
Journal of Combinatorial Optimization (2022) 44:1330–1355
https://doi.org/10.1007/s10878-022-00890-x

Minimizing total weighted late work on a single-machine
with non-availability intervals

Shi-Sheng Li1 · Ren-Xia Chen2

Accepted: 20 July 2022 / Published online: 2 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We explore the problem of scheduling n jobs on a single machine in which there are
m fixed machine non-availability intervals. The target is to seek out a feasible solution
thatminimizes total weighted latework. Three variants of the problem are investigated.
The first is the preemptive version, the second is the resumable version, and the third
is the non-resumable version. For the first one, we present an O((m + n) log n)-time
algorithm to solve it. For the second one, we develop an exact dynamic programming
algorithm and a fully polynomial time approximation scheme. For the third one, we
first demonstrate that it is strongly NP-hard for the case where all jobs have the
unit weight and common due date, and then we develop a pseudo-polynomial time
algorithm for the unit weight case where the number of non-availability intervals is
fixed, finally we propose a pseudo-polynomial time algorithm for the case where there
is only one non-availability interval.

Keywords Scheduling · late work · non-availability intervals · dynamic programming

1 Introduction

Formost theoretical research and practical applications of production schedulingmod-
els studied in the literature, it is presumed that the machines are continuously available
throughout the whole scheduling horizon (Pinedo 2016). Nevertheless, machine non-
availability intervals (MNAIs) are very common in the modern manufacturing and
service systems. One reason of this situation is due to the machine breakdowns or
preventive maintenance operations (Palmer 2012). Another reason may be due to

B Shi-Sheng Li
shishengli96@163.com

1 Department of Information and Computation Science, Zhongyuan University of Technology,
Zhengzhou 450007, People’s Republic of China

2 College of Science, Zhongyuan University of Technology, Zhengzhou 450007, People’s Republic of
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-022-00890-x&domain=pdf
http://orcid.org/0000-0003-3197-1558

Journal of Combinatorial Optimization (2022) 44:1330–1355 1331

the occurrence of fixed jobs in modern industrial software (Scharbrodt et al. 1999).
Because of its theoretical importance as well as broad applications, scheduling mod-
els with MNAIs have attracted great savor over the last thirty years. Two main types
of scheduling models with MNAIs are distinguished (Strusevich and Rustogi 2017).
Under the fixed scenario, a MNAI takes place in a given interval, i.e., its starting time
and finishing time are both given parameters. Under the flexible scenario, a MNAI
must start before a given deadline. In this study, we explore a scheduling problemwith
one or more fixed MNAIs to minimize total weighted late work (TWLW) on a single
machine.

1.1 Problem definition

Formally, the jobs of setJ = {J1, J2, . . . , Jn} are to be performed on a singlemachine.
The n jobs in J are released at time zero. For each job J j ∈ J , it can be marked
by a processing time p j , a weight w j indicating its importance, and a due date d j .
At most one job is executed by the machine at a time and there are m fixed MNAIs
Ik = [Ak, Bk], k = 1, 2, . . . ,m, during which the machine cannot deal with any job,
where A1 ≤ B1 < A2 ≤ B2 < · · · < Am ≤ Bm . Let �i = Bi − Ai (i = 1, 2, . . . ,m)
be the length of the i-th MNAI. Symmetrically, we define m + 1 availability intervals
Ri = [Bi−1, Ai], i = 1, 2, . . . ,m + 1, where B0 = 0 and Am+1 = +∞. Moreover,
let∇i = Ai − Bi−1 (i = 1, 2, . . . ,m+1) be the length of the i-th availability interval.

As introduced by Lee (1996), we study two patterns relating to the processing of a
job that is interrupted by a MNAI. Under the resumable pattern, once the processing
of a job is interrupted by some MNAI, it is resumed when the machine next becomes
available. In this pattern, the total duration of the job interrupted by one or more
MNAIs is still equal to its actual processing time. Under the non-resumable pattern,
once the processing of a job is interrupted by some MNAI, it is restarted from scratch
when the machine next becomes available. Moreover, we also study the pattern where
job preemption is allowed. Under the preemptive pattern, the processing of the job
may be interrupted at any time and resumed later at any latter time.

For a given feasible schedule, let S j ,C j andY j indicate the starting time, completion
time and late work of job J j , j = 1, 2, . . . , n, respectively. Here, the late work Y j

is defined as the amount of work executed on J j after its due date d j . If Y j = 0, J j
is referred to be early; if 0 < Y j < p j , J j is referred to be partially early; and if
Y j = p j , J j is referred to be late. Moreover, a job is referred to be non-late if it is
either early or partially early. In all problems under discussion, the target is to seek
out a feasible schedule so that TWLW is minimized.

Extending the standard 3-field scheduling scheme, the resulting problems for
minimizing TWLW under the resumable pattern, non-resumable pattern and pre-
emptive pattern are denoted by 1|h(m), res|∑w j Y j , 1|h(m), n − res|∑w j Y j and
1|h(m), pmtn|∑w j Y j , respectively. To simplify the notations, let V ∗

r , V
∗
nr and

V ∗
p indicate the optimal objective values for the problems 1|h(m), res|∑w j Y j ,

1|h(m), n − res|∑w j Y j and 1|h(m), pmtn|∑w j Y j , respectively. Evidently, we
have V ∗

p ≤ V ∗
r ≤ V ∗

nr .

123

1332 Journal of Combinatorial Optimization (2022) 44:1330–1355

Note that for a given job J j ∈ J , if the due date d j of J j belongs to certain MNAI
Ik , i.e., Ak < d j ≤ Bk , then we can simply set d j := Ak . Henceforth, we assume
that each due date d j belongs to some availability intervalRk , i.e., Bk−1 < d j ≤ Ak .
To simplify the presentation, we assume that the jobs in J are numbered in the order
satisfying

d1 ≤ d2 ≤ · · · ≤ dn, and w j ≥ w j+1 if d j = d j+1, j = 1, 2, . . . , n − 1. (1)

In addition, write J j = {J1, J2, . . . , J j } for j = 1, 2, . . . , n.

1.2 Literature review

The scheduling model introduced in this study belongs to the categorization of late
work scheduling and the categorization of MNAI scheduling. Models related to these
two aspects are very plentiful and extensive, we mainly review the related work from
the perspective of computational complexity in the context of single-machine envi-
ronment.

The research on late work scheduling was originated by Blazewicz (1984), who
solved the parallel-machine problem P|r j , pmtn| ∑w j Y j by exploiting the linear
programming technique. Potts and Van Wassenhove (1991) demonstrated that the
single-machine problem 1||∑ Y j is ordinaryNP-hard and gave a pseudo-polynomial
time (PPT) algorithm to solve it. They also proposed a simple O(n log n)-time algo-
rithm for 1|pmtn|∑ Y j . A polynomial time approximation scheme (PTAS) and two
fully polynomial time approximation schemes (FPTASs) are later developed by Potts
and VanWassenhove (1992) for 1||∑ Y j . Hariri et al. (1995) presented an O(n log n)-
time algorithm for 1|pmtn|∑w j Y j and a PPT algorithm for 1||∑w j Y j . In contrast
to their PPT algorithm, Kovalyov et al. (1994) established another PPT algorithm
for 1||∑w j Y j , which is converted into an FPTAS. Chen et al. (2019) addressed
a late work scheduling problem with deadlines. They demonstrated that 1|d̄ j | ∑ Y j

is strongly NP-hard and 1|d j = d, d̄ j | ∑w j Y j is ordinary NP-hard. They also
developed a PPT algorithm and an FPTAS for the latter problem. Mosheiov et al.
(2021) examined a late work scheduling model with generalized due dates (GDD)
or assignable due dates (ADD), where GDD means that the k-th smallest due-date is
always designated to the k-th completed job in the schedule, and ADD means that
each due date can be assigned to any job. They showed that the shortest processing
time (SPT) rule solves 1|GDD|∑ Y j , and demonstrated that 1|GDD|∑w j Y j and
1|ADD| ∑ Y j are both NP-hard. In recent years, a number of studies have been
undertaken to explore the late work scheduling with multi-agents or multi-objectives,
see Li and Yuan (2020), Chen and Li (2021), Chen et al. (2021), He et al. (2021),
Zhang (2021), etc. Reviews of late work scheduling and its various applications can
be discovered in Leung (2004), Shioura et al. (2018) and Sterna (2011; 2021).

The research onMNAI scheduling was initiated by Schmidt (1988), who addressed
a parallel-machine scheduling problem with multiple MNAIs and deadlines. He con-
structed a polynomial time algorithm to determine the feasibility of the preemptive
problem. In regard to the basic problem 1|h(1), n − res|∑C j , Adiri et al. (1989)

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1333

and Lee and Liman (1992) demonstrated that it is ordinary NP-hard; Lee and
Liman (1992) revealed that the worst-case bound of the SPT rule is 9/7; Sadfi et al.
(2005) provided a 20/17-approximation algorithm, which is modified version of
the SPT rule; He et al. (2006) designed a PTAS. In regard to the weighted prob-
lem 1|h(1), n − res|∑w jC j , Kacem (2008) designed a 2-approximation algorithm;
Kacem et al. (2008) proposed a branch-and-bound, a mixed integer programming, and
a dynamic programming method to solve it; Kacem and Mahjoub (2009) presented
an FPTAS based on the technique of interval partitioning; Kellerer and Strusevich
(2010) devised a simple 4-approximation algorithm and an FPTAS by adopting
the method developed for the symmetric quadratic knapsack problem. In regard to
1|h(1), n − res|Dmax, Yuan et al. (2008) provided a PPT algorithm and a PTAS;
Kacem (2009) proposed a 3/2-approximation algorithm and an FPTAS; Kacem et al.
(2016) further presented an improved FPTAS. Kacem et al. (2015) designed a PTAS
to solve 1|h(m), n − res|max

∑
w jU j when m is fixed, and demonstrated that

1|h(1), n − res, d j = d|max
∑

U j does not admit an FPTAS, where U j = 1 if
C j ≤ d j and U j = 0 otherwise. Lee (1996) showed that the algorithm developed
for 1||γ can be easily revised to solve the counterpart problem 1|h(m), res|γ , where
γ ∈ {Cmax, Lmax,

∑
C j ,

∑
Uj }. He also demonstrated that 1|h(m), n − res|Cmax

is strongly NP-hard. Wang et al. (2005) demonstrated that 1|h(m), res|∑w jC j is
stronglyNP-hard. In regard to 1|h(1), res|∑ w jC j , Lee (1996) demonstrated that it
is ordinary NP-hard and presented a PPT algorithm; Wang et al. (2005) created a 2-
approximation algorithm; Kellerer and Strusevich (2010) provided an FPTAS. Kacem
et al. (2015) proposed a PPT algorithm and an FPTAS for 1|h(m), res|max

∑
w jU j .

Recent developments of MNAI scheduling models were examined, among many oth-
ers, by Kacem and Kellerer (2018), Bülbül et al. (2019), Shabtay (2022), Mor and
Shapira (2022), etc. For more practical applications as well as detailed results on this
topic, it is referred to the reviews given by Lee (1996), Schmidt (2000), Ma et al.
(2010) and Strusevich and Rustogi (2017).

