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Abstract
Motivated by the practical applications in solving plenty of important combina-
torial optimization problems, this paper investigates the Budgeted k-Submodular
Maximization problem defined as follows: Given a finite set V , a budget B and a
k-submodular function f : (k + 1)V �→ R+, the problem asks to find a solution
s = (S1, S2, . . . , Sk) ∈ (k + 1)V , in which an element e ∈ V has a cost ci (e) when
added into the i-th set Si , with the total cost of s that does not exceed B so that f (s)
is maximized. To address this problem, we propose two single pass streaming algo-
rithms with approximation guarantees: one for the case that an element e has only
one cost value when added to all i-th sets and one for the general case with differ-
ent values of ci (e). We further investigate the performance of our algorithms in two
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applications of the problem, Influence Maximization with k topics and sensor place-
ment of k types of measures. The experiment results indicate that our algorithms can
return competitive results but require fewer the number of queries and running time
than the state-of-the-art methods.

Keywords k-submodular · Budget constraint · Approximation algorithm · Streaming
algorithm

1 Introduction

Maximizing k-submodular functions has attracted a lot of attentions because of its
potential in solving various combinatorial optimization problems such as influence
maximization (Ohsaka and Yoshida 2015; Rafiey and Yoshida 2020; Qian et al. 2018;
Nguyen and Thai 2020), sensor placement (Ohsaka and Yoshida 2015; Rafiey and
Yoshida 2020; Qian et al. 2018), feature selection (Singh et al. 2012) and information
coverage maximization (Qian et al. 2018). Given a finite set V and an integer k,
we define [k] = {1, 2, . . . , k} and (k + 1)V = {(X1, X2, . . . , Xk)|Xi ⊆ V ,∀i ∈
[k], Xi ∩ X j = ∅,∀i 	= j} as a family of k disjoint sets, called the k-set. A function
f : (k + 1)V �→ R+ is k-submodular iff for any x = (X1, X2, . . . , Xk) and y =
(Y1,Y2, . . . ,Yk) ∈ (k + 1)V , we have:

f (x) + f (y) ≥ f (x � y) + f (x � y) (1)

where
x � y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x � y =
⎛
⎝X1 ∪ Y1 \ (

⋃
i 	=1

Xi ∪ Yi ), . . . , Xk ∪ Yk \ (
⋃
i 	=k

Xi ∪ Yi )

⎞
⎠

In addition to unconstrained case (Ward andZivný 2014; IWata et al. 2016; Soma 2019;
Oshima 2017), researchers also solve the problem under size constraint (Rafiey and
Yoshida 2020; Ohsaka and Yoshida 2015; Qian et al. 2018; Nguyen and Thai 2020),
matroid constraint (Sakaue 2017; Rafiey and Yoshida 2020) and knapsack constraint
(Tang et al. 2022; Wang and Zhou 2021). However, these problems does not cover
several real applications which customizes each element in terms of requiring its cost
as well as limits the budget. We are going to discuss the following two applications:

InfluenceMaximization with k topics under a budget constraint Given a social network
under an information diffusion model and k topics. Each user has a cost to start
the influence under a topic which manifests how hard it is to initially influence the
respective person for that topic. Given the budget B, we consider the problem of
finding a set of users (seed set), each initially adopts a topic, with the total cost that is
at most B to maximize the expected numbers of users activated by at least one topic.

Sensor placement with k types of measures under a budget constraint. Given k types
of sensors for different measures and n locations, each of which can be instrumented
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with one sensor exactly. We assume that allocating a sensor to each location has a
different cost depending on its position and the type of sensor. Given the budget B, we
consider the problem of allocating those sensors to maximize the information gained
with the total cost at most B.

In two above applications, the objective functions are k-submodular (Ohsaka and
Yoshida 2015; Rafiey andYoshida 2020; Nguyen and Thai 2020). Although there have
been many attempts to find a solution that maximizes the k-submodular function, they
did not cover the case that each element would have different costs when added into
different sets of the solution with a limited budget as shown in two above examples.
Motivated by that observation, in this work, we study a novel problem namedBudgeted
k-submodular maximization (BkSM), defined as follows.

Definition 1 (BkSM problem) Given a finite set V , a budget B and a k-submodular
function f : (k+1)V �→ R+. The problem asks to find a solution s = (S1, S2, . . . , Sk)
in which an element e ∈ V has a cost ci (e) > 0 when added into Si , with total cost
c(s) = ∑

i∈[k]
∑

e∈Si ci (e) ≤ B so that f (s) is maximized.

In addition, the constant increase of input data makes it impossible to be stored in
computer memory. Therefore it is critical to devise streaming algorithms for BkSM, in
which a streaming algorithm receives each element in the ground set sequentially, and
keeps only a small number of the element inmemory at any point.After scanning one or
a few passes over the ground set, the algorithm can return a solution with performance
guarantees (Badanidiyuru et al. 2014; Yang et al. 2019; Rafiey and Yoshida 2020).

1.1 Our contributions

To address above challenges, in this paper we propose two single-pass streaming
algorithms which provide theoretical bounds of BkSM. Overall, our contributions are
as follows:

– For the special case: an element has just one cost value when added into any i-th
set, we first propose a deterministic streaming algorithm (Algorithm 2) which runs
in a single pass, has O( kn

ε
log n) query complexity, O

( n
ε
log n

)
space complexity

and returns an approximation ratio of 1
4 − ε when f is monotone and 1

5 − ε when
f is non-monotone for any input parameter ε ∈ (0, 1

5 ).
– For the general case, we propose a random streaming algorithm (Algorithm 4)
which runs in a single pass, has O( kn

ε
log n) query complexity, O

( n
ε
log n

)
space

complexity and returns an approximation ratio of min{α
2 ,

(1−α)k
(1+β)k−β

} − ε when

f is monotone and min{α
2 ,

(1−α)k
(1+2β)k−2β } − ε when f is non-monotone in expec-

tation where β = maxe∈V ,i, j∈[k],i 	= j
ci (e)
c j (e)

and α ∈ (0, 1], ε ∈ (0, 1) are input
parameters.

– We conduct comprehensive experiments to investigate the performance of our
algorithms in two applications ofBkSM, InfluenceMaximization and Sensor Place-
ment. The results have shown that our algorithms not only reduce the number of
queries but also return comparable solutions in term of quality than the state-of-
the-art non-streaming algorithms.
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1.2 Related work

Although submodular maximization problems is NP-hard in general (Schrijver 2003),
they have been extensively studied because of their important roles in combinatorial
optimization and machine learning. Nemhauser et al. (1978) first studied the problem
of maximizing a monotone submodular function under a cardinality constraint and
showed that the traditional greedy algorithm could provide an approximation ratio of
(1 − 1/e). Since then, there have been many studies on this problem under various
constraints such as cardinality constraint (Badanidiyuru and Vondrák 2014; Mirza-
soleiman et al. 2015, 2016; Buchbinder et al. 2015; Krause et al. 2008), knapsack
constraint (Wolsey 1982; Sviridenko 2004; Huang et al. 2020) matroid constraint
(Cualinescu et al. 2011), p-set constraint (Haba et al. 2020), d-knapsack constraint
(Yuet al. 2016). However, submodular maximization algorithms may not be appli-
cable to k-submodular maximizaiton problems due to intrinsic differences between
submodularity and k-submodularity.

