- 1- By- 0- 3.
In the example illustrated in Fig. 3, the replacement collection is {u-u1-v1, v-w-v2,
u2-v3-u3}.

Similarly, another way to look at this candidate collection {u1-v1, u2-v2, u3-v3,
u-w-v} is, supposing the two 2-paths u2-v2 and u3-v3 are connected via the edge
(u2, v3), the 2-path u1-v1 reaches it indirectly to the 3-path via the edge (u1, u) first
and then via the edge (w, v2). That is, the 3-path u-w-v offers help for the operation.

2.1.3 Operation 4- 1- By- 1- 3

Assume the two 2-paths u1-v1 and u2-v2 of Q are connected via the edge (v1, u2),
and the other two 2-paths u3-v3 and u4-v4 of Q are connected via the edge (v3, u4).
If both u1 and u3 are adjacent to an endpoint of a 3-path, say the vertex u of u-w-v
(see Fig. 4 for an illustration), then these four 2-paths and the 3-path form a candidate
collection. By removing the three edges (u, w), (u1, v1), (u3, v3) while adding the
four edges (u1, u), (u, u3), (v1, u2), (v3, u4), an Operation 4- 1- By- 1- 3 transfers
the candidate collection into the replacement collection {w-v, u1-u-u3, v1-u2-v2, v3-
u4-v4}.

In such an operation, the 3-path u-w-v offers help by breaking itself into a 2-path
w-v and a singleton u, the latter of which connects the two 4-paths into a 9-path (which
is broken down into three 3-paths afterwards).
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Fig. 4 A configuration of a
candidate collection for the
Operation 4- 1- By- 1- 3,
where blue solid edges are in Q
and black dashed edges are in E
but outside ofQ (Color figure
online)

2.1.4 Operation 4- 2- By- 1- 4

Assume the two 2-paths u1-v1 and u2-v2 ofQ are connected via the edge (v1, u2), and
the other two 2-paths u3-v3 and u4-v4 ofQ are connected via the edge (v3, u4). If u1 is
adjacent to a vertex on a 3-path u-w-v and u3 is adjacent to a vertex on another 3-path
u′-w′-v′, then we examine whether there is an edge connecting these two 3-paths so
that anOperation 4- 2- By- 1- 4 transfers the collection {u1-v1, u2-v2, u3-v3, u4-v4,
u-w-v, u′-w′-v′} into a replacement collection of a 2-path and four 3-paths.

Depending on how the vertices u1 and u3 are adjacent to the vertices on the 3-paths
u-w-v and u′-w′-v′, respectively, there are three possible classes of configurations.
In the first class, both u1 and u3 are adjacent to endpoints, say (u1, u), (u3, u′) ∈ E .
Then, the existence of one of the five edges (u, v′), (v, u′), (w, v′), (v,w′), (v, v′)
enables the Operation 4- 2- By- 1- 4 (see Fig. 5a for an illustration). For example,
when (u, v′) ∈ E , removing the four edges (u, w), (w′, v′), (u1, v1), (u3, v3) while
adding the five edges (u1, u), (u3, u′), (u, v′), (v1, u2), (v3, u4), transfer the candidate
collection into the replacement collection {w-v, u1-u-v′, w′-u′-u3, v1-u2-v2, v3-u4-
v4}.

In the second class, u1 and u3 are adjacent to an endpoint and an midpoint,
respectively, say (u1, u), (u3, w′) ∈ E . Then, the existence of one of the six
edges (u, u′), (v, v′), (u, v′), (v, u′), (w, u′), (w, v′) enables the Operation 4-
2- By- 1- 4 (see Fig. 5b for an illustration). For example, when (u, v′) ∈ E ,
removing the four edges (u, w), (w′, v′), (u1, v1), (u3, v3)while adding the five edges
(u1, u), (u3, w′), (u, v′), (v1, u2), (v3, u4), transfer the candidate collection into the
replacement collection {w-v, u1-u-v′, u′-w′-u3, v1-u2-v2, v3-u4-v4}.

