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Abstract
In the 90’s Clark, Colbourn and Johnson wrote a seminal paper where they proved that
maximum clique can be solved in polynomial time in unit disk graphs. Since then, the
complexity of maximum clique in intersection graphs of d-dimensional (unit) balls
has been investigated. For ball graphs, the problem is NP-hard, as shown by Bonamy
et al. (FOCS ’18). They also gave an efficient polynomial time approximation scheme
(EPTAS) for disk graphs. However, the complexity of maximum clique in this setting
remains unknown. In this paper, we show the existence of a polynomial time algorithm
for a geometric superclass of unit disk graphs.Moreover, we give partial results toward
obtaining an EPTAS for intersection graphs of convex pseudo-disks.

Keywords Pseudo-disks · Line transversals · Intersection graphs

1 Introduction

In an intersection graph, every vertex can be represented as a set, such that two
vertices are adjacent if and only if the corresponding sets intersect. In most settings,
those sets are geometric objects, lying in a Euclidean space of dimension d. Due to
their interesting structural properties, the intersection graphs of d-dimensional balls,
called d-ball graphs, have been extensively studied. For dimensions 1, 2 and 3, the
d-ball graphs are called interval graphs, disk graphs and ball graphs, respectively. If
all d-balls have the same radius, their intersection graphs are referred to as unit d-
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Table 1 Complexity of computing a maximum clique in d-ball graphs

Unit d-Ball graphs General d-ball graphs

d = 1 Polynomial (Gupta et al. 1982) Polynomial (Gupta et al. 1982)

d = 2 Polynomial (Clark et al. 1990) Unknown but EPTAS
(Bonnet et al. 2018;
Bonamy et al. 2018)

d = 3 Unknown but EPTAS
(Bonamy et al. 2018)

NP-hard (Bonamy et al. 2018)

d = 4 NP-hard (Bonamy et al. 2018) NP-hard (Bonamy et al. 2018)

ball graphs. The study of these classes has many applications ranging from resource
allocation to telecommunications (Bar-Noy et al. 2001; van Leeuwen 2009; Fishkin
2003).

Many problems that are NP-hard for general graphs remain NP-hard for d-ball
graphs, with fixed d ≥ 2. Even for unit disk graphs, most problems are still NP-hard.
A famous exception to this rule is the problem of computing a maximum clique, which
can be done in polynomial time in unit disk graphs as proved by Clark et al. (1990).
Their algorithm requires the position of the unit disks to be given, but a robust version
of their algorithm, which does not require this condition, was found by Raghavan and
Spinrad (2001). This is a nontrivial matter as Kang and Müller have shown that the
recognition of unit d-ball graphs is NP-hard, and even ∃R-hard, for any fixed d ≥ 2
(Kang and Müller 2012).

Finding the complexity of computing a maximum clique in general disk graphs
(with arbitrary radii) is a longstanding open problem. However in 2017, Bonnet et al.,
found a subexponential algorithm and a quasi polynomial time approximation scheme
(QPTAS) for maximum clique in disk graphs (Bonnet et al. 2018). The following
year, Bonamy et al. (2018) extended the result to unit ball graphs, and gave a ran-
domised EPTAS for both settings. The current state-of-the-art about the complexity
of computing a maximum clique in d-ball graphs is summarised in Table 1.

Bonamy et al. show that the existence of an EPTAS is implied by the following
fact: For any graph G that is a disk graph or a unit ball graph, the disjoint union of two
odd cycles is a forbidden induced subgraph in the complement of G. Surprisingly, the
proofs for disk graphs on one hand and unit ball graphs on the other hand are not related.
Bonamy et al. askwhether there is a natural explanation of this common property. They
say that such an explanation could be to show the existence of a geometric superclass
of disk graphs and unit ball graphs, for which there exists an EPTAS for solving
maximum clique.

By looking at Table 1, a pattern seems to emerge: The complexity of computing a
maximum clique in (d − 1)-ball graphs and unit d-ball graphs might be related. We
extend the question of Bonamy et al. and ask for a class of geometric intersection
graphs that (1) contains all interval graphs and all unit disk graphs, and (2) for which
maximum clique can be solved in polynomial time. Recall that the complexity of
maximum clique in disk graphs is still open. Therefore a second motivation for our
question is that showing the existence of polynomial time algorithms for geometric
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Fig. 1 The union of the unit disks centred at points of s is a 2-pancake

superclasses of unit disk graphs may help to determine the complexity of maximum
clique in disk graphs.

We introduce a class C of geometric intersection graphs which contains all interval
graphs and all unit disk graphs, and show thatmaximumclique can be solved efficiently
inC . Furthermore, the definition of our class generalises to any dimension, i.e. for any
fixed d ≥ 2 we give a class of geometric intersection graphs that contains all (d − 1)-
ball graphs and all unit d-ball graphs. We conjecture that for d = 3, there exists an
EPTAS for computing a maximum clique in the corresponding class. It is necessary
that these superclasses be defined as classes of geometric intersection graphs. Indeed,
it must be if we want to understand better the reason why efficient algorithms exist for
both settings. For instance, taking the union of interval graphs and unit disk graphs
would not give any insight, since it is a priori not defined by intersection graphs of
some geometric objects.

In order to define the class, we first introduce the concept of d-pancakes. A 2-
pancake is defined as the union of all unit disks whose centres lie on a line segment
s, with s itself lying on the x-axis. An example is depicted in Fig. 1. This definition
is equivalent to the Minkowski sum of a unit disk centred at the origin and a line
segment on the x-axis, where the Minkowski sum of two sets A, B is defined as the
set {a + b | a ∈ A, b ∈ B}. Similarly a 3-pancake is the union of all unit balls whose
centres lie on a disk D, with D lying on the xy-plane. More generally, we have:

Definition 1 A d-pancake is a d-dimensional geometric object. Let us denote by
{ξ1, ξ2, . . . , ξd} the canonical basis of Rd . A d-pancake is defined as the Minkowski
sum of the unit d-ball centred at the origin and a (d−1)-ball in the hyperspace induced
by {ξ1, ξ2, . . . , ξd−1}.

We denote by Πd the class of intersection graphs of some finite collection of d-
pancakes and unit d-balls. In this paper, we give a polynomial time algorithm for
solving maximum clique in Π2: the intersection graphs class of unit disks and 2-
pancakes. This is to put in contrast with the fact that computing a maximum clique in
intersection graphs of unit disks and axis-parallel rectangles (instead of 2-pancakes) is
NP-hard and evenAPX-hard, as shown togetherwithBonnet andMiltzow (2020), even
though maximum clique can be solved in polynomial time in axis-parallel rectangle
graphs (Imai and Asano 1983).

Relatedly, it would be interesting to generalise the existence of an EPTAS for
maximum clique to superclasses of disk graphs. This was achieved with Bonnet and
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Miltzow for intersection graphs of homothets of a fixed bounded centrally symmetric
convex set (Bonnet et al. 2020). In this paper, we aim at generalising further to inter-
section graphs of convex pseudo-disks, for which we conjecture the existence of an
EPTAS, and give partial results towards proving it. The proof of these partial results
relies on geometric permutations of line transversals. We do a case analysis on the
existence of certain geometric permutations, and show that some convex pseudo-disks
must intersect. Holmsen and Wenger have written a survey on geometric transversals
(Wenger and Holmsen 2017). The results that are related to line transversals are either
of Hadwiger-type, concerned with the conditions of existence of line transversals, or
about the maximum number of geometric permutations of line transversals. To the
best of our knowledge, we do not know of any result that uses geometric permutations
of line transversals to show something else. We consider this tool, together with the
polynomial time algorithm for computing a maximum clique in Π2, to be our main
contributions.

2 Preliminaries

2.1 Graph notations

Let G be a simple graph. We say that two vertices are adjacent if there is an edge
between them, otherwise they are independent. For a vertex v, the set N (v) denotes
its neighbourhood, i.e. the set of vertices adjacent to v. We denote by ω(G), α(G),
and χ(G) the clique number, the independence number and the chromatic number of
G, respectively.

We denote by V (G) the vertex set of G. Let H be a subgraph of G. We denote by
G \ H the subgraph induced by V (G) \ V (H). We denote by G the complement of
G, which is the graph with the same vertex set, but where edges and non-edges are
interchanged. A bipartite graph is graph whose vertex set can be partitioned into two
independent sets. A graph is cobipartite if its complement is a bipartite graph.

We denote by iocp(G) the induced odd cycle packing number of G, i.e. the maxi-
mum number of vertex-disjoint induced odd cycles (for each cycle the only edges are
the ones making the cycle), such that there is no edge between two vertices of different
cycles.