Studying on k-submodular functions was initiated by Singh et al. (2012) but the
authors only focused on the case k = 2, i.e., bisubmodular. Since then, more works
have focused on the case of general k. Since submodular maximization problem, a
special case of k-submodular maximization problem, is NP-hard (Schrijver 2003),
the k-submodular maximization problem is also NP-hard. Though people proposed a
polynomial-time algorithm in the case of minimizing a k-submodular (Thapper and
Zivný S 2012), it’s still a challenge of devising a similar algorithm to solve the problem
of k-submodular maximization.

Ward and Zivný (2014) first studied an unconstrained maximization of k-
submodular function, a special case of BkSM with cost values of all elements equal to
1 and B = n, and devised a deterministic greedy algorithmwhich provided an approx-
imation ratio of 1/3. Later on, the authors in IWata et al. (2016) introduced a random
greedy approach which improved the approximation ratio to k

2k−1 by introducing a
probability distribution to select a larger marginal element with higher probability.
Work in Oshima (2017) eliminated the random told in IWata et al. (2016) but the num-
ber of queries increased to O(n2k2). The unconstrained k-submodular maximization
was further studied in Soma (2019) in online settings. In fact, the algorithms in Ward
and Zivný (2014) and IWata et al. (2016) work as single pass streaming algorithms
but they cannot be directly applied to our problem. Our streaming algorithm for BkSM
also uses the idea of random selection in IWata et al. (2016) but it introduces a new
distribution that can help to select an element with various costs and then establishes
the relationship between the current solution and the optimal solution.

Maximizing k-submodular functions have been further studied with several types
of constraints. Ohsaka and Yoshida (2015) first studied monotone k-submodular
maximization problem with the size constraints. By using the greedy approaches,
they proposed 1/2-approximation algorithm for the total size constraint and 1/3-
approximation algorithm for the individual size constraint. Similarly, authors inSakaue
(2017) showed a greedy selection that could give an approximation ratio of 1/2
under the matroid constraint. However, these works did not provide any approxi-
mation guarantee when f was non monotone. The authors in Qian et al. (2018) then
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further proposed amulti-objective evolutionary algorithm formonotone k-submodular
maximization problem under the total size constraint. Their algorithm provided 1/2-
approximation solution and tookO(kn log2 B)queries in expectation.Recently,Rafiey
and Yoshida (2020) have considered the k-submodular maximization problem subject
to the total size constraint under noises and proposed two streaming algorithms which
provided the approximation ratio of O(ε(1 − ε)−2B) when f was monotone and
O(ε(1 − ε)−3B) when f was non-monotone. Zheng et al. (2021) investigated the
problem of maximizing approximately k-submodular functions subject to the size
constraints by introducing an approximate function of the objective function and pro-
posed several greedy algorithms with provable guarantees. However, these algorithms
can not adapt to our studied problem because of the variety of an element’s costs that
makes devising an approximation algorithm more challenging.

To our best knowledge, Zhang et al. (2019) first studied the problem of maximizing
the k-submodular functionwith each i-th set in the solution having a budget constraint.
In the seminal paper, they devised a 1

5 (1 − 1
e ) approximation algorithm with O(kn2)

query complexity but it did not keep this ratiowhen f wasnon-monotone. Furthermore,
this problem is completely different from our studied problem. Firstly, we consider a
general case where each element has a variety of costs when added into various i-th
set of the solution. Secondly, instead of the individual budget constraint, we consider
the total budget constraint. Besides, our algorithm also provides the approximation
guarantee when f is non-monotone.More recently, a (1−1/e)/2-approximation algo-
rithm within O(n4k3) queries for the monotone k-submodular maximization under a
knapsack constraint has been proposed (Tang et al. 2022). This approximation ratio
has been improved to 1/2 − ε by Wang and Zhou (2021). However, two above algo-
rithms only hold for a special case of BkSM when f is monotone and an element has
just one cost value when added into any i-th set. On the other hand, our Algorithm 2
can give the approximate ratios for both monotone and non-monotone cases.

The streaming algorithm is one of efficient methods for solving submodular max-
imization problems under various kinds of constraints such as cardinality constraint
(Gomes and Krause 2010; Badanidiyuru et al. 2014; Kumar et al. 2013; Yang et al.
2019), knapsack constraint (Huang et al. 2020), k-set constraint (Haba et al. 2020) and
matroid constraint (Chakrabarti and Kale 2015) but it is not potential to be directly
applied to our BkSM problem due to intrinsic differences between submodularity and
k-submodularity. Instead, constructing our algorithms is an inspired suggestion from
Huang et al. (2020) and Badanidiyuru et al. (2014) in which we also sequentially make
decision based on the value of incremental objective function per cost of each element
and guess the optimal solution through the maximum singleton value.

1.3 Organization

The rest of the paper is organized as follows: The notations and properties of k-
submodular functions are presented in Sect. 2. Sections 3 and 4 present our algorithms
and theoretical analysis. The extensive experiments are shown in Sect. 5. Finally, we
conclude this work in Sect. 6.
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2 Preliminaries

This section presents notations used throughout the paper and properties of the k-
submodular function.

Given a finite set V and an integer k, for x = (X1, X2, . . . , Xk), y =
(Y1,Y2, . . . ,Yk) ∈ (k + 1)V , we define suppi (x) = Xi , supp(x) = ∪i∈[k]Xi , Xi

is called the i-th set of x and an empty k-set is defined as 0 = (∅, . . . ,∅). If e ∈ Xi ,
we write x(e) = i ; if e /∈ ∪i∈[k]Xi , we write x(e) = 0 and i is called the position of e;
adding e /∈ supp(x) into Xi can be represented by x � (e, i). In the case of Xi = {e},
and X j = ∅,∀ j 	= i , we denote x by (e, i). We denote by x � y iff Xi ⊆ Yi for all
i ∈ [k].

A function f : (k + 1)V �→ R+ is k-submodular iff for any x = (X1, X2, . . . , Xk)

and y = (Y1,Y2, . . . ,Yk) ∈ (k + 1)V , we have:

f (x) + f (y) ≥ f (x � y) + f (x � y)

where
x � y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x � y =
⎛
⎝X1 ∪ Y1 \ (

⋃
i 	=1

Xi ∪ Yi ), . . . , Xk ∪ Yk \ (
⋃
i 	=k

Xi ∪ Yi )

⎞
⎠

A function f : (k + 1)V �→ R+ is monotone iff for any x ∈ (k + 1)V , e /∈ supp(x)
and i ∈ [k], we have:

Δe,i f (x) = f (X1, . . . , Xi−1, Xi ∪ {e}, Xi+1, . . . , Xk) − f (X1, . . . , Xk) ≥ 0 (2)

Given a k-submodular function f : (k + 1)V �→ R+, fromWard and Zivný (2014)
the k-submodularity of f implies the orthant submodularity, i.e,

Δe,i f (x) ≥ Δe,i f (y) (3)

for any x, y ∈ (k + 1)V with x � y, e /∈ supp(y) and i ∈ [k], and the pairwise
monotonicity, i.e,

Δe,i f (x) + Δe, j f (x) ≥ 0 (4)

for any x ∈ (k + 1)V with e /∈ supp(x) and i, j ∈ [k] with i 	= j .
In this paper, we assume that f is normalized, i.e, f (0) = 0 and each element e

has a positive cost ci (e) when added into the i-th set of a solution and the total cost of
k-set x is:

c(x) =
∑

i∈[k],e∈suppi (x)
ci (e)
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We define β as the largest ratio of different costs of an element, i.e,

β = max
e∈V ,i 	= j

ci (e)

c j (e)

Without loss of generality, throughout this paper, we assume that every element e
satisfies ci (e) ≥ 1,∀i ∈ [k] and ci (e) ≤ B as otherwise we can simply remove it.
We only consider k ≥ 2 because if k = 1, the k-submodular function becomes the
submodular function.

