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Abstract
We consider the problem of covering multiple submodular constraints. Given a finite
ground set N , a weight function w : N → R+, r monotone submodular functions
f1, f2, . . . , fr over N and requirements k1, k2, . . . , kr the goal is to find a minimum
weight subset S ⊆ N such that fi (S) ≥ ki for 1 ≤ i ≤ r . We refer to this problem as
Multi-Submod-Cover and it was recently considered by Har-Peled and Jones (Few
cuts meet many point sets. CoRR. arxiv:abs1808.03260 Har-Peled and Jones 2018)
whoweremotivated by an application in geometry. Evenwith r = 1Multi-Submod-

Cover generalizes the well-known Submodular Set Cover problem (Submod-SC),
and it can also be easily reduced to Submod-SC. A simple greedy algorithm gives an
O(log(kr)) approximation where k = ∑

i ki and this ratio cannot be improved in the
general case. In this paper, motivated by several concrete applications, we consider
two ways to improve upon the approximation given by the greedy algorithm. First,
we give a bicriteria approximation algorithm forMulti-Submod-Cover that covers
each constraint to within a factor of (1 − 1/e − ε) while incurring an approximation
of O( 1

ε
log r) in the cost. Second, we consider the special case when each fi is a

obtained from a truncated coverage function and obtain an algorithm that generalizes
previous work on partial set cover (Partial-SC), covering integer programs (CIPs)
and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera
et al. 2014).Both these algorithms are basedonmathematical programming relaxations
that avoid the limitations of the greedy algorithm. We demonstrate the implications
of our algorithms and related ideas to several applications ranging from geometric
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covering problems to clustering with outliers. Our work highlights the utility of the
high-level model and the lens of submodularity in addressing this class of covering
problems.

Keywords Set Cover · Partial Set Cover · Submodular functions

1 Introduction

Set Cover is a well-studied problem in combinatorial optimization and is a canonical
covering problem. The input is a set system (U ,S) consisting of a finite set U and
a collection S = {S1, S2, . . . , Sm} of subsets of U . The goal is to find a minimum
cardinality subcollection S ′ ⊆ S such that∪A∈S ′ A = U . In the weighted version each
Si has a weight wi ≥ 0 and the goal is to find a minimum weight subcollection of sets
whose union is U . Set Cover is NP-Hard and approximation algorithms have been
extensively studied. A very simple greedy algorithm yields a (1+ ln d)-approximation
where d = maxi |Si | even in the weighted case (Dobson 1982). Moreover this bound
is essentially tight unless P = NP (Dinur and Steurer 2014).

Various special cases and generalizations of Set Cover have been studied over the
years for their applications and theoretical interest. We describe three generalizations
that are of interest to us.

• Partial Set Cover (Partial-SC): In Partial-SC the input is a set system (U ,S)

and an integer parameter k and the goal is to find aminimum (weight) subcollection
of the given sets whose union is of size at least k. Set Cover is a special case
when k = |U |.

• Covering Integer Program (CIP): A CIP is an integer program of the form
min{wx | Ax ≥ b, x ≤ d, x ∈ Z

n+} where A is a non-negative m × n matrix
and b ≥ 0. Set Cover is a special case of CIP when A is a {0, 1} matrix and b
and d are the all ones vectors—each constraint row of A corresponds to covering
an element of U .

• Submodular Set Cover (Submod-SC): In Submod-SC we are given a finite
ground set N , a non-negative weight function w : N → R+, and a polymatroid
f : 2N → Z+ via a value oracle1. The goal is to find a minimum weight subset
S ⊆ N such that f (S) = f (N ). Set Cover is a special case where N represents
the sets in the set systemand f captures the coverage functionwhich is submodular.

Submodularity is a powerful abstraction and Submod-SC can be seen to gener-
alize Partial-SC and CIPs. The greedy algorithm for Set Cover admits a natural
generalization to Submod-SC— Wolsey (1982) showed that it yields a (1 + ln d)-
approximation where d = maxi∈N f (i). The abstraction of submodularity comes at a
cost, however. For instanceCIPs admit an O(ln m)-approximation via anLP relaxation
strengthened with knapsack cover (KC) inequalities (Carr et al. 2000; Kolliopoulos

1 A polymatroid is an integer valued monotone submodular function that is also normalized ( f (∅) = 0).
A real-valued set function f : 2N → R is submodular iff f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B) for all
A, B ⊆ N . A set function is monotone if f (A) ≤ f (B) for all A ⊂ B. A value oracle for f outputs f (A)

when queried with a set A ⊆ N .
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and Young 2005; Chen et al. 2016; Chekuri and Quanrud 2019) while using the greedy
algorithm yields only an O(ln d) approximation where d depends on the maximum
sum of the entries in a column of A, and in fact can be as large as m (Dobson 1982).
CIPs provide the explicit ability to model multiple covering constraints and this is
often useful in applications. In this paper we consider an abstraction that generalizes
Submod-SC by explicitly allowing multiple submodular covering constraints.

Multiple Submodular Covering Constraints: The input consists of a ground set
N and a weight function w : N → R+. The input consists of r polymatroids
f1, f2, . . . , fr over N and integers k1, k2, . . . , kr . The goal is to find S ⊆ N of
minimum weight such that fi (S) ≥ ki for 1 ≤ i ≤ r . We refer to this as Multi-

Submod-Cover.
Har-Peled and Jones (2018),motivated by an application fromcomputational geom-

etry, appear to be the first ones to consider Multi-Submod-Cover explicitly. As
noted in Har-Peled and Jones (2018), it is not hard to reduceMulti-Submod-Cover

to Submod-SC.We simply define a new submodular set function g : 2N → R+ where
g(A) = ∑r

i=1 min{ki , fi (A)}. Via Wolsey’s result for Submod-SC this implies an
O(log r + log K ) approximation via the greedy algorithm where K = ∑r

j=1 k j .
AlthoughMulti-Submod-Cover can be reduced to Submod-SC it is useful to treat
it separatelywhen the functions fi are known to belong to a special class of submodular
functions. For instance CIP can be seen as a special case of Multi-Submod-Cover

where each fi is a truncated/partial linear function. Another example, which is the
mainmotivation for this work, comes fromBera et al. (2014), Inamdar andVaradarajan
(2018) who considered the case when each fi is a truncated/partial coverage function
(partial vertex cover in Bera et al. (2014) and partial set cover in Inamdar andVaradara-
jan (2018)). These special cases have several applications that we outline below.

We mention that prior work has considered multiple submodular objectives from a
maximization perspective (Chekuri et al. 2010, 2015) rather than from aminimum cost
perspective. There are useful connections between these two perspectives. Consider
Submod-SC. We could recast the exact version of this problem as max f (S) subject
to the constraintw(S) ≤ OPTwhereOPT is the optimum cost of the given instance of
Submod-SC. This is submodular function maximization subject to a knapsack con-
straint and admits a (1−1/e)-approximation (Sviridenko 2004). Using this algorithm
iterarively will also yield an approximation algorithm for Submod-SC.

We describe several applications that motive this and some previous work and then
state our results formally.

1.1 Motivating applications

Splitting point sets: Har-Peled and Jones (2018), as we remarked, were motivated to
study Multi-Submod-Cover due to a geometric application that has connections
to the classical Ham-Sandwich theorem as well as problems in feature selection in
machine learning. Their problem is the following. Given m point sets P1, . . . , Pm in
R

d they wish to find the smallest number of hyperplanes (or other geometric shapes)
such that no point set Pi has more than a constant factor of its points in any cell of the
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arrangement induced by the chosen hyperplanes; in particular when the constant is a
half, the problem is related to the Ham-Sandwich theorem which implies that when
m ≤ d just one hyperplane suffices! From this one can infer that �m/d
 hyperplanes
always suffice. However for a given instance it may be possible to do much better. In
Har-Peled and Jones (2018) the authors considered the problem of approximating the
smallest number of hyperplanes required for the desired partitioning and reduced this
problem to Multi-Submod-Cover. Via Wolsey’s greedy algorithm they obtain an
O(logm+log N ) approximationwhere N is the total number of points. In applications
N is likely to be large while m is likely to be quite small and hence an approximation
that does not depend on N is desirable. It is not obvious how to model this problem
as a special case of Multi-Submod-Cover—Har-Peled and Jones (2018) describes
one such reduction and we describe a slightly different one later in the paper.

Multiple Partial Set Cover Constraints in Geometric Settings:There has been extensive
work on Set Cover specialized to geometric settings via sophisticated techniques
(Brönnimann and Goodrich 1995; Clarkson and Varadarajan 2007; Varadarajan 2009,
2010; Chan et al. 2012; Mustafa et al. 2014). Consider for example the problem of
covering a given collection of points in the plane by a minimum weight subcollection
of a given collection ofweighted disks. This admits a constant factor approximation via
the natural LP relaxation (Chan et al. 2012) in contrast to the logarithmic integrality gap
and hardness known for general Set Cover instances. A natural question is whether
this improved result also holds for Partial-SC version; here we are only required to
cover k of the given points rather than all of them. Inamdar and Varadarajan (2018)
developed a simple and elegant black box technique for this purpose via a standard
LP relaxation. They show that if there is a β-approximation for a deletion-closed class
of Set Cover instances2 via the standard LP, then there is 2(β + 1) approximation
for Partial-SC for the same family. A natural extension of Partial-SC is to have
multiple constraints. Consider the setting where the points are colored by r colors
(equivalently they are partitioned into r sets) and the goal is to find the minimum
weight subset of a given collection of disks such that at least ki points from color
class i are covered; one can also consider the setting where the color classes are
not disjoint. Bera et al. (2014) considered multiple partial covering constraints in
the restricted setting of Vertex Cover and obtained an O(log r)-approximation. This
was generalized in Hong and Kao (2018) to instances of Set Cover with maximum
frequency Δ to obtain a (ΔHr + Hr )-approximation via a primal-dual algorithm. A
natural open question herewaswhether one can obtain an O(Δ+log r)-approximation
and whether one can generalize further and obtain an O(β + log r)-approximation for
all deletion-closed families of Set Cover that admit a β-approximation. We refer to
this problem as Multi-Partial-SC. Note Multi-Partial-SC is a special case of
Multi-Submod-Coverwhere each fi is a truncated coverage function (equivalently
a partial set cover function).