2.2 Geometric notations

Throughout the paper we only consider Euclidean spaces with the Euclidean distance.
Let p and p′ be two points in R

d . We denote by (p, p′) the line going through them,
and by [p, p′] the line segment with endpoints p and p′. We denote by d(p, p′) the
distance between p and p′. For any fixed d, we denote by O the origin in R

d . When
d = 2, we denote by Ox and Oy the x and y-axis, respectively. For d = 3, we
denote by xOy the xy-plane. We usually denote a d-pancake by Pd . As a reminder,
a 2-pancake is the Minkowski sum of the unit disk centred at the origin O and a line
segment lying on the axis Ox .
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Definition 2 Let {Si }1≤i≤n be a family of subsets of Rd . We denote the intersection
graph of {Si } byG({Si }). It is the graphwhose vertex set is {Si | 1 ≤ i ≤ n} andwhere
there is an edge between two vertices if and only if the corresponding sets intersect.

Definition 3 In R2 we denote by D(c, ρ) a closed disk centred at c with radius ρ. Let
D = D(c, ρ) and D′ = D(c′, ρ′) be two intersecting disks. We call lens induced by
D and D′ the region D ∩ D′. We call half-lenses the two closed regions obtained by
dividing the lens along the line (c, c′).

For any x1 ≤ x2, we denote by P2(x1, x2) the 2-pancake that is the Minkowski
sum of the unit disk centred at O and the line segment with endpoints x1 and x2.
Therefore we have P2(x1, x2) = ⋃

x1≤x ′≤x2 D((x ′, 0), 1). Behind the definition of
the d-pancakes is the idea that they should be as similar as possible to unit d-balls.
In particular 2-pancakes should behave as much as possible like unit disks. This is
perfectly illustrated when the intersection of a 2-pancake and a unit disk is a lens, as
the intersection of two unit disks would be.

Definition 4 Let {P2
j }1≤ j≤n be a set of 2-pancakes. For any unit disk D, we denote

by L(D, {P2
j }), or simply by L(D) when there is no risk of confusion, the set of

2-pancakes in {P2
j } whose intersection with D is a lens.

Let D denote D(c, 1) for some point c. Observe that if a 2-pancake P2(x1, x2)
for some x1 ≤ x2 is in L(D), then the intersection between D and P2(x1, x2)
is equal to D ∩ D((x1, 0), 1) or D ∩ D((x2, 0), 1). We make an abuse of notation
and denote by d(D, P2(x1, x2)) the smallest distance between c and a point in the
line segment [x1, x2]. Observe that if the intersection between D and P2(x1, x2) is
equal to D ∩ D((x1, 0), 1), then d(D, P2(x1, x2)) = d(c, (x1, 0)), and otherwise
d(D, P2(x1, x2)) = d(c, (x2, 0)). The following observation gives a characterisation
of when the intersection between a unit disk and a 2-pancake is a lens.

Observation 1 Let D((cx , cy), 1) be a unit disk intersecting with a 2-pancake
P2(x1, x2). Then their intersection is a lens if and only if (cx ≤ x1 or cx ≥ x2)
and the interior of D((cx , cy), 1) does not contain any point in {(x1,±1), (x2,±1)}.

The observation follows immediately from the fact that the intersection is a lens if
and only if D((cx , cy), 1) does not contain a point in the open line segment between
the points (x1,−1) and (x2,−1), nor in the open line segment between the points
(x1, 1) and (x2, 1).

3 Results

Unless explicitly mentioned, the following results were stated in the preliminary ver-
sion of this paper (Grelier 2020), but their proofswere omitted due to space constraints.

We answer in Sect. 4 the 2-dimensional version of the question asked by Bonamy et
al. (2018): We present a polynomial time algorithm for computing a maximum clique
in a geometric superclass of interval graphs and unit disk graphs.
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Theorem 1 There exists a polynomial time algorithm for computing amaximum clique
in Π2, even without a representation.

A part of the proof of Theorem 1 appeared in the preleminary version of this paper
(Grelier 2020). Kang and Müller (2012) have shown that for any fixed d ≥ 2, the
recognition of unit d-ball graphs is NP-hard, and even ∃R-hard. We conjecture that
it is also hard to test whether a graph is in Πd for any fixed d ≥ 3, and prove it for
d = 2.

Theorem 2 Testing whether a graph is in Π2 is NP-hard, and even ∃R-hard.
The proof of Theorem 2 figures in Sect. 5. It immediately implies that given a graph

G in Π2, finding a representation of G with 2-pancakes and unit disks is NP-hard.
Therefore having a robust algorithm as defined in Raghavan and Spinrad (2001) is of
interest. The algorithm of Theorem 1 takes any abstract graph as input, and outputs a
maximum clique or a certificate that the graph is not in Π2.

Our polynomial time algorithm for maximum clique in Π2 gives some insight to
why the complexity of maximum clique in disk graphs is still unknown. The class
of interval graphs is arguably small: there is no induced cycle of length at least 4.
Likewise, one can say that the class of unit disk graphs is small, as there is no star with
at least 6 leaves. However, with disks one can realise arbitrarily large induced cycles
and stars. One could have wondered whether when looking for a geometric class of
graphs, wanting both arbitrarily large induced cycles and stars would force too much
complexity. Our results with Π2 shows that actually, this is not where the difficulty
lies. Indeed, one can realise with unit disks and 2-pancakes arbitrarily large induced
cycles and stars. To solve maximum clique in disk graphs, or to show NP-hardness, it
seems a good idea to investigate what are the disk graphs that are not in Π2.

Concerning Π3, we conjecture the following:

Conjecture 1 There exists an integer K such that for any graph G in Π3, we have
iocp(G) ≤ K .

We show in Sect. 7 that this would be sufficient to obtain an EPTAS.

Theorem 3 If Conjecture 1 holds, there exists a randomised EPTAS for computing a
maximum clique in Π3, even without a representation.

By construction the class Πd contains all (d − 1)-ball graphs and all unit d-ball
graphs. Indeed a (d−1)-ball graph can be realised by replacing in a representation each
(d − 1)-ball by a d-pancake. In addition to this property, we want fast algorithms for
maximum clique in Πd . The definition of Πd may seem unnecessarily complicated.
The most surprising part of the definition is probably the fact that we use d-pancakes
instead of simply using (d − 1)-balls restricted to be in the same hyperspace of Rd .
However, we show in Sect. 4.3 that our arguments for proving fast algorithms would
not hold with such a definition.

We give partial results toward showing the existence of an EPTAS for maximum
clique in intersection graphs of convex pseudo-disks. We say that a graph is a convex
pseudo-disk graph if it is the intersection graph of convex sets in the plane such that
the boundaries of every pair intersect at most twice. We denote by G the class of
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intersection graphs of convex pseudo-disks. A structural property used to show the
existence of an EPTAS for disk graphs is that for any disk graph G, iocp(G) ≤ 1.
The proof of Bonnet et al. (2018) relies heavily on the fact that disks have centres.
However, convex pseudo-disks do not, therefore adapting the proof in this new setting
does not seem easy. While we were not able to extend this structural result to the class
G, we show a weaker property: The complement of a triangle and an odd cycle is a
forbidden induced subgraph in G. We write “complement of a triangle” to make the
connection with iocp clear, but note that actually the complement of a triangle is an
independent set of three vertices. Below we state this property more explicitly.

Theorem 4 Let G be in G. If there exists an independent set of size 3, denoted by H,
in G, and if for any u ∈ H and v ∈ G \ H, the edge {u, v} is an edge of G, then G \ H
is cobipartite.

A part of the proof of Theorem 4 appeared in the preliminary version of this paper
(Grelier 2020). We thank the anonymous reviewer who found a flaw in one of the
lemmas, that we fix in this version. Note that a cobipartite graph is not the complement
of an odd cycle. Given the three pairwise non-intersecting convex pseudo-disks in H ,
we give a geometric characterisation of the two independent sets in the complement
of G \ H . We conjecture that Theorem 4 is true even when H is the complement of
any odd cycle, which implies:

Conjecture 2 For any convex pseudo-disk graph G, we have iocp(G) ≤ 1.

If Conjecture 2 holds, it is straightforward to obtain an EPTAS for maximum clique
in convex pseudo-disks graphs, by using the method of Bonamy et al. (2018).