3 A deterministic streaming algorithmwhenˇ = 1

In this section, we introduce a deterministic streaming algorithm for the special case
when β = 1, i.e, each element has the same cost for all subsets ci (e) = c j (e),∀e ∈
V , i 	= j . For simplicity, we denote c(e) = ci (e) = c j (e).

The main idea of our algorithms is that (1) we select each observed element e
based on comparing between the ratio of f per total cost at the current solution and
a threshold which is set in advance, and (2) we use the maximum singleton value
(emax , imax ) defined as

(emax , imax ) = arg max
e∈V ,i∈[k] f ((e, i)) (5)

to obtain the final solution. We first assume that the optimal solution is known and
then remove this assumption by using the method in Badanidiyuru et al. (2014).

3.1 A deterministic streaming algorithmwith known optimal value

We first present a simplified version of our deterministic streaming algorithm when
the optimal value is known. Denote by o an optimal solution and opt = f (o), the
algorithm receives v such that v ≤ opt and a parameter α ∈ (0, 1] as inputs. The
role of these parameters are going to be clarified in main version. The details of the
algorithm are fully presented in Algorithm 1. We define the following notations:

• (e j , i j ) as the j-th element added in the main loop of the algorithm.
• s j = {(e1, i1), . . . , (e j , i j )} as the solution when adding j elements in the main
loop of the algorithm.

• o j = (o � s j ) � s j

• o j−1/2 = (o � s j ) � s j−1

• s j−1/2: If e j ∈ supp(o), then s j−1/2 = s j−1 � (e j , o(e j )). If e j /∈ supp(o),
s j−1/2 = s j−1

• ut = {(u1, j1), (u2, j2), . . . , (ur , jr )}: a set of elements that are in ot but not in
st , r = |supp(ut )|

• uti = st � {(u1, j1), (u2, j2), . . . , (ui , ji )},∀1 ≤ i ≤ r and ut0 = st .

The algorithm initiates a candidate solution s0 as an empty k-set. For each new
incoming element e, the algorithm updates a tuple (emax , imax ) to find the maximal
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singleton then checks that the total cost c(st )+ c(e) exceeds B or not. If not, it finds a

position i ′ ∈ [k] that f (st�(e, i ′)) ismaximal and adds (e, i) into st if f (st�(e,i ′))
c(st )+c(e) ≥ αv

B .
Otherwise, it ignores e and receives the next element. This step helps the algorithm
select any element having high value of marginal value per its cost as well as eliminate
bad ones.

After finishing the main loop, the algorithm returns the best solution between {st }
and {(emax , imax )} when f is monotone or returns the best solution between {s j : j ≤
t} and {(emax , imax )} when f is non-monotone.

Algorithm 1: Deterministic streaming algorithm with known opt
Input: a k-submodular function f , B > 0, α ∈ (0, 1], v that v ≤ opt
Output: a solution s

1: s0 ← 0, t ← 0
2: (emax , imax ) ← (∅, 1)
3: foreach e ∈ V do
4: ie ← argmaxi∈[k] f ((e, i))
5: (emax , imax ) ← argmax(e1,i1)∈{(emax ,imax ),(e,ie)} f ((e1, i1))
6: if c(st ) + c(e) ≤ B then
7: i ′ ← argmaxi∈[k] f (st � (e, i))

8: if f (st�(e,i ′))
c(st )+c(e)

≥ αv
B then

9: st+1 ← st � (e, i ′)
10: t ← t + 1
11: end
12: end
13: end
14: return argmaxs∈{st ,(emax ,imax )} f (s) if f is monotone, argmaxs∈{{s j : j≤t},(emax ,imax )} f (s) if f is

non-monotone.

We now analyze the approximation guarantee of Algorithm 1. By exploiting the
relation among o, ot and st , we obtain the following Lemma.

Lemma 1 Denote by et the last addition of the main loop of the Algorithm 1. If f is
monotone then v − f (ot ) ≤ f (st ) and if f is non-monotone then v − f (ot ) ≤ 2 f (st ).

Proof The proof follows the analysis of the relationship among s j , o j , o in Nguyen
and Thai (2020). We consider two following cases:

Case 1 If f is monotone. By the k-submodular property of f and note that f (o) =
f (o0) we obtain:

v − f (ot ) ≤ f (o) − f (ot ) =
t∑

j=1

( f (o j−1) − f (o j ))

≤
t∑

j=1

( f (o j−1) − f (o j−1/2)) (due to the monotoncity of f )

≤
t∑

j=1

( f (s j−1/2) − f (s j−1)) (due to thek − submodularity)
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≤
t∑

j=1

( f (s j ) − f (s j−1)) (due to the selection of algorithm)

≤ f (st )

Case 2 If f is non-monotone, we further consider following sub-cases:
- If e j /∈ supp(o), define an integer number l ∈ [k] that l 	= i j and o j

l as a k-set as

follows: o j
l (e) = o j (e),∀e ∈ V \ {e j } and o j

l (e
j ) = l, we have:

f (o j−1) − f (o j ) = f (o j
l ) − f (o j−1) − ( f (o j ) + f (o j

l ) − 2 f (o j−1))

≤ f (o j
l ) − f (o j−1) (due to the pairwise-monotoncity)

≤ f (s jl ) − f (s j−1)

≤ f (s j ) − f (s j−1)

- If e j ∈ supp(o). In this case, if o j−1(e j ) = i j . Due to the pairwise-monotone
property of f , there exists i ′ ∈ [k] that f (s j−1 � (e j , i ′)) ≥ 0. Therefore,

f (o j ) − f (o j−1) = 0 ≤ f (s j ) − f (s j−1)

If o j−1(e j ) 	= i j , we obtain:

f (o j−1) − f (o j ) = 2 f (o j−1) − 2 f (o j−1/2) − ( f (o j−1) + f (o j ) − 2 f (o j−1/2))

≤ 2 f (o j−1) − 2 f (o j−1/2) ≤ 2 f (s j ) − 2 f (s j−1)

Overall, we have f (o j−1)− f (o j ) ≤ 2 f (s j )− 2 f (s j−1) for the non-monotone case.
Therefore,

v − f (ot ) ≤ f (o) − f (ot ) =
t∑

j=1

( f (o j−1) − f (o j ))

≤ 2
t∑

j=1

( f (s j ) − f (s j−1)) ≤ 2 f (st )

which completes the proof. ��
Lemma1plays an important role for analyzing approximation ratio of the algorithm,

which stated in the following Theorem.