As far as we are aware, there are only two studies probing the MNAI schedul-
ing with late work criterion. Specifically, Yin et al. (2016) analyzed a late work
scheduling problem with a MNAI. They first designed an O(n log n)-time algorithm
for 1|h(1), pmtn|∑ Y j , then they proposed two PPT algorithms and an FPTAS for the
revised problem 1|h(1), n − res|∑ Y j + pmax, where pmax = max{p j , 1 ≤ j ≤ n}.
Mosheiov et al. (2021) investigated a GDD scheduling problem with a MNAI to mini-
mize total latework, i.e. 1|GDD, h(1), n−res|∑ Y j . They indicated that the problem
is NP-hard and devised a PPT algorithm to solve it.

1.3 Motivation and contributions

The motivation and contributions of this study are as follows. First, we discuss the
more realistic and intricate scheduling model with the criterion of minimizing TWLW
in the context of multiple MNAIs. Second, we make certain of the the computational
complexity issue of the model under three different scenarios. Third, the preemptive
problem 1|h(m), pmtn|∑w j Y j and the resumable problem 1|h(m), res|∑w j Y j

under consideration generalize the problem 1|pmtn|∑w j Y j studied in Hariri et al.

123

1334 Journal of Combinatorial Optimization (2022) 44:1330–1355

(1995) and the problem 1||∑w j Y j studied in Kovalyov et al. (1994) by allow-
ing arbitrary weights and multiple MNAIs, respectively. Fourth, the non-resumable
problem 1|h(1), non − res|∑ w j Y j under consideration generalizes the problem
1|h(1), n − res|∑ Y j studied in Yin et al. (2016) by allowing arbitrary weights.

The remainder of this study is structured as follows. In Sect. 2, an O((m+n) log n)-
time algorithm is first designed for 1|h(m), pmtn|∑w j Y j , then a numerical example
is presented. In Sect. 3, an O(mn2

∑n
j=1 p j)-time algorithm and an FPTAS are

developed for 1|h(m), res|∑w j Y j . In Sect. 4, 1|h(m), d j = d, n − res|∑ Y j is
first demonstrated to be strongly NP-hard; then a PPT algorithm is provided for
1|h(m), n−res|∑ Y j when the number of MNAIs is fixed; finally a PPT algorithm is
constructed for 1|h(1), non−res|∑ w j Y j . In Sect. 5, some remarks are summarized
and several ideas are listed for future research.

2 The preemptive problem 1|h(m),pmtn|∑wjYj

We address the preemptive pattern, in which the processing of a job can be inter-
rupted by another job at any time or by a MNAI and resumed later at any time. By
generalizing the algorithm developed by Hariri et al. (1995) for 1|pmtn|∑w j Y j ,
an O((m + n) log n)-time algorithm is designed to solve the counterpart problem
1|h(m), pmtn|∑w j Y j . To specify a solution, it is sufficient to search a schedule of
the processing of each job’s early work. Write D = {d j : J j ∈ J } and D0 = 0. Let
D1 < D2 < · · · < Dh be the ordered sequence of the distinct due dates d j of the n
jobs, where h = |D|. Moreover, for each 1 ≤ k ≤ h, let Rik be the availability inter-
val that Dk belongs to, i.e., Bik−1 < Dk ≤ Aik . Recall that the n jobs are numbered
according to (1).

Algorithm 1.

Step 1. Set r := h, τ := Dr , q := ir and S := J .
Step 2. SetAτ := {J j : J j ∈ S, d j ≥ τ } and calculate k := argmax{w j : J j ∈ Aτ }.

If Dr−1 ∈ Rq , set l := min{pk, τ − Dr−1}, go to Step 3; otherwise, set
l := min{pk, τ − Bq−1}, go to Step 4.

Step 3. Assign l units of work of Jk to the time interval [τ − l, τ], then do:

(3.1) If pk > τ − Dr−1, set pk := pk − l, τ := τ − l and r := r − 1.
(3.2) If pk = τ − Dr−1, set pk := 0, τ := τ − l, r := r − 1 and S := S\{Jk}.
(3.3) If pk < τ−Dr−1 andAτ\{Jk} 	= ∅, set pk := 0, τ := τ−l andS := S\{Jk}.
(3.4) If pk < τ − Dr−1 and Aτ\{Jk} = ∅, set pk := 0, τ := Dr−1, r := r − 1
and S := S\{Jk}.

Step 4. Assign l units of work of Jk to the time interval [τ − l, τ], then do:

(4.1) If pk > τ − Bq−1, set pk := pk − l, τ := Aq−1 and q := q − 1.
(4.2) If pk = τ − Bq−1, set pk := 0, τ := Aq−1, q := q − 1 and S := S\{Jk}.
(4.3) If pk < τ −Bq−1 andAτ\{Jk} 	= ∅, set pk := 0, τ := τ −l andS := S\{Jk}.
(4.4) If pk < τ − Bq−1 and Aτ\{Jk} = ∅, set pk := 0, τ := Dr−1, q := ir−1,
r := r − 1 and S := S\{Jk}.

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1335

Table 1 The job data of the
instance

J j J1 J2 J3 J4 J5 J6 J7

p j 2 3 2 1 4 2 3

d j 3 3 5 9 9 16 17

w j 4 2 3 5 1 4 1

Table 2 The due date and
availability interval of Example
2.1

k 1 2 3 4 5

Dk 3 5 9 16 17

Rik R1 R1 R2 R3 R3

ik 1 1 2 3 3

Step 5. If S = ∅ or τ = 0 or r = 0, calculate TWLW by V ∗
p = ∑

J j∈S w j p j and
stop; otherwise, go to Step 2.

To facilitate the explanation, a small numerical instance is used to display the
implementation of Algorithm 1 for 1|h(m), pmtn|∑w j Y j .

Example 2.1 Consider an instance of 1|h(m), pmtn|∑w j Y j in which it contains
seven jobs and two MNAIs I1 = [A1, B1] = [6, 7] and I2 = [A2, B2] = [11, 13],
where job parameters are given in Table 1.

Before proceeding with the execution of Algorithm 1, we note that D =
{3, 5, 9, 16, 17}, which contains five distinct due dates, i.e., h = |D| = 5, see
Table 2 for their representative availability interval, whereR1 = [0, 6],R2 = [7, 11],
R3 = [13,+∞), and define D0 = 0.

Initially, we have r = h = 5, τ = D5 = 17, q = i5 = 3 and S =
{J1, J2, J3, J4, J5, J6, J7}.

At the iteration j = 1, we haveAτ = A17 = {J7}, job J7 is selected. Since Dr−1 =
D4 = 16 ∈ Rq = R3, we have l = min{p7, τ − Dr−1} = min{3, 17 − 16} = 1,
schedule l = 1 units of work of J7 in the interval [τ − l, τ] = [16, 17]. Since
p7 = 3 > 1 = τ − Dr−1, Algorithm 1 executes Step 3.1, we have p7 = 2, τ = 16
and r = 4.

At the iteration j = 2, we have Aτ = A16 = {J6, J7}, job J6 is selected as
w6 = 4 > 1 = w7. Since Dr−1 = D3 = 9 /∈ Rq = R3, we have l = min{p6, τ −
Bq−1} = min{2, 16−13} = 2, schedule l = 2 units of processing of J6 in the interval
[τ − l, τ] = [14, 16]. Since p6 = 2 < 3 = τ − Bq−1 and Aτ\{J6} 	= ∅, Algorithm 1
executes Step 4.3, we have p6 = 0, τ = 14 and S = {J1, J2, J3, J4, J5, J7}.

At the iteration j = 3, we have Aτ = A14 = {J7}, job J7 is selected. Since
Dr−1 = D3 = 9 /∈ Rq = R3, we have l = min{p7, τ − Bq−1} = min{2, 14 −
13} = 1, schedule l = 1 units of work of J6 in the interval [τ − l, τ] = [13, 14].
Since p7 = 2 > 1 = τ − Bq−1, Algorithm 1 executes Step 4.1, we have p7 = 1,
τ = Aq−1 = 11 and q = 2.

At the iteration j = 4, we have Aτ = A11 = {J7}, job J7 is selected. Since
Dr−1 = D3 = 9 ∈ Rq = R2, we have l = min{p7, τ −Dr−1} = min{1, 11−9} = 1,

123

1336 Journal of Combinatorial Optimization (2022) 44:1330–1355

J2 J1 J3 J5 I1 J5 J4 J7 I2 J7 J6 J7

0 1 3 5 6 7 8 9 10 11 13 14 16 17 18

Fig. 1 An optimal schedule of 1|h(m), pmtn|∑ w j Y j

schedule l = 1 units of work of J7 in the interval [τ − l, τ] = [10, 11]. Since
p7 = 1 < 2 = τ − Dr−1 and Aτ\{J7} = ∅, Algorithm 1 executes Step 3.4, we have
p7 = 0, τ = Dr−1 = 9, r = 3 and S = {J1, J2, J3, J4, J5}.

At the iteration j = 5, we have Aτ = A9 = {J4, J5}, job J4 is selected as w4 =
5 > 1 = w5. Since Dr−1 = D2 = 5 /∈ Rq = R2, we have l = min{p4, τ − Bq−1} =
min{1, 9−7} = 1, schedule l = 1 units of work of J4 in the interval [τ −l, τ] = [8, 9].
Since p4 = 1 < 2 = τ − Bq−1 andAτ\{J4} 	= ∅, Algorithm 1 executes Step 4.3, we
have p4 = 0, τ = 8 and S = {J1, J2, J3, J5}.

At the iteration j = 6, we have Aτ = A8 = {J5}, job J5 is selected. Since
Dr−1 = D2 = 5 /∈ Rq = R2, we have l = min{p5, τ − Bq−1} = min{4, 8− 7} = 1,
schedule l = 1 units of work of J5 in the interval [τ − l, τ] = [7, 8]. Since p5 = 4 >

1 = τ − Bq−1, Algorithm 1 executes Step 4.1, we have p5 = 3, τ = Aq−1 = 6 and
q = 1.

At the iteration j = 7, we have Aτ = A6 = {J5}, job J5 is selected. Since
Dr−1 = D2 = 5 ∈ Rq = R1, we have l = min{p5, τ − Dr−1} = min{3, 6− 5} = 1,
schedule l = 1 units of work of J5 in the interval [τ − l, τ] = [5, 6]. Since p5 = 3 >

1 = τ − Dr−1, Algorithm 1 executes Step 3.1, we have p5 = 2, τ = 5 and r = 2.
At the iteration j = 8, we have Aτ = A5 = {J3, J5}, job J3 is selected as

w3 = 3 > 1 = w5. Since Dr−1 = D1 = 3 ∈ Rq = R1, we have l = min{p3, τ −
Dr−1} = min{2, 5 − 3} = 2, schedule l = 2 units of work of J3 in the interval
[τ − l, τ] = [3, 5]. Since p3 = 2 = τ − Dr−1, Algorithm 1 executes Step 3.2, we
have p3 = 0, τ = 3, r = 1 and S = {J1, J2, J5}.