In the last class, both u1 and u3 are adjacent tomidpoints, that is, (u1, w), (u3, w′) ∈
E . Then, the existence of one of the four edges (u, u′), (v, v′), (u, v′), (v, u′) enables
the Operation 4- 2- By- 1- 4 (see Fig. 5c for an illustration). For example, when
(u, v′) ∈ E , removing the four edges (u, w), (w′, v′), (u1, v1), (u3, v3) while adding
the five edges (u1, w), (u3, w′), (u, v′), (v1, u2), (v3, u4), transfer the candidate col-
lection into the replacement collection {u-v′, u1-w-v, u′-w′-u3, v1-u2-v2, v3-u4-v4}.

2.2 The complete local search algorithmApprox

The first step of our local search algorithmApprox is to compute a 3-path partitionQ
with the least 1-paths. The second step is iterative, and in each iteration the algorithm
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(a) (b) (c)

Fig. 5 The three classes of configurations of a candidate collection for the Operation 4- 2- By- 1- 4,
where blue solid edges are in Q, black dashed edges are in E but outside of Q, and for each class at least
one red dotted edge is in E but outside ofQ (Color figure online)

Fig. 6 A high-level description of the local search algorithm Approx

tries to apply one of the four local operations, by finding a candidate collection and
determining the subsequent replacement collection. When no candidate collection
can be found, the second step terminates. The algorithm outputs the achieved 3-path
partitionQ as the solution. A high-level description of the complete algorithmApprox
is depicted in Fig. 6.

Step 1 runs in O(nm) time (Chen et al. 2019b), where n = |V | and m = |E |. Note
that there are O(n) 2-paths and O(n) 3-paths in the Q at the beginning of Step 2,
and therefore there are O(n6) original collections to be examined, since a candidate
collection has a maximum size of 6. When a local operation is applied, the iteration
ends and the 3-path partitionQ reduces its size by 1, while introducing at most 5 new
2-paths and 3-paths. These new 2-paths and 3-paths give rise to O(n5) new collections
(each contains at least one of the newpaths) to be examined in the subsequent iterations.
Since there are at most n iterations in Step 2, we conclude that the total number of
original and new collections examined in Step 2 is O(n6). Determining whether a
collection is a candidate collection, and if so, deciding the corresponding replacement
collection, can be done in O(1) time. We thus conclude that the overall running time
of Step 2 is O(n6), and consequently have proved the following theorem.

Theorem 1 The running time of the algorithm Approx is in O(n6).

3 Analysis of the approximation ratio 4/3

In this section,we show that our local search algorithmApprox is a 4/3-approximation
for 3PP. The performance analysis is done through amortization.

The 3-path partition produced by the algorithm Approx is denoted as Q; let Qi

denote the sub-collection of all the i-paths in Q, for i = 1, 2, 3, respectively. Let Q∗
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be an optimal 3-path partition, i.e., it achieves the minimum total number of paths, and
let Q∗

i denote the sub-collection of all the i-paths in Q∗, for i = 1, 2, 3, respectively.
Since our Q contains the least 1-paths among all 3-path partitions for G, we have

|Q1| ≤ |Q∗
1|. (1)

Since both Q and Q∗ cover all the vertices of V , we have

|Q1| + 2|Q2| + 3|Q3| = n = |Q∗
1| + 2|Q∗

2| + 3|Q∗
3|. (2)

Next, we prove the following inequality which gives an upper bound on |Q2|,
through an amortized analysis:

|Q2| ≤ |Q∗
1| + 2|Q∗

2| + |Q∗
3|. (3)

Combining Eqs. (1, 2, 3), it follows that

3|Q1| + 3|Q2| + 3|Q3| ≤ 4|Q∗
1| + 4|Q∗

2| + 4|Q∗
3|, (4)

that is, |Q| ≤ 4
3 |Q∗|, and consequently the following theorem holds.

Theorem 2 The algorithm Approx is an O(n6)-time 4/3-approximation for the 3PP
problem, and the performance ratio 4/3 is tight for Approx.

In the amortized analysis, each 2-path of Q2 has one token (i.e., |Q2| tokens in
total) to be distributed to the paths ofQ∗. The upper bound in Eq. (3) will immediately
follow if we prove the following lemma.

Lemma 1 There is a token distribution scheme in which

1. every 1-path of Q∗
1 receives at most 1 token;

2. every 2-path of Q∗
2 receives at most 2 tokens;

3. every 3-path of Q∗
3 receives at most 1 token.