4 Computing amaximum clique in52 in polynomial time

In this section we prove Theorem 1. We first give a proof when a representation is
given. The idea of the algorithm is similar to the one of Clark et al. (1990). We prove
that if u and v are the most distant vertices in a maximum clique, then N (u) ∩ N (v)

is cobipartite. In a second part, we give a robust algorithm, meaning that it does not
require a representation, using tools introduced by Raghavan and Spinrad (2001).

4.1 Computing amaximum clique with a representation

In their proof, Clark, Colbourn and Johnson use the following fact: if c and c′ are
two points at distance ρ, then the diameter of the half-lenses induced by D(c, ρ) and
D(c′, ρ) is equal to ρ. We prove here a similar result.

Lemma 1 Let c and c′ be two points at distance ρ, and let be ρ′ ≥ ρ. Then the diameter
of the half-lenses induced by D(c, ρ) and D(c′, ρ′) is at most ρ′.

Proof First note that if ρ′ > 2ρ then the half-lenses are half-disks of D(c, ρ). The
diameter of these half-disks is equal to 2ρ, which is smaller than ρ′. Let us now assume
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that we have ρ′ ≤ 2ρ. The boundary of the lens induced by D(c, ρ) and D(c′, ρ′)
consists of two arcs. The line (c, c′) intersects exactly once with each arc. One of these
two intersections is c′, we denote by c′′ the other. Let us consider the disk D(c′′, ρ′).
Note that it contains the disk D(c, ρ). Therefore the lens induced by D(c, ρ) and
D(c′, ρ′) is contained in the lens induced by D(c′′, ρ′) and D(c′, ρ′), whose half-
lenses have diameter ρ′. The claim follows from the fact that the half-lenses of the
first lens are contained in the ones of the second lens. �	

Before stating the next lemma, we introduce the following definition:

Definition 5 Let {Si }1≤i≤n and {S′
j }1≤ j≤n′ be two families of sets in R

2. We say that
{Si } and {S′

j } fully intersect if for all 1 ≤ i ≤ n and 1 ≤ j ≤ n′ the intersection
between Si and S′

j is not empty.

Lemma 2 Let D := D(c, 1) be a unit disk and let P2 := P2(x1, x2) be in L(D). Let
{Di } be a set of unit disks that fully intersect with {D, P2}, such that for anyDi we have
d(D,Di ) ≤ d(D, P2). Moreover if P2 is in L(Di )we require d(Di , P2) ≤ d(D, P2).
Also let {P2

j } be a set of 2-pancakes that fully intersect with {D, P2}, such that for

any P2
j in {P2

j } ∩ L(D), we have d(D, P2
j ) ≤ d(D, P2). Then G({Di } ∪ {P2

j }) is
cobipartite.

Proof The proof is illustrated in Fig. 2. Without loss of generality, let us assume
that the intersection between D and P2 is equal to D ∩ D((x1, 0), 1). Remember
that by definition we have x1 ≤ x2. Let P2(x ′

1, x
′
2) be a 2-pancake in {P2

j }. As it
is intersecting with P2, we have x ′

2 ≥ x1 − 2. Assume by contradiction that we
have x ′

1 > x1. Then with Observation 1, we have that P2(x ′
1, x

′
2) is in L(D) and

d(D, P2(x ′
1, x

′
2)) > d(D, P2), which is impossible. Therefore we have x ′

1 ≤ x1, and
so P2(x ′

1, x
′
2) must contain D((x ′, 0), 1) for some x ′ satisfying x1 − 2 ≤ x ′ ≤ x1. As

the line segment [(x1 − 2, 0), (x1, 0)] has length 2, the 2-pancakes in {P2
j } pairwise

intersect.
We denote by ρ the distance d(D, P2). Let D(ci , 1) be a unit disk in {Di }. By

assumption, ci is in D(c, ρ) ∩ D((x1, 0), 2). We then denote by R the lens that is
induced by D(c, ρ) and D((x1, 0), 2). We cut the lens into two parts with the line
(c, (x1, 0)), and denote by R1 the half-lens that is not below this line, and by R2 the
half-lens that is not above it. With Lemma 1, we obtain that the diameter of R1 and
R2 is at most 2. Let us assume without loss of generality that c is not below Ox . We
denote by X1 the set of unit disks in {Di } whose centre is in R1. We denote by X2
the union of {P2

j } and of the set of unit disks in {Di } whose centre is in R2. Since
the diameter of R1 is 2, any pair of unit disks in X1 intersect, therefore G(X1) is
a complete graph. To show that G(X2) is a complete graph too, it remains to show
that any unit disk D(ci , 1) in X2 and any 2-pancake P2(x ′

1, x
′
2) in {P2

j } intersect. We

denote by P2+ the following convex shape: ∪x ′
1≤x≤x ′

2
D((x, 0), 2). Note that the fact

thatD(ci , 1) and P2(x ′
1, x

′
2) intersect is equivalent to having ci in P2+. Let us consider

the horizontal line going through c, and let us denote by c′ the left intersection with
the circle centred at (x1, 0) with radius 2. We also denote by r2 the extremity of R that
is in R2.
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Fig. 2 Illustration of the proof of Lemma 2

Let us assume by contradiction that ci is above the line segment [c, c′]. As by
assumption ci is in R2, it implies that the x-coordinate of ci is smaller than the one
of c. Therefore P2 is in L(Di ) and d(Di , P2) > d(D, P2), which is impossible
by assumption. Let us denote by R2,− the subset of R2 that is not above the line
segment [c, c′]. To prove that D(ci , 1) and P2(x ′

1, x
′
2) intersect, it suffices to show

that P2+ contains R2,−. As shown above, P2(x ′
1, x

′
2) contains D((x ′, 0), 1) for some

x ′ satisfying x1 − 2 ≤ x ′ ≤ x1. This implies that P2+ contains D((x1 − 2, 0), 2) ∩
D((x1, 0), 2), and in particular contains (x1, 0). Moreover as c is not below Ox , r2 is
also in D((x1 − 2, 0), 2) ∩ D((x1, 0), 2). As P2 intersects D, P2+ contains c. Let us
assume by contradiction that P2+ does not contain c′. Then x ′

2 must be smaller than
the x-coordinate of c′, because otherwise the distance d((x ′

2, 0), c
′) would be at most

d((x1, 0), c′), which is equal to 2. But then if P2+ does not contain c′, then it does
not contain c either, which is a contradiction. We have proved that P2+ contains the
points (x1, 0), c, c′ and r2. By convexity, and using the fact that two circles intersect
at most twice, we obtain that R2,− is contained in P2+. This shows that any two
elements in X2 intersect, which implies that G(X2) is a complete graph. Finally, as
X1 ∪ X2 = {Di } ∪ {P2

j }, we obtain that G({Di } ∪ {P2
j }) can be partitioned into two

cliques, i.e. it is cobipartite. �	

Lemma 3 Let D := D((cx , cy), 1) and D′ := D((c′
x , c

′
y), 1) be two unit disks such

that cx ≤ c′
x . Let P

2
1 := P2(x1, x2) be a 2-pancake intersecting with D and D′, such

that x1 ≥ cx and P2
1 is not in L(D). If P2

2 := P2(x ′
1, x

′
2) is a 2-pancake intersecting

with D and D′, but not intersecting with P2
1 , then P2

2 is in L(D) ∩ L(D′).

Proof The proof is illustrated in Fig. 3. First let us prove that P2
2 cannot be on the right

side of P2
1 , i.e. we have x

′
1 ≤ x1. Let us assume by contradiction x ′

1 > x1. As P2
1 and

P2
2 are not intersecting, we have x ′

1 > x1 + 2. Hence, since we assume x1 ≥ cx , we
obtain d(c, (x ′

1, 0)) > 2, which is impossible. Therefore we have x ′
1 ≤ x1, and even

x ′
1 < x1 − 2 since P2

1 and P2
2 are not intersecting.

Without loss of generality, let us assume cy ≥ 0. Let us consider the horizontal line
�with height 1. By assumption it intersects with the circle centred at (cx , cy)with unit
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Fig. 3 Illustration of the proof of Lemma 3

Fig. 4 First case: D(c, 2) ∩ D(c′, 2) ∩ Ox �= ∅

radius. There are at most two intersections, and we denote by x� the x-coordinate of
the one to the right. As P2

1 is not in L(D), we have x1 ≤ x�. Then, since x ′
1 < x1 − 2

and the fact that D has diameter 2, we know that the points (x ′
1, 1) and (x ′

1,−1) are
not in D, which implies that P2

2 is in L(D). Likewise as we have cx ≤ c′
x , the points

(x ′
1, 1) and (x ′

1,−1) are not in D′, and so P2
2 is in L(D) ∩ L(D′). �	

Lemma 4 Let D := D(c, 1) and D′ := D(c′, 1) be two intersecting unit disks. Let
{Di } be a set of unit disks that fully intersect with {D,D′}, such that for each unit disk
Di we have d(D,Di ) ≤ d(D,D′) and d(D′,Di ) ≤ d(D,D′). Also let {P2

j } be a set of
2-pancakes that fully intersect with {D,D′}, such that for any P2

j in {P2
j } ∩ L(D), we

have d(D, P2
j ) ≤ d(D,D′), and for any P2

j in {P2
j } ∩ L(D′), we have d(D′, P2

j ) ≤
d(D,D′). Then G({Di } ∪ {P2

j }) is cobipartite.