At the iteration j = 9, we have Aτ = A3 = {J1, J2, J5}, job J1 is selected
as w1 = 4 > 2 = w2 > w5 = 1. Since Dr−1 = D0 ∈ Rq = R1, we have
l = min{p1, τ − Dr−1} = min{2, 3 − 0} = 2, schedule l = 2 units of work of J1
in the interval [τ − l, τ] = [1, 3]. Since p1 = 2 < τ − Dr−1 and Aτ\{J1} 	= ∅,
Algorithm 1 executes Step 3.3, we have p1 = 0, τ = 1 and S = {J2, J5}.

At the iteration j = 10, we have Aτ = A1 = {J2, J5}, job J2 is selected as
w2 = 2 > 1 = w5. Since Dr−1 = D0 ∈ Rq = R1,we have l = min{p2, τ−Dr−1} =
min{3, 1−0} = 1, schedule l = 1 units of work of J2 in the interval [τ −l, τ] = [0, 1].
Since p2 = 3 > 1 = τ − Dr−1, Algorithm 1 executes Step 3.1, we have p2 = 2,
τ = 0 and r = 0.

Because τ = 0 and r = 0, Algorithm 1 stops and the objective value is

V ∗
p =

∑

J j∈S
w j p j = w2 p2 + w5 p5 = 2 × 2 + 1 × 2 = 6,

see Fig. 1 for the corresponding schedule delivered by Algorithm 1.

Lemma 2.2 Algorithm 1 solves 1|h(m), pmtn|∑w j Y j .

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1337

Proof Let σ ∗ and σ be an optimal schedule for 1|h(m), pmtn|∑w j Y j and the sched-
ule delivered by Algorithm 1, respectively. As in Hariri et al. (1995), we can assume
that in σ ∗, any work performed before time Dh is early and the number of preemptions
is finite.

If σ is identical with σ ∗ in the interval [0, Dh], the lemma holds immediately.
Otherwise, let τ be selected as small as possible so that σ ∗ and σ are identical in the
time interval [τ, Dh]. From the execution of Algorithm 1 and the definition of τ , it
follows that the machine cannot be idle just before τ in σ . Hence, assume that job Jk
is performed in the interval [μ, τ] and not performed just before time μ in σ . Two
cases need to be addressed.
Case 1: The machine is idle in the interval [ν, τ] and is not idle just before time ν in
σ ∗. Let ρ = max{μ, ν}. In this case, another schedule σ ′ can be gained from σ ∗ by
shifting τ − ρ units of work of Jk to the interval [ρ, τ]. Clearly, σ ′ is also an optimal
schedule.
Case 2: Job Jr (r 	= k) is performed in the interval [ν, τ] and not performed just before
time ν in σ . Let ρ = max{μ, ν}. In this case, another schedule σ ′ can be gained from
σ ∗ by swapping τ − ρ units of work of Jr performed in [ρ, τ] with τ − ρ units of
work of Jk . From the execution of Algorithm 1, it follows that Jk ∈ Aτ , Jr ∈ Aτ , and
wk ≥ wr . Moreover, ifwk = wr , then dk ≥ dr . Clearly, σ ′ is also an optimal schedule
since this swap does not increase the objective value.

In both cases, σ ′ is an optimal schedule and it is identical with σ in the interval
[ρ, Dh] with ρ < τ . Continuing this process, we come up with an optimal schedule
σ from σ ∗ after a finite number of alterations. �
Lemma 2.3 Algorithm 1 can be executed in O((m + n) log n) time.

Proof Note that in the execution of Algorithm 1, a preemption arises only when less
than pk units of work of Jk are processed in Step 3 and/or Step 4. This happens either
when τ − pk < Dr−1 < τ ≤ Dr for certain k, or when τ − pk < Bq−1 < τ ≤ Aq ,
or when τ < pk . Thus, there are at most m + h preemptions, which implies that Steps
2-4 are implemented at most n + m + h times. By utilizing the data structure, we
index the jobs in Aτ in nondecreasing order of their weights, and each operation of
insert and delete can be done in O(log n) time, thus each iteration of Step 2 takes at
most O(log n) time. Each iteration of Step 3 and Step 4 requires constant time. Since
h ≤ n, Algorithm 1 can be executed in O((m + n) log n) time. �

In view of Lemma 2.2 and Lemma 2.3, we state the main result of this section.

Theorem 2.4 Algorithm 1 can solve 1|h(m), pmtn|∑w j Y j in O((m+n) log n) time.

3 The resumable problem 1|h(m), res|∑wjYj

We address the resumable pattern, in which the processing of a job can only be inter-
rupted by the MNAIs and it has to be resumed when the machine next becomes
available. 1|h(m), res|∑w j Y j is NP-hard as its counterpart un-weighted problem
1|| ∑ Y j without MNAI is NP-hard (Potts and Van Wassenhove 1991). By exploit-
ing the dynamic programming (DP) method, we first design a PPT algorithm for

123

1338 Journal of Combinatorial Optimization (2022) 44:1330–1355

1|h(m), res|∑w j Y j , then we convert it into an FPTAS. Due to the fact that the
TWLW criterion is regular, we only focus on those solutions in which all jobs inJ are
performed contiguously (but it may be interrupted by the MNAI) without any inserted
idle times.

Let s ∈ R1 ∪R2 ∪ · · · ∪Rm+1. For a given job J with processing time p, due date
d and starting time s, we use�(s, p) and�(s, p, d) to denote its completion time and
late work, respectively. Recall that the processing of a job cannot be interrupted by
another job, but it may be interrupted by oneMNAI or multipleMNAIs. Moreover, we
useRκ(s) to denote the availability interval that s belongs to, i.e., Bκ(s)−1 ≤ s ≤ Aκ(s).
Clearly, the index κ(s) for a given s can be computed in O(logm) time. Recall that
�i = Bi − Ai and ∇i = Ai − Bi−1 for i = 1, 2, . . . ,m. Then the values �(s, p) and
�(s, p, d) can be computed in O(m) time as follows:

�(s, p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s + p if p ≤ υ

s + p + �κ(s) if υ < p ≤ υ + ∇κ(s)+1
s + p + �κ(s) + �κ(s)+1 if υ + ∇κ(s)+1 < p ≤ υ + ∇κ(s)+1 + ∇κ(s)+2

...

s + p + ∑m−1
h=κ(s) �h if υ + ∑m−2

h=κ(s)+1 ∇h < p ≤ υ + ∑m−1
h=κ(s)+1 ∇h

s + p + ∑m
h=κ(s) �h if p > υ + ∑m−1

h=κ(s)+1 ∇h

(2)

and

�(s, p, d) =
⎧
⎨

⎩

0 if �(s, p) ≤ d

s + p − d + ∑κ(d)−1
h=κ(s) �h if s < d < �(s, p)

p if d ≤ s
(3)

where υ = Aκ(s) − s.

3.1 A DP algorithm

Since the late jobs can be arbitrarily performed after all non-late jobs, we can describe
an optimal solution by a permutation of non-late jobs. For a given permutation π , a
non-late job J j is referred to be deferred (with respect to its index specified by (1)) in
π , if it is performed after a non-late job Jk with k > j .

The following lemma is very crucial for the design of our DP algorithm. We omit
the details of its proof as it can be proved in the same spirit of the lemma established
in Hariri et al. (1995) for 1||∑w j Y j .

Lemma 3.1 There exists an optimal permutation for 1|h(m), res|∑w j Y j in which (i)
the non-late jobs having the same due date are performed in the order of their indices,
and (ii) for every early job Jk, at most one deferred job Jr with r < k is performed
after Jk .

In view of Lemma 3.1, by exploiting the method introduced in Kovalyov et al.
(1994) and Hariri et al. (1995), an exact DP approach is proposed to search an optimal

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1339

permutation for 1|h(m), res|∑w j Y j . We scan the jobs in their natural order defined
by (1). For each job J j under consideration, it can either be claimed non-late or late.
In the former scenario, J j is either performed in its natural order or deferred. By
Lemma 3.1, if J j is a deferred job and it is performed just after the non-late job Jt
such that t > j , those non-late jobs within the set {J j+1, J j+2, . . . , Jt } should be
performed in their natural order.

Recall that J j = {J1, J2, . . . , J j }. For each j = 1, 2, . . . , n, let H j represent the
set of all partial permutations that satisfy the key properties stated in Lemma 3.1 for
J j . Each permutation σ j ∈ H j can be marked by a unique state (r , t, l), where the
first variable r denotes that Jr is deferred in σ j if r > 0, the second variable t indicates
the sum of the processing times of the non-late jobs in J j\{Jr }, and the last variable
l stands for the TWLW of the jobs in J j\{Jr }. By Lemma 3.1, we know that (i) if
r = 0, then there exists no deferred job, and (ii) if 1 ≤ r ≤ j , then Jr is a deferred
job and it will be performed after one of jobs in J \J j .

Let Q j include all possible states defined by the partial permutations in H j . It
is initialized by setting Q0 = {(0, 0, 0)}, and for each j = 1, 2, . . . , n, the state
set Q j can be constructed from Q j−1 progressively. With respect to a given state
(r , t, l) ∈ Q j , let σ j ∈ H j be a permutation corresponding to the state (r , t, l).
Also, let σ j−1 be the permutation of J j−1 that is gained from σ j by removing job
J j . Evidently, we have σ j−1 ∈ H j−1. Let (r ′, t ′, l ′) ∈ Q j−1 be the unique state
corresponding to σ j−1. In view of Lemma 3.1 and the above discussion, we have to
distinguish the following four scenarios.
Scenario 1: J j is performedas late inσ j . In this scenario,wehave (r , t, l) = (r ′, t ′, l ′+
w j p j).
Scenario 2: J j is deferred in σ j . In this scenario, we have (r , t, l) = (j, r ′, l ′). This
is feasible only when r ′ = 0 and �(0, t ′) < d j .
Scenario 3: J j performed as non-late and the deferred job Jr ′ (if r ′ > 0) is not
performed just after J j in σ j . In this scenario, we have (r , t, l) = (r ′, t ′ + p j , l ′ +
w j�(�(0, t ′), p j , d j)) . This is feasible only when either r ′ > 0 and�(0, t ′ + p j) <

dr ′ , or r ′ = 0 and �(0, t ′) < d j .
Scenario 4: J j is performed as early and the deferred job Jr ′ (1 ≤ r ′ < j) is
performed just after J j in σ j . In this scenario, we have (r , t, l) = (0, t + p j +
pr ′ , l ′ + wr ′�(�(0, t ′ + p j), pr ′ , dr ′)). This is feasible only when r ′ > 0 and
�(0, t ′ + p j) < dr ′ .

For the target of reducing the state space of the DP, the following dominant property
can be easily observed.

Lemma 3.2 Given two states (r , t, l) and (r , t ′, l ′) in Q j satisfying t ≤ t ′ and l ≤ l ′,
the latter state can be deleted from Q j .

In fact, in the generation of Q j , a weaker dominant setting than the result in
Lemma 3.2 is utilized. More precisely, if there are multiple states in Q j having the
same r and t values, only the state having the smallest l value is preserved.

Summarizing the above discussion, the following DP algorithm is constructed to
solve 1|h(m), res|∑w j Y j .