In the rest of the section we present the distribution scheme that satisfies the three
requirements stated in Lemma 1.

Denote E(Q2), E(Q3), E(Q∗
2), E(Q∗

3) as the set of all the edges on the paths of
Q2, Q3, Q∗

2, Q∗
3, respectively, and E(Q∗) = E(Q∗

2) ∪ E(Q∗
3). In the subgraph of

G
(
V , E(Q2) ∪ E(Q∗)

)
, only the midpoint of a 3-path ofQ∗

3 may have degree 3, i.e.,
it is incident with two edges of E(Q∗) and one edge of E(Q2), while all the other
vertices have degree at most 2 since each is incident with at most one edge of E(Q2)

and at most one edge of E(Q∗).
Our distribution scheme consists of two phases. We define two functions τ1(P)

and τ2(P) to denote the fractional amount of token received by a path P ∈ Q∗ in
Phase 1 and Phase 2, respectively; then τ(P) = τ1(P) + τ2(P) is the total amount of
token received by the path P ∈ Q∗ at the end of our distribution process. Recall that∑

P∈Q∗ τ(P) = |Q2|.
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(a) (b) (c)

Fig. 7 Illustrations of the token distribution scheme in Phase 1, where blue solid edges are in E(Q2), black
dashed edges are in E(Q∗), and red dotted arrows indicate how tokens are distributed. In (a), P = v ∈ Q∗

1;
in (b), P = v-w ∈ Q∗

2; in (c), both v and u are on a 3-path of Q∗
3 (Color figure online)

3.1 Distribution process Phase 1

In Phase 1, we distribute all the |Q2| tokens to the paths ofQ∗ (i.e.,
∑

P∈Q∗ τ1(P) =
|Q2|) such that a path P ∈ Q∗ receives some token from a 2-path u-v ∈ Q2 if and
only if u or v is (or both are) on P , and the following three requirements are satisfied:

1. τ1(P) ≤ 1 for ∀P ∈ Q∗
1;

2. τ1(P) ≤ 2 for ∀P ∈ Q∗
2;

3. τ1(P) ≤ 3/2 for ∀P ∈ Q∗
3.

In this phase, the one token held by each 2-path of Q2 is breakable but can only be
broken into two halves. So for every path P ∈ Q∗, τ1(P) is a multiple of 1/2.

For each 2-path u-v ∈ Q2, if one vertex v or u lies on a singleton (P = v in Fig. 7a)
or a 2-path (P = v-w in Fig. 7b) ofQ∗, then u-v gives its whole token to the singleton
or the 2-path; otherwise, both v and u lie on a 3-path (P1 and P2, respectively, in
Fig. 7c) ofQ∗, and then the whole token of u-v is broken into two halves, one for each
of the two 3-paths. This way, we distribute the tokens to the paths ofQ∗ satisfying the
above three requirements.

3.2 Distribution process Phase 2

In Phase 2, we will transfer the extra 1/2 token from every 3-path P ∈ Q∗
3 with

τ1(P) = 3/2 to some other paths of Q∗ in order to satisfy the three requirements of
Lemma 1. In this phase, each 1/2 token can be broken into two quarters, thus for a
path P ∈ Q∗, τ2(P) is a multiple of 1/4.

Consider a 3-path P1 = v′′-v′-v ∈ Q∗
3. We observe that if τ1(P1) = 3/2, then each

of v, v′, and v′′ must be incident with an edge e ∈ E(Q2), such that the other endpoint
of the edge e is also on a 3-path of Q∗

3 — see Phase 1. Since there are three of them,
we assume without loss of generality that (u, v) ∈ E(Q2) and the vertex u lies on a
3-path P2 ∈ Q∗

3 distinct from P1, that is, P2 
= P1, and furthermore (u, w) is an edge
on the 3-path P2 (see Fig. 8 for an illustration). We can verify the following claim that
the vertex w is on a 3-path of Q3, and consequently τ1(P2) ≤ 1.