Theorem 1 Algorithm 1 is a single pass streaming algorithm and returns a solution s
satisfying:

• If f is monotone, f (s) ≥ min{α
2 , 1−α

2 }v. The right hand side is maximized to v
4

when α = 1
2 .
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• If f is non-monotone, f (s) ≥ min{α
2 , 1−α

3 }v. The right hand side is maximized to
v
5 when α = 2

5 .

Proof We observe that an element e ∈ supp(o) does not belong to supp(st ) if neither
e does not pass the condition in line 8 nor its addition would cause the total cost of st

to exceed B.
Denote by e ∈ supp(o) as a bad element if it passes the condition in line 8 of

Algorithm 1 but the total cost exceeds B, i.e., there exits an integer i ∈ [k] satisfying:

f (ste � (e, i))

c(ste) + c(e)
≥ αv

B
and c(ste ) + c(e) > B (6)

where ste is the candidate solution obtained right before e arrives.
Case 1 There is no bad element.
By applying Lemma 1, we obtain:

v − f (st ) = v − f (ot ) + f (ot ) − f (st )

≤ f (o) − f (ot ) + f (ot ) − f (st )

≤ f (st ) +
r∑

i=1

(
f (uti ) − f (uti−1)

)
(Lemma 1)

≤ f (st ) +
r∑

i=1

( f (stui � (ui , ji )) − f (stui )

(Due to the k − submodularity of f )

≤ f (st ) +
r∑

i=1

(
αv(c(stui ) + c(ui ))

B
− αvc(stui )

B

)

≤ f (st ) +
r∑

i=1

αvc(ui )

B

≤ f (st ) + αv

This implies that f (st ) ≥ 1−α
2 v.

Case 2 If a bad element e exits, there is an integer i ∈ [k] satisfying: f (ste�(e,i))
c(ste )+c(e) ≥ αv

B
and c(ste ) + c(e) > B. Therefore:

f (ste � (e, i)) ≥ (c(ste) + c(e))αv

B
> αv

By the k-submodularity of f , we have:

f (ste � (e, i)) ≤ f (ste ) + f ((e, i))
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which implies that:

f (s) ≥ max{ f (st ), f ((emax , imax ))}
≥ max{ f (ste), f ((e, i))}
≥ f (ste) + f ((e, i))

2

>
αv

2

Combine two above cases, we obtain f (s) = min{ 1−α
2 , α

2 }v and f (s) is maximized
to 1

4v when α = 1
2 .

If f is non-monotone, by arguments that are similar to the monotone case, we have
f (s) = min{ 1−α

3 , α
2 }v. The proof is completed. ��

3.2 A deterministic streaming algorithm

We present our deterministic streaming algorithm in the case of β = 1, which reuses
the framework of Algorithm 1 but removes the assumption that opt is known.

Define m = maxe∈V ,i∈[k] f ((e, i)), we have m ≤ opt ≤ n · m. Therefore we use
the value v = (1 + ε′) j with m ≤ (1 + ε′) j ≤ n · m, j ∈ Z+ to guess the value
of opt by showing that there exits v such that (1 − ε′)opt ≤ v ≤ opt. However, in
order to find m, it’s necessary to require at least one pass over V . Therefore, we adapt
the dynamic update method, which was first proposed by Badanidiyuru et al. (2014)
and then widely used for streaming algorithms for both submodular and k-submodular
optimizations (Yang et al. 2019; Huang et al. 2020; Nguyen and Thai 2020). It updates
m = max{m,maxi∈[k] f ((e, i))} with already observed element e, to determine the
range of the guessed optimal value.

Thismethod canhelp algorithmmaintain the good estimationof the optimal solution
if that range shifts forward when next elements are observed. We implement this
method by using variables s

t j
j and t j to store the candidate solution and the number of

its elements with respect to j .
We set the value of α by using Theorem 1 which provides the best approximation

guarantees. The value of ε′ is set to several times ε to reduce the complexity but still
ensure approximation ratios. The detail of our algorithm is presented in Algorithm 2.

Lemma 2 After ending of the main loop of the Algorithm 2, there exists a number
j ∈ Z+ that v = (1 + ε′) j ∈ O satisfying (1 − ε′)opt ≤ v ≤ opt.

Proof Define m = f ((emax , imax )). Due to k-submodularity of f , we have:

m ≤ opt = f (o) ≤
∑

e∈supp(o)
f (e, o(e)) ≤ m · n
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Algorithm 2: Deterministic streaming algorithm
Input: a k-submodular function f , B > 0, ε ∈ (0, 1/5).
Output: a solution s

1: if f is monotone then
2: α ← 1

2 , ε
′ ← 4ε

3: else
4: α ← 2

5 , ε
′ ← 5ε

5: end
6: (emax , imax ) ← (∅, 1), t j ← 0 ∀ j ∈ Z

+
7: foreach e ∈ V do
8: ie ← argmaxi∈[k] f ((e, i))
9: (emax , imax ) ← argmax(e1,i1)∈{(emax ,imax ),(e,ie)} f ((e1, i1))

10: O ← { j | f ((emax , imax )) ≤ (1 + ε′) j ≤ B f ((emax , imax )), j ∈ Z+}
11: for j ∈ O do

12: if c(s
t j
j ) + c(e) ≤ B then

13: i ′ ← argmaxi∈[k] f (s
t j
j � (e, i))

14: if
f (s

t j
j �(e,i ′))

c(s
t j
j )+c(e)

≥ α(1+ε′) j
B then

15: s
t j+1
j ← st j � (e, i ′)

16: t j ← t j + 1
17: end
18: end
19: end
20: end
21: return argmax

s∈{{st jj ; j∈O},(emax ,imax )} f (s) if f is monotone,

argmaxs∈{{sij :i≤t j , j∈O},(emax ,imax )} f (s) if f is non-monotone

Let j = �log1+ε′ opt�, we have v = (1 + ε′) j ≤ opt ≤ n.m, and

v ≥ (1 + ε′)log1+ε′ (opt)−1 = opt
1 + ε′ ≥ opt(1 − ε′) ��

The performance of Algorithm 2 is claimed in the following Theorem.

Theorem 2 Algorithm 2 is a single-pass streaming algorithm that has O
( kn

ε
log n

)
query complexity, O

( n
ε
log n

)
space complexity and provides an approximation ratio

of 1
4 − ε when f is monotone and 1

5 − ε when f is non-monotone.

Proof The size of O is at most 1
ε′ log n, finding each s

t j
j takes at most O(kn) queries

and s
t j
j includes at most n elements. Therefore, the query complexity is O

( kn
ε
log n

)
and total space complexity is O

( n
ε
log n

)
.