123

1340 Journal of Combinatorial Optimization (2022) 44:1330–1355

Algorithm 2.

Step 1. Set Q0 = {(0, 0, 0)} and Q j := ∅ for j = 1, 2, . . . , n.
Step 2. For j = 1, 2, . . . , n, construct Q j from Q j−1 as follows:

Step 2.1. For each state (r , t, l) ∈ Q j−1, do:

(2.1.1) Set Q j := Q j ∪ {(r , t, l + w j p j)};
(2.1.2) If r = 0 and �(0, t) < d j , set Q j := Q j ∪ {(j, t, l)};
(2.1.3) If either [r > 0 and �(0, t + p j) < dr] or [r = 0 and �(0, t) < d j], set
Q j := Q j ∪ {(r , t + p j , l + w j�(�(0, t), p j , d j))};
(2.1.4) If r > 0 and �(0, t + p j) < dr , set Q j := Q j ∪ {(0, t + p j + pr , l +
wr�(�(0, t + p j), pr , dr))}.

Step 2.2. Among all states in Q j having the same r and t values, reserve only one
state having the smallest l value.

Step 3. Set V ∗
r = min{l : (0, t, l) ∈ Qn} and disclose the corresponding optimal

permutation by the backtracking method.

Theorem 3.3 Algorithm 2 can solve 1|h(m), res|∑w j Y j in O(mn2
∑n

j=1 p j) time.

Proof By Lemma 3.1, Lemma 3.2 and the general DP principle, Algorithm 2 clearly
solves 1|h(m), res|∑w j Y j . In Step 1, it needs linear time. In the j-th iteration of
Step 2, for every state (r , t, l) ∈ Q j−1, we create at most three states in Q j in Step
2.1, where every such state can be created in O(m) time; and at most O(n

∑n
j=1 p j)

different states (r , t, l) in Q j are preserved after Step 2.2. Step 3 can be executed
in O(

∑n
j=1 p j) time. Since there are n iterations, Algorithm 2 can be executed in

O(mn2
∑n

j=1 p j) time. �

3.2 An FPTAS

We will propose an FPTAS by applying the technique of interval partitioning to the
DP algorithm designed in Sect. 3.1.

We start with presenting an procedure to solve the auxiliary problem 1|h(m), res|
maxw j Y j . Let c ∈ R1 ∪R2 ∪ · · · ∪Rm+1. For a given job J with processing time p,
due date d and completion time c, we useϒ(c, p) and(c, p, d) to denote its starting
time and late work, respectively. Similar to the computation of�(s, p) and�(s, p, d)

given by (2) and (3), the valuesϒ(c, p) and(c, p, d) can also be calculated in O(m)

time.Note that�(ϒ(c, p), p) = c and�(ϒ(c, p), p, d) = (c, p, d). The following
algorithm is similar to that of Lawler (1973) designed for 1|prec| fmax, where fmax(·)
is a nondecreasing function.
Algorithm 3.

Step 1. Set k := n, JU := J , c := �(0,
∑n

j=1 p j), f := 0.
Step 2. If k ≥ 1, select the job Ji∗ from JU with the smallest weighted late work,

i.e., wi∗(c, pi∗ , di∗) = min{w j(c, p j , d j) : J j ∈ JU }, appoint job Ji∗
to the k-th position, i.e., J[k] := Ji∗ , set k := k − 1, JU := JU\{Ji∗}, c :=
ϒ(c, pi∗), f := max{ f , wi∗(c, pi∗ , di∗)}, then go to Step 2; otherwise, go
to Step 3.

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1341

Step 3. Deliver the optimal maximum weighted late work f and the job permutation
J[1] → J[2] → · · · → J[n].

Theorem 3.4 Algorithm 3 can solve 1|h(m), res|maxw j Y j in O(mn2) time.

Proof Let π∗ and π be be an optimal permutation for 1|h(m), res|maxw j Y j and
the permutation delivered by Algorithm 3, respectively. If π∗ = π , the result holds
immediately. Otherwise, we assume that π is selected so that the index u is as small
as possible, in which u is the maximum index satisfying that Jπ[l] 	= Jπ∗[l] . This means
that Jπ∗[i] = Jπ[i] for i = u + 1, u + 2, . . . , n. Hence, the set of the first u jobs in

π and π∗ are identical. Write c = �(0,
∑u

j=1 pπ[j]) = �(0,
∑u

j=1 pπ∗[j]). We can

get another schedule π ′ from π∗ by shifting job Jπ[u] to the u-th position. From the
selection of job Jπ[u] in Algorithm 3 and the regularity of the objective function, the
maximum weighted late work of π ′ is not more than that of π∗. This disproves the
selection of π∗. Thus, π is also an optimal permutation.

Because there are n iterations, and each selection of the job in Step 2 takes O(mn)

time, Algorithm 3 can be executed in O(mn2) time. �
Let V ∗

max be the minimum objective value of 1|h(m), res|maxw j Y j . Clearly, we
have

V ∗
max ≤ V ∗

r ≤ nV ∗
max. (4)

Let ε > 0 be any given arbitrary number. To construct an FPTAS for
1|h(m), res|∑w j Y j , we remove some special states created by Algorithm 2.
Algorithm 4.

Step 0. Set z = � n2
ε

� and δ = εV ∗
max
n . Partition the interval [0, nV ∗

max] into z
subintervals Ki such that Ki = [(i − 1)δ, iδ) for 1 ≤ i ≤ z − 1, and
Iz = [(z − 1)δ, nV ∗

max].
Step 1. Set Q̂0 = {(0, 0, 0)} and Q̂ j := ∅ for j = 1, 2, . . . , n.
Step 2. For j = 1, 2, . . . , n, construct Q̂ j from Q̂ j−1.

Step 2.1. Implement the identical action as Step 2.1 of Algorithm 2.
Step 2.2. Among all states (r , t, l) in Q̂ j having the same r value and the value of the

third variable l falling into the same subinterval Ki , reserve only one state
having the smallest t value.

Step 3. Set V̂r = min{l : (0, t, l) ∈ Q̂n} and disclose the corresponding approxi-
mate solution by the backtracking method.

Lemma 3.5 For each state (r , t, l) ∈ Q j , Algorithm 4 finds a state (r , t̂, l̂) ∈ Q̂ j with
t̂ ≤ t and l̂ ≤ l + jδ.

Proof Wedemonstrate the lemma by induction on j = 1, 2, . . . , n. For j = 1, we have
Q1 = Q̂1 = {(0, 0, w1 p1), (1, 0, 0), (0, p1, w1�(0, p1, d1)}. Therefore, the lemma
holds for j = 1.

Inductively, we assume that the lemma holds up to iteration j − 1. Consider an
arbitrary state (r , t, l) ∈ Q j . Algorithm 2 creates this state into Q j when J j is added

123

1342 Journal of Combinatorial Optimization (2022) 44:1330–1355

to some feasible state (r ′, t ′, l ′) ∈ Q j−1 for the first j −1 jobs. Based on the induction
assumption, there is a state (r ′, t̂ ′, l̂ ′) ∈ Q̂ j−1 with

t̂ ′ ≤ t ′ (5)

and

l̂ ′ ≤ l ′ + (j − 1)δ. (6)

From the definition of �(0, ·) and (5), we have

�(0, t̂ ′) ≤ �(0, t ′). (7)

In the following, we demonstrate that the lemma holds for four different cases.
Case 1: (r , t, l) = (r ′, t ′, l ′ + w j p j). This corresponds to the case where J j is per-
formed as late. Since (r ′, t̂ ′, l̂ ′) ∈ Q̂ j−1, Algorithm4 creates the state (r ′, t̂ ′, l̂ ′+w j p j)

in Step 2.1-(1). Due to the deletion operation in Step 2.2 and (5)-(6), there must exist
a state (r ′, t̂, l̂) ∈ Q̂ j with

t̂ ≤ t̂ ′ ≤ t ′ = t (8)

and

l̂ ≤ l̂ ′ + w j p j + δ ≤ l ′ + w j p j + jδ = l + jδ, (9)

The lemma holds for iteration j in the first case since r = r ′.
Case 2: (r , t, l) = (j, t ′, l ′). This corresponds to the case where J j is deferred, k′ = 0
and �(0, t ′) < d j . Since (r ′, t̂ ′, l̂ ′) ∈ Q̂ j−1, Algorithm 4 creats the state (j, t̂ ′, l̂ ′) in
Step 2.1-(2). Due to the deletion operation in Step 2.2 and (5)-(6), there must exist a
state (j, t̂, l̂) ∈ Q̂ j with

t̂ ≤ t̂ ′ ≤ t ′ = t (10)

and

l̂ ≤ l̂ ′ + δ ≤ l ′ + jδ = l + jδ, (11)

The lemma holds for iteration j in the second case since r = j .
Case 3: (r , t, l) = (r ′, t ′ + p j , l ′ + w j�(�(0, t ′), p j , d j)). This corresponds to the
case where J j is performed as non-late and the deferred job Jr (if r > 0) is not
performed just after J j . Since (r ′, t̂ ′, l̂ ′) ∈ Q̂ j−1 and t̂ ′ ≤ t ′, Algorithm 4 creates
the state (r ′, t̂ ′ + p j , l̂ ′ + w j�(�(0, t̂ ′), p j , d j)) in Step 2.1-(3). Due to the deletion
operation in Step 2.2, there must exist a state (k′, t̂, l̂) ∈ Q̂ j with

t̂ ≤ t̂ ′ + p j ≤ t ′ + p j = t (12)

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1343

and

l̂ ≤ l̂ ′ + w j�(�(0, t̂ ′), p j , d j) + δ ≤ l ′ + w j�(�(0, t ′), p j , d j) + jδ = l + jδ,

(13)

where the inequalities (12)-(13) follow from (5)-(7) and �(·, p j , d j) is a nondecreas-
ing function. The lemma holds for iteration j in the third case since r = r ′.
Case 4: (r , t, l) = (0, t ′ + p j + pk′ , l ′ + wk′�(�(0, t ′ + p j), pk′ , dk′)). This cor-
responds to the case where J j is performed as early and the deferred job Jr ′ is
performed just after J j . It happens only when r ′ > 0 and �(0, t ′ + p j) < dr ′ .
Since (r ′, t̂ ′, l̂ ′) ∈ Q̂ j−1 and t̂ ′ ≤ t ′, Algorithm 4 creates the state (0, t̂ ′ + p j +
pr ′ , l̂ ′ + wr ′�(�(0, t̂ ′ + p j), pr ′ , dr ′)) in Step 2.1-(4). Due to the deletion operation
in Step 2.2, there must exist a state (0, t̂, l̂) ∈ Q̂ j with

t̂ ≤ t̂ ′ + p j + pk′ ≤ t ′ + p j + pk′ = t (14)

and

l̂ ≤ l̂ ′ + wk′�(�(0, t̂ ′ + p j), pk′ , dk′) + δ ≤ l ′ + wk′�(�(0, t ′ + p j),

pk′ , dk′) + jδ = l + jδ, (15)

where the inequalities (14)-(15) follow from (5)-(7) and �(·, pk′ , dk′) is a nonde-
creasing function. The lemma holds for iteration j in the fourth case since r = 0.
�
Theorem 3.6 Given an arbitrary number ε > 0, Algorithm4 is anFPTASwith running

time O(mn4
ε

) for 1|h(m), res|∑w j Y j .