Now we discuss two geometric variants of Set Cover that induce deletion-closed
set systems, and for which β is known to be sub-logarithmic in some special settings.
In HittingSet, we are given a collection of geometric objects U and a collection of

2 We say that a family of set systems is deletion closed if removing an element or removing a set from a
set system in the family yields another set system in the same family.
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points P . If a point p ∈ P is contained in an object U ∈ U , then U is said to be hit
by p. In the weighted version, each point has a non-negative weight. The goal is to
find a minimum-weight set of points that hits all objects from U . In the Geometric
DominatingSet, we are given an intersection graphG = (V , E) of geometric objects
such as disks, with non-negative weights on vertices. A vertex v is said to dominate
itself and its neighbors. The goal is to find a minimum-weight subset of vertices V ′
that dominates at all vertices from V . In the partial version of DominatingSet (resp.
HittingSet), the goal is to dominate at least k vertices (resp. hit at least k objects).
We summarize known results for Geometric Set Cover,HittingSet and Geometric
DominatingSet in Table 1.

Facility Location with Multiple Outliers: Facility location is an extensively studied
problem and there are several variants. In the basic Uncapacitated Facility Location
problem (which we abbreviate to Facility Location) the input consists of a set of
facilities F and a set of clients C in a metric space (F ∪ C, d). Each facility i ∈ F
has a non-negative opening cost fi . The goal is to open a set of facilities and connect
the clients to them to minimize the sum of the opening costs of the facilities plus the
sum of the distances of each client to the nearest open facility—mathematically we
want to find S ⊆ F to minimize

∑
i∈S fi +∑

j∈C d( j, S). In many scenarios there are
outliers and instead of asking for all the clients to be connectedwe only seek to connect
some specified number k of clients—this has been studied under the name the Robust
Facility Location problem by Charikar et al. (2001) who obtained a constant factor
approximation. We consider here the setting of multiple outlier classes. We have r
disjoint classes of clients C1, C2, . . . , Cr and we need to connect to the open facilities
some specified number bi of clients from Ci for 1 ≤ i ≤ r . An O(r)-approximation
is easy by considering each client class separately but the natural question is whether
we can find an O(log r)-approximation; via a reduction from Set Cover one can
show an Ω(log r) lower bound on the approximability of this problem. We refer to
Facility Location with Multiple Outliers as FL-Multi-Outliers. We note that FL-
Multi-Outliers is not a special case ofMulti-Submod-Cover since the objective
function has both facility opening cost as well as client connection cost. Nevertheless,
the problem is sufficiently close to Multi-Submod-Cover that the techniques we
develop are applicable to this problem as well.

We also consider a related problem of clustering to minimize the sum of radii.
This problem was considered by Charikar and Panigrahy (2004) who gave a constant
approximation using a primal-dual algorithm. A constant approximation for the outlier
version was given by Ahmadian and Swamy (2016). We consider a further general-
ization of covering r classes of clients, while minimizing the sum of radii. We call
this problem MCC- Multi- Outliers. We formally define MCC- Multi- Outliers

in Sect. 5, and give a tight O(log r)-approximation using similar techniques.

1.2 Results and contributions

In this paper we examine approximation algorithms forMulti-Submod-Cover and
Multi-Partial-SC and the motivating applications. Instead of relying on the greedy
algorithm we use mathematical programming based approaches and tools from con-
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tinuous extensions of submodular extensions that allow us to handle the special cases
of interest that arise from the applications. In addition to the technical results we show-
case the utility of the models in capturing interesting applications. Our algorithmic
results are summarized below.

– For Multi-Submod-Cover we obtain a bicriteria approximation. We obtain a
random solution S such that fi (S) ≥ (1−1/e−ε)ki for 1 ≤ i ≤ r and the expected
weight of S is O( 1

ε
log r)OPT 3. We obtain the same bound even in a more general

setting where the system of constraints is r -sparse. We apply this result to the
splitting points application and obtain an O(logm) bicriteria approximation that
suffices in many scenarios. This improves the O(logm + log N ) approximation
obtained in Har-Peled and Jones (2018).

– We consider a simultaneous generalization of Multi-Partial-SC and CIPs for
deletion-closed set systems that admit a β-approximation for Set Cover via the
natural LP. We obtain a randomized O(β + log r) approximation where r is the
sparsity of the system. This generalizes and improves bounds formultiple covering
versions of Vertex-Cover from Bera et al. (2014), Hong and Kao (2018). In
particular, we obtain O(Δ + log r)-approximation forMulti-Partial-SC in the
set systems with maximum frequencyΔ, improving on Hr (Δ+1)-approximation
by Hong and Kao (2018). Furthermore, we obtain O(β + log r)-approximations
for several geometric Multi-Partial-SC problems, where β is known to be
sublogarithmic or constant (cf. Table 1).

– We obtain O(log r) approximations for FL-Multi-Outliers andMCC- Multi-

Outliers generalizing the previous bounds for one class of outliers to multiple
classes of outliers. As noted before, these bounds are tight up to constant factors
via simple reductions from Set Cover.

– For deletion-closed set systems that have a β-approximation (cf. Table 1) to Set

Cover via the natural LP we obtain an e
e−1 (β + 1)-approximation for Partial-

SC. This slightly improves the bound of 2(β + 1) in Inamdar and Varadarajan
(2018) while also simplifying the algorithm and analysis.

A brief discussion of technical ideas: Multi-Submod-Cover admits a reduction to
Submod-SC for which the greedy algorithm is a known approach. To obtain our
bicriteria approximation we take a different approach based on the multilinear relax-
ation or submodular functions which plays a fundamental role in submodular function
maximization algorithms.

For addressingMulti-Partial-SC and its generalization we follow the high-level
approach used already in the special setting ofVertex-Cover by Bera et al. (2014)—
they used an LP relaxation strengthened with knapsack cover inequalities. We bring
two technical ingredients to bear on this problem. First we extend a probabilistic
inequality used in Bera et al. (2014) to the general set cover setting and this is not
obvious. We provide a proof that relies on continuous extensions of submodular func-
tions and certain concentration properties, which, we believe, provides a clean and
transparent explanation. Second,we use randomized rounding plus alteration to extend
the results to the sparse setting—this is inspired by recent work on CIPs Chekuri and
Quanrud (2019).

3 Note that even though S is a random solution, we ensure that fi (S) ≥ (1− 1/e − ε)ki with probability 1.
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Table 1 LP-based bounds forSet Cover and related geometric covering problems.The references showing
the respective bounds are also shown next to the approximation guarantees

Problem U Geometric objects β

Set Cover Points in R
2 Disks O(1) (Varadarajan 2010; Chan et al. 2012)

Fat triangles O(log log∗ n) (Ezra et al. 2011)

Points in R
3 Unit cubes O(1) (Varadarajan 2010; Chan et al. 2012)

Halfspaces O(1) (Varadarajan 2010; Chan et al. 2012)

HittingSet Rectangles in R
3 Points O(log log n) (Aronov et al. 2010)

DominatingSet Disks in R2 O(1) (Gibson and Pirwani 2010)

Finally, for Partial-SC we simplify the algorithm and analysis from Inamdar
and Varadarajan (2018) via connections to submodular function maximization and
continuous extensions.

We believe that the problems, applications and technical tools that we demonstrate
in this paper are likely to be useful for other problems in the future.

1.3 Other related work

Partial-SC has been well-studied in the past for special cases such as the Par-
tial Vertex Cover (PartialVC) where the goal is to find a minimum weight subset
of nodes in a graph to cover at least k edges. There are several 2-approximations
known for PartialVC (Bar-Yehuda 2001; Bshouty and Burroughs 1998; Gandhi
et al. 2004). More generally, for set systems with maximum frequency Δ, similar
techniques give O(Δ)-approximations (Gandhi et al. 2004; Bera et al. 2014; Köne-
mann et al. 2011). Surprisingly, the black box reduction of Inamdar and Varadarajan
(2018) from Partial-SC to Set Cover via the LP relaxation, that we mentioned
earlier, is fairly recent. In some restricted geometric settings, PTASes—polynomial
time (1 + ε)-approximations for any constant ε > 0—are known via the shifting
technique and local search (Chan and Hu 2015; Gandhi et al. 2004; Inamdar 2019).
CIPs have been studied extensively for several years starting with the work of Dobson
(1982). The introduction of KC inequalities Carr et al. (2000) led to the first O(logm)-
approximation by Kolliopoulos and Young (2005). Recent work (Chen et al. 2016;
Chekuri and Quanrud 2019) has obtained sharp bounds that depend on the �0 and �1
sparsity of the constraint matrix. Constrained submodular set function optimization
(maximization and minimization) has been a topic of much interest in recent years
and it is difficult to provide a concise summary. Continuous extensions of submodular
functions and mathematical programming approachs have played an important role.
We refer the reader to Buchbinder and Feldman (2017) for a survey on submodular
function maximization which provides several pointers. The literature on clustering
and facility location problems is vast. We are motivated by work on approximation
algorithms for handling outliers and generalizing it to handle multiple groups of client.
Many papers on clustering are in the model where the number of clusters k is speci-
fied and different objectives lead to well-studied problems such as k-median, k-means
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(a)

(b)

Fig. 1 LP relaxations for covering

and k-center. Recent work on fair clustering (see Bera et al. 2019 and pointers) has
also considered multiple groups of clients. The specific problems we consider and
techniques we use are different. We leave it to future work to better understand the
relationship between clustering with fairness constraints and clustering with outliers.

Organization: In Sect. 2,we introduce necessary backgroundonother related problems
and submodular functions. In Sect. 3, we give a bicriteria approximation algorithm
toMulti-Submod-Cover, and apply it for a geometric problem in 3.1. We consider
the special case ofMulti-Partial-SC in Sect. 4. Next, we adapt these techniques to
obtain similar results for FL-Multi-Outliers andMCC- Multi- Outliers in Sect.
5. In Sect. 6, we sketch a proof of the improved approximation for Partial-SC, using
some of the similar techniques used elsewhere in the paper. We conclude in Sect. 7
with some open problems.