Proof We denote by ρ the distance between c and c′. We denote by R the lens induced
by D(c, ρ) and D(c′, ρ). We cut R with the line segment [c, c′], which partitions R
into two half-lenses that we denote by R1 and R2. By assumption, the centre of any
unit disk in {Di } must be in R. Since R1 and R2 have diameter ρ which is at most 2,
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any two unit disks having their centres in R1 must intersect, and the same holds with
R2. Therefore G({Di }) is cobipartite, which is the claim if {P2

j } is empty.

We now assume that {P2
j } is not empty. In order to show the claim, we do a case

analysis according to whether the intersection between D(c, 2) ∩ D(c′, 2) and Ox is
empty or not. Let us assume that the latter holds, as shown in Fig. 4. Let P2 be in a
2-pancake in {P2

j }. As P2 intersects with D, P2 contains a unit disk that intersects

with D. Likewise, P2 contains a unit disk that intersects with D′. This implies that
P2 contains a point in D(c, 2) ∩ Ox and a point in D(c′, 2) ∩ Ox . By convexity of a
2-pancake, P2 contains a point (x ′, 0), where (x ′, 0) is inD(c, 2)∩D(c′, 2)∩Ox . We
denote by R+ the lens that is induced by D(c, 2) and D(c′, 2) and cut it with the line
(c, c′).We denote by R+

1 (respectively R+
2 ) the half-lens that contains R1 (respectively

R2). Let us assume that (x ′, 0) is in R+
1 . By assumption D((x ′, 0), 2) contains c and

c′. Let us consider the third extremity of R1, along with c and c′, that we denote by
r1. By making a circle centred at r1 grow, we observe that the farthest point from r1
in R+

1 can only be at one of the three extremities of R+
1 . However by Lemma 1 these

distances are at most 2, which implies that the distance between (x ′, 0) and r1 is at
most 2. Using the fact that two circles intersect at most twice, we obtain that R1 is
contained inD((x ′, 0), 2). Therefore P2 intersect with all unit disks whose centre is in
R1, and with all 2-pancakes in L(D)∩ L(D′) that contain a disk whose centre is in R1.
Let P2(x1, x2) and P2(x ′

1, x
′
2) be two 2-pancakes in {P2

j } such that they contain each
a unit disk whose centre is in R+

1 , but such that they do not contain a unit disk whose
centre is in R1. In particular, P2(x1, x2) and P2(x ′

1, x
′
2) are not in L(D) ∩ L(D′). We

claim that they intersect. Suppose by contradiction that they do not. Without loss of
generality, let us assume that P2(x1, x2) is to the right of P2(x ′

1, x
′
2), and that cx ≤ c′

x ,
where cx and c′

x denote the x-coordinate of c and c′ respectively. Since P2(x1, x2)
does not contain a disk in R1, and since it is on the right side of P2(x ′

1, x
′
2), it implies

that it does not contain a disk with centre in D(c, ρ). Therefore P2(x1, x2) cannot
be in L(D). Moreover the fact that it does not contain a disk with centre in D(c, ρ)

implies x1 ≥ cx . We finally apply Lemma 3 to obtain a contradiction. We denote X1
the set of unit disks whose centre is in R1 and 2-pancakes that contain a disk whose
centre is in R+

1 . We know that two unit disks in X1 intersect. Moreover we have shown
that a 2-pancake and a unit disk in X1 intersect. For a pair of two pancakes, if one of
them contains a disk whose centre is in R1 it is done for the same reasons. If none of
them does, then we have shown above that they intersect. This shows that G(X1) is
a complete graph. By defining X2 as the set of the remaining disks and 2-pancakes,
using the symmetry of the problem we obtain that G(X2) is also a complete graph.

Now let us assume that the intersection betweenD(c, 2)∩D(c′, 2) and Ox is empty,
as shown in Fig. 5. As {P2

j } is not empty, the set Ox \ (D(c, 2) ∪ D(c′, 2)) consists
of three connected component, one of them bounded. We denote by s the closed line
segment consisting of the bounded connected component and its boundaries. Any 2-
pancake P2 in {P2

j } contains a unit disk whose centre is in D(c, 2) ∩ Ox , otherwise

P2 would not intersect with D. Likewise P2 contains a unit disk whose centre is in
D(c′, 2) ∩ Ox , and therefore P2 contains s. This implies that all 2-pancakes in {P2

j }
pairwise intersect. Let us assume without loss of generality that R1 is closer to Ox
than R2. Let us show that any 2-pancake P2 in {P2

j } and any unit disk whose centre
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Fig. 5 Second case: D(c, 2) ∩ D(c′, 2) ∩ Ox = ∅

is in R1 intersect. This is equivalent to show that for any point p in R1, there exists a
unit disk contained in P2 with centre q ∈ P2 ∩ Ox , such that the Euclidean distance
between p and q is at most 2. We denote by P2+ the Minkowski sum of the disk with
radius 2 centred at O and the line segment s, i.e. P2+ = ∪x ′∈sD(x ′, 2). Note that P2+
is convex. We claim that P2+ contains R1, which implies the desired property. Since s
contains a point p1 in D(c, 2), we know that P2+ contains c. Likewise, as s contains
a point p2 in D(c′, 2), then P2+ contains c′, and therefore by convexity the whole line
segment [c, c′]. Therefore P2+ contains the quadrilateral cc′ p2 p1. If this quadrilateral
contains R1 we are done. Otherwise, it may not contain a circular segment of the disk
D(c′, ρ) or a circular segment of the disk D(c, ρ). Let us assume that we have the
worst case, meaning that both circular segments are not in cc′ p2 p1. Let us consider
the circle C1 centred at p1 with radius 2, and the circle C′ centred at c′ with radius ρ.
The two circles intersect at c. Let us consider the point p′

1 that is at the intersection
between C′ and the line segment [c, p1]. By definition, p′

1 is inside the disk induced
by C1. As two circles intersect at most twice, we obtain that the arc cp′

1 centred at
c′ with radius ρ is contained in the disk induced by C1, and therefore also in P2+. By
convexity, we know that the circular segment of the disk D(c′, ρ) with chord [c, p′

1]
is in P2+. We can apply the same arguments for the other side to show that R1 is in P2+.
Hence by defining X1 as the set of disks whose centre centre is in R1, union the set
of 2-pancakes, and X2 as the set of disks whose centre is in R2, we have that G(X1)

and G(X2) are complete graphs. �	

Note that Lemmas 2 and 4 give a polynomial time algorithm for maximum clique
in Π2 when a representation is given. First compute a maximum clique that contains
only 2-pancakes, which can be done in polynomial time since the intersection graph
of a set of 2-pancakes is an interval graph (Gupta et al. 1982). Then for each unit
disk D, compute a maximum clique which contains exactly one unit disk, D, and
an arbitrary number of 2-pancakes. Because finding out whether a unit disk and a 2-
pancake intersect takes constant time, computing such a maximum clique can be done
in polynomial time. Note that if a maximum clique contains at least two unit disks,
then in quadratic time we can find in this maximum clique either a pair of unit disks
or a unit disk and a 2-pancake whose intersection is a lens, such that the conditions
of Lemmas 2 or of 4 are satisfied. By applying the corresponding lemma, we know
that we are computing a maximum clique in a cobipartite graph, which is the same
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as computing a maximum independent set in a bipartite graph. As this can be done in
polynomial time (Edmonds and Karp 1972), we can compute a maximum clique in
Π2 in polynomial time when the representation is given.

4.2 Computing amaximum clique without a representation

To obtain an algorithm that does not require a representation, we use the notion of cobi-
partite neighbourhood edge elimination ordering (CNEEO) as introduced byRaghavan
and Spinrad (2001). Let G be a graph with m edges. Let Λ = e1, e2, . . . , em be an
orderingof the edges.LetGΛ(k)be the subgraphofGwith edge set {ek , ek+1, . . . , em}.
For each ek = (u, v), NΛ,k is defined as the set of vertices adjacent to u and v inGΛ(k).