Proof By Theorem 3.3, Algorithm 2 finds a state (0, t∗, l∗) in Qn , which defines an
optimal solution to 1|h(m), res|∑w j Y j . By Lemma 3.5, Algorithm 4 finds a state
(0, t̂∗, l̂∗) in L̂n with

l̂∗ ≤ l∗ + nδ = l∗ + εV ∗
max = (1 + ε)V ∗

r . (16)

By Theorem 3.4, the value V ∗
max can be computed in O(mn2) time. In Step 0,

it needs O(n2/ε) time for partition. In Step 1, it needs linear time. Based on the
deletion operation in Step 2.2, at most O(n3/ε) different states (r̂ , t̂, l̂) are kept in
Q̂ j . Furthermore, for every state in Q̂ j−1, we create at most three states in Q̂ j , where
every such state can be created in O(m) time. Since there are n iterations, Algorithm
4 can be executed in O(mn4

ε
) time. �

Next, we study the special case where all jobs have the same processing time, i.e.,
p j = p for j = 1, 2, . . . , n. For each j = 1, 2, . . . , n, set C[j] = �(0, j p), which
can be computed by (2) in O(mn) time. As the TWLW criterion is regular, it can be
observed that there exists an optimal permutation π for 1|h(m), res, p j = p| ∑ w j Y j

123

1344 Journal of Combinatorial Optimization (2022) 44:1330–1355

in which the completion time of j-th job in π is exactly C[j], j = 1, 2, . . . , n. Then
if job Jk (k = 1, 2, . . . , n) is the j-th job in π , then its weighted late work is Ckj =
wk min{max{C[j] −dk, 0}, pk}. Clearly, this problem reduces to the linear assignment
problem, which can be solved in O(n3) time (Schrijver 2003). Hence, the following
remark holds.

Remark 3.7 Problem 1|h(m), res, p j = p| ∑w j Y j can be solved in O(nm + n3)
time.

4 The non-resumable problem 1|h(m),n− res|∑wjYj

We address the non-resumable scenario, in which if the processing of a job is inter-
rupted by some MNAI, it has to be restarted from scratch when the machine next
becomes available. A feasible solution for 1|h(m), n − res|∑w j Y j can be marked
by (i) a partition of J into m + 1 subsets Sk , k = 1, 2, . . . ,m + 1, where Sk denotes
the set of jobs performed within the k-th availability intervalRk ; and (ii) a processing
sequence of the jobs in Sk . The following property can be easily proved.

Lemma 4.1 There exists an optimal solution for 1|h(m), n − res|∑w j Y j in which
all late jobs are performed after all non-late jobs in an arbitrary order.

It is well known that 1||∑ Y j is ordinaryNP-hard. Next, we show that when m is
arbitrary, 1|h(m), n − res|∑w j Y j is strongly NP-hard even if w j = 1 and d j = d
for all 1 ≤ j ≤ n. The following decision version (referred to as DV1) of the strongly
NP-hard problem 1|h(m), n − res|Cmax (Lee 1996) is used for the reduction.

DV1: Given a job set J ′ = {J ′
1, J

′
2, . . . , J

′
n′ } and m′ fixed MNAIs I ′

k = [Ak, Bk],
k = 1, 2, . . . ,m′, each job J ′

j is associated with a processing time p′
j , does there exist

a schedule with makespan not exceeding a given threshold value Q.

Theorem 4.2 Whenm is arbitrary, 1|h(m), n−res|∑w j Y j is strongly NP-hard even
if w j = 1 and d j = d for 1 ≤ j ≤ n.

Proof Given an instance of DV1, the decision instance (referred to as DV2) of
1|h(m), n − res|∑w j Y j is established as follows: a set J = {J1, J2, . . . , Jn} of
n = n′ jobs with p j = p′

j , w j = 1, d j = Q for 1 ≤ j ≤ n, and m = m′ MNAIs
Ik = I ′

k for 1 ≤ k ≤ m, does there exist a schedule with TWLW not exceeding zero.
Clearly, DV1 has a solution if and only if DV2 has a solution. �

4.1 1|h(m), n− res|∑ Yj

We assume that the number m of MNAIs is fixed and all jobs have the unit weight. By
Lemma 4.1, we know that the jobs assigned toSk (k = 1, 2, . . . ,m) should be non-late
and all late jobs should be performed after all non-late jobs in Sm+1 in arbitrary order.
The following key property can be demonstrated by the simple job interchange logic.

Lemma 4.3 There exists an optimal solution for 1|h(m), n − res|∑ Y j in which the
non-late jobs assigned to each availability interval are performed in the order of their
indices.

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1345

In view of Lemma 4.1 and Lemma 4.3, we design a PPT approach to solve
1|h(m), n − res|∑ Y j . Let Fj (t1, t2, . . . , tm+1) denote the minimum objective value
of the partial solution for J j , in which the sum of processing times of the non-late
jobs inRk is tk , k = 1, 2, . . . ,m + 1. In the j-th iteration, J j is either performed as a
non-late job in some Rk , k = 1, 2, . . . ,m + 1, or performed as a late job.

Algorithm 5.
Step 1. Set F0(t1, t2, . . . , tm+1) = 0 for t1 = t2 = · · · = tm+1 = 0, and

F0(t1, t2, . . . , tm+1) = +∞ otherwise. Set j := 1.
Step 2. For each tk = 0, 1, . . . ,min{∑ j

l=1 pl ,∇k} (k = 1, 2, . . . ,m + 1) such that
∑m+1

k=1 tk ≤ ∑ j
l=1 pl , compute the following recursive formula:

Fj (t1, t2, . . . , tm+1)

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fj−1(t1, t2, . . . , tm+1) + p j

Fj−1(t1 − p j , t2, . . . , tm+1) + max{t1 − d j , 0}
if 0 ≤ t1 − p j < d j

Fj−1(t1, t2 − p j , . . . , tm+1) + max{B1 + t2 − d j , 0}
if 0 ≤ B1 + t2 − p j < d j

...

Fj−1(t1, . . . , tm − p j , tm+1) + max{Bm−1 + tm − d j , 0}
if 0 ≤ Bm−1 + tm − p j < d j

Fj−1(t1, . . . , tm, tm+1 − p j) + max{Bm + tm+1 − d j , 0}
if 0 ≤ Bm + tm+1 − p j < d j

Step 3. If j < n, set j := j + 1, go to Step 2; else go to Step 4.
Step 4. Define

V ∗
nr =min{Fn(t1, t2, . . . , tm+1) : tk =0, 1, . . . ,min{

n∑

l=1

pl ,∇k}, k=1, 2, . . . ,m+1}

and disclose the corresponding optimal solution by the backtracking method.

Theorem 4.4 Algorithm 5 can solve 1|h(m), n − res|∑ Y j in O(mnTm ∑n
j=1 p j)

time, where T = max{∇i : 1 ≤ i ≤ m}, which is pseudo-polynomial for fixed m.

Proof The reason that Algorithm 5 solves 1|h(m), n − res|∑ Y j follows from
Lemma 4.1 and the general DP principle. In the j-th iteration, tk ≤ ∇k ≤ T for 1 ≤
k ≤ m, where T = max{∇i : 1 ≤ i ≤ m}, and tm+1 ≤ ∑ j

l=1 pl ≤ ∑n
l=1 pl . There-

fore, the number of different states (t1, t2, . . . , tm+1) is bounded by O(Tm ∑n
j=1 p j).

Clearly, every value Fj (t1, t2, . . . , tm+1) can be calculated in O(m) time. Since there
are n iterations, Algorithm 5 can be executed in O(mnTm ∑n

j=1 p j) time. �

4.2 1|h(1), n− res|∑wjYj

We focus on the case where there is only one MNAI, referred to as I = [A, B]. Recall
that S1 and S2 denote the set of jobs performed during R1 and R2, respectively.

123

1346 Journal of Combinatorial Optimization (2022) 44:1330–1355

Before proceeding with the discussion of 1|h(1), n − res|∑w j Y j , we introduce
some additional notations. Let SN

2 and SL
2 denote the set of non-late and late jobs

in S2, respectively. Given a set SN
2 , define χ = argmin{ j : J j ∈ SN

2 }, and define
χ = n + 1 if SN

2 = ∅. Moreover, define S1
1 = S1 ∩ Jχ and S2

1 = S1\S1
1 .

Lemma 4.5 There exists an optimal solution for 1|h(1), n − res|∑w j Y j in which
the following properties hold:

(1) all jobs in S1 are non-late;
(2) all jobs in SN

2 are performed before all jobs in SL
2 ;

(3) all jobs in S2
1 are performed after all jobs in S1

1 in an arbitrary order;
(4) for X ∈ {S1

1 ,SN
2 }, the jobs in X having the same due date are performed in the

order of their indices, and with regard to every early job Jk ∈ X , at most one
deferred job Jr ∈ X with r < k is performed after job Jk.

Proof Properties (1) and (2) follow directly from the result of Lemma 4.1.
If SN

2 = ∅, then S2
1 = ∅, so property (3) follows. Therefore, assume that SN

2 	= ∅.
From the definition of χ , we have d j ≥ dχ > Cχ − pχ ≥ B ≥ A ≥ C j for each job
J j ∈ S2

1 . Hence, all jobs in S2
1 are early and they can be performed after all jobs in S1

1
in an arbitrary order. This complete the proof of property (3).

By applying the result of Lemma 3.1 to the set X , property (4) follows
immediately. �

Clearly, the set of possible candidates for the non-late job in SN
2 is

M = {J j : J j ∈ J , d j > B} ∪ {Jn+1}, (17)

where Jn+1 is an artificial job with pn+1 = 0, wn+1 = 0 and dn+1 = dn + 1.
Note that for each job J j ∈ M, if it starts its processing at time B, it is either

an early or partially early job. In order to construct a PPT algorithm for 1|h(1), n −
res| ∑w j Y j , we partition the original problem into a set of r auxiliary subproblems,
where r = |M| is the number of jobs in M. For each Jh ∈ M, our h-auxiliary
problem (referred to as Ph) is a restricted version of 1|h(1), n − res|∑w j Y j , where
Jh is restricted to be assigned to SN

2 and it has the smallest index in SN
2 . For h = n+1,

the h-auxiliary problem Ph is such that all non-late jobs are assigned to S1.
Recall that V ∗

nr denote the optimal objective value for 1|h(m), n − res|∑w j Y j .
Let V ∗

nr (h) be the optimal objective value for Ph . Then, we have

V ∗
nr = min{V ∗

nr (h) : h ∈ M}. (18)

Next, we show how we can solve each of Ph with Jh ∈ M via the DP method in
PPT.