Claim 1 The vertex w is on a 3-path of Q3.
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Fig. 8 An illustration of a 3-path P1 = v-v′-v′′ ∈ Q∗
3 with τ1(P1) = 3/2, where u-v, u′-v′, u′′-v′′ ∈ Q2

shown in blue solid edges; the vertex u is on a distinct 3-path P2 ∈ Q∗
3 and the edge (u, w) is on P2

shown black dashed. Then, w must lie on a 3-path P3 ∈ Q3. The red dotted arrow indicates how tokens
are redistributed out of P1 (Color figure online)

Proof See Fig. 8 for an illustration, where we denote the 2-paths of Q2 incident at v′
and v′′ as u′-v′ and u′′-v′′, respectively. We remark that u′ and v′′ (and likewise u′′
and v′, respectively) are not necessarily distinct.

Firstly, w cannot collide into any of u′, u′′ since otherwise the three 2-paths u-v,
u′-v′, u′′-v′′ form a candidate collection for an Operation 3- 0- By- 0- 2. Secondly,
suppose w is on a 2-path w-x of Q2, then the three 2-paths u-v, u′-v′, w-x also form
a candidate collection for an Operation 3- 0- By- 0- 2. These contradictions show
that w does not lie on any 2-path of Q2.

Lastly, suppose w is a singleton of Q1, then w and the 2-path u-v can be merged
to a 3-path, contradicting to the fact that Q is a partition with the least 1-paths. This
proves the claim. ��

We summarize the above into the following lemma.

Lemma 2 For any 3-path P1 ∈ Q∗
3 with τ1(P1) = 3/2, there must be another 3-path

P2 ∈ Q∗
3 with τ1(P2) ≤ 1 such that

(1) u-v is a 2-path of Q2, where v is on P1 and u is on P2, and
(2) any vertex adjacent to u on P2 is on a 3-path P3 of Q3.

From Lemma 2 and seeing Fig. 8 for an illustration, the first step of Phase 2 is to
transfer the extra 1/2 token held by P1 from P1 to the 2-path u-v through vertex v.
This way, we have τ2(P1) = −1/2 and τ(P1) = 3/2 − 1/2 = 1.

Let us continue using the notations in Lemma 2, and let x1 and y1 be the other two
vertices on P3 (i.e., P3 = w-x1-y1 or P3 = x1-w-y1). Denote the path inQ∗ on which
x1 (y1, respectively) lies as P4 (P5, respectively). Next, we will transfer the 1/2 token
from u-v to the paths P4 or/and P5 through some pipes, to be defined below.

We define a pipe r → s → t , where r is an endpoint of a source 2-path of Q2
(the path u-v in the current consideration) which receives 1/2 token in the first step
of Phase 2, (r , s) is an edge on a 3-path P ∈ Q∗

3 with τ1(P) ≤ 1 (the path P2 in the
current consideration), s and t are both on a 3-path of Q3 (the path P3 in the current
consideration), and t is a vertex on the destination path ofQ∗ (the path P4 or P5 in the
current consideration) which will receive token from the source 2-path ofQ2. That is,
the pipe r → s → t will transfer some token from the source 2-path of Q2 on which
r lies, to the destination path of Q∗ on which t lies; and we call r and t the head and
the tail of the pipe, respectively.
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For example, in the configuration shown in Fig. 9a, there are four possible pipes
u → w → x1, u → w → y1, u′′ → w → x1, and u′′ → w → y1. We distinguish
the cases by the orders of the two destination paths P4 and P5, to determine how they
receive token from source 2-paths through pipes.

Note that u can be either an endpoint or the midpoint of P2. Nevertheless, when
u is the midpoint of P2, there are at most two possible pipes passing through w;
consequently, it can be treated as a subcase of the more general case where u is an
endpoint of P2. Below we consider the more general case, and assume that P2 = u-
w-u′′; then there are two possible pipes headed by u and two possible pipes headed
by u′′ passing through w. The second step of Phase 2 is to transfer the 1/2 token held
by the 2-path u-v to the paths P4 or/and P5, separated into the following three cases:

Case 1. One of P4 and P5 is a singleton.
We assume without loss of generality P4 = x1 ∈ Q∗

1 (see Fig. 9 for illustra-
tions). In this case, we transfer the 1/2 token from u-v to P4 through the pipe
u → w → x1.

Case 2. Both P4 and P5 are paths ofQ∗
2 ∪Q∗

3, and w is an endpoint of P3 = w-x1-y1.
In this case, we transfer the 1/2 token from u-v to P5 through the pipe u →
w → y1 (see Fig. 10a for an illustration).