By Lemma 2, there exists an integer number j ∈ Z+ that v = (1 + ε′) j ∈ O
satisfies (1 − ε′)opt ≤ v ≤ opt. Apply Theorem 1, for the monotone case we have:

f (s) ≥ 1

4
v ≥ 1

4
(1 − ε′)opt =

(
1

4
− ε

)
opt (7)
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and for the non-monotone case:

f (s) ≥ 1

5
v ≥ 1

5
(1 − ε′)opt =

(
1

5
− ε

)
opt (8)

The theorem is proved. ��

4 A random streaming algorithm for general case

Since in this case each element having multiple different costs makes the problem
more challenging and we cannot apply previous algorithms. We introduce a one pass
streaming which provides approximation ratio in expectation for BkSM problem. At
the core of our algorithm, we introduce a new probability distribution for choosing a
position for each element to establish the relationship among o, o j and s j (Lemma
3) and analyze the performance of our algorithm. Besides, we also use the predefined
threshold to filter high-value elements into the candidate solutions and the maximum
singleton value to give the final solution.

Similar to the previous section, we first introduce a simplified version of streaming
algorithm when the optimal solution is known in advance.

4.1 A random algorithmwith known the optimal value

This algorithm also receives inputs α ∈ (0, 1) and v that v ≤ opt. We use the same
notations as in Sect. 3. This algorithm also requires one pass over V .

The algorithm initializes an empty k-set s0 and subsequently updates the solution
after one-pass over V . Differing from Algorithm 1, for each e ∈ V being observed,
the algorithm finds a set collection J that contains some positions satisfying the total
cost at most B and provides the ratio of increment of objective function per cost at
least a given threshold, i.e,

J =
{
i ∈ [k] : c(st ) + ci (e) ≤ B and

f (st � (e, i)) − f (st )
ci (e)

≥ αv

B

}
(9)

These constraints help the algorithm eliminate the positions having low such ratio. If
J 	= ∅, the algorithm puts e into the set i of st with a probability:

p|J |−1
i

T
=

(
f (st�(e,i))− f (st )

ci (e)

)|J |−1

∑
i∈J

(
f (st�(e,i))− f (st )

ci (e)

)|J |−1 (10)

Simultaneously, the algorithm finds the maximum singleton value (emax , imax ) by
updating the current maximal value from the set of observed elements. As Algorithm
3, the algorithm also uses (emax , imax ) as one of candidate solutions and finds the best
among them. The full detail of this algorithm is described in Algorithm 3.
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Algorithm 3: RanStreamWithOpt( f , opt, α)

Input: a k-submodular function f , B > 0, ε ∈ (0, 1) α ∈ (0, 1], v that v ≤ opt
Output: a solution s

1: s0 ← 0, t ← 0
2: (emax , imax ) ← (∅, 1), t j ← 0 ∀ j ∈ Z

+
3: foreach e ∈ V do
4: ie ← argmaxi∈[k] f ((e, i))
5: (emax , imax ) ← argmax(e1,i1)∈{(emax ,imax ),(e,ie)} f ((e1, i1))
6: J ← ∅
7: foreach i ∈ [k] do
8: if c(st ) + ci (e) ≤ B and f (st�(e,i))− f (st )

ci (e)
≥ αv

B then

9: pi ← f (st�(e,i))− f (st )
ci (e)

10: J ← J ∪ {i}
11: end
12: end
13: if J 	= ∅ then

14: T ← ∑
i∈J p|J |−1

i

15: Select a possition i ∈ J with probability
p|J |−1
i
T

16: st+1 ← st � (e, i)
17: t ← t + 1
18: end
19: end
20: return argmaxs∈{st ,(emax ,imax )} f (s) if f is monotone, argmaxs∈{{s j : j≤t},(emax ,imax )} f (s) if f is

non-monotone

Denote by e ∈ supp(o) as a bad element if

f (ste � (e, o(e)))
c(ste ) + co(e)(e)

≥ αv

B
and c(ste ) + co(e)(e) > B (11)

where ste is the candidate solution obtained right before e arrives.
Lemma 3 provides the relationship among o, o j and s j that plays an important role

for analyzing the performance of the algorithm.

Lemma 3 Assume that there is no bad element. In the Algorithm 3, we have:

– If f is monotone, then:

f (o j−1) − E[ f (o j )] ≤ β

(
1 − 1

k

)
(E[ f (s j )] − f (s j−1) + αvc j∗(e j )

kB
(12)

– If f is non-monotone, then:

f (o j−1) − E[ f (o j )] ≤ 2β

(
1 − 1

k

)
(E[ f (s j )] − f (s j−1)) + 2αvc j∗(e j )

kB
(13)
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Proof We consider following cases:
Case 1 If f is monotone. If J = ∅ the algorithm returns current s j so we consider

the case J 	= ∅. We further consider two following sub-cases.
Case 1.1 e j /∈ supp(o), due to the monotonicity of f we have:

f (o j−1) − f (o j ) ≤ 0 < β

(
1 − 1

k

)(
f (s j ) − f (s j−1)

)

Case 1.2 If e j ∈ supp(o). We reuse the notations o j , o j−1/2, s j , s j−1/2 as in Sect.
2 and define o j

l , s
j
l , j∗ as follows: o j

l (e) = o j (e),∀e ∈ V \ {e j } and o j
l (e

j ) = l;

s jl = s j−1 � (e j , l); j∗ = o(e j ). Since there is no bad element, we consider two
following sub-cases.

- If j∗ ∈ J , i.e, f (s j−1�(e j , j∗))
c(s j−1)+c j∗ (e j )

≥ αv
B and c(s j ) + c j∗(e j ) ≤ B. If |J | = 1, we

have f (o j−1) − f (o j ) = 0 < β
(
1 − 1

k

) (
f (s j ) − f (s j−1)

)
so we consider |J | > 1.

In this case we have:

f (o j−1) − E[ f (o j )] =
∑
l∈J

( f (o j−1) − f (o j
l ))

p|J |−1
l

T
(14)

=
∑

l∈J\{ j∗}
( f (o j−1) − f (o j

l ))
p|J |−1
l

T
(15)

≤
∑

l∈J\{ j∗}
( f (o j−1) − f (o j−1/2))

p|J |−1
j

T
(16)

≤
∑

l∈J\{ j∗}
( f (s jj∗) − f (s j−1))

p|J |−1
l

T
(17)

= 1

T

∑
l∈J\{ j∗}

c j∗(e
j ) · p j∗ · p|J |−1

l = c j∗(e j )

T

∑
j∈J\{ j∗}

p j∗ · pl · pl︸ ︷︷ ︸
|J |−1

(18)

≤ c j∗(e j )

T

∑
l∈J\{ j∗}

1

|J | (p
|J |
j∗ + p|J |

l + . . . + p|J |
l︸ ︷︷ ︸

|J |−1

) (By applying AG-GM inequality)

(19)

= c j∗(e
j )

(
1 − 1

|J |
) ∑

l∈J

p|J |
j

T
(20)

≤ c j∗(e
j )

(
1 − 1

k

) ∑
l∈J

f (s jl ) − f (s j−1)

cl(e j )

p|J |−1
l

T
(21)