Consider an h-auxiliary problem Ph with Jh ∈ M. For each j = 1, 2, . . . , n, let
H j (h) represent the set of all partial solutions of Ph that satisfy the key properties
stated in Lemma 4.5 for J j . Each solution σ j ∈ H j (h) can be marked by a unique
state (r , t1, t2, l), where the first variable r denotes that Jr is deferred if r > 0 in σ j ,
for i ∈ {1, 2}, the variable ti represents the sum of processing times of the non-late

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1347

jobs in Si\{Jr }, and the last variable l indicates the TWLW of the jobs in J j\{Jr } in
σ j . Moreover, let Q j (h) include all possible states defined by the partial solutions in
H j (h). By Lemma 4.5, the following remark can be observed.

Remark 4.6 Let (r , t1, t2, l) be a given state inQ j (h). If r = 0, then no job is deferred
in regard to J j . If j < h and 1 ≤ r ≤ j , then Jr is a deferred job and it will be
performed just after some non-late job Jk such that j + 1 ≤ k ≤ h − 1. If j ≥ h and
h ≤ r ≤ j , then Jr is a deferred job and it will be performed just after some non-late
job Jk such that j + 1 ≤ k ≤ n.

It is initialized by setting Q0(h) = {(0, 0, 0, 0)}, and for each j = 1, 2, . . . , n, the
state set Q j (h) can be constructed from Q j−1(h) progressively. With respect to each
given state (r , t1, t2, l) ∈ Q j (h), let σ j ∈ H j (h) be a solution corresponding to the
state (r , t1, t2, l). Also, let σ j−1 be the solution of J j−1 that is gained from σ j by
removing J j . Evidently, we have σ j−1 ∈ Q j−1(h). Let (r ′, t ′1, t ′2, l ′) ∈ Q j−1(h) be
the unique state corresponding to σ j−1. In view of Lemma 4.5 and Remark 4.6, we
have to distinguish the following different scenarios.

Scenario 1: j < h. In this scenario, t2 = t ′2 = 0 and J j must be either a non-late job
in S1

1 or a late job in SL
2 in σ j . Four subcases are further investigated as follows:

Scenario 1.1: J j is performed as late in σ j . In this scenario, we have J j ∈ SL
2 and

(r , t1, t2, l) = (r ′, t ′1, 0, l ′ + w j p j).
Scenario 1.2: J j is deferred in σ j . In this scenario, we have J j ∈ S1

1 and (r , t1, t2, l) =
(j, t ′1, 0, l ′). This is feasible only when r ′ = 0, t ′1 < d j and t ′1 + p j < A.
Scenario 1.3: J j is performed as non-late and the deferred job Jr ′ (if any) is not
performed just after J j in σ j . In this scenario, we have J j ∈ S1

1 and (r , t1, t2, l) =
(r ′, t ′1 + p j , 0, l ′ +w j max{0, t ′1 + p j −d j }). This is feasible only when either r ′ > 0,
t ′1 + p j < dr ′ and t ′1 + p j + pr ′ < A, or r ′ = 0, t ′1 < d j and t ′1 + p j ≤ A.
Scenario 1.4: J j is performed as early and the deferred job Jr ′ (1 ≤ r ′ < j) is
performed just after J j in σ j . In this scenario, we have J j ∈ S1

1 and (r , t1, t2, l) =
(0, t ′1 + p j + pr ′ , 0, l ′ + wr ′ max{0, t ′1 + p j + pr ′ − dr ′ }). This is feasible only when
r ′ > 0, t ′1 + p j < dr ′ and t ′1 + p j + pr ′ ≤ A.
Scenario 2: j = h. In this scenario, r ′ = 0, t ′2 = 0 and Jh must be a non-late job in
SN
2 in σ j . Two subcases are further investigated as follows:

Scenario 2.1: Jh is deferred in σ j . In this scenario, we have (r , t1, t2, l) = (j, t ′1, 0, l ′).
Scenario 2.2: Jh is not deferred in σ j . In this scenario, it is the first performed job
after time B, so we have (r , t1, t2, l) = (0, t ′1, ph, l ′ + wh max{0, B + ph − dh}).
Scenario 3: j > h. In this scenario, J j must be either a non-late job in S2

1 ∪ SN
2 or a

late job in SL
2 in σ j . Five subcases are further investigated as follows.

Scenario 3.1: J j is performed as late in σ j . In this scenario, we have J j ∈ SL
2 and

(r , t1, t2, l) = (r ′, t ′1, t ′2, l ′ + w j p j).
Scenario 3.2: J j is is performed as early before time A in σ j . In this scenario, we have
J j ∈ S2

1 and (r , t1, t2, l) = (r ′, t ′1+ p j , t ′2, l ′). This is feasible only when t ′1+ p j ≤ A.
Scenario 3.3: J j is deferred inσ j . In this scenario,we have J j ∈ SN

2 and (r , t1, t2, l) =
(j, t ′1, t ′2, l ′). This is feasible only when r ′ = 0 and B + t ′2 < d j .
Scenario 3.4: J j is performed as non-late and the deferred job Jr ′ (if any) is not
performed just after J j in σ j . In this scenario, we have J j ∈ SN

2 and (r , t1, t2, l) =

123

1348 Journal of Combinatorial Optimization (2022) 44:1330–1355

(r ′, t ′1, t ′2 + p j , l ′ + w j max{0, B + t ′2 + p j − d j }). This is feasible only when either
r ′ ≥ h and B + t ′2 + p j < dr ′ , or r ′ = 0 and B + t ′2 < d j .
Scenario 3.5: J j is performed as early and the deferred job Jr ′ (h ≤ r ′ < j) is
performed just after J j in σ j . In this scenario, we have J j ∈ SN

2 and (r , t1, t2, l) =
(0, t ′1, t ′2 + p j + pr ′ , l ′ + wr ′ max{0, B + t ′2 + p j + pr ′ − dr ′ }). This is feasible only
when r ′ ≥ h and B + t ′2 + p j < dr ′ .

For the target of reducing the state space of the DP, the following dominant property
can be easily observed.

Lemma 4.7 Given two states (r , t1, t2, l) and (r , t ′1, t ′2, l ′) inQ j (h) satisfying t1 ≤ t ′1,
t2 ≤ t ′2 and l ≤ l ′, the latter state can be deleted from Q j (h).

Summarizing the above discussion, the following DP algorithm is constructed to
solve Ph .

Algorithm 6.

Step 1. Set Q0(h) = {(0, 0, 0, 0)} and Q j (h) := ∅ for j = 1, 2, . . . , n.
Step 2. For j = 1, 2, . . . , n, construct Q j (h) from Q j−1(h) as follows:

Step 2.1. If j < h, go to Step 2.2; if j = h, go to Step 2.3; if j > h, go to Step 2.4.
Step 2.2. For each (r , t1, t2, l) ∈ Q j−1(h), do:

(2.2.1) Set Q j (h) := Q j (h) ∪ {(r , t1, t2, l + w j p j)};
(2.2.2) If r = 0, t1 < d j and t1 + p j < A, set Q j (h) := Q j (h) ∪ {(j, t1, t2, l)};
(2.2.3) If either [r > 0, t1+ p j < dr and t1+ p j + pr < A] or [r = 0, t1 < d j and
t1+ p j ≤ A], setQ j (h) := Q j (h)∪{(r , t1+ p j , t2, l+w j max{0, t1+ p j −d j })};
(2.2.4) If r > 0, t1 + p j < dr and t1 + p j + pr ≤ A, set Q j (h) := Q j (h) ∪
{(0, t1 + p j + pr , t2, l + wr max{0, t1 + p j + pr − dr })}.

Step 2.3. Set Qh−1(h) := {(0, t1, 0, l) : (0, t1, 0, l) ∈ Qh−1(h)}. For each
(r , t1, t2, l) ∈ Qh−1(h), do:

(2.3.1) Set Qh(h) := Qh(h) ∪ {(h, t1, t2, l)};
(2.3.2) Set Qh(h) := Qh(h) ∪ {(0, t1, t2 + ph, l + wh max{0, B + ph − dh})}.

Step 2.4. For each (r , t1, t2, l) ∈ Q j−1(h), do:

(2.4.1) Set Q j (h) := Q j (h) ∪ {(r , t1, t2, l + w j p j)};
(2.4.2) If t1 + p j ≤ A, set Q j (h) := Q j (h) ∪ {(r , t1 + p j , t2, l)};
(2.4.3) If r = 0 and B + t2 < d j , set Q j (h) := Q j (h) ∪ {(j, t1, t2, l)};
(2.4.4) If either [r ≥ h and B + t2 + p j < dr] or [r = 0 and B + t2 < d j], set
Q j (h) := Q j (h) ∪ {(r , t1, t2 + p j , l + w j max{0, B + t2 + p j − d j })};
(2.4.5) If r ≥ h and B + t2 + p j < dr , set Q j (h) := Q j (h) ∪ {(0, t1, t2 + p j +
pr , l + wr max{0, B + t2 + p j + pr − dr })}.

Step 2.5. Among all states inQ j (h) having the same k and ti values (i = 1, 2), reserve
only one state which has the smallest l value.

Step 3. Set V ∗
nr (h) = min{l : (0, t1, t2, l) ∈ Qn(h)} and disclose the corresponding

optimal solution for Ph by the backtracking method.

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1349

Remark 4.8 In the n-iteration of Algorithm 6, all states (r , t1, t2, l) in Qn(h) with
r 	= 0 can be deleted from Qn(h).

Theorem 4.9 Algorithm 6 can solve Ph in O(n2A
∑n

j=1 p j) time.

Proof The reason that Algorithm 6 solves Ph follows from the above discussion and
the general DP principle. In Step 1, it needs linear time. In Step 2, for every state
(r , t1, t2, l) ∈ Q j (h), we create at most three, two and four states in Step 2.2, Step
2.3 and Step 2.4, respectively, where every such state can be created in constant time.
Due to r ≤ j ≤ n, t1 ≤ A, t2 ≤ ∑ j

l=1 pl and the deletion rule in Step 2.5, the number

of different states inQ j (h) is bounded by O(nA
∑ j

l=1 pl). In Step 3, it needs at most
O(A

∑n
j=1 p j) time to find the optimal objective value. Since there are n iterations,

Algorithm 6 can be executed in O(n2A
∑n

j=1 p j) time. �
To facilitate the explanation, a small numerical instance provided in Appendix is

used to demonstrate the implementation of Algorithm 6 for Ph .
For the purpose of solving 1|h(1), n − res|∑w j Y j , we need to solve separately

each of the h-auxiliary problems, and choose the best of these r solution values. Hence,
the following theorem holds.

Theorem 4.10 1|h(1), n − res|∑ w j Y j is solvable in O(n3A
∑n

j=1 p j) time, which
is pseudo-polynomial.

Remark 4.11 Unless P = NP , the PPT algorithm designed for 1|h(1), n −
res| ∑w j Y j cannot be converted into an FPTAS, since Yin et al. (2016) demonstrated
that 1|h(1), n − res|∑ Y j has no polynomial (1+ ρ)-approximation algorithm with
ρ < +∞.

5 Conclusions

We analyze the problem of scheduling n independent jobs on a single machine in
which there are m fixed machine non-availability intervals. The purpose is to seek
out a feasible solution that minimizes total weighted late work. Three variants of the
problem are investigated.The main results are listed as follows:

• For 1|h(m), pmtn|∑w j Y j , we design an O((m + n) log n)-time algorithm to
solve it.