Case 3. Both P4 and P5 are paths ofQ∗
2 ∪Q∗

3, andw is the midpoint of P3 = x1-w-y1.
In this case, we transfer 1/4 token from u-v to P4 through the pipe u →
w → x1 and transfer the other 1/4 token from u-v to P5 through the pipe
u → w → y1 (see Fig. 10b for an illustration).

Claim 2 The first item of Lemma 1 holds, that is, for any 1-path P ∈ Q∗
1, τ(P) ≤ 1.

Proof Note that if the vertex v on the singleton P ∈ Q∗
1 does not lie on a 3-path ofQ3,

then its token is not changed in Phase 2 and thus τ(P) = τ1(P) ≤ 1. In other words,
if the token of P is increased during Phase 2, then τ1(P) = 0 and τ2(P) is assigned
in Case 1 during the second step of Phase 2. We thus consider the path P4 in Case 1,
and refer to the configurations in Fig. 9.

Firstly, if P5 is a singleton or a 2-path, then there are at most 2 pipes ending at x1,
which are u → w → x1 and u′′ → w → x1. Therefore, τ2(P4) ≤ 2 × 1/2 = 1.

Next, we assume that P5 is a 3-path so that there could be two more pipes passing
through y1 to x1 (that is, y1 takes up the role of w); let (y1, y2) be an edge on P5, then
y2 → y1 → x1 is one of the two possible pipes if y2 has the same role as u.

Whenw is the midpoint of P3 = x1-w-y1 (see Fig. 9a for an illustration), y2 cannot
have the same role as u since y2 cannot be on a 2-path ofQ2; or otherwise {u′-v′, u-v,
P ′, P3} would be a candidate collection for an Operation 3- 1- By- 0- 3, where P ′
is 2-path of Q2 on which y2 lies. Therefore, we again have τ2(P4) ≤ 2 × 1/2 = 1.

When w is an endpoint of P3, i.e., either P3 = w-x1-y1 (see Fig. 9b for an illustra-
tion) or P3 = w-y1-x1 (see Fig. 9c for an illustration), u′′ cannot have the same role as
u; or otherwise {u′-v′, u-v, P ′, P ′′, P3} would be a candidate collection for an Oper-
ation 4- 1- By- 1- 3, where P ′ and P ′′ are the two 2-paths ofQ2 associated with u′′
(just like the two 2-paths u′-v′ and u-v associated with u). That is, u′′ → w → x1 is
not a pipe. Additionally, for the same reason as in the last paragraph, y2 cannot have
the same role as u when either P3 = w-x1-y1 or P3 = w-y1-x1. Therefore, we have
τ2(P4) ≤ 1/2.
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(a) (b) (c)

Fig. 9 The configurations in which P4 = x1 is a singleton ofQ∗
1, where blue solid edges are in E(Q) and

black dashed edges are in E(Q∗). The vertex x1 is the tail of a pipe through which P4 receives 1/2 token
from the source 2-path u-v, indicated by red dotted arrows (Color figure online)

In summary, we have showed that τ2(P4) ≤ 1; it follows from τ1(P4) = 0 that
τ(P4) ≤ 1. ��

Claim 3 The second item of Lemma 1 holds, that is, for any 2-path P ∈ Q∗
2, τ(P) ≤ 2.

Proof Note that for a 2-path P = u-v ∈ Q∗
2, if the vertex v does not lie on a 3-path

ofQ3, then its token received through v is not changed in Phase 2, and we denote this
portion of token as τ(P(v)) = τ1(P(v)) ≤ 1. In other words, if τ2(P(v)) > 0, then
τ1(P(v)) = 0 and τ2(P(v)) is assigned in Cases 2 and 3 during the second step of
Phase 2.We thus consider the path P5 in these two cases, and refer to the configurations
in Fig. 10.