2 Preliminaries and background

Set Cover and Partial-SC have natural LP relaxations and they are closely related
to those forMax k-Cover andMax-Budgeted-Cover. The LP relaxation for Set
Cover (SC-LP) is shown in Fig. 1a. It has a variable xi for each set Si ∈ S, which, in
the integer programming formulation, indicates whether Si is picked in the solution.
The goal is tominimize theweight of the chosen sets which is captured by the objective∑

Si ∈S wi xi subject to the constraint that each element e j is covered. TheLP relaxation
for Partial-SC (PSC-LP) is shown in Fig. 1b. Now we need additional variables to
indicate which k elements are going to be covered; for each e j ∈ U we thus have a
variable z j for this purpose. In PSC-LP it is important to constrain z j to be at most 1.
The constraint

∑
e j

z j ≥ k forces at least k elements to be covered fractionally.

As noted in prior work the integrality gap of PSC-LP can be made arbitrarily large
but it is easy to fix by guessing the largest cost set in an optimum solution and doing
some preprocessing. We discuss this issue in later sections.
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(a) (b)

Fig. 2 LP Relaxations for budgeted covering

Figs. 2a, b show LP relaxations for Max k-Cover and Max-Budgeted-Cover

respectively. In these problems we maximize the number of elements covered subject
to an upper bound on the number of sets or on the total weight of the chosen sets.
Greedy algorithm: The greedy algorithm is a well-known and standard algorithm for
the problems studied here. The algorithm iteratively picks the set with the current
maximum bang-per-buck ratio and adds it to the current solution until some stopping
condition ismet. The bang-per-buck of a set Si is defined as |Si ∩U ′|/wi whereU ′ is the
set of uncovered elements at that point in the algorithm. For minimization problems
such as Set Cover and Partial-SC the algorithm is stopped when the required
number of elements are covered. For Max k-Cover and Max-Budgeted-Cover

the algorithm is stopped when if adding the current set would exceed the budget.
Since this is a standard algorithm that is extremely well-studied we do not describe
all the formal details and the known results. Typically the approximation guarantee of
Greedy is analyzed with respect to an optimum integer solution. We need to compare
it to the value of the fractional solution. For the setting of the cardinality constraint
this was already done in Nemhauser et al. (1978). We need a slight generalization to
the budgeted setting and we give a proof for the sake of completeness.

Lemma 2.1 Let Z be the optimum value of (MBC-LP) for a given instance of Max-

Budgeted-Cover with budget B.

– Suppose Greedy algorithm is run until the total weight of the chosen sets is equal to
or exceeds B. Then the number of elements covered by greedy is at least (1−1/e)Z.

– Suppose no set covers more than cZ elements for some c > 0 then the weight of
sets chosen by Greedy to cover (1 − 1/e)Z elements is at most (1 + ec)B.

Proof We give a short sketch. Greedy’s analysis forMax-Budgeted-Cover is based
on the following key observation. Consider the first set S picked by Greedy. Then
|S|/w(S) ≥ OPT/B where OPT is the value of an optimum integer solution. And
this follows from submodularity of the coverage function. This observation is applied
iteratively with the residual solution as sets are picked and a standard analysis shows
that whenGreedy first meets or exceeds the budget B then the total number of elements

123



988 Journal of Combinatorial Optimization (2022) 44:979–1010

covered is at least (1−1/e)OPT. We claim that we can replaceOPT in the analysis by
Z . Given a fractional solution x, z we see that Z = ∑

e ze ≤ ∑
e∈U min{1,∑i :e∈Si

xi }.
Moreover

∑
i wi xi ≤ B.Via simple algebra,we canobtain a contradiction if |Si |/wi <

Z/B holds for all sets Si . Once we have this property the rest of the analysis is very
similar to the standard one where OPT is replaced by Z .

Now consider the casewhen no set coversmore than cZ elements. Note that without
loss of generality, we can assume that the weight of every set is at most B – otherwise
no feasible solution contains such a set. If Greedy covers (1− 1/e)Z elements before
the weight of sets chosen exceeds B then there is nothing to prove. Otherwise let S j

be the set added by Greedy when its weight exceeds B for the first time. Let α ≤ |S j |
be the number of new elements covered by the inclusion of S j . Since Greedy had
covered less than (1 − 1/e)Z elements, the value of the residual fractional solution
is at least Z/e. From the same argument as in the preceding paragraph, since Greedy
chooses S j at that point, α

w(S j )
≥ Z

eB . This implies that w(S j ) ≤ eB α
Z ≤ ecB.

Since Greedy covers at least (1 − 1/e)Z elements after choosing S j (follows from
the first claim of the lemma), the total weight of the sets chosen by Greedy is at most
B + w(S j ) ≤ (1 + ec)B. ��

We note that the conclusions of the preceding lemma hold even for the following
generalization of Max-Budgeted-Cover. Here each element e ∈ U has a non-
negative “profit” pe associated with it, and the goal is to find a collection of sets with
weight at most B, such that the overall profit of the covered elements is maximized.
One difference in the argument is that the “bang-per-buck” of a set S is defined as∑

e∈S pe
w(S)

.

2.1 Submodular set functions and continuous extensions

Continuous extensions of submodular set functions have played an important role
in algorithmic and structural aspects. The idea is to extend a discrete set function
f : 2N → R to the continous space [0, 1]N . Here we are mainly concerned with
extensions motivated by maximization problems, and confine our attention to two
extensions and refer the interested reader to Calinescu et al. (2007), Vondrák (2007)
for a more detailed discussion.

The multilinear extension of a real-valued set function f : 2N → R, denoted by
F , is defined as follows: For x ∈ [0, 1]N

F(x) =
∑

S⊆N

f (S)
∏

i∈S

xi

∏

j /∈S

(1 − x j ).

Equivalently F(x) = E[ f (R)] where R is a random set obtained by picking each
i ∈ N independently with probability xi .

The concave closure of a real-valued set function f : 2N → R, denoted by f +, is
defined as the optimum of an exponential sized linear program:

f +(x) = max
∑

S⊆N

f (S)αS s.t.
∑

S⊆N

αS = 1,
∑

S�i

αS = xi , ∀i ∈ N and αS ≥ 0 ∀S.
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A special case of submodular functions are non-negative weighted sums of
rank functions of matroids. More formally suppose N is a finite ground set and
M1,M2, . . . ,M� are � matroids on the same ground set N . Let g1, . . . , g� be
the rank functions of the matroids and these are monotone submodular. Suppose
f = ∑�

h=1 wh gh where wh ≥ 0 for all h ∈ [�], then f is monotone submodular.
We note that (weighted) coverage functions belongs to this class. For a such a sub-
modular function we can consider an extension f̃ where f̃ (x) = ∑

h wh g+
h (x). We

capture two useful facts which are shown in Calinescu et al. (2007).

Lemma 2.2 (Calinescu et al. 2007) Suppose f = ∑�
h=1 wh gh is the weighted sum

of rank functions of matroids. Then for any x ∈ [0, 1]N , we have that F(x) ≥ (1 −
1/e) f̃ (x). Assuming oracle access to the rank functions g1, . . . , g�, for any x ∈
[0, 1]N , there is a polynomial-time solvable LP whose optimum value is f̃ (x).

Remark 2.3 Let f : 2S → Z+ be the coverage function associated with a set system
(U ,S). Then f̃ (x) = ∑

e∈U min{1,∑i :e∈Si
xi } where f̃ = ∑

e∈U g+
e and g+

e (x) =
min{1,∑i :e∈Si

xi } is the rank function of a simple uniform matroid. One can see
PSC-LP in a more compact fashion:

min
∑

i

wi xi s.t. f̃ (x) ≥ k.

Concentration under randomized rounding: Recall the multilinear extension F of a
submodular function f . If x ∈ [0, 1]N then F(x) = E[ f (R)] where R is a random
set obtained by independently including each i ∈ N in R with probability xi . We can
ask whether f (R) is concentrated around E[ f (R)] = F(x). And indeed this is the
case when f is Lipscitz. For a parameter c ≥ 0, f is c-Lipschitz if | f A(i)| ≤ c for
all i ∈ N and A ⊂ N , where f A(i) = f (A ∪ {i}) − f (A); for monotone submodular
functions this is equivalent to the condition that f (i) ≤ c for all i ∈ N .

Lemma 2.4 (Vondrák 2010)Let f : 2N → R+ be a 1-Lipschitz monotone submodular
function. For x ∈ [0, 1]N let R be a random set drawn from the product distribution
induced by x. Then for δ ≥ 0,

– Pr[ f (R) ≥ (1 + δ)F(x)] ≤ ( eδ

(1+δ)(1+δ) )
F(x).

– Pr[ f (R) ≤ (1 − δ)F(x)] ≤ e−δ2F(x)/2.

Greedy algorithm under a knapsack constraint: Consider the problem of maximiz-
ing a monotone submodular function subject to a knapsack constraint; formally
max f (S) s.t. w(S) ≤ B where w : N → R+ is a non-negative weight function on
the elements of the ground set N . Note that when all w(i) = 1 and B = k this is the
problem of maximizing a monotone submodular function subject to a cardinality con-
straint. For the cardinality constraint case, the simple greedy algorithm that iteratively
picks the element with the largest marginal value yields a (1 − 1/e)-approximation
Nemhauser et al. (1978). Greedy extends in a natural fashion to the knapsack con-
straint setting; in each iteration the element i = argmax j fS( j)/w j is chosen where
S is the set of already chosen elements (here, fS( j) = f (S ∪ { j})− f (S) denotes the
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marginal increase). Sviridenko (2004), building on earlier work on the coverage func-
tion (Khuller et al. 1999), showed that greedy with some partial enumeration yields a
(1−1/e)-approximation for the knapsack constraint. The following lemma quantifies
the performance of the basic Greedy when it is stopped after meeting or exceeding the
budget B.