≤ β

(
1 − 1

k

)
(E[ f (s j )] − f (s j−1)) (22)
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- If j∗ /∈ J , i.e, f (s j−1�(e j , j∗))− f (s j−1)

c j∗ (e j )
< αv

B , then p j∗ ≤ pl ,∀l ∈ J . Similar to the

transform from (14) to (22), we have:

c j∗(e
j )p j∗ = c j∗(e

j )
∑
l∈J

p j∗
p|J |−1
l

T

≤ c j∗(e
j )

∑
l∈J

pl
p|J |−1
l

T

≤ β(E[ f (s j )] − f (s j−1))

Therefore,

f (o j−1) − E[ f (o j )] ≤ f (s j−1 � (e j , j∗)) − f (s j−1) = c j∗(e)p j∗

≤ β(1 − 1

k
)(E[ f (s j )] − f (s j−1)) + c j∗(e j )p j∗

k

≤ β

(
1 − 1

k

)
(E[ f (s j )] − f (s j−1)) + c j∗(e j )αv

kB

Case 2 If f is non-monotone, similar to the monotone case, we only consider J 	= ∅
and two following cases:

Case 2.1 If e j /∈ supp(o), we consider two sub-cases:

- If there exist l ∈ [k] \ J satisfying f (s j−1�(e j ,l))− f (s j−1)

cl (e j )
< αv

B and c(s j−1) +
cl(e) ≤ B, then pl < px∀x ∈ J . By the pairwise monotonicity and k-submodularity
properties of f , we obtain:

f (o j−1) − E[ f (o j )] = f (o j
l ) − f (o j−1) − (E[ f (o j )] + f (o j

l ) − 2 f (o j−1))

≤ f (o j
l ) − f (o j−1) ≤ f (s jl ) − f (s j−1)

< E[ f (s j )] − f (s j−1)

- If there does not exist such integer l ∈ [k] \ J , we define a permutation π : J �→ J
such that π(i) 	= i,∀i ∈ J . We have:

f (o j−1) − E[ f (o j )] =
∑
i∈J

( f (o j−1) − f (o j
i ))

p|J |−1
i

T

=
∑
i∈J

(
f (o j

π(i)) − f (o j−1) − ( f (o j
i )

+ f (o j
π(i)) − 2 f (o j−1))

) p|J |−1
i

T

≤
∑
i∈J

( f (o j
π(i)) − f (o j−1))

p|J |−1
i

T
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≤
∑
i∈J

( f (s jπ(i)) − f (s j−1))
p|J |−1
i

T

≤
∑
i∈J

cπ(i)(e
j )pπ(i)

p|J |−1
i

T
≤ cmax

T

∑
i∈J

pπ(i) p
|J |−1
i

= cmax

T

∑
i∈J

pπ(i) · pi · pi︸ ︷︷ ︸
|J |−1

≤ cmax

T

∑
i∈J

1

|J | (p
|J |
π(i)

+ p|J |
i + . . . + p|J |

i︸ ︷︷ ︸
|J |−1

) (By applying AG-GM inequality)

≤ cmax

∑
i∈J

p|J |
i

T

≤ β(E[ f (s j )] − f (s j−1))

Case 2.2 If e j ∈ supp(o). Similar to the monotone case with notice that f (o j−1) =
f (o j

j∗), we further consider two following sub-cases:

- If j∗ ∈ J , i.e, f (s j−1�(e j , j∗))
c(s j−1)+c j∗ (e j )

≥ αv
B and c(s j ) + c j∗(e j ) ≤ B.

f (o j−1) − E[ f (o j )]

=
∑

l∈J\{ j∗}
( f (o j−1) − f (o j

l ))
p|J |−1
l

T

=
∑

l∈J\{ j∗}
(2 f (o j

j∗) − 2 f (o j−1/2) − ( f (o j
j∗) + f (o j

l ) − 2 f (o j−1/2)))
p|J |−1
l

T

≤
∑

l∈J\{ j∗}
2( f (o j

j∗) − f (o j−1/2))
p|J |−1
l

T

≤
∑

l∈J\{ j∗}
2( f (s jj∗) − f (s j−1))

p|J |−1
l

T

≤ 2β

(
1 − 1

k

)
(E[ f (s j )] − f (s j−1))

- If j∗ /∈ J , i.e, f (s j−1�(e j , j∗))− f (s j−1)

c j∗ (e j )
< αv

B , then p j∗ ≤ pl ,∀l ∈ J . Apply the

transform as in case 2.1, we have:
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f (o j−1) − E[ f (o j )] ≤ 2β( f (s j−1 � (e j , j∗)) − f (s j−1)) = 2c j∗(e
j )p j∗

≤ 2β

(
1 − 1

k

)
(E[ f (s j )] − f (s j−1)) + 2c j∗(e j )αv

kB

Combine all cases, in general we obtain the proof. ��
Theorem 3 Algorithm 2 returns a solution s satisfying:

– If f is monotone,E[ f (s)] ≥ min{α
2 ,

(1−α)k
(1+β)k−β

}v. The right hand side is maximized
to v

3+β− β
k

when α = 2
3+β− β

k

.

– If f is non-monotone, E[ f (s)] ≥ min{α
2 ,

(1−α)k
(1+2β)k−2β }v. The right hand side is

maximized to v

3+2β− 2β
k

when α = 2
3+2β− 2β

k

.

Proof If f ismonotone, denote by et the last addition of themain loop of the algorithm,
we consider two sub-cases as follows:

Case 1 There is no bad element e. By applying Lemma 3, we obtain:

v − E[ f (st )]
≤ f (o) − E[ f (st )] = f (o) − f (ot ) + f (ot ) − E[ f (st )]

=
t∑

j=1

( f (o j−1) − f (o j )) +
t∑

i=1

( f (uti ) − f (uti−1))

≤ β

(
1 − 1

k

) t∑
j=1

( f (s j ) − f (s j−1) + αvc j∗(e j )

kB
)

+
r∑

i=1

( f (stui � (ui , ji )) − f (stui )

≤ β

(
1 − 1

k

)
E[ f (st )] +

t∑
j=1

αvc j∗(e j )

kB
+

r∑
i=1

αvc(ui )

B

≤ β

(
1 − 1

k

)
E[ f (st )] +

∑
e∈supp(o)∩supp(st )

αvco(e)(e)

B

+
∑

e∈supp(o)\supp(st )

αvco(e)(e)

B
≤ β

(
1 − 1

k

)
E[ f (st )] + αv

This implies that E[ f (st )] ≥ (1−α)v
(1+β)k−β

.
Case 2 There exists a bad element e. Let j∗ = o(e) we have:

f (ste � (e, j∗)) ≥ c j∗(e)αv

B
+ f (ste ) ≥ c j∗(e)αv

B
+

te∑
j=1

( f (s j ) − f (s j−1))

≥ (c(ste ) + c j∗(e))αv

B
≥ αv
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Therefore,

f (s) ≥ max{ f (ste ), f ((emax , imax ))} (23)

≥ max{ f (ste ), f ((e, j∗))} ≥ f (ste ) + f ((e, j∗))
2

(24)

≥ f (ste � (e, j∗))
2

(Due to the k-submodularity) (25)

≥ αv

2
(26)

Combine two above cases, we obtain E[ f (s)] ≥ min{α
2 ,

(1−α)k
(1+β)k−β

}v, f (s) is maxi-

mized to v

3+β− β
k

when α = 2
3+β− β

k

.