In Case 2 where w is an endpoint of P3 = w-x1-y1 (see Fig. 10a), u′′ cannot
have the same role as u; or otherwise {u′-v′, u-v, P ′, P ′′, P3} would be a candidate
collection for an Operation 4- 1- By- 1- 3, where P ′ and P ′′ are the two 2-paths
of Q2 associated with u′′ (just like the two 2-paths u′-v′ and u-v associated with u).
That is, u′′ → w → y1 is not a pipe. Assume (x1, x2) is an edge on the path P4; for
the same reason x2 cannot have the same role as u, since otherwise {u-v, P ′, P ′′, P3}
would be a candidate collection for an Operation 3- 1- By- 0- 3, where P ′ and P ′′
are the two 2-paths of Q2 associated with x2 (just like the two 2-paths u′-v′ and u-v
associated with u). That is, x2 → x1 → y1 is not a pipe either. Therefore, we have
τ2(P5(y1)) ≤ 1/2.

In Case 3 where w is the midpoint of P3 = x1-w-y1 (see Fig. 10b), we assume
(x1, x2) is an edge on the path P4; for the same reason as in the last paragraph x2
cannot have the same role as u. That is, x2 → x1 → y1 is not a pipe. Therefore, there
are at most two pipes ending with y1 and consequently τ2(P5(y1)) ≤ 2× 1/4 = 1/2.

In summary, we have showed that the token received through the vertex y1 is at
most τ2(P5(y1)) ≤ 1/2; it follows from τ1(P5(y1)) = 0 that τ(P5(y1)) ≤ 1/2.
One can apply exactly the same argument on the other vertex y2 and show that if
τ2(P5(y2)) > 0 then τ(P5(y2)) ≤ 1/2. These together prove that for every P ∈ Q∗

2,
τ(P) ≤ max{2, 1 + 1/2, 1/2 + 1/2} = 2. ��

Claim 4 The third item of Lemma 1 holds, that is, for any 3-path P ∈ Q∗
3, τ(P) ≤ 1.

Proof Recall that for every 3-path P ∈ Q∗
3, P receives 1/2 token through its vertex v

in Phase 1 if and only if v lies on a 2-path v-v′ ∈ Q2 and v′ is also on a 3-path ofQ∗
3.

We denote this portion of token as τ1(P(v)).
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(a) (b)

Fig. 10 The configurations in which both P4 and P5 are inQ∗
2 ∪ Q∗

3, where blue solid edges are in E(Q)

and black dashed edges are in E(Q∗). In (a), y1 is the tail of a pipe through which P5 receives 1/2 token
from the source 2-path u-v; in (b), x1 is the tail of a pipe through which P4 receives 1/4 token from the
source 2-path u-v and y1 is the tail of a pipe through which P5 receives 1/4 token from the source 2-path
u-v. The red dotted arrows indicate how tokens are moved (Color figure online)

Furthermore, if τ1(P) = 3/2 then τ2(P) = −1/2 in the first step of Phase 2 and
P never receives any token in the second step of Phase 2; therefore, τ(P) = 1. If
τ1(P) ≤ 1 and τ2(P) > 0, then P receives token through pipes with their tails on P
and a 3-path of Q3, and τ2(P) is assigned in Cases 2 and 3 during the second step
of Phase 2. We thus consider the paths P4 and P5 in these two cases, and refer to the
configurations in Fig. 10.

In Case 2 where w is an endpoint of P3 = w-x1-y1 (see Fig. 10a), the same as in
the proof of Claim 3, u′′ cannot have the same role as u; that is, u′′ → w → y1 is not
a pipe. Assume (x1, x2) is an edge on the path P4; for the same reason x2 cannot have
the same role as u, that is, x2 → x1 → y1 is not a pipe either. Therefore, we have
τ2(P5(y1)) ≤ 1/2.

Additionally, one sees that y2 cannot lie on a 2-path P ′
3 ∈ Q2, since otherwise

{u′-v′, u-v, P ′
3, P3}would be a candidate collection for anOperation 3- 1- By- 0- 3.

Therefore, τ1(P5(y2)) = 0. Note that y2 cannot be a singleton in Q either, due to the
fact that Q has the least singletons; we conclude that y2 lies on a 3-path P ′

3 ∈ Q3. If
y2 is the tail of a pipe, say z1 → w′ → y2, that is, both y2 and w′ are on P ′

3 and z1 has
the same role as u (see Fig. 11 for an illustration), then {u′-v′, u-v, P ′, P ′′, P3, P ′

3}
would be a candidate collection for an Operation 4- 2- By- 1- 4, where P ′ and P ′′
are the two 2-paths of Q2 associated with z1 (just like the two 2-paths u′-v′ and u-v
associated with u). In Fig. 11, P ′ and P ′′ are shown as z1-z2 and z3-z4. This proves
that y2 cannot be the tail of any pipe, and thus τ2(P5(y2)) = 0 too.