Lemma 2.5 Consider an instance of monotone submodular function maximization
subject to a knapsack constraint. Let Z be the optimum value for the given knapsack
budget B. Suppose the greedy algorithm is run until the total weight of the chosen sets
is equal to or exceeds B. Letting S be the greedy solution we have f (S) ≥ (1−1/e)Z.

3 A bicriteria approximation forMULTI-SUBMOD-COVER

In this section we consider Multi-Submod-Cover. Let N be a finite ground set.
For each j ∈ [h] we are given a submodular function f j : 2N → R+, and the
corresponding k j ≥ 0.Weare also given a non-negativeweight functionw : N → R+.
The goal is to solve the following covering problem:

min
S⊆N

w(S)

s.t. f j (S) ≥ k j 1 ≤ j ≤ h

We say that i ∈ N is active in constraint j if f j (i) > 0, otherwise it is inactive. We
say that the given instance is r -sparse if each element i ∈ N is active in at most r
constraints.

Theorem 3.1 There is a randomized polynomial-time approximation algorithm that
given an r-sparse instance of Multi-Submod-Cover outputs a set S ⊆ N such that
(i) f j (S) ≥ (1 − 1/e − ε)k j for 1 ≤ j ≤ h, and (ii) E[w(S)] = O( 1

ε
ln r)OPT.

The rest of the section is devoted to the proof of the preceding theorem. We will
assume without loss of generality that ki = 1 for each i which can be arranged
by scaling. Also, we will assume that fi (N ) = 1; otherwise we can work with the
truncated function min{1, fi (S)}which is also submodular. This technical assumption
plays a role in the analysis later.

We consider a continuous relaxation of the problem based on the multilinear exten-
sion. Instead of finding a set S we consider finding a fractional point x ∈ [0, 1]N . For
any value B ≥ OPT where OPT is the optimum value of the original problem, the
following continuous optimization problem has a feasible solution.

(MP-Submod-Relax) min
∑

i

wi xi ≤ B

s.t. Fj (x) ≥ 1 1 ≤ j ≤ h

x ≥ 0
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One cannot hope to solve the preceding continuous optimization problem since it
is NP-Hard. However the following approximation result is known and is based on
extending the continuous greedy algorithm of Vondrák (2008), Călinescu et al. (2011).

Theorem 3.2 (Chekuri et al. 2010, 2015) For any fixed ε > 0, there is a random-
ized polynomial-time algorithm that given an instance of MP-Submod-Relax and
value oracle access to the submodular functions f1, . . . , fh , with high probability,
either correctly outputs that the instance is not feasible or outputs an x such that (i)∑

i wi xi ≤ B and (ii) Fi (x) ≥ (1 − 1/e − ε) for 1 ≤ i ≤ h.

Using the preceding theorem and binary search one can obtain an x such that∑
i∈N wi xi ≤ OPT and Fj (x) ≥ (1 − 1/e − ε) for 1 ≤ j ≤ h. It remains to round

this solution. We use the following algorithm based on the high-level framework of
randomized rounding plus alteration.

1. Let S1, S2, . . . , S� be random sets obtained by picking elements independently
and randomly � times according to the fractional solution x . Let S = ∪�

k=1Sk .
2. For each j ∈ [h] if f (S) < (1 − 1/e − 2ε), fix the constraint. That is, find a set

Tj using the greedy algorithm (via Lemma 2.5) such that f j (Tj ) ≥ (1− 1/e). We
implicitly set Tj = ∅ if f (S) ≥ (1 − 1/e − 2ε).

3. Output S ∪ T where T = ∪h
j=1Tj .

It is easy to see that S ∪ T satisfies the property that f j (S ∪ T ) ≥ (1 − 1/e − 2ε)
for j ∈ [h]. It remains to choose � and bound the expected cost of S ∪ T .

The following is easy from randomized rounding stage of the algorithm.

Lemma 3.3 E[w(S)] = �
∑h

i=1 wi xi ≤ �OPT.

We now bound the probability that any fixed constraint is not satisfied after the
randomized rounding stage of the algorithm. Let I j be the indicator for the event that
f j (S) < (1 − 1/e − 2ε).

Lemma 3.4 For any j ∈ [h], Pr[I j ] ≤ α�, where α ≤ 1 − ε for sufficiently small
ε > 0.

Proof Let I j,k be indicator for the event that f j (Sk) < (1 − 1/e − 2ε). From the
definition of the multilinear extension, for any k ∈ [�], E[ f j (Sk)] = Fj (x). Hence,
E[ f j (Sk)] ≥ (1 − 1/e − ε). Let α = Pr[I j,k]. We upper bound α as follows. Recall
that f j (N ) ≤ 1 and hence by monotonicity we have f j (A) ≤ 1 for all A ⊆ N . Since
E[ f j (Sk)] ≥ (1 − 1/e − ε) we can upper bound α by the following:

α(1 − 1/e − 2ε) + (1 − α) ≥ (1 − 1/e − ε).

Rearranging we have α ≤ (1+eε)
(1+2eε) = 1

1+ eε
1+eε

. Using the fact that for 1
1+x ≤ 1 − x/2

for sufficiently small x > 0, we simplify and see that α ≤ 1 − eε
2(1+eε) ≤ 1 − ε for

sufficiently small ε > 0. Since the sets S1, . . . , S� are chosen independently,

Pr[I j ] ≤
�∏

k=1

Pr[I j,k] ≤ α�.

��

123



992 Journal of Combinatorial Optimization (2022) 44:979–1010

Remark 3.5 The simplicity of the previous proof is based on the use of the multilinear
extensionwhich iswell-suited for randomized rounding. The assumption that f j (N ) ≤
1 is technically important and it is easy to ensure in the general submodular case but
is not straightforward when working with specific classes of functions.

Lemma 3.6 Let OPT j be the value of an optimum solution to the problem minw(S)

s.t. f j (S) ≥ 1. Then,
∑h

j=1OPT j ≤ rOPT.

Proof Let S∗ be an optimum solution to the problem of covering all h constraints. Let
N j be the set of active elements for constraint j . It follows that S∗ ∩ N j is a feasible
solution for the problem of covering just f j . Thus OPT j ≤ w(S∗ ∩ N j ). Hence

∑

j

OPT j ≤
∑

j

w(S∗ ∩ N j ) =
∑

i∈S∗
wi

∑

j :i∈N j

1 ≤ rw(S∗) = r · OPT.

��
We now bound the expected cost of T

Lemma 3.7 E[w(T )] ≤ 2α�
∑

j OPT j ≤ 2α�rOPT.

Proof We claim that w(Tj ) ≤ 2OPT j . Assuming the claim, from the description of
the algorithm, we have

E[w(T )] ≤
h∑

j=1

Pr[I j ]w(Tj ) ≤ 2α�
∑

j

OPT j ≤ 2α�rOPT.

Now we prove the claim. Consider the problem minw(S) s.t. f j (S) ≥ 1. OPT j is the
optimum solution value to this problem.Now consider the following submodular func-
tion maximization problem subject to a knapsack constraint: max f j (S) s.t. w(S) ≤
OPT j . Clearly the optimum value of this maximization problem is at least 1. From
Lemma 2.1, the greedy algorithm when run on the maximization problem, outputs a
solution Tj such that f (Tj ) ≥ (1− 1/e) and w(Tj ) ≤ OPT j +maxi wi . By guessing
the maximum weight element in an optimum solution to the maximization problem
we can ensure that maxi wi ≤ OPT j . Thus, w(Tj ) ≤ 2OPT j and f (Tj ) ≥ (1− 1/e).
��

From the preceding lemmas it follows that

E[w(S ∪ T )] ≤ E[w(S)] + E[w(T )] ≤ �OPT + 2α�r · OPT.

If we set � = �log1/α r
 = O( 1
ε
ln r), one can see that E[w(S ∪ T )] ≤ O( 1

ε
ln r)OPT.

3.1 An application to splitting point sets

Har-Peled and Jones (2018), as we remarked, were motivated to study Multi-

Submod-Cover due to a geometric application. We recall the problem. Given m
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point sets P1, . . . , Pm in R
d find the smallest number of hyperplanes (or other geo-

metric shapes) such that no point set Pi hasmore than α fraction of its points in any cell
of the arrangement induced by the chosen hyperplanes; in particular when α = 1/2
the problem is related to the Ham-Sandwich theorem which implies that when m ≤ d
just one hyperplane suffices4. From this one can infer that �m/d
 hyperplanes always
suffice, however we are interested in approximating the optimum number of hyper-
planes for a given instance. Let ki = |Pi | and let P = ∪i Pi . We will assume, for
notational simplicity, that the sets Pi are disjoint. The assumption can be dispensed
with.

In Har-Peled and Jones (2018) the authors reduce their problem to Multi-

Submod-Cover as follows. Let N be the set of all hyperplanes inRd ; we can confine
attention to a finite subset by restricting to those half-spaces that are supported by d
points of P . For each point set Pi they consider a complete graph Gi on the vertex set
Pi . For each p ∈ ∪i Pi they define a submodular function f p : 2N → R+ where f p(S)

is the number of edges incident to p that are cut by S; an edge (p, q) with p, q ∈ Pi

is cut if p and q are separated by at least one of the hyperplanes in S. Thus one can
formulate the original problem as choosing the smallest number of hyperplanes such
that for each p ∈ P the number of edges that are cut is at least kp where kp is the
demand of p. To ensure that Pi is partitioned such that no cell has more than ki/2
points we set kp = ki/2 for each p ∈ Pi ; more generally if we wish no cell to have
more than βki points of Pi we set kp = (1 − β)ki for each p ∈ Pi . As a special case
of Multi-Submod-Cover we have

min
S⊆N

|S| s.t.

f p(S) ≥ kp p ∈ P

Using Wolsey’s result for Submod-SC, (Har-Peled and Jones 2018) obtain an
O(log(mn)) approximation where n = ∑

i ki .
We now show that one can obtain an O(logm)-approximation if we settle for a

bicriteria approximation where we compare the cost of the solution to that of an
optimum solution, but guarantee a slightly weaker bound on the partition quality.
This could be useful since one can imagine several applications where m, the number
of different point sets, is much smaller than the total number of points. Consider
the formulation from Har-Peled and Jones (2018). Suppose we used our bicriteria
approximation algorithm forMulti-Submod-Cover. The algorithm would cut (1−
1/e − ε)kp edges for each p and hence for 1 ≤ i ≤ m we will only be guaranteed
that each cell in the arrangement contains at most (1 − (1 − 1/e − ε)/2)ki points
from Pi . This is acceptable in many applications. However, the approximation ratio
still depends on n since the number of constraints in the formulation is n. We describe
a related but slightly modified formulation to obtain an O(logm)-approximation by
using only m constraints.