Definition 6 (Raghavan and Spinrad 2001) We say that an edge ordering Λ =
{e1, e2, . . . , em} is a CNEEO if for each ek , NΛ,k induces a cobipartite graph in G.

Lemma 5 (Raghavan and Spinrad 2001) Given a graph G and a CNEEO Λ for G, a
maximum clique in G can be found in polynomial time.

They propose a greedy algorithm for finding a CNEEO: When having chosen the
first i − 1 edges e1, . . . , ei−1, try every remaining edge one by one until finding one
that satisfies the required property. If no such edge exists, return that the graph does
not admit a CNEEO, which follows from Lemma 6.

Lemma 6 (Raghavan and Spinrad 2001) If G admits a CNEEO, then the greedy algo-
rithm finds a CNEEO for G.

To show that it is possible to compute a maximum clique in a graph G in Π2,
we show that such a graph admits a CNEEO. As noted by Raghavan and Spinrad,
the algorithm computes a maximum clique for any graph that admits a CNEEO, and
otherwise states that the given graph does not admit a CNEEO. In particular, the
algorithm does not say whether the graph is indeed in Π2, and cannot be used for
recognition.

Theorem 5 If a graph G is in Π2, then G admits a CNEEO.

Theorem 5, Lemmas 5 and 6 immediately imply Theorem 1. To prove Theorem 5,
we use two more lemmas.

Lemma 7 Let D = D((cx , cy), 1) be a unit disk. Let {P2
j } be a set of 2-pancakes that

all intersect with D. Then G({P2
j }) is cobipartite.

Proof Let P2(x1, x2) be in {P2
j }. By triangular inequality we have x1 ≤ cx + 2 or

x2 ≥ cx−2. It implies that P2(x1, x2) contains the line segment [(x ′−1, 0), (x ′+1, 0)]
for some x ′ satisfying cx − 2 ≤ x ′ ≤ cx + 2. We define X1 as the set of 2-pancakes
in {P2

j } that contain the line segment [(x ′ − 1, 0), (x ′ + 1, 0)] for some x ′ satisfying
cx −2 ≤ x ′ ≤ cx , and X2 as {P2

j }\X1.We obtain thatG(X1) andG(X2) are complete
graphs. �	
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Lemma 8 Let P2 = P2(x1, x2) and P ′2 = P2(x ′
1, x

′
2) be two intersecting 2-pancakes.

Let {P2
j } be a set of 2-pancakes that fully intersect with {P2, P ′2}, such that for any

P2
j in {P2

j }, P2
j is not contained in P2 nor in P ′2. Then G({P2

j }) is cobipartite.

Proof Let P2(x ′′
1 , x ′′

2 ) be in {P2
j }. Let us first assume that one of P2, P ′2 is contained

in the other. Without loss of generality, let us assume that P2 is contained in P ′2,
which is equivalent to having x ′

1 ≤ x1 ≤ x2 ≤ x ′
2. By assumption, as P2(x ′′

1 , x ′′
2 ) is

not contained in P2, we have x ′′
1 < x1 or x2 < x ′′

2 . As P
2(x ′′

1 , x ′′
2 ) intersects with P2,

it implies that P2(x ′′
1 , x ′′

2 ) contains (x1 − 1, 0) or (x2 + 1, 0). We define X1 as the set
of 2-pancakes in {P2

j } that contains (x1 − 1, 0), and X2 as {P2
j } \ X1. We obtain that

G(X1) and G(X2) are complete graphs.
If none of P2, P ′2 is contained in the other, we can assumewithout loss of generality

that x1 ≤ x ′
1 ≤ x2 ≤ x ′

2. Therefore we have x
′′
1 < x ′

1 or x2 < x ′′
2 , which implies that

P2(x ′′
1 , x ′′

2 ) contains (x ′
1 − 1, 0) or (x2 + 1, 0). We conclude as above. �	

Proof of Theorem 5 Let us consider any representation of G with unit disks and 2-
pancakes. We divide the set of edges into three sets: E1, E2 and E3. E1 contains all
the edges between a pair of unit disks, or between a unit disk D and a 2-pancake in
L(D). E2 contains the edges between a unit disk and a 2-pancake that are not in E1.
E3 contains the edges between a pair of 2-pancakes. For an edge e = {u, v} in E1,
we call length of e the distance between u and v, be they unit disks or a unit disk D
and a 2-pancake in L(D). We order the edges in E1 by non increasing length, which
gives an ordering Λ1. We take any ordering Λ2 of the edges in E2. For E3, we take
any ordering Λ3 such that for any edge e = {u, v}, no edge after e in Λ3 contains
a 2-pancake contained in u or v. This can be obtained by considering the smallest
2-pancakes first. We finally define an ordering Λ = Λ1Λ2Λ3 on E . Let us consider
an edge ek . If ek is in E1, Lemmas 2 and 4 show that NΛ,k induces a cobipartite graph.
If ek is in E2, we use Lemma 7, and if ek is in E3, we conclude with Lemma 8. This
shows that Λ is a CNEEO. �	

4.3 Amotivation for5d

As we define it, Πd is the class of intersection graphs of d-pancakes and unit d-balls.
The properties that we desire are:

1. Πd contains (d − 1)-ball graphs and unit d-ball graphs,
2. Maximum clique can be computed as fast in Πd as in (d − 1)-ball graphs and unit

d-ball graphs.

Let {ξi }1≤i≤d be the canonical basis of Rd . Let us consider another class Π̃d , that
might a priori satisfy those properties.

Definition 7 We denote by Π̃d the class of intersection graphs of (d − 1)-balls lying
on the hyperspace induced by {ξ1, ξ2, . . . , ξd−1} and of unit d-balls.

This class might look more natural since it makes use only of balls and not of
pancakes. It contains bydefinition (d−1)-ball graphs andunitd-ball graphs.Moreover,
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Fig. 6 Lemma 4 does not hold in Π̃2: G({D1,D2, [x1, x2]}) is not cobipartite

as we want to be able to compute a maximum clique fast, we are looking for a “small”
superclass. However, while we do not rule out the existence of a polynomial algorithm
for computing a maximum clique in Π̃2, we demonstrate that Lemma 4 does not hold
in Π̃2.

The counterexample is illustrated in Fig. 6. We have two intersecting unit disks D
andD′. Moreover each one ofD1,D2 and the line segment [x1, x2] intersects with both
D andD′. The distances d(D,D1), d(D′,D1) are smaller than d(D,D′), and the same
hold for D2. To define L(D), a natural way would be to use the same characterisation
as in Observation 1. Therefore the line segment [x1, x2] is not in L(D) nor in L(D′).
However,G({D1,D2, [x1, x2]}) is an edgeless graph with three vertices, and therefore
is not cobipartite.

5 Recognition of graphs in52

We show that testing whether a graph can be obtained as the intersection graph of unit
disks and 2-pancakes is hard, as claimed in Theorem 2.

Proof of Theorem 2 We do a reduction from recognition of unit disk graphs, which is
∃R-hard as shown by Kang and Müller (2012). Let G = (V , E) be a graph with n
vertices. We are going to construct

(n
2

)
graphs such that G is a unit disk graph if and

only if at least one of these new graphs is inΠ2. Let S and S′ be two stars with internal
vertex s and s′ respectively, having 14n + 8 leaves each. Let W and W ′ be two paths
with 2n vertices each with end vertices w1, w2n and w′

1, w
′
2n respectively. Let u and v

be two vertices in V . We define Gu,v as the graph obtained by connecting s to s′, w1
to u, w′

1 to v, w2n to s and w′
2n to s

′. We claim that G is a unit disk graph if and only
if Gu,v is in Π2 for some u and v in V . First let us assume that G is a unit disk graph.
Let us consider the set P of the centres of the unit disks in any fixed representation of
G. Consider two extreme points in P , meaning that removing any of them modifies
the convex hull of the point set. Take the two unit disks D and D′ corresponding to
those two extreme points, and let us denote by u and v the corresponding vertices in
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G. Now take two sets {Di }1≤i≤2n and {D′
j }1≤ j≤2n of 2n unit disks such that G({Di })

and G({D′
j }) are paths, and such that no two unit disks of the form Di ,D′

j intersect.
Moreover we require that G({Di }) ∩ G = ({u},∅) and G({D j }) ∩ G = ({v},∅), and
that all unit disks centres are on the same side of the line (c2n, c′

2n), which are the
centres of D2n and D′

2n respectively. This is possible because the most distant points
in the unit disk representation of G have distance at most 4n, and we have 2n unit
disks in each path. Then we translate and rotate everything so that the y-coordinate of
c2n and c′

2n is equal to 2, and that all other centres are above the horizontal line with
height 2. We take two intersecting 2-pancakes such that one also intersect with D2n
and the other with D′

2n . We choose these 2-pancakes big enough so that for each of
them we can add 14n + 8 pairwise non intersecting unit disks, but intersecting with
their respective 2-pancake. This shows that if G is a unit disk graph, then Gu,v is in
Π2.