In summary, in Case 2 we have τ(P5(y1)) ≤ 1/2 and τ(P5(y2)) = 0.
In Case 3 where w is the midpoint of P3 = x1-w-y1 (see Fig. 10b), we assume

(x1, x2) is an edge on the path P4; the same as in the proof of Claim 3, x2 cannot have
the same role as u. That is, x2 → x1 → y1 is not a pipe. Therefore, there are at most
two pipes ending with y1 and consequently τ2(P5(y1)) ≤ 2 × 1/4 = 1/2.

Additionally and the same as in the above argument for Case 2, one sees that y2
cannot lie on a 2-path or a singleton of Q; therefore, y2 lies on a 3-path P ′

3 ∈ Q3 and
τ1(P5(y2)) = 0. The exactly same argument for Case 2 above proves that y2 cannot
be the tail of any pipe, and thus τ2(P5(y2)) = 0 too.
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Fig. 11 A configuration where
y2 in Fig. 10a is the tail of a
pipe, say z1 → w′ → y2 (no
matter y2 and w′ are adjacent or
not on P ′

3), which could never
happen due to Operation
4- 2- By- 1- 4. The blue solid
edges are in E(Q) and the black
dashed edges are outside of
E(Q) (Color figure online)

Fig. 12 A tight instance of 27 vertices, where blue solid edges represent a 3-path partition Q produced
by Approx and black dashed edges represent an optimal 3-path partition Q∗. The edges (u3i+1, v3i+1),
i = 0, 1, . . . , 4, are in E(Q2)∩ E(Q∗), shown both blue solid and black dashed. The vertex u3i+1 collides
into v3i+2 (denoted as v3i+2/u3i+1), i = 0, 1, . . . , 4. Applying our token distribution scheme, each of the
nine 3-paths inQ∗ receives exactly 1 token (Color figure online)

In summary, in Case 3 we have τ(P5(y1)) ≤ 1/2 and τ(P5(y2)) = 0.
From the above, we conclude that the token received through the vertex y1 is at

most τ(P5(y1)) ≤ 1/2 and the token received through the vertex y2 is τ(P5(y2)) = 0.
For the other vertex y3 on P5, if τ1(P5(y3)) = 1/2, then τ2(P5(y3)) = 0; otherwise
τ1(P5(y3)) = 0, and the above argument applies again to show that τ2(P5(y3)) ≤ 1/2.
Together, we have τ(P5) = τ(P5(y1))+ τ(P5(y2))+ τ(P5(y3)) ≤ 2× 1/2 = 1. This
proves the claim. ��

From Claims 2, 3 and 4, Lemma 1 holds.

3.3 A tight instance for the algorithmApprox

Figure 12 illustrates a tight instance, in which our solution 3-path partitionQ contains
nine 2-paths and three 3-paths (solid edges) and an optimal 3-path partitionQ∗ contains
nine 3-paths (dashed edges). When applying our token distribution scheme, each 3-
path of Q∗ receives exactly 1 token from the 2-paths in Q. This instance shows that
the performance ratio of 4/3 is tight for Approx, thus Theorem 2 is proved.
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4 Conclusions

We studied the 3PP problem and designed a 4/3-approximation algorithm Approx.
Approx first computes a 3-path partition Q with the least 1-paths in O(nm)-time,
then iteratively applies four local operations to reduce the total number of paths inQ.
The overall running time of Approx is O(n6). The performance ratio 4/3 of Approx
is proved through an amortization scheme, using the structure properties of the 3-path
partition returned by Approx. We also showed that the performance ratio 4/3 is tight
for our algorithm.

The 3PP problem is closely related to the 3- Set Cover problem, but none of
them is a special case of the other. The best 4/3-approximation for 3- Set Cover
has stood there for more than three decades; our algorithm Approx for 3PP has the
approximation ratio matches up to this best approximation ratio 4/3. We leave it open
to better approximate 3PP (during the preparation of this journal version, Weitian led
the group to design a completely new and improved 21/16-approximation algorithm
for 3PP (Chen et al. 2019c)).
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