Given a collection S ⊆ N let fi (S) denote the number of pairs of points in Pi that
are separated by S (equivalently the number of edges of Gi cut by S). It is easy to see
that fi (S) is a monotone submodular function over N . Suppose S ⊆ N induces an

4 An algorithm to find such a hyperplane that runs in polynomial time (in dimension d) is not known.
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arrangement such that no cell in the arrangement contains more than (1− β)ki points
for some 0 < β < 1. Consider a point p ∈ Pi belonging to some cell. Note that the
degree of p in Gi is ki − 1. Furthermore, the number of edges incident to p that are
not cut by S are exactly the edges of the form (p, q), where q belongs to the same
cell as p in the arrangement. Therefore, the number of edges incident to p that are cut
by S is at least ki − 1 − (ki · (1 − β) − 1) = βki . Thus, the total number of edges
cut from Gi is at least βk2i /2, since each edge is counted twice from its endpoints. In
particular if β = 1/2 then S cuts at least k2i /4 edges. Conversely, if S cuts at least αk2i
edges for some α < 1/2 then no cell in the arrangement induced by S has more than
(1 − Ω(α))ki points from Pi . Given this we can consider the formulation below.

min
S⊆N

|S|
s.t. fi (S) ≥ k2i /4 1 ≤ i ≤ m

Weapply our bicriteria approximation forMulti-Submod-Coverwith some fixed
ε to obtain an O(logm)-approximation to the objective but we are only guaranteed
that the output S satisfies the property that fi (S) ≥ (1−1/e − ε)k2i /4 for each i . This
is sufficient to ensure that no Pi has more than a constant factor in each cell of the
arrangement.

The running time of the algorithm we describe depends polynomially on N and m
and N can be upper bounded by nd . The running time in Har-Peled and Jones (2018)
is O(mnd+2). Finding a running time that depends polynomially on n, m and d is an
interesting open problem.

4 ApproximatingMULTI-PARTIAL-SC

In this section we consider a problem that generalizes Multi-Partial-SC and CIPs

while being a special case of Multi-Submod-Cover. We call this problem CCF

(Covering Coverage Functions). Bera et al. (2014) already considered this version in
the restricted context of Vertex-Cover. Formally the input is a weighted set system
(U ,S) and a set of inequalities of the form Az ≥ b where A ∈ [0, 1]h×n matrix and
b ∈ R

h+ is a positive vector. The goal is to optimize the integer programCCF-IP shown
in Fig. 3a. Multi-Partial-SC is a special case of CCF when the matrix A contains
only {0, 1} entries. On the other hand CIP is a special case when the set system is
very restricted and each set Si consists of a single element. We say that an instance is
r -sparse if each set Si “influences” at most r rows of A; in other words the elements of
Si have non-zero coefficients in at most r rows of A. This notion of sparsity coincides
in the case of CIPs with column sparsity and in the case of Multi-Submod-Cover

with the sparsity that we saw in Sect. 3. It is useful to explicitly see why CCF is a
special case ofMulti-Submod-Cover. The ground set N = [m] corresponds to the
sets S1, . . . , Sm in the given set system (U ,S). Consider the row k of the covering
constraint matrix Az ≥ b. We can model it as a constraint fk(S) ≥ bk where the
submodular set function fk : 2N → R+ is defined as follows: for a set X ⊆ N we
let fk(X) = ∑

e j ∈∪i∈X Si
Ak, j which is simply a weighted coverage function with the
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(a) (b)

Fig. 3 Modeling CCF

weights coming from the coefficients of the matrix A. Note that when formulating via
these submodular functions, the auxiliary variables z1, . . . , zn that correspond to the
elements U are unnecessary.

We prove the following theorem.

Theorem 4.1 Consider an instance of r-sparse CCF induced by a set system (U ,S)

from a deletion-closed family with a β-approximation for Set Cover via the natural
LP. There is a randomized polynomial-time algorithm that outputs a feasible solution
of expected cost O(β + ln r)OPT.

The natural LP relaxation for CCF is shown in Fig. 3b. It is well-known that this
LP relaxation, even for CIPs with only one constraint, has an unbounded integrality
gap (Carr et al. 2000). For CIPs knapsack-cover inequalities are used to strengthen
the LP. KC-inequalities in this context were first introduced in the influential work of
Carr et al. (2000) and have since become a standard tool in developing stronger LP
relaxations. Bera et al. (2014) adapt KC-inequalities to the setting of PartitionVC,
and it is straightforward to extend this to CCF (this is implicit in Bera et al. (2014)).

Remark 4.2 Weighted coverage functions are a special case of sums of weighted rank
functions of matroids. The natural LP for CCF can be viewed as using a different, and
in fact a tighter extension, than the multilinear relaxation (Calinescu et al. 2007). The
fact that one can use an LP relaxation here is crucial to the scaling idea that will play
a role in the eventual algorithm. The main difficulty, however, is the large integrality
gap which arises due to the partial covering constraints.

We set up and the explain the notation to describe the use of KC-inequalities for
CCF. It is convenient here to use the reduction of CCF to Multi-Submod-Cover.
For row k in Ax ≥ b we will use fk to denote the submodular function that we set up
earlier. Recall that fk(D) captures the coverage to constraint k if set D is chosen. The
residual requirement after choosing D is bk − fk(D). The residual requirement must
be covered by elements from sets outside D. The maximum contribution that i /∈ D
can provide to this is min{ fk(D + i) − fk(D), bk − fk(D)}. Hence the following
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Fig. 4 CCF-LP with KC-Inequalities

constraint is valid for any D ⊂ N :

∑

i /∈D

min{ fk(D + i) − fk(D), bk − fk(D)}xi ≥ bk − fk(D) (1)

Writing the preceding inequality for every possible choice of D and for every k we
obtained a strengthened LP that we show in Fig. 4.

CCF-KC-LP has an exponential number of constraints and the separation problem
involves submodular functions. A priori it is not clear that there is even an approxi-
mate separation oracle. However, as noted in Bera et al. (2014), one can combine the
rounding procedure with the Ellipsoid method to obtain the desired guarantees even
though we do not obtain a fractional solution that satisfies all the KC inequalities. This
observation holds for rounding as well. In particular, it suffices to obtain a fractional
solution that satisfies constraints (2), (3), (5), and (6) (note that there are polynomially
many such constraints), and constraint 4 for a particular D ⊆ S satisfying certain
properties. Then, it can be shown that the ellipsoid algorithm returns such a solution
in polynomially many iterations. In the following, we discuss the rounding and the
analysis under the assumption that the LP can be solved exactly, and return to the issue
of KC inequalities at the end of the section.
Rounding and analysis assuming LP can be solved exactly: Let (x, z) be an optimum
solution toCCF-KC-LP.Wecan assumewithout loss of generality that for each element
e j ∈ U we have z j = min{1,∑i :e j ∈Si

xi }. As in Sect. 6 we split the elements in U
into heavily covered elements and shallow elements. For some fixed threshold τ that
we will specify later, let Uhe = {e j | z j ≥ τ }, and Ush = U \Uhe. We will also choose
another threshold. The rounding algorithm is the following.

1. Solve a Set Cover problem via the natural LP to cover all elements in Uhe. Let
Y1 be the sets chosen in this step.

2. Let Y2 = {Si | xi ≥ τ } be the heavy sets.
3. Repeat for � = Θ(ln r) rounds: independently pick each set Si in S \ (Y1 ∪ Y2)

with probability 1
τ

xi . Let Y3 be the sets chosen in this randomized rounding step.
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4. For k ∈ [h] do
(a) Let bk − fk(Y1 ∪ Y2 ∪ Y3) be the residual requirement of k’th constraint.
(b) Run the modified Greedy algorithm to satisfy the residual requirement. Let Fk

be the sets chosen to fix the constraint (could be empty).

5. Output Y1 ∪ Y2 ∪ Y3 ∪ (∪h
k=1Fk).

The algorithm at a high level is similar to that in Bera et al. (2014). There are two
main differences. First, we explicitly fix the constraints after the randomized rounding
phase using a slight variant of the Greedy algorithm. This ensures that the output of
the algorithm is always a feasible solution; this makes it easier to analyze the r -sparse
case while a straight forward union bound will not work. Second, the analysis relies
on a probabilistic inequality that is simpler in Vertex-Cover case while it requires
a more sophisticated approach here. We now describe the modified Greedy algorithm
to fix a constraint. For an unsatisfied constraint k we consider the collection of sets
that influence the residual requirement for k, and partition them it into Hk and Lk .
Hk is the collection of all sets such that choosing any of them completely satisfies
the residual requirement for k, and Lk are the remaining sets. The modified Greedy
algorithm for fixing constraint k picks the better of two solutions: (i) the first solution
is the cheapest set in Hk (this makes sense only if Hk �= ∅) and (ii) the second solution
is obtained by running Greedy on sets in Lk until the constraint is satisfied.

Analysis: We now analyze the expected cost of the solution output by the algorithm.
The lemma below bounds the cost of Y1.

Lemma 4.3 The cost of Y1, w(Y1) is at most β 1
τ

∑
i wi xi .

Proof Recall that z∗
j ≥ τ for each e j ∈ Uhe. Consider x ′

i = min{1, 1
τ

xi }. It is easy
to see that x ′ is a feasible fractional solution for SC-LP to cover Uhe using sets in S.
Since the set family is deletion-closed, and the integrality gap of the SC-LP is at most
β for all instances in the family, there is an integral solution covering Uhe of cost at
most β

∑
i wi x ′

i ≤ 1
τ
β

∑
i wi xi . ��

The expected cost of randomized rounding in the second step is easy to bound.