Let us now assume that Gu,v is in Π2, for some u, v in V . As a unit disk can
intersect at most with 5 pairwise non intersecting unit disks, we have that in any Π2

representation of Gu,v , s and s′ must be represented by 2-pancakes, denoted by P and
P ′ respectively. Let x be the length of the line segment obtained as the intersection
of P and Ox . Note that all points of a unit disk intersecting a 2-pancake are within
distance 3 of Ox . Therefore, the unit disks corresponding to leaves of s are contained
in a rectangle with area 6(x + 4). Moreover, for each 2-pancake intersecting P , there
is a unit disk contained in this 2-pancake that intersects P . We have 14n + 8 pairwise
non-intersecting unit disks in a rectangle with area 6(x + 4). As the area of a unit disk
is bigger than 3, we have 6(x + 4) ≥ 3(14n + 8), or equivalently x ≥ 7n. Note that
the same holds with P ′. Let us show that in any Π2 representation of Gu,v , all the
vertices in V are represented by unit disks. Assume by contradiction that it is not the
case. Without loss of generality, let us assume P is to the left of P ′, and that one vertex
uG in V is represented by a 2-pancake that is to the right of P ′. Indeed this 2-pancake
cannot be between P and P ′ because they are intersecting. Let us consider the last
vertex in a path from s to uG that is a disk. By construction, the distance between P
and the unit disk corresponding to this vertex is at most 2(2n+ n− 1) = 6n− 2. This
shows that this vertex is still far from the right end of P ′, and so the next vertex has to
be represented by a unit disk because it is not intersecting P ′, which is a contradiction.
We have shown that G is a unit disk graph if and only if there exist u, v in V such that
Gu,v is in Π2, and the construction of these

(n
2

)
graphs takes linear time for each of

them. �	

6 Intersection graphs of convex pseudo-disks

In this section we are interested in computing amaximum clique in intersection graphs
of convex pseudo-disks. As mentioned in the introduction, there exists an EPTAS for
maximum clique in disk graphs (Bonnet et al. 2018; Bonamy et al. 2018). The main
property used is that for any disk graph G, we have iocp(G) ≤ 1. The proof of
this inequality relies on the fact that disks have centres. However in this section we
are considering convex pseudo-disks, which do not have centres. Our proof that the
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complement of a triangle and an odd cycle is a forbidden induced subgraph in convex
pseudo-disk graphs relies on line transversals and their geometric permutations on the
three convex pseudo-disks that form a triangle in the complement, denoted byD1,D2
and D3. As there are only three sets, the geometric permutation of a line transversal
is given simply by stating which set is the second one intersected. We denote by
{D′

j }1≤ j≤n (or simply {D′
j }) a set of convex pseudo-disks that fully intersect with

{D1,D2,D3}. Our aim is to show that G({D′
j }) is cobipartite.

Throughout this section, for the sake of readability, we refer to the convex pseudo-
disks simply as “disks”. We always assume that no disk D ∈ {D′

j } contains any of
D1, D2 and D3. Indeed, D would intersect any disk that intersects pairwise with D1,
D2 and D3. Thus, such a disk D could be arbitrarily added to any of the two cliques
of the cobipartition.

Definition 8 A line transversal � is a line that intersects each of the three disksD1,D2
and D3. We call disk in the middle of a line transversal the disk it intersects in second
position.

We are going to conduct a case analysis depending on the number of disks being
the disk in the middle for some line transversal. If there exists no line transversal, we
can prove a stronger statement.

Lemma 9 If there is no line transversal through a family of convex sets F, then for any
pair of convex sets {C1,C2} that fully intersects with F, the sets C1 and C2 intersect.

Proof Let us prove the contrapositive. Assume that C1 and C2 do not intersect, there-
fore there exists a separating line. As all sets in F intersect C1 and C2, they also
intersect the separating line, which is thus a line transversal of F . �	

Using the notation of Theorem 4, Lemma 9 immediately implies that if there is no
line transversal through the sets representing H , then G \ H is a clique, which is an
even stronger statement than required.

Definition 9 Let D1 and D2 be two disjoint disks and let p, q be in the interior of
D1,D2 respectively. We call external tangents of D1 and D2 the two tangents that do
not cross the line segment [p, q].

Definition 10 Let us consider a disk in {D1,D2,D3}, say D2, such that it is the disk
in the middle of a line transversal. We denote by τ and τ ′ the two external tangents
of D1 and D3. We say that D2 is contained if it is contained in the bounded region S
delimited by D1, τ , D3 and τ ′. If D2 intersects exactly one of the external tangents,
we say that D2 is 1-intersecting. If D2 intersects both external tangents, we say that
D2 is 2-intersecting. The different cases are illustrated in Fig. 7.

Lemma 10 IfD2 is 2-intersecting, then it is the disk in the middle of all line transver-
sals.

Proof By definition, D2 is the disk in the middle of a line transversal. We denote by
τ and τ ′ the external tangents. let p be a point in D2 ∩ τ and p′ be in D2 ∩ τ ′. The
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Fig. 7 D2 is contained, D′
2 is 1-intersecting and D′′

2 is 2-intersecting

Fig. 8 Illustration of Definition 11, with D2 being the 1-intersecting disk

line segment [p, p′] is contained in D2, and the line (p, p′) separates D1 from D3.
Let � be a line transversal. Let p1 be in � ∩D1 and p3 be in � ∩D3. The line segment
[p1, p3] must cross [p, p′], which shows that the disk in the middle of � is D2. �	
Lemma 11 If D2 is contained, then either D1 is not the disk in the middle of a line
transversal, or D1 is 1-intersecting. The same holds with D3.

Proof We prove the statement forD1, the same arguments hold withD3. Observe that
there is a line transversal having D2 as disk in the middle. Let us assume that there
is a line transversal having D1 as disk in the middle, and let us show that D1 is 1-
intersecting. AsD2 is contained, no point inD2 lies on the boundary of the convex hull
ofD1∪D2∪D3. This immediately implies that some points inD1 lies on the boundary
of the convex hull of D1 ∪ D2 ∪ D3. Therefore, D1 is not contained. Moreover, D1
is not 2-intersecting, for otherwise D2 would not be the disk in the middle of a line
transversal, as stated in Lemma 10. We have shown that D1 is 1-intersecting. �	

The following definition is illustrated in Figs. 8, 9 and 10 .

Definition 11 Let Di in {D1,D2,D3} be a disk that is 1-intersecting, say Di = D2.
We denote by τ2 the external tangent ofD1 andD3 thatD2 intersects.We denote by A2
the part ofD2 that is on the same side of τ2 asD1 andD3. LetD′ be a disk intersecting
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Fig. 9 Illustration of Definition 11, D′ is centred with respect to D2

Fig. 10 Illustration of Definition 11, D′′ is outside-containing D2, but not centred with respect to D2

pairwise with D1, D2 and D3. We say that D′ is outside-containing D2 if D2 \ A2 is
a subset of D′. We denote by χ1 and χ2 the points where the boundaries of D′ and
D2 intersect. Note that they are both in A2. We denote byH the closed halfplane with
bounding line (χ1, χ2) that contains D2 \ A2. Let H′ be the closed halfplane with
bounding line τ2 that contains A2. Note that (H∩H′) \ A2 is the union of one or two
connected sets. We have D′ ∩ D1 ⊂ (H ∩ H′) \ A2 and D′ ∩ D3 ⊂ (H ∩ H′) \ A2.
If D′ ∩ D1 and D′ ∩ D3 are not in the same connected set, we say that D′ is centred
with respect to D2.