If f is non-monotone, similar to the monotone case and combine with Lemma 3,
we obtain the proof. ��

4.2 A random streaming algorithm

In this section we remove the assumption that the optimal solution is known and
present the random streaming algorithm which reuses the framework of Algorithm 3.

Similar to the Algorithm 2, we use the method in Badanidiyuru et al. (2014) to
estimate opt. We assume that β is known in advance. This is feasible because we
can calculate the value of β in O(kn). We set α according to the properties of f to
provide the best performance of the algorithm. The algorithm continuously updates
O ← { j | f ((emax , imax )) ≤ (1 + ε) j ≤ B f ((emax , imax )), j ∈ Z+} in order to
estimate the value of maximal singleton and uses s

t j
j and t j to save candidate solutions,

which is updated by using the probability distribution as in Algorithm 3 with (1+ ε) j

as an estimation of the optimal solution. The algorithm finally compares all candidate
solutions to select the best one. The details of algorithm is presented in Algorithm 4.

Theorem 4 Algorithm 4 is one pass streaming algorithm that has O
( kn

ε
log n

)
query

complexity, O
( n

ε
log n

)
space complexity and

– If f is monotone, E[ f (s)] ≥
(
min{α

2 ,
(1−α)k

(1+β)k−β
} − ε

)
opt. The right hand side is

maximized to

(
1

3+β− β
k

− ε

)
opt when α = 2

3+β− β
k

.

– If f is non-monotone, E[ f (s)] ≥
(
min{α

2 ,
(1−α)k

(1+2β)k−2β } − ε
)
opt. The right hand

side is maximized to

(
1

3+2β− 2β
k

− ε

)
opt when α = 2

3+2β− 2β
k

.

Proof By Lemma 2, there exists j ∈ Z+ that v = (1+ ε) j ∈ O satisfies (1− ε)opt ≤
v ≤ opt. Similar to the proof of Theorem 2, we easily show the query and space
complexities of Algorithm 4. Using similar arguments of the proof of Theorem 3, for
the monotone case:
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Algorithm 4: Random streaming algorithm
Input: a k-submodular function f , B > 0, ε ∈ (0, 1), α ∈ (0, 1]
Output: a solution s

1: s0 ← 0
2: (emax , imax ) ← (∅, 1), t j ← 0 ∀ j ∈ Z

+
3: foreach e ∈ V do
4: ie ← argmaxi∈[k] f ((e, i))
5: (emax , imax ) ← argmax(e1,i1)∈{(emax ,imax ),(e,ie)} f ((e1, i1))

6: O ← { j | f ((emax , imax )) ≤ (1 + ε) j ≤ B f ((emax , imax )), j ∈ Z+}
7: foreach j ∈ O do
8: J ← ∅
9: foreach i ∈ [k] do
10: if c(s

t j
j ) + ci (e) ≤ B and

f (s
t j
j �(e,i))− f (s

t j
j )

ci (e)
≥ α(1+ε) j

B then

11: pi ← f (s
t j
j �(e,i))− f (s

t j
j )

ci (e)
12: J ← J ∪ {i}
13: end
14: end

15: T ← ∑
i∈J p|J |−1

i

16: Select a possition i ∈ J with probability
p|J |−1
i
T

17: s
t j+1
j ← s

t j
j � (e, i)

18: t j ← t j + 1
19: end
20: end
21: return argmax

s∈{{st jj : j∈O},(emax ,imax )} f (s) if f is monotone,

argmaxs∈{{sij : j∈O,i≤t j },(emax ,imax )} f (s) if f is non-monotone

E[ f (s)] ≥ min{α
2

,
(1 − α)k

(1 + β)k − β
}v ≥

(
min{α

2
,

(1 − α)k

(1 + β)k − β
} − ε

)
opt

and if α = 2
3+β− β

k

, we have:

E[ f (s)] ≥ v

3 + β − β
k

≥
(

1

3 + β − β
k

− ε

)
opt

For the non-monotone case we also obtain the proof by applying the same
arguments. ��
Remark 1 In the case of β = 1, the algorithm returns an approximation ratio of

1
4−1/k −ε when f is monotone and 1

5−2/k −ε when f is non-monotone in expectation.
Thus, these approximation ratios are better than that of Algorithm 2 in expectation.
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5 Experiments

In this section, we compare the performance of our algorithmswith a greedy algorithm
in two applications of BkSM: Influence Maximization (IM) with k topics and Sensor
Placement on three major metrics: value of objective function, the number of queries
and running time. Besides, we further show the trade-off between the solution quality
and the number of queries of algorithms with various settings of ε.

5.1 The Greedy algorithm

Since existing algorithms for k-submodular maximization problems cannot be applied
directly to BkSM, we adapt the recent Greedy algorithm (Ohsaka and Yoshida 2015)
which is the best current non-streaming algorithm with some modifications. The
Greedy algorithm iteratively adds a pair (e, i) into the current solution s, which max-
imizes the marginal gain per its cost f (s�(e,i))− f (s)

ci (e)
until there is no remaining cost to

add any element. The algorithm has O(k2n2) query complexity. The pseudo-code is
presented in Algorithm 5.

Algorithm 5: Greedy algorithm
Input: V , a k-submodular function f , B > 0
Output: a solution s

1: s ← 0, U ← {(e, i)|e ∈ V , i ∈ [k]}
2: while U 	= ∅ do
3: (em , im ) ← argmax(e,i)∈U f (s�(e,i))− f (s)

ci (e)
4: if c(s) + cim (e) > B then
5: U ← U \ (em , im )

6: else
7: s ← s � (em , im )

8: U ← U \ (em , im )

9: end
10: end
11: return s

5.2 InfluenceMaximization with k topics subject to a budget constraint

We first recap the information diffusion model, called Linear Threshold (LT) model
(Kempe et al. 2003; Nguyen and Thai 2020) and then define the Influence Maximiza-
tion with k topics subject to the budget constraint problem (IMkB) under this model.

LT model. In this model, a social network is modeled by a directed graphG = (V , E),
where V , E represent a set of users and a set of links, respectively. Each edge (u, v) ∈
E is assigned weights {wi (u, v)}i∈[k], where each wi (u, v) represents the strength of
influence from u to v on the i-th topic. Each node u ∈ V has a influence threshold with
topic i , denoted by θ i (u), which is chosen uniformly at random in [0, 1]. Given a seed
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set s = (S1, S2, . . . , Sk) ∈ (k + 1)V , the information propagation for topic i happens
in discrete steps t = 0, 1, . . . as follows. At step t = 0, all nodes in Si become active
by topic i . At step t ≥ 1, a node u becomes active if

∑
active node v wi (v, u) ≥ θ i (u).