Lemma 4.4 The expected cost of Y3 is at most �
τ

∑
i wi xi .

An analog of the following lemma for PartitionVC was proved by Bera et al.
(2014).However, inPartitonVC, each element is contained in atmost two sets,which
is crucially used in their proof. Consequently, their proof does not readily generalize
to set systems with unbounded frequency. We rely on tools from submodularity to
prove this lemma even in the general case of CCF.

Lemma 4.5 Fix a constraint k. If τ is a sufficiently small but fixed constant, the prob-
ability that constraint k is satisfied after one round of randomized rounding is at least
a fixed constant cτ .

Before we give a proof of this lemma, we finish the rest of the analysis first. Let
Ik = {i | Si influences constraint k}. Note that for any i ∈ N , |{k ∈ [h] : Si ∈ Ik}| ≤ r
by our sparsity assumption.
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Lemma 4.6 Let ρk be the cost of fixing constraint k if it is not satisfied after randomized
rounding. Then ρk ≤ c′

τ

∑
i∈Ik

wi xi for some constant c′
τ .

Proof Wewill assume that τ < (1−1/e)/2. Let D = Y1∪Y2 and let b′
k = bk − fk(D)

be residual requirement of constraint k after choosing Y1 and Y2. Let U ′ = U \UD be
elements in the residual instance; all these are shallow elements. Consider the scaled
solution x ′ where x ′

i = 1 if Si ∈ D and x ′
i = 1

τ
xi for other sets. For any shallow

element e j let z′
j = min{1,∑i : j∈Si

x ′
i }; since e j is shallow we have z′

j = 1
τ

z j =
∑

i : j∈Si ,i /∈D x ′
i .

Recall from the description of the modified Greedy algorithm that a set Si is in
Hk ⊆ Ik iff adding Si to D satisfies constraint k. In other words i ∈ Hk iff fk(D +
i)− fk(D) ≥ b′

k . Suppose
∑

i∈Hk
x ′

i ≥ 1/2. Then it is not hard to see that the cheapest
set from Hk will cover the residual requirement and has cost at most 2

∑
i∈Hk

wi x ′
i

and we are done. We now consider the case when
∑

i∈Hk
x ′

i < 1/2. Let Lk = Ik \ Hk .

For each j ∈ U ′ let z′′
j = ∑

i : j∈Si ,i∈Lk
x ′

i . We claim that
∑

j∈U ′ Ak, j z′′
j ≥ 1

2τ b′
k . Since

τ ≤ (1 − 1/e)/2 this implies
∑

j∈U ′ Ak, j z′′
j ≥ 1

(1−1/e)b′
k . Assuming the claim, if we

run Greedy on Lk to cover at least b′
k elements then the total cost, by Lemma 2.1, is

at most (1 + e)
∑

i∈Lk
wi x ′

i ; note that we use the fact that no set in Lk has coverage
more than b′

k and hence c = 1 in applying Lemma 2.1.
We now prove the claim. Since the x, z satisfy KC inequalities:

∑

i /∈D,i∈Ik

min{ fk(D + i) − fk(D), b′
k}xi ≥ b′

k .

We split the LHS into two terms based on sets in Hk and Lk . Note that if i ∈ Hk then
fk(D + i) − fk(D) ≥ b′

k and if i ∈ Lk then fk(D + i) − fk(D) < b′
k . Furthermore,

fk(D + i) − fk(D) ≤ ∑
e j ∈Si

Ak, j . We thus have

∑

i /∈D,i∈Ik

min{ fk(D + i) − fk(D), b′
k}xi ≤

∑

i∈Hk

b′
k xi +

∑

i∈Lk

xi

∑

e j ∈Si

Ak, j

≤ b′
k

∑

i∈Hk

xi +
∑

i∈Lk

xi

∑

e j ∈Si

Ak, j

Putting together the preceding two inequalities and the condition that
∑

i∈Hk
x ′

i < 1/2
(recall that x ′

i = xi/τ for each i ∈ Ik),

∑

i∈Lk

x ′
i

∑

e j ∈Si

Ak, j ≥ 1

2τ
b′

k .

We have, by swapping the order of summation,

∑

i∈Lk

x ′
i

∑

e j ∈Si

Ak, j =
∑

e j ∈∪i∈Lk Si

Ak, j

∑

i∈Lk :e j ∈Si

x ′
i ≤

∑

j∈U ′
Ak, j

∑

i∈Lk :e j ∈Si

x ′
i =

∑

j∈U ′
Ak, j z

′′
j .
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The preceding two inequalities prove the claim. ��

With the preceding lemmas we can finish the analysis of the total expected cost
of the sets output by the algorithm. From Lemma 4.5 the probability that any fixed
constraint k is not satisfied after the randomized rounding step is at most c�, for some
constant c < 1. By choosing � ≥ 1 + log1/c r we can reduce this probability to at

most 1/r . Thus, as in the preceding section, the expected fixing cost is
∑

k
1
r w(Fk).

From Lemma 4.6,

∑

k

w(Fk) ≤ c′ ∑

k

∑

i∈Ik

wi xi ≤ c′r
∑

i

wi xi

since the given instance is r -sparse. Thus the expected fixing cost is atmost c′ ∑
i wi xi .

The cost of Y1 is O(β)
∑

i wi xi , the cost of Y2 is O(1)
∑

i wi xi , and the expected
cost of Y3 is O(log r)

∑
i wi xi . Putting together, the total expected cost is at most

O(β + log r)
∑

i wi xi where the constants depend on τ . We need to choose τ to be
sufficiently small to ensure that Lemma 4.5 holds. We do not attempt to optimize the
constants or specify them here.

Submodularity and proof of Lemma 4.5: We follow some notation that we used in the
proof of Lemma 4.6. Let D = Y1 ∪ Y2 and consider the residual instance obtained by
removing the elements covered by D and reducing the coverage requirement of each
constraint. The lemma is essentially only about the residual instance. Fix a constraint
k and recall that b′

k is the residual coverage requirement and that each set in Hk fully
satisfies the requirement by itself. Recall that x ′

i = 1
τ

xi ≤ 1 for each set i /∈ D and
z′

j = 1
τ

z j = ∑
i :e j ∈Si

x ′
i for each residual element e j . As in the proof of Lemma 4.6we

consider two cases. If
∑

i∈Hk
x ′

i ≥ 1/2 then with probability (1 − 1/
√

e) at least one
set from Hk is picked and will satisfy the requirement by itself. Thus the interesting
case is when

∑
i∈Hk

x ′
i < 1/2. Let U ′′ = ∪i∈Lk Si . As we saw earlier, in this case

∑

j∈U ′′
Ak, j min

⎧
⎨

⎩
1,

∑

i : j∈Si

x ′
i

⎫
⎬

⎭
≥ 1

2τ
b′

k .

For ease of notation we let N = Lk be a ground set. Consider the weighted coverage
function g : 2N → R+ where g(T ) for T ⊆ Lk is given by

∑
j∈∪i∈T Si

Ak, j . Then

for a vector y ∈ [0, 1]N the quantity
∑

j∈U ′′ Ak, j min{1,∑i : j∈Si
yi } is the continuous

extension g̃(y) discussed in Sect. 2. Thus we have g̃(x ′) ≥ 1
2τ b′

k . From Lemma 2.2,
we have G(x ′) ≥ (1 − 1/e) 1

2τ b′
k where G is the multilinear extension of g. If we

choose τ ≤ (1−1/e)/4 then G(x ′) ≥ 2b′
k . Let Z be the random variable denoting the

value of g(R) where R � x ′. Independent random rounding of x ′ preserves G(x ′) in
expectation by the definition of the multilinear extension, therefore E[Z ] = G(x ′) ≥
2b′

k . Moreover, by Lemma 2.4, Z is concentrated around its expectation since G(i) ≤
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b′
k for each i ∈ Lk . An easy calculation shows that Pr[Z < b′

k] ≤ e−1/4 < 0.78. Thus
with constant probability g(R) ≥ b′

k .

Solving the LP with KC inequalities: The proof of the performance guarantee of the
algorithm relies on the fractional solution satisfying KC inequalities with respect to
the set D = Y1 ∪ Y2. Thus, given a fractional solution (x, z) for the LP we can
check the easy constraints in polynomial time and implement the first two steps of the
algorithm. Once Y1, Y2 are determined we have D and one can check if (x, z) satisfies
KC inequalities with respect to D (for each row of A). If it does then the rest of the
proof goes through and performance guarantee holds with respect to the cost of (x, z)
which is a lower bound on OPT. If some constraint does not satisfy the KC inequality
with respect to D we can use this as a separation oracle in the Ellipsoid method.

5 Facility location andminimum sum of radii clustering

In this section, we consider two well-studied problems related to clustering in the
setting where there are r partial covering constraints. As we mentioned previously, the
generalization of Facility Location problem does not quite fit in theMulti-Submod-

Cover framework. However, we are able to adapt the techniques to this problem. We
obtain O(log r)-approximations for these two problems and they are treated in the
next two sections.

5.1 Facility location withmultiple outliers

Here, we consider a generalization of the Facility Location Problem that is analogous
toMulti-Partial-SC. We show how to adapt the randomized rounding framework,
alongwith existing LP-based approximation algorithms for the standard Facility Loca-
tion problem, to obtain an O(log r) approximation for this generalization.

In FL-Multi-Outliers, we are given a set of facilities F , a set of clients C ,
belonging to ametric space (F ∪C, d). Each facility i ∈ F has a non-negative opening
cost fi . We are given r non-empty subsets of clients C1, . . . , Cr , that partition the set
C of clients. Each color class Ck has a connection requirement 1 ≤ bk ≤ |Ck |.
The objective of FL-Multi-Outliers is to find a solution (F∗, C∗) that minimizes∑

i∈F ′ fi +∑
j∈C ′ d( j, F ′) over all feasible solutions (F ′, C ′). We say that a solution

(F ′, C ′) is feasible if (i) |F ′| ≥ 1 and (ii) For all classes Ck , |Ck ∩ C ′| ≥ bk . Note
that the special case with just one class is the Robust Facility Location problem, first
considered by Charikar et al. (2001).