Let us consider a disk in {D1,D2,D3}, say D2, and let us assume it is the disk in
the middle of a line transversal. Let us denote by τ and τ ′ the two external tangents of
D1 andD3. LetD be a disk in {D′

j }, such that there exists a pair of points p1 ∈ D∩D1
and p3 ∈ D ∩D3, such that the segment [p1, p3] intersectsD2, potentially at a single
point. Without loss of generality, we can even assume that [p1, p3] ∩ D1 = {p1} and
[p1, p3]∩D3 = {p3}. The segment [p1, p3] splitsD2 into two closed parts. One them
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can potentially be a single point p if [p1, p3] ∩ D2 = {p}. Observe that D contains
exactly one of those two parts: at least one because of the pseudo-disk property, and
at most one becauseD does not containD2. Let us denote by A2 ⊂ D2 the part that is
contained in D. We say that the side of [p1, p3] where A2 lies is the positive side of
[p1, p3]. By definition, p1 and p3 lie between τ and τ ′. By moving p1 and p3 toward
the positive side of [p1, p3] and along the boundary of D1 and D3 respectively, only
two things can happen by construction: Either both of them reach τ , or both of them
reach τ ′.

Definition 12 We denote by XD2 (or simply by X when there is no risk of confusion)
the set of disks in {D′

j } for which the external tangent reached is τ . Likewise, we
denote by X ′

D2
(or simply by X ′) the set of disks in {D′

j } for which the external
tangent reached is τ ′.

Let us now assume the existence of a diskD′ ∈ {D′
j }, which is not in X ∪ X ′. Let us

consider p1 ∈ D′ ∩D1 and p3 ∈ D′ ∩D3. By assumption, the segment [p1, p3] does
not intersect D2. Observe that this implies that D2 is not 2-intersecting. It is possible
to continuously move p1 and p3 in D1 and D3 respectively, such that they both reach
either τ or τ ′, and while maintaining the property that [p1, p3] ∩ D2 = ∅. Observe
that the choice of p1 ∈ D ∩ D1 and p3 ∈ D ∩ D3 has no impact on whether they can
both reach τ , or both reach τ ′. Otherwise, it would be possible to move them from τ

to τ ′ without having [p1, p3] intersecting D2, which would imply that D2 is not the
disk in the middle of any line transversal. If D2 is 1-intersecting, then exactly one of
τ, τ ′ will always be reached, for any disk in {D′

j }.
Definition 13 We denote by YD2 (or simply by Y when there is no risk of confusion)
the set of disks in {D′

j } \ (XD2 ∪ X ′
D2

) for which the external tangent reached is τ ,
and which are not centred with respect to D1 or D3. Likewise, we denote by Y ′

D2
(or

simply by Y ′) the set of disks for which the external tangent reached is τ ′, and which
are not centred with respect to D1 or D3. We denote by ZD2 (or simply by Z ), the
set of disks for which the external tangent reached is τ ′, and which are centred with
respect to D1 or D3. Finally, we denote by Z ′

D2
(or simply by Z ′), the set of disks for

which the external tangent reached is τ , and which are centred with respect to D1 or
D3.

We want to emphasise the fact that indeed in the definition of Z , p1 and p3 can
reach τ ′ and not τ . This choice of notation comes from the fact that, assuming thatD1
andD3 are the disks in the middle of no line transversal, or that they are 1-intersecting,
all pairs of disks in X ∪ Y ∪ Z intersect, and the same holds with all pairs of disks in
X ′ ∪ Y ′ ∪ Z ′, as we show later. Observe that if a disk is centred with respect to D1,
then D1 is 1-intersecting. Thus if both D1 and D3 are not 1-intersecting, the sets Z
and Z ′ are empty.

Lemma 12 If D and D′ are in XD2 , then they intersect.

Proof Let p1, p3, p′
1, p

′
3 be points coming from the definition of D and D′ being in

X . Recall that p1 and p′
1 lie on the boundary of D1. Similarly, p3 and p′

3 lie on the
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Fig. 11 Illustration of Lemma 13. The segment [p2, p3] splits D1, thus D contains p′
1 or is centred with

respect to D1

boundary of D3. If [p1, p3] and [p′
1, p

′
3] intersect then we are done. Otherwise, we

can assume without loss of generality that p1 is closer to τ than p′
1 is, and that p3 is

closer to τ than p′
3 is (when considering them as points on the boundaries ofD1 andD3

respectively). Let A2, respectively A′
2, be the part ofD2 contained inD, respectively in

D′. By assumption, A2 is contained in A′
2, which implies that the two disks intersect.

�	
Lemma 13 Let us assume that D1 is the disk in the middle of no line transversal or
is 1-intersecting, and that the same holds with D3. If D and D′ are in YD2 , then they
intersect.

Proof The proof is illustrated in Fig. 11. Let p1, p3, p′
1, p

′
3 be points in D ∩ D1,

D ∩ D3, D′ ∩ D1 and D′ ∩ D3, respectively. Let us assume for a contradiction that
D and D′ do not intersect. Let p2 be in D ∩ D2 and p′

2 be in D′ ∩ D2. We claim that
p2 is not in the quadrilateral p1 p3 p′

3 p
′
1. By assumption, it is possible to continuously

move the points p1, p3 in D1 and D3 respectively such that p1 and p′
1 overlap, the

points p3 and p′
3 overlap, while keeping the property that [p1, p3] does not intersect

D2. Observe that this is not possible if p2 is in the quadrilateral p1 p3 p′
3 p

′
1, because

D1 and D3 do not intersect with D2. Moreover by assumption D2 does not intersect
with the segments [p1, p3], [p3, p′

3], [p′
3, p

′
1] and [p′

1, p1]. This implies that D2 is
outside of the quadrilateral p1 p3 p′

3 p
′
1. Let us consider a separating line � of D and

D′. As � intersects the segments [p1, p′
1], [p2, p′

2] and [p3, p′
3], we observe that �

is a line transversal of {D1,D2,D3}. Let us consider the intersection s of � with the
quadrilateral p1 p3 p′

3 p
′
1. This intersection s could a priori be the union of two segments

if the quadrilateral p1 p3 p′
3 p

′
1 is not convex, however that is not possible since � does
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not intersect [p1, p3] and [p′
1, p

′
3]. We have that s is a segment with one endpoint in

D1 and the other in D3. This implies that the disk in the middle of � is not D2.
If D2 is the disk in the middle of all line transversals, we have already reached

a contradiction. Let us now assume that at least one of D1 and D3 is 1-intersecting.
Without loss of generality, let us assume that D1 is the disk in the middle of �. We
denote by τ1 the external tangent of D2 and D3 which intersects D1. Both segments
[p2, p3] ∩D1 and [p′

2, p
′
3] ∩D1 are on the same side of τ1. By assumption, only one

of the two segments can be continuously moved to τ1 without touching �. Without loss
of generality, let us assume that this segment is [p2, p3] ∩ D1. Observe that [p2, p3]
and p′

1 are on different sides of �. The line segment [p2, p3] splits D1 into two parts,
one of them being contained in D. This implies that D contains p′

1 or is centred with
respect to D1, which is a contradiction. �	
Lemma 14 Let us assume that D1 is the disk in the middle of no line transversal or is
1-intersecting, and that the same holds with D3. IfD is in XD2 andD′ is in YD2 , then
they intersect.

Proof Let p1, p3 be points coming from the definition ofD being in X . Let p′
1, p

′
3 be

points inD′ ∩D1 andD′ ∩D3, respectively. By definition, the segment [p1, p3] splits
D2 into two parts. We denote by A2 the part ofD2 that is contained inD. Assume for a
contradiction thatD andD′ do not intersect.We claim that A2 is inside the quadrilateral
p1 p3 p′

3 p
′
1. Without loss of generality, let us assume that [p′

1, p
′
3] ∩ D1 = {p′

1} and[p′
1, p

′
3] ∩ D3 = {p′

3}. It is possible to move p′
1 and p′

3 to τ , while following the
boundaries of D1 and D3 respectively, such that [p′

1, p
′
3] does not intersect D2. Since

D and D′ do not intersect, it implies that [p1, p3] and [p′
1, p

′
3] do not intersect. In

particular, it implies that p′
1 is closer to τ than p1 (when considering them as points

on the boundary of D1), and likewise p′
3 is closer to τ than p3 is. By assumption, D2

does not intersect the segments [p1, p′
1], [p′

1, p
′
3] and [p′

3, p3]. We have shown that
A2 is inside the quadrilateral p1 p3 p′

3 p
′
1.

AsD andD′ are not intersecting, we have thatD′ ∩ A2 is empty. Let us denote by �

a separating line ofD andD′. As � does not intersect [p1, p3] or [p′
1, p

′
3], but because

� intersects [p1, p′
1] and [p3, p′

3], we have that � splits the quadrilateral p1 p3 p′
3 p

′
1.