• For 1|h(m), res|∑w j Y j , we develop an O(mn2
∑n

j=1 p j)-time DP approach

and an FPTAS with running time O(mn4
ε

) to solve it.
• For 1|h(m), n − res|∑ Y j , we demonstrate that it is strongly NP-hard even for
the common due date case, and devise a PPT algorithm for fixed m.

• For 1|h(1), non − res|∑ w j Y j , we develop an O(n3A
∑n

j=1 p j)-time DP
approach to solve it.

For future research, several interesting topics can be suggested. First, one can con-
tinue to study 1|h(m), non − res|∑w j Y j for the case where m ≥ 2 is fixed and

123

1350 Journal of Combinatorial Optimization (2022) 44:1330–1355

determine its exact computational complexity. Second, one can design effective heuris-
tic or meta-heuristic algorithms to solve these NP-hard problems. Third, one may
also study the general MNAI scheduling problem that involves multi-agents and/or
resource dependent processing times.

Acknowledgements We would like to thank the associate editor and two anonymous reviewers for their
helpful suggestions on an earlier version of this paper. This work was supported by the Key Research
Projects of Henan Higher Education Institutions [20A110037] and the Young Backbone Teachers training
program of Zhongyuan University of Technology [2018XQG15].

Funding The Key Research Projects of Henan Higher Education Institutions [20A110037] and the Young
Backbone Teachers training program of Zhongyuan University of Technology [2018XQG15].

Data Availability The authors declare that the manuscript has no associated data.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Appendix

Consider an instance of 1|h(1), n−res|∑ w j Y j in which it contains six jobs and one
MNAI I = [7, 9], where job parameters is given in Table 3.

By Eq. (17), the set of possible candidate jobs in SN
2 is M = {J4, J5, J6, J7}. We

illustrate the execution of Algorithm 6 by choosing J4 as the candidate job in SN
2

having the smallest index and solve P4 as follows:
Step 1. Set Q0(4) = {(0, 0, 0, 0)} and Q j (4) = ∅ for j = 1, 2, . . . , 6.
Step 2. For j = 1 < 4, J1 falls into Case 1. Algorithm 6 executes Step 2.2, we obtain
Q1(4) = {(0, 0, 0, 2), (0, 2, 0, 0), (1, 0, 0, 0)}, see Table 4 for the creation procedure.

Table 3 The job data of the
instance

J j J1 J2 J3 J4 J5 J6

p j 2 3 4 3 4 2

d j 3 4 6 12 14 15

w j 1 2 3 2 3 6

Table 4 Creation ofQ1(4) fromQ0(4)

state in Q0(4) Step 2.2.1 Step 2.2.2 Step 2.2.3 Step 2.2.4

(0, 0, 0, 0) (0, 0, 0, 2,) (1, 0, 0, 0) (0, 2, 0, 0) ×

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1351

For j = 2 < 4, J2 falls into Case 1. Algorithm 6 executes Step 2.2, we obtain
Q2(4) = {(0, 0, 0, 8), (2, 0, 0, 2), (0, 3, 0, 2), (1, 0, 0, 6), (0, 2, 0, 6), (2, 2, 0, 0),
(0, 5, 0, 2)}, see Table 5 for the creation procedure.

For j =3<4, J3 falls intoCase 1.Algorithm6executes Step 2.2,weobtainQ3(4) =
{(0, 0, 0, 20), (0, 2, 0, 18), (0, 3, 0, 14), (0, 4, 0, 8), (0, 5, 0, 14), (0, 6, 0, 6), (0, 7, 0,
5), (1, 0, 0, 18), (2, 0, 0, 14), (2, 2, 0, 12), (3, 0, 0, 8), (3, 2, 0, 6)}, seeTable 6 for the
creation procedure.

For j = 4, J4 falls into Case 2. Algorithm 6 executes Step 2.3, we obtainQ4(4) =
{(0, 0, 3, 20), (0, 2, 3, 18), (0, 3, 3, 14), (0, 4, 3, 8), (0, 5, 3, 14), (0, 6, 3, 6), (0, 7, 3,
5), (4, 0, 0, 20), (4, 2, 0, 18), (4, 3, 0, 14), (4, 4, 0, 8), (4, 5, 0, 14), (4, 6, 0, 6), (4, 7,
0, 5)}, see Table 7 for the creation procedure.

For j = 5 > 4, J5 falls into Case 3. Algorithm 6 executes Step 2.4 and Step 2.5, we
obtain Q5(4) = {(0, 0, 3, 32), (0, 0, 7, 26), (0, 2, 3, 30), (0, 2, 7, 24), (0, 3, 3, 26),
(0, 3, 7, 20), (0, 4, 3, 20), (0, 4, 7, 14), (0, 5, 3, 26), (0, 5, 7, 20), (0, 6, 3, 18), (0, 6,
7, 12), (0, 7, 3, 14), (0, 7, 7, 11), (4, 0, 0, 32), (4, 2, 0, 30), (4, 3, 0, 26), (4, 4, 0, 20),
(4, 5, 0, 26), (4, 6, 0, 18), (4, 7, 0, 14), (5, 0, 3, 20), (5, 2, 3, 18), (5, 3, 3, 14), (5, 4,
3, 8), (5, 5, 3, 14), (5, 6, 3, 6), (5, 7, 3, 5)}, see Table 8 for the creation procedure,
where the underlined state (k, t1, t2, l)x is dominated by the corresponding state
(r , t1, t2, l)(x).

For j = 6 > 4, J6 falls into Case 3. Algorithm 6 executes Step 2.4 and Step 2.5, we
obtain Q6(4) = {(0, 0, 3, 44), (0, 0, 5, 32), (0, 0, 7, 38), (0, 2, 3, 32), (0, 2, 5, 30),

Table 5 Creation ofQ2(4) fromQ1(4)

state in Q1(4) Step 2.2.1 Step 2.2.2 Step 2.2.3 Step 2.2.4

(0, 0, 0, 2) (0, 0, 0, 8) (2, 0, 0, 2) (0, 3, 0, 2) ×
(0, 2, 0, 0) (0, 2, 0, 6) (2, 2, 0, 0) (0, 5, 0, 2) ×
(1, 0, 0, 0) (1, 0, 0, 6) × × ×

Table 6 Creation ofQ3(4) fromQ2(4)

state in Q2(4) Step 2.2.1 Step 2.2.2 Step 2.2.3 Step 2.2.4

(0, 0, 0, 8) (0, 0, 0, 20) (3, 0, 0, 8) (0, 4, 0, 8) ×
(0, 2, 0, 6) (0, 2, 0, 18) (3, 2, 0, 6) (0, 6, 0, 6) ×
(0, 3, 0, 2) (0, 3, 0, 14) × (0, 7, 0, 5) ×
(0, 5, 0, 2) (0, 5, 0, 14) × × ×
(1, 0, 0, 6) (1, 0, 0, 18) × × ×
(2, 0, 0, 2) (2, 0, 0, 14) × × ×
(2, 2, 0, 0) (2, 2, 0, 12) × × ×

123

1352 Journal of Combinatorial Optimization (2022) 44:1330–1355

Table 7 Creation ofQ4(4) from
Q3(4)

state inQ3(4) Step 2.3.1 Step 2.3.2

(0, 0, 0, 20) (4, 0, 0, 20) (0, 0, 3, 20)

(0, 2, 0, 18) (4, 2, 0, 18) (0, 2, 3, 18)

(0, 3, 0, 14) (4, 3, 0, 14) (0, 3, 3, 14)

(0, 4, 0, 8) (4, 4, 0, 8) (0, 4, 3, 8)

(0, 5, 0, 14) (4, 5, 0, 14) (0, 5, 3, 14)

(0, 6, 0, 6) (4, 6, 0, 6) (0, 6, 3, 6)

(0, 7, 0, 5) (4, 7, 0, 5) (0, 7, 3, 5)

Table 8 Creation ofQ5(4) fromQ4(4)

state in Q4(4) Step 2.4.1 Step 2.4.2 Step 2.4.3 Step 2.4.4 Step 2.4.5

(0, 0, 3, 20) (0, 0, 3, 32) (0, 4, 3, 20)(1) (5, 0, 3, 20) (0, 0, 7, 26) ×
(0, 2, 3, 18) (0, 2, 3, 30) (0, 6, 3, 18)(2) (5, 2, 3, 18) (0, 2, 7, 24) ×
(0, 3, 3, 14) (0, 3, 3, 26) (0, 7, 3, 14)(3) (5, 3, 3, 14) (0, 3, 7, 20) ×
(0, 4, 3, 8) (0, 4, 3, 20)1 × (5, 4, 3, 8) (0, 4, 7, 14) ×
(0, 5, 3, 14) (0, 5, 3, 26) × (5, 5, 3, 14) (0, 5, 7, 20) ×
(0, 6, 3, 6) (0, 6, 3, 18)2 × (5, 6, 3, 6) (0, 6, 7, 12) ×
(0, 7, 3, 5) (0, 7, 3, 17)3 × (5, 7, 3, 5) (0, 7, 7, 11) ×
(4, 0, 0, 20) (4, 0, 0, 32) (4, 4, 0, 20)(4) × × ×
(4, 2, 0, 18) (4, 2, 0, 30) (4, 6, 0, 18)(5) × × ×
(4, 3, 0, 14) (4, 3, 0, 26) (4, 7, 0, 14)(6) × × ×
(4, 4, 0, 8) (4, 4, 0, 20)4 × × × ×
(4, 5, 0, 14) (4, 5, 0, 26) × × × ×
(4, 6, 0, 6) (4, 6, 0, 18)5 × × × ×
(4, 7, 0, 5) (4, 7, 0, 17)6 × × × ×

J3 J6 I J4 J5

0 4 6 7 9 12 16 18

Fig. 2 The schedule corresponding to the state (0, 6, 7, 14) of P4

(0, 2, 7, 26), (0, 3, 3, 38), (0, 3, 5, 26), (0, 3, 7, 32), (0, 4, 3, 30), (0, 4, 5, 20), (0, 4,
7, 24), (0, 5, 3, 26), (0, 5, 7, 20), (0, 5, 5, 26), (0, 6, 3, 20), (0, 6, 5, 18), (0, 6, 7, 14),
(0, 7, 3, 26), (0, 7, 5, 14), (0, 7, 7, 20)}, see Table 9 for the creation procedure, where
those state (r , t1, t2, l) ∈ Q6(4) with r > 0 are deleted (by Remark 4.8).
Step 3. V ∗

nr (4) = min{l : (0, t1, t2, l)} ∈ Q6(4)} = 14, the states (0, 6, 7, 14) and (0,
7, 5, 14) both correspond to the optimal value 14 for P4, see Figs. 2 and 3 for their
corresponding optimal schedules, where the late jobs in SL

2 are omitted.