A natural LP formulation of this problem is as follows.
Next, we discuss strengthening of this LP by adding KC inequalities and solving

the strengthened LP.

Solving a Strengthened LP: First, we convert the LP into a feasibility LP by guessing
the optimal cost up to a factor of 2, say Δ, and by adding a cost constraint

∑

i∈F
fi xi +

∑
i∈F, j∈C yi j · d(i, j) ≤ Δ. Similar to Sect. 4, we use the Ellipsoid algorithm to find
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Fig. 5 Natural LP formulation for FL-Multi-Outliers

a feasible LP solution that satisfies the cost constraint, constraints 7 to 10, and an
additional KC inequality specified below. Fix an LP solution that satisfies all these
constraints (except possibly the additional one). With respect to this solution, let H =
{ j ∈ C | ∑

i∈F yi j ≥ τ } be the set of heavy clients, where τ is a constant as in Sect. 4.
Let L = C \ H be the set of light clients. Note that for any light client j ∈ L ,

z j ≤ ∑
i∈F yi j < τ . Also, for a class Ck , let Ck(H) := Ck \ H denote the light clients

from Ck , and let b′
k := bk − |Ck ∩ H | denote its residual connection requirement.

Now, we check whether the following constraint holds for all color classes Ck :

∑

i∈F

min

{

xi · b′
k,

∑

j∈Ck (H)

yi j

}

≥ b′
k (11)

First, note that this can be formulated as an LP constraint by introducing auxiliary
variables. It is easy to see that any integral solution satisfies this constraint for any
H ⊆ C , and hence it is valid. If this constraint is not satisfied for some class Ck , we
report it as a violated constraint to the Ellipsoid algorithm.

Rounding:Now, suppose we have an LP solution (x, y, z) that satisfies 7 to 10, and has
cost at mostΔ. Let H and L be the corresponding heavy and light clients. Furthermore,
suppose the LP solution satisfies Constraint 11 with respect to H and L .

For any i ∈ F , let x ′
i := min{1, 1

τ
xi }, and for any i ∈ F, j ∈ H , let y′

i j :=
min{1, 1

τ
yi j }. It is easy to see that (x ′, y′) is a feasible Facility Location (without

outliers) LP solution for the instance induced by the heavy clients, and its cost is at
mostΔ/τ . We use an LP-based algorithm (such as Byrka et al. (2010)) with a constant
approximation guarantee to round this solution to an integral solution (FH , H), where
FH ⊆ F .

For handling light clients, we “split” the facilities into multiple co-located copies
if necessary, we ensure the following two conditions hold:

1. For any facility i ∈ F , xi < τ .
2. For any client j ∈ L and any facility i ∈ F , yi j > 0 �⇒ yi j = xi .

This has to be done in a careful manner – we give the details in appendix A. This
procedure results in a feasible LP solution of essentially the same cost. Henceforth,
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we treat all co-located copies of a facility as distinct facilities for the sake of the
analysis. We now show that the rounding for the light clients can be reduced to the
randomized rounding algorithm for Multi-Partial-SC from the previous section.

For any facility i ∈ F , let Si := { j ∈ L | xi = yi j } denote the set of light clients that
are fractionally connected to i . The cost of opening facility i and connecting all j ∈ Si

to i is equal to wi := fi + ∑
j∈Si

d(i, j). Consider a Multi-Partial-SC instance
(U ,S), where S = {Si | i ∈ F} with weights wi , and residual coverage requirement
b′

k for each class Ck(H). We obtain an LP solution (x, z) for this instance ofMulti-

Partial-SC from theLP solution (x, y, z) for the FacilityLocation problem, by taking
the variables xi for i ∈ F and z j for j ∈ L . The following properties are satisfied by
this LP solution (x, z).

1. All the elements are light, and all the sets Si ∈ S have xi < τ .
2. The costs of the two LP solutions are equal:

∑

Si ∈S
wi xi =

∑

i∈F

xi ·
(

fi +
∑

j∈Si

d(i, j)

)

=
∑

i∈F

fi xi +
∑

i∈F, j∈L

yi j · d(i, j).

3. Constraint 11 is equivalent to:

∑

Si ∈S
xi · min

{
b′

k, |Si ∩ Ck(H)|} ≥ b′
k ∀1 ≤ k ≤ r .

This is exactly the KC inequality (1) required for rounding Multi-Partial-SC.

Therefore, we can use the randomized rounding plus alteration algorithm fromSect.
4 to obtain a solution Y ′ for theMulti-Partial-SC. It has cost at most O(log r) · Δ,
and for each class Ck(H), it covers at least b′

k clients. To obtain a solution for the
original facility location problem, we open a facility i ∈ F , if its corresponding set Si

is selected in Y ′, and connect to it all the clients in Si . Notice that we connect b′
k clients

from Ck(H) to the set of opened facilities in this manner. The cost of this solution is
upper bounded by w(Y ′) ≤ O(log r) · Δ. Combining this with the solution (FH , H)

for the heavy clients of cost at most O(1) · Δ, we obtain our overall solution for the
given instance. It is easy to see that this is an O(log r) approximation.

Theorem 5.1 There is a randomized polynomial-time algorithm that outputs a feasible
solution of expected cost O(log r)· OPT for FL-Multi-Outliers.

5.2 Minimum sum of radii clustering withmultiple outliers

Here, we are given a set of facilities F , a set of clientsC and a metric space (F ∪C, d).
Each facility i ∈ F has a non-negative opening cost fi .We are given r classes of clients
C1, . . . , Cr . Each color class Ck has a coverage requirement bk where 1 ≤ bk ≤ |Ck |.
A ball centered at a facility i ∈ F of radius ρ ≥ 0 is the set B(i, ρ) := { j ∈ C |
d(i, j) ≤ ρ}. The goal is to select a set of balls B = {Bi = B(i, ρi ) | i ∈ F ′ ⊆ F}
centered at some subset of facilities F ′ ⊆ F , such that (i) the set of balls B satisfies
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the coverage requirement of each color class and (ii) the sum
∑

i∈F ′( fi + ρ
γ

i ) is
minimized. Here, γ ≥ 1 is a constant, and is a parameter of the problem. We refer to
this problem as MCC- Multi- Outliers.

Note that even though the radius of a ball centered at i ∈ F is allowed to be any
non-negative real number, it can be restricted to the following set of “relevant” radii:
Ri := {d(i, j) | j ∈ C}. Now, define a set system (C,S). Here, C is the set of
clients, and S = {B(i, ρ) | i ∈ F, ρ ∈ Ri }, with weight of the set corresponding
to a ball B(i, ρ) being defined as fi + ργ . Now, we use the algorithm from Sect.
4 for this set system. Let H be the set of heavy clients (or elements) as defined in
Sect. 4. We use the Primal-Dual algorithm of Charikar and Panigrahy (2004)5 with
an approximation guarantee of β = 3γ (which is a constant) to obtain a cover for
the heavy clients. For the remaining light clients, we use the randomized rounding
algorithm as is. Note that this reduction is not exact, since the solution thus obtained
may select sets corresponding to multiple concentric balls in the original instance.
However, from each set of concentric balls, we can choose the ball with the largest
radius. This pruning process does not affect the coverage, and can only decrease the
cost of the solution. Therefore, it is easy to see that the resulting solution is an O(log r)

approximation.

Theorem 5.2 There is a randomized polynomial-time algorithm that outputs a feasible
solution of expected cost O(3γ + log r)· OPT for MCC- Multi- Outliers.

6 Approximating PARTIAL-SC

In this section we consider the algorithm for Partial-SC from Inamdar and Varadara-
jan (2018) and suggest a small variation that simplifies the algorithm and analysis and
in the process also yields an improved approximation ratio. The approach of Inamdar
and Varadarajan (2018) is as follows. Given an instance of Partial-SC with a set
system (U ,S) their algorithm has the following high level steps.

1. Guess the largest weight set in an optimum solution. Remove all elements covered
by it, remove all sets with weight larger than the guessed set. Adjust k to account
for covered elements. We now work with the residual instance of Partial-SC.

2. Solve PSC-LP. Let (x∗, z∗) be an optimum solution. For some threshold τ let
Uh = {e j | z∗

j ≥ τ } be the highly covered elements and let U� = {e j | z∗
j < τ } be

the shallow elements.
3. Solve a Set Cover instance via the LP to cover all elements in Uh . The cost of

this solution is at most 1
τ
β

∑
i wi x∗

i since one can argue that the fractional solution
x ′ where x ′

i = min{1, x∗
i /τ } for each i is a feasible fractional solution for SC-LP

to cover Uh .
4. Let k′ = k −|Uh | be the residual number of elements that need to be covered from

U�. Round (x∗, z∗) to cover k′ elements from U�.

The last step of the algorithm is the main technical one, and also determines τ .
In Inamdar and Varadarajan (2018) τ is chosen to be 1/2 and this leads to their

5 Charikar and Panigrahy (2004) consider the special case of γ = 1. However, their algorithm easily
generalizes to arbitrary γ .
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2(β + 1)-approximation. The rounding algorithm in Inamdar and Varadarajan (2018)
can be seen as an adaptation of pipage rounding Ageev and Sviridenko (2004) for
Max-Budgeted-Cover. The details are somewhat technical and perhaps obscure
the high-level intuition that scaling up the LP solution allows one to use a bicriteria
approximation forMax-Budgeted-Cover. Our contribution is to simplify the fourth
step in the preceding algorithm. Here is the last step in our algorithm; the other steps
are the same modulo the specific choice of τ .

4’. Run Greedy to cover k′ elements from U�.

We now analyze the performance of our modified algorithm.

Lemma 6.1 Suppose τ ≤ (1 − 1/e). Then running Greedy in the final step outputs a
solution of total weight at most maxi wi + 1

τ

∑
i wi x∗

i to cover k′ = k −|Uh | elements
from U�.