The information diffusion process on topic i ends at step t if there is no new active
node in this step and the diffusion process of a topic is independent from other topics.
Denote by σ(s) as the number of activated nodes which becomes active in at least one
of k topics after the diffusion process gives a seed k-set s, i.e,

σ(s) = E[| ∪i∈[k] σi (Si )|] (27)

where σi (Si ) is a random variable representing the set of active users for topic i with
seed Si . The IMkB problem is formally defined as follows:

Definition 2 (IMkB problem) Assume that each user u has a cost ci (u) for i-th topic
whichmanifests how hard it is to initially influence the respective person for that topic.
Given the budget B, the problem asks to find a seed set s with c(s) ≤ B so that σ(s)
is maximal.

Experiment settings We use the Facebook social network dataset from SNAP
(Leskovec and Krevl 2014). The network contains 4,039 nodes and 88,234 edges.
Weights {wi (u, v)}i∈[k] of the edge (u, v) are randomly selected from a set
{ 1
kN (v)

, 2
kN (v)

, . . . , k
kN (v)

} according to the recent work (Nguyen and Thai 2020),
where dv is in-degree of v.

Since the computation of σ(·) is #P-hard (Chen et al. 2010), we adapt the sampling
method in Nguyen and Thai (2020); Borgs et al. (2014) to give an estimation σ̂ (·)with
a (λ, δ)-approximation that is:

Pr[(1 + λ)σ(s) ≥ σ̂ (s) ≥ (1 − λ)σ(s)] ≥ 1 − δ (28)

In algorithms, we set parameters λ = 0.5, δ = 0.2 and k = 3 as in Nguyen and
Thai (2020). In our algorithms, we set ε on varying in {0.1, 0.2, 0.3} to show a trade-
off between solution quality and number of queries. The costs of each element e are
established in the following two cases:

– Case 1 β = 1, we set ci (e) = c j (e) = c(e), i, j ∈ [k] with c(e) is calculated
under the Normalized Linear model with the support [1, 2] according to recent
works Nguyen and Zheng (2013) and Li et al. (2019) and the budget B varies in
{10, 20, 30, 40, 50}.

– Case 2:General β ci (u) is also calculated under theNormalizedLinearmodelwith
the support [1, 2] and the budget B varies in {10, 20, 30, 40, 50}. For Algorithm
4, α = 2

3+β− β
k

if f is monotone and α = 2
3+2β− 2β

k

if f is non-monotone with

β = 2.

Experiment results. For the purpose of providing a comprehensive experiment, we
divide the experiment into two cases: the special case when β = 1 and the general
case. Figure 1 shows the performance of algorithms for β = 1. We denote Algorithm
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(a) Influence spread (b) Number of queries

(c) Running time

Fig. 1 Performance of algorithms for IMkBwhenβ = 1: a Influence spread,bNumber of queries, cRunning
time

x with ε = y by Alg.x(y). With solution quality (influence spread), our algorithms
outperform Greedy algorithm in most cases. For the query complexity, our algorithms
totally outperformGreedy algorithmbya large gap exceptAlg. 4(0.1)with B = 10, 20.
They require up to 10 times fewer queries than the Greedy algorithm.

Compare Algorithm 2 with Algorithm 4, we can find that Algorithm 4 provides
the better solution than Algorithm 2 with the same value of ε for most cases. This
is consistent with the theoretical analysis and the discussion in Remark 1. However,
Algorithm 4 requires more queries and running time than Algorithm 2. It might be
because of Algorithm 2 that reaches to the budget B faster than Algorithm 4.

Figure 2 shows the performance of algorithms for the general case. Algorithm 2
can not adapt for IMkB in this case, therefore there is no plot of this algorithm in Fig. 2.
Again, our random streaming algorithm gives better quality solutions and takes fewer
queries and running time than Greedy algorithm. This consists of results of the case
β = 1. We now investigate the affect of ε on the performance of these algorithms
and the trade-off between solution quality, number of queries and running time of our
streaming ones. As ε increases, our streaming algorithms tend to take fewer queries
and running time but give lower quality of solutions. This is more clearly reflected for
the general case in Fig. 2.
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(a) Influence spread (b) Number of queries

(c) Running time

Fig. 2 Performance of algorithms for IMkB in general case: a Influence spread, b Number of queries, c
Running time

5.3 Sensor placement with k types of measures subject to a budget constraint

We further study the performance of algorithms for Sensor placement with k types of
measures subject to a budget constraint (SPkB) problem. In this problem, we have k
types of sensors for different measures and a set V of n locations, each of which can
be instrumented with only one sensor. Denote by Xi

e a random variable representing
the observation collected from a sensor of kind i and the information gained of a k-set
s is

f (s) = H(∪e∈supp(s){Xi
e}) (29)

where H is entropy function. The function f is monotone and k-submodular Ohsaka
and Yoshida (2015). We assume that allocating of a sensor to each location has a
different cost depending on its position and the kind of sensor. Given the budget B,
the SPkB problem aims at allocating sensors to maximize the information gained with
the total cost is at most B.

Experiment settings As previous works (Ohsaka and Yoshida 2015; Nguyen and Thai
2020), we use Intel Lab dataset (Bodik et al. 2004). This contains a log approximately
2.3 million readings collected from 54 sensors deployed in the Intel Berkeley research
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(a) Influence spread (b)Number of queries

(c) Running time

Fig. 3 Performance of algorithms for SPkBwhenβ = 1: a Influence spread,bNumber of queries, cRunning
time

lab between February 28th and April 5th, 2004. Temperature, humidity, and light
values are extracted and discretized into several bins of 2 degrees Celsius each, 5
points each, and 100 luxes each, respectively. Finally, we set k = 3, ε, costs and the
budget B as in the experiments of IMkB.

Experiment results We also conduct this experiment for two cases as previous exper-
iment. Figure 3 shows the performance of algorithms for the case β = 1. Differing
from the results of IMkB, Greedy gives the best solution quality but the gap with our
algorithms is not significant. Once again, Algorithm 4 is usually better than Algorithm
2. However, it needs more number of queries and running time than Algorithm 2. The
performance of random streaming algorithm and Greedy for the general case is shown
in Fig. 4. Our algorithm is able to perform approximately to Greedy but it runs faster
and takes 6 times fewer queries than Greedy.
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(a) Influence spread (b) Number of queries

(c) Running time

Fig. 4 Performance of algorithms for SPkB in general case: a Influence spread, b Number of queries, c
Running time

6 Conclusions

This paper studies the BkSM problem, which generalizes the problem of maximizing a
k-submodular function under size constraint by considering the cost of each element
and the a limited budget. We propose two single pass streaming algorithms with
provable guarantees. The core of our algorithms is to exploit the relation between
candidate solutions and the optimal solution by analyzing intermediate quantities and
using a new probability distribution then comparing the contribution value (marginal
objective per cost) to a given appropriate threshold.

In order to investigate the performance of our algorithms in practice, we con-
duct some experiments on two applications of Influence maximization and Sensor
placement. Experimental results have shown that our algorithms not only return good
solutions in term of quality requirement but also take a sharply smaller number of
queries than that of the state-of-the-art Greedy algorithm. In the future, we further
investigate the k-submodular maximization under an individual budget constraint in
which each subset Si of the solution has a budget constraint.
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