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1353

Table 9 Creation ofQ6(4) fromQ5(4)

state in Q5(4) Step 2.4.1 Step 2.4.2 Step 2.4.3 Step 2.4.4 Step 2.4.5

(0, 0, 3, 32) (0, 0, 3, 44) (0, 2, 3, 32)(1) (6, 0, 3, 32) (0, 0, 5, 32)(11) ×
(0, 0, 7, 26) (0, 0, 7, 38) (0, 2, 7, 26)(2) (6, 0, 7, 26) × ×
(0, 2, 3, 30) (0, 2, 3, 42)1 (0, 4, 3, 30)(3) (6, 2, 3, 30) (0, 2, 5, 30)(12) ×
(0, 2, 7, 24) (0, 2, 7, 36)2 (0, 4, 7, 24)(4) (6, 2, 7, 24) × ×
(0, 3, 3, 26) (0, 3, 3, 38) (0, 5, 3, 26)(5) (6, 3, 3, 26) (0, 3, 5, 26)(13) ×
(0, 3, 7, 20) (0, 3, 7, 32) (0, 5, 7, 20)(6) (6, 3, 7, 20) × ×
(0, 4, 3, 20) (0, 4, 3, 32)3 (0, 6, 3, 20)(7) (6, 4, 3, 20) (0, 4, 5, 20)(14) ×
(0, 4, 7, 14) (0, 4, 7, 26)4 (0, 6, 7, 14)(8) (6, 4, 7, 14) × ×
(0, 5, 3, 26) (0, 5, 3, 38)5 (0, 7, 3, 26)(9) (6, 5, 3, 26) (0, 5, 5, 26)(15) ×
(0, 5, 7, 20) (0, 5, 7, 32)6 (0, 7, 7, 20)(10) (6, 5, 7, 20) × ×
(0, 6, 3, 18) (0, 6, 3, 30)7 × (6, 6, 3, 18) (0, 6, 5, 18)(16) ×
(0, 6, 7, 12) (0, 6, 7, 24)8 × (6, 6, 7, 12) × ×
(0, 7, 3, 14) (0, 7, 3, 26)9 × (6, 7, 3, 14) (0, 7, 5, 14)(17) ×
(0, 7, 7, 11) (0, 7, 7, 23)10 × (6, 7, 7, 11) × ×
(4, 0, 0, 32) (4, 0, 0, 44) (4, 2, 0, 32) × (4, 0, 2, 32) (0, 0, 5, 36)11

(4, 2, 0, 30) (4, 2, 0, 42) (4, 4, 0, 30) × (4, 2, 2, 30) (0, 2, 5, 34)12

(4, 3, 0, 26) (4, 3, 0, 38) (4, 5, 0, 26) × (4, 3, 2, 26) (0, 3, 5, 30)13

(4, 4, 0, 20) (4, 4, 0, 32) (4, 6, 0, 20) × (4, 4, 2, 20) (0, 4, 5, 24)14

(4, 5, 0, 26) (4, 5, 0, 38) (4, 7, 0, 26) × (4, 5, 2, 26) (0, 5, 5, 30)15

(4, 6, 0, 18) (4, 6, 0, 30) × × (4, 6, 2, 18) (0, 6, 5, 22)16

(4, 7, 0, 14) (4, 7, 0, 26) × × (4, 7, 2, 14) (0, 7, 5, 18)17

(5, 0, 3, 20) (5, 0, 3, 32) (5, 2, 3, 20) × × ×
(5, 2, 3, 18) (5, 2, 3, 30) (5, 4, 3, 18) × × ×
(5, 3, 3, 14) (5, 3, 3, 26) (5, 5, 3, 14) × × ×
(5, 4, 3, 8) (5, 4, 3, 20) (5, 6, 3, 8) × × ×
(5, 5, 3, 14) (5, 5, 3, 26) (5, 7, 3, 14) × × ×
(5, 6, 3, 6) (5, 6, 3, 18) × × × ×
(5, 7, 3, 5) (5, 7, 3, 17) × × × ×

J2 J5 I J4 J6

0 3 7 9 12 14 18

Fig. 3 The schedule corresponding to the state (0, 7, 5, 14) of P4

123

1354 Journal of Combinatorial Optimization (2022) 44:1330–1355

References

Adiri I, Bruno J, Frostig E, Rinnooy Kan AHG (1989) Single machine flowtime scheduling with a single
breakdown. Acta Informatica 26:679–696

Blazewicz J (1984) Scheduling preemptible tasks on parallel processors with information loss. Technique
et Science Informatiques 3:415–420

Bülbül K, Kedad-Sidhoum S, Sen H (2019) Single-machine common due date total earliness/tardiness
scheduling with machine unavailability. J Sched 22:543–565

Chen RB, Yuan JJ, Ng CT, Cheng TCE (2019) Single-machine scheduling with deadlines to minimize the
total weighted late work. Nav Res Logist 66:582–595

Chen RB, Yuan JJ, Ng CT, Cheng TCE (2021) Bicriteria scheduling to minimize total late work and
maximum tardiness with preemption. Computers & Industrial Engineering 159:107525

ChenRX,Li SS (2021) Proportionate flow shop schedulingwith two competing agents tominimizeweighted
late work and weighted number of late jobs. Asia-Pacific J Oper Res 38:2050046

Hariri AMA, Potts CN, VanWassenhove LN (1995) Single machine scheduling to minimize total late work.
ORSA J Comput 7:232–242

He Y, Zhong W, Gu H (2006) Improved algorithms for two single machine scheduling problems. Theoret
Comput Sci 363:257–265

He RY, Yuan JJ, Ng CT, Cheng TCE (2021) Two-agent preemptive Pareto scheduling to minimize the
number of tardy jobs and total late work. J Comb Optim 41:504–525

Kacem I (2008) Approximation algorithm for the weighted flowtime minimization on a single machine
with a fixed non-availability interval. Computers & Industrial Engineering 54:401–410

Kacem I (2009) Approximation algorithms for the makespan minimization with positive tails on a single
machine with a fixed non-availability interval. J Comb Optim 17:117–133

Kacem I, Chu C, Souissi A (2008) Single-machine scheduling with an availability constraint to minimize
the weighted sum of the completion times. Computers & Operations Research 35:827–844

Kacem I, Kellerer H (2018) Approximation schemes for minimizing the maximum lateness on a single
machine with release times under non-availability or deadline constraints. Algorithmica 80:3825–
3843

Kacem I, Kellerer H, Lanuel Y (2015) Approximation algorithms for maximizing the weighted number of
early jobs on a single machine with non-availability intervals. J Comb Optim 30:403–412

Kacem I, Kellerer H, Seifaddini M (2016) Efficient approximation schemes for the maximum delivery time
minimization on a single machine with a fixed operator or machine non-availability interval. J Comb
Optim 32:970–981

Kacem I, Mahjoub AR (2009) Fully polynomial time approximation scheme for the weighted flow-time
minimization on a single machine with a fixed non-availability interval. Computers & Industrial
Engineering 56:1708–1712

Kellerer H, Strusevich VA (2010) Fully polynomial approximation schemes for a symmetric quadratic
knapsack problem and its scheduling applications. Algorithmica 57:769–795

KovalyovMY,PottsCN,VanWassenhoveLN (1994)A fully polynomial approximation scheme for schedul-
ing a single machine to minimize total weighted late work. Math Oper Res 19:86–93

Lawler EL (1973) Optimal sequencing of a single machine subject to precedence constraints. Manage Sci
19:544–546

Lee CY (1996) Machine scheduling with an availability constraint. J Global Optim 9:395–416
Lee CY, Liman SD (1992) Single machine flow-time scheduling with scheduled maintenance. Acta Infor-

matica 29:375–382
Leung JYT (2004) Minimizing total weighted error for imprecise computation tasks and related problems.

In Handbook of scheduling: Algorithms, models, and performance analysis. Chapman and Hall/CRC,
Boca Raton

Li SS, Yuan JJ (2020) Single-machine scheduling with multi-agents to minimize total weighted late work.
J Sched 23:497–512

Ma Y, Chu C, Zuo C (2010) A survey of scheduling with deterministic machine availability constraints.
Computers & Industrial Engineering 58:199–211

MorB, ShapiraD (2022) Singlemachine schedulingwith non-availability interval and optional job rejection.
J Comb Optim 44:480–497

Mosheiov G, Oron D, Shabtay D (2021) Minimizing total late work on a single machine with generalized
due-dates. Eur J Oper Res 293:837–846

123

Journal of Combinatorial Optimization (2022) 44:1330–1355 1355

Palmer D (2012) Maintenance planning and scheduling handbook, 3rd edn. McGraw Hill, New York
Pinedo M (2016) Scheduling: theory, algorithms and systems, 5th edn. Prentice-Hall, Springer
Potts CN, Van Wassenhove LN (1991) Single machine scheduling to minimize total late work. Oper Res

40:586–595
Potts CN, Van Wassenhove LN (1992) Approximation algorithms for scheduling a single machine to

minimize total late work. Oper Res Lett 11:261–266
Sadfi C, Penz B, Rapine C, Blazewicz J, Formanowicz P (2005) An improved approximation algorithm for

the single machine total completion time scheduling problem with availability constraints. Eur J Oper
Res 161:3–10

Scharbrodt M, Steger A, Weisser H (1999) Approximability of scheduling with fixed jobs. J Sched 2:267–
284

Schmidt G (1988) Scheduling independent tasks with deadlines on semi-identical processors. J Operational
Research Society 39:271–277

Schmidt G (2000) Scheduling with limited machine availability. Eur J Oper Res 121:1–15
Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin
Shabtay D (2022) Single-machine scheduling with machine unavailability periods and resource dependent

processing times. Eur J Oper Res 296:423–439
Shioura A, Shakhlevich NV, Strusevich VA (2018) Preemptive models of scheduling with controllable

processing times and of scheduling with imprecise computation: A review of solution approaches. Eur
J Oper Res 266:795–818

Sterna M (2011) A survey of scheduling problems with late work criteria. Omega 39:120–129
Sterna M (2021) Late and early work scheduling: A survey. Omega 104:102453
Strusevich V, Rustogi K (2017) Scheduling with time-changing effects and rate-modifying activities.

Springer, Berlin
WangG,SunH,ChuC (2005)Preemptive schedulingwith availability constraints tominimize totalweighted

completion times. Ann Oper Res 133:183–192
Yin Y, Xu J, Cheng TCE, Wu CC, Wang DJ (2016) Approximation schemes for single-machine scheduling

with a fixed maintenance activity to minimize the total amount of late work. Nav Res Logist 63:172–
183

Yuan JJ, Shi L, Ou JW (2008) Single machine scheduling with forbidden intervals and job delivery times.
Asia-Pacific J Oper Res 25:317–325

Zhang X (2021) Two competitive agents to minimize the weighted total late work and the total completion
time. Appl Math Comput 406:126286

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

	Minimizing total weighted late work on a single-machine with non-availability intervals
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Literature review
	1.3 Motivation and contributions

	2 The preemptive problem 1 | h(m), pmtn| sumwj Yj
	3 The resumable problem 1 | h(m), res| sumwj Yj
	3.1 A DP algorithm
	3.2 An FPTAS

	4 The non-resumable problem 1 | h(m), n-res| sumwj Yj
	4.1 1 | h(m), n-res| sumYj
	4.2 1 | h(1), n-res| sumwj Yj

	5 Conclusions
	Acknowledgements
	Appendix
	References