Proof It is easy to see that
∑

e j ∈U�
z∗

j ≥ k′ since
∑

e j ∈U z∗
j ≥ k and z∗

j ≤ 1 for each

e j . Let (U�,S ′) be the set system obtained by restricting (U ,S) toU�, and let (x ′, z′) be
the restriction of (x∗, z∗) to the set system (U�,S ′). We have (i)

∑
i wi x ′

i ≤ ∑
i wi x∗

i
and (ii)

∑
e j ∈U�

z′
j ≥ k′ and (iii) z′

j ≤ τ ≤ (1 − 1/e) for all e j ∈ U�.

Consider (x ′′, z′′) obtained from (x ′, z′) as follows. For each e j ∈ U� set z′′
j = 1

τ
z′

j

and note that z′′
j ≤ 1. For each set Si set x ′′

i = min{1, 1
τ

x ′
i }. It is easy to see that

(x ′′, z′′) is a feasible solution to PSC-LP. Note that Z = ∑
e j ∈U�

z′′
j ≥ 1

τ
k′. Let

B = ∑
i wi x ′′

i ≤ 1
τ

∑
i wi x∗

i . The fractional solution (x ′′, z′′) is also a feasible solution
to the LP formulation MBC-LP. We apply Lemma 2.1 to this fractional solution.
Suppose we stop Greedy when it covers k′ elements or when it first crosses the budget
B, whichever comes first. Clearly the total weight is at most B + maxi wi . We argue
that at least k′ elements are covered when we stop Greedy. The only case to argue is
when Greedy is stopped when the weight of sets picked by it exceeds B for the first
time. From Lemma 2.1 it follows that Greedy covers at least (1− 1/e)Z elements but
since Z ≥ 1

τ
k′ it implies that Greedy covers at least k′ elements when it is stopped. ��

We formally state a lemma to bound the cost of covering Uh . The proof of this
lemma is identical to that of Lemma 4.3, and therefore omitted.

Lemma 6.2 The cost of covering Uh is at most β 1
τ

∑
i wi x∗

i .

Finally, we can analyze the approximation guarantee of the overall solution.

Theorem 6.3 Setting τ = (1− 1/e), the algorithm outputs a feasible solution of total
cost at most e

e−1 (β + 1)OPT where OPT is the value of an optimum integral solution.

Proof Fix an optimum solution. Let W be the weight of a maximum weight set in the
optimum solution. In the first step of the algorithm we can assume that the algorithm
has correctly guessed a maximum weight set from the fixed optimum solution. Let
OPT

′ = OPT− W . In the residual instance the weight of every set is at most W . The
optimumsolution value forPSC-LP, after guessing the largestweight set and removing
it, is at most OPT′. From Lemma 6.2, the cost of covering Uh is at most e

e−1βOPT
′.
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From Lemma 6.1, the cost of covering k′ elements from U� is most e
e−1OPT

′ + W .
Hence the total cost, including the weight of the guessed set, is at most

W + e

e − 1
βOPT′ + e

e − 1
OPT

′ + W

= e

e − 1
(β + 1)OPT + W (2 − e

e − 1
(β + 1))

≤ e

e − 1
(β + 1)OPT

since β ≥ 1. ��

7 Concluding remarks

The paper shows the utility of viewing Partial-SC and its generalizations as special
cases ofMulti-Submod-Cover. The coverage function in set systems is a submodu-
lar funtion that belongs to the class of sum of weightedmatroid rank functions. Certain
ideas for the coverage function extend to this larger class. Are there interesting prob-
lems that can be understood through this view point? Are there other special classes of
submodular functions for which one can obtain uni-criteria approximation algorithms
for Multi-Submod-Cover unlike the bicriteria one we presented? An interesting
example is the problem considered in Har-Peled and Jones (2018). The algorithm in
this paper forMulti-Partial-SC, like the ones in Bera et al. (2014), relies on using
the Ellipsoid method to solve the LP with KC inequalities. It may be possible to avoid
the inherent inefficiency in this way of solving the LP via some ideas from recent and
past work (Carr et al. 2000; Chekuri and Quanrud 2019).

Acknowledgements The authors thank Timothy Chan and Sariel Har-Peled for helpful comments and
discussion on the problem formulation and applications.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).
Chandra Chekuri was partially supported by National Science Foundation (NSF) Grants CCF-1526799 and
CCF-1910149. Work of Tanmay Inamdar and Kasturi Varadarajan was partially supported by NSF grants
CCF-1318996 andCCF-1615845.KentQuanrudwas partially supported byNSFgrant CCF-1526799.Work
of Zhao Zhang was partially supported by NSFC (U20A2068, 11771013) and ZJNSFC (LD19A010001).
In addition to the aforementioned funding sources, the authors have no relevant financial or non-financial
interests to disclose.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included

123



1006 Journal of Combinatorial Optimization (2022) 44:979–1010

in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Splitting Facilities

In this section, we show how to “split” the facilities in order to satisfy the following
properties required by our rounding algorithm for the Facility Location with Multiple
Outliers problem.

1. For any facility i ∈ F , xi < τ .
2. For any client j ∈ L and any facility i ∈ F , yi j > 0 �⇒ yi j = xi .
3.

∑

i∈F

min

{

xi · b′
k,

∑

j∈Ck (H)

yi j

}

≥ b′
k ∀ 1 ≤ k ≤ r (12)

Let 0 < δ < τ be a small quantity such that all positive x and y-values are integral
multiples of δ. Note that assuming the all variables are rational, such a δ must exist.

Fix any facility i ∈ F . Let X = xi/δ and Y j = yi j/δ for any j ∈ L . By assumption,
X and Y j are integers, and by LP constraint, Y j ≤ X for any j ∈ L . We replace i
with multiple (X in number) co-located copies, we denote this set by copies(i) =
{i1, i2, . . . , iX }. The x-value of each copy is set to be δ. For clarity, we denote the new
x-values of the copies by x̃ . Now, fix any class Ck . For any client j ∈ Ck(H) with
yi j > 0, we will connect j to Y j distinct copies from copies(i), and set the y-value of
each such assignment equal to δ (which we will again denote by ỹ for clarity). Notice
that this will satisfy the second property. For any � ∈ copies(i), let C�

k denote the
clients from Ck(H) that will be assigned to � in this manner. We will also satisfy the
following property while making these assignments.

∑

�∈copies(i)
x̃� · min

{
b′

k, |C�
k |

}
≥ min

{

xi · b′
k,

∑

j∈Ck (H)

yi j

}

(13)

Notice that that the term on the RHS is exactly the contribution of i to the LHS
of Constraint 12, whereas the sum on the LHS is the contribution of the copies after
splitting. Therefore, maintaining this property for all the facilities will guarantee that
Constraint 12 holds at the end. Now, we consider two cases about the term on the RHS
of Constraint 13.

Case 1. xi · b′
k ≥

∑

j∈Ck (H)

yi j . Equivalently, X · b′
k ≥

∑

j∈Ck (H)

Y j .

We process clients j ∈ Ck(H) with Y j > 0 in an arbitrary order. Let j be the first
client in this order. We connect it to the copies i1, i2, . . . , i�, i.e., set yi1 j = yi2 j =
. . . = yi� j = δ. Here, � = Y j ≤ X , so we connect j to at most X copies. Now, we
consider the second client j ′, and connect it to the copies i�+1, i�+2, · · · where the
indices in the subscript are used modulo X . That is, after using iX for a connection,
we use i1 for the next connection. We continue in this manner for all clients in Ck(H).
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Since Y j ≤ X and
∑

j∈Ck (H) Y j ≤ X · b′
k , it is easy to see we process all clients

while connecting at most b′
k clients to each copy. Therefore, we ensure

∑

�∈copies(i)
min{b′

k, |C�
k |} ≥

∑

j∈Ck (H)

Y j .

Multiplying both sides by δ, we obtain
∑

�∈copies(i)
x̃� ·min{b′

k, |C�
k |} ≥

∑

j∈Ck (H)

yi j , thus

ensuring (13).
Case 2. xi · b′

k <
∑

j∈Ck (H)

yi j . Equivalently, X · b′
k <

∑

j∈Ck (H)

Y j .

In this case, we arbitrarily and integrally decrease Y -values of clients to obtain Y ′-
values, so that we have X ·b′

k =
∑

j∈Ck (H)

Y ′
j . Now, we use the assignment scheme from

the previous case to obtain:

∑

�∈copies(i)
min

{
b′

k, |C�
k |

}
=

∑

j∈Ct (H)

Y ′
j = X · b′

k (14)

Now,we increase Y ′
j to Y j and arbitrarily connect client j to Y j −Y ′

j copies towhich
it is already not connected. Again, since Y j ≤ X , there are enough copies available for
making these extra connections. This may increase |C�|, thereby increasing the LHS
of (14). Therefore, we ensure that:

∑

�∈copies(i)
min{b′

k, |C�
k |} ≥ X · b′

k

Multiplying both sides by δ, we obtain
∑

�∈copies(i) x̃� · min{b′
k, |C�

k |} ≥ xi · b′
k =

min{xi · b′
k,

∑
j∈Ck (H) yi j }, thus ensuring (13).

Since any client j ∈ L belongs to exactly one class, it is part of exactly one
reassignment process for each original facility i . Therefore, processing each facility
and each class in this manner will result in a new set of facilities that satisfies all
the desired properties. In particular, note that for all facilities after splitting, we have
xi = δ < τ . Furthermore, xi = ∑

�∈copies(i) x̃�, and yi j = ∑
�∈copies(i) ỹ� j , for all

i ∈ F, j ∈ L . Therefore, the cost of the new solution is equal to the cost of the original
solution.

Note that using standard tricks, we can ensure that 1/δ is polynomial in the input,
at the expense of a tiny but insignificant increase in the cost of the solution, which can
be absorbed in the O(log r) approximation guarantee. Thus, the splitting procedure
runs in polynomial time, and the size of resulting instance is also polynomial in the
input.
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