Furthermore, � does not intersect A2, and thus it is a line transversal of {D1,D2,D3}
whose disk in themiddle is notD2. IfD2 is the disk in themiddle of all line transversals,
we have already reached a contradiction. Let us now assume that at least one of D1
and D3 is 1-intersecting. Without loss of generality, let us assume that the disk in the
middle of � is D1. Let τ1 be the external tangent of D2 and D3 which intersects D1.
Let p′

2 be in D′ ∩ D2. Now, the segment [p′
2, p

′
3] ∩ D1 lies between the lines τ1 and

�, and [p′
2, p

′
3] splits D1 in such a way that D′ either contains p1 or is centred with

respect to D1, which is a contradiction. �	
We have now shown that under certain conditions, G(X ∪ Y ) and G(X ′ ∪ Y ′)

are complete graphs. We now prove three lemmas to show that G(X ∪ Y ∪ Z) and
G(X ′ ∪Y ′ ∪ Z ′) are complete graphs. To do so, we have to show that all pairs of disks
in Z intersect. In the following lemma, we prove the stronger statement that all pairs
of disks in Z ∪ Z ′ intersect. Then, in Lemmas 16 and 17 , we show that a disk D in
Z intersects any disk in X or Y . This implies that if D does not intersect a disk D′ in
{D′

j }, then D′ is in X ′ ∪ Y ′, as illustrated in Fig. 12.
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Fig. 12 The diskD is in Z , the diskD′ is in X ′ and the diskD′′ is in Y ′. Observe thatD does not intersect
D′ or D′′

Lemma 15 LetD′ andD′′ be intersecting with {D1,D2,D3}. IfD′ andD′′ are respec-
tively centred with respect to Di and D j , i, j ∈ {1, 2, 3}, then they intersect.

Proof The proof is illustrated in Fig. 13. For a disk Di in {D1,D2,D3} which is
1-intersecting, we denote by τi the external tangent of the two other disks that Di

intersects. Furthermore, we denote by Ai the subset ofDi which lies on the same side
of τi as the two other disks. LetD′ andD′′ be two disks in that are centred. If they both
contain the same subsetDi \ Ai for some i ∈ {1, 2, 3}, then they intersect. Otherwise,
let us assume without loss of generality that D′ is centred with respect to D1 and D′′
is centred with respect to D2. There are two intersections between the boundaries of
D′′ andD2, that we denote by χ ′′

1 and χ ′′
2 . We denote byH′′ the closed halfplane with

bounding line (χ ′′
1 , χ ′′

2 ) that contains D2 \ A2. We denote byH2 the closed halfplane
with bounding line τ2 that contains A2. By assumption, D1 intersects only one of the
two connected sets of (H′′ ∩H2) \ A2. Let us consider the intersections of τ2 with the
boundary of D2. By what we just said, there is a closest intersection to D1, that we
denote by p′′

2 . Note that p
′′
2 is inH′′, and therefore inD′′. Let p′′

1 be a point inD′′ ∩D1.
If p′′

1 is inD′ then we are done. Let us now assume that it is not the case. We denote by
χ ′
1 and χ ′

2 the intersections ofD′ with the boundary ofD1. Without loss of generality,
we can assume that p′′

1 is on the boundary of D1. We denote by p′
1 the intersection of

τ1 and the boundary of D1 that is the closest to D2, which can be defined similarly to
how we defined p′′

2 . Now observe that one of χ ′
1 and χ ′

2 is between p′′
1 and p′

1 on the
boundary ofD1. Assume without loss of generality that χ ′

2 is the closest toD2. Let us
consider the halfplaneH′ with bounding line (χ ′

1, χ
′
2) that contains D1 \ A1. We also

denote by H1 the halfplane with bounding line τ1 that contains A1. As D′ is centred
with respect to D1, there is one of the two connected component that intersects with
D2, and the other withD3. Note that the connected component on the side of χ ′

2 cannot
intersect with D3, since otherwise D1 would not be the disk in the middle of τ1. This
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Fig. 13 Illustration of the proof of Lemma 15

implies that the connected component on the side of χ ′
2 is the one that intersects D2.

Finally, observe that either D′ contains p′′
2 , or it does not intersect with A2, and thus

contains a point in D2 \ A2. In both cases, D′ contains a point in D′′. �	
Lemma 16 Let us assume that D1 or D3 is 1-intersecting. If D is in XD2 and D′ is in
ZD2 , then they intersect.

Proof Let p1, p3 be the points coming from the definition ofD being in X . By assump-
tion, the segment [p1, p3] splits D2 into two parts. Let us denote by A2 the part that
is contained in D. Without loss of generality, let us assume that D′ is centred with
respect to D1. We have that p1 is on the boundary of D1. Let us denote by p′

1 and
q ′
1 the two intersections between the boundaries of D′ and D1. Let us consider the
boundary of D1. The lines τ and τ ′ cut it into two parts, one of them containing p1,
p′
1 and q ′

1. Let us consider that part of the boundary of D1. We assume that when
going from τ to τ ′ while following this part, we see the points in that order: p′

1, p1 and
then q ′

1. Indeed if p1 does not appear between p′
1 and q

′
1, then p1 is in D′ and we are

done. We can assume without loss of generality that we reach first p′
1 and last q ′

1 by
relabelling if need be. Let us follow the boundary ofD′ from p′

1 while staying outside
ofD1 (therefore not going in the direction of q ′

1), until we reach eitherD2 orD3. This
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must happen asD′ is centred with respect toD1. We claim that we can only reachD2.
Indeed, assume for a contradiction that we reach a point p′

3 at an intersection between
the boundaries of D′ and D3. As D′ is in Z , the segment [p′

1, p
′
3] does not intersect

D2. However, the segment [p1, p3] does intersectD2. As [p1, p3] and [p′
1, p

′
3] do not

intersect, and since p′
1 is closer to τ than p1 is (when considering their positions on

the boundary of D1), it implies that p′
3 is closer to τ than p3 is (when considering

their positions on the boundary of D3). It is now possible to continuously move p′
1

and p′
3 to τ while keeping the property that [p′

1, p
′
3] does not intersect D2, which is

impossible. We have shown that when following the boundary ofD′ from p′
1, we meet

a point p′
2 in D′ ∩ D2. By construction, as p′

1 is closer to τ than p1 is, we know that
p′
2 is in A2, which implies that D and D′ intersect. �	

Lemma 17 Let us assume that D1 or D3 is 1-intersecting. If D is in YD2 and D′ is in
ZD2 , then they intersect.

Proof Assume for a contradiction that they do not intersect. Let p1 and p3 be in
D ∩ D1 and D ∩ D3 respectively. We can even assume that [p1, p3] ∩ D1 = {p1}
and [p1, p3] ∩D3 = {p3}. Without loss of generality, let us assume thatD′ is centred
with respect to D1. We define p′

1 and q ′
1 as in the proof of Lemma 16. We follow

the boundary of D′ from p′
1 while staying outside of D1 (therefore not going in the

direction of q ′
1), until we reach either D2 or D3. Again, this must happen as D′ is

centred with respect to D1. However, we cannot reach D3 because if so, by denoting
p′
3 the point on the boundary ofD3 that we reach, the points p′

1 and p′
3 could be moved

to τ while having [p′
1, p

′
3] not intersecting D2. This is because p′

1 is closer to τ than
p1 is (when considering their positions on the boundary of D1), and the same holds
with p′

3 and p3. Since D is in Y , [p1, p3] can be moved to τ without intersecting
D2, and thus so can [p′

1, p
′
3]. This implies that the disk we reach is D2. But this is in

contradiction with the fact that [p1, p3] can be moved to τ without intersecting D2,
since p′

1 is closer to τ than p1 is. �	
We can now prove Theorem 4.

Proof of Theorem 4 We consider any fixed representation of G with convex pseudo-
disks. We denote by D1, D2 and D3 the three non-intersecting sets corresponding to
H . Likewise we denote by {D′

j } the convex pseudo-disks in G \ H . If there is no line
transversal of {D1,D2,D3}, we conclude with Lemma 9. If there is one disk that is
2-intersecting, sayD2, then we have that Y , Y ′, Z and Z ′ are empty. We conclude with
Lemma 12. Now let us assume that one disk, sayD2 is contained. Then we know with
Lemma 11 that D1 is the disk in the middle of no line transversal, or it 1-intersecting.
The same holds with D3. Therefore we can apply Lemmas 12, 13, 14, 15, 16 and
17 . They imply that G(X ∪ Y ∪ Z) is a complete graph. By the same arguments,
G(X ′ ∪Y ′ ∪ Z ′) is a complete graph too. As {D′

j } is the disjoint union of X , X ′, Y , Y ′,
Z and Z ′, it implies that G \ H is cobipartite. If no disk is 2-intersecting and no disk is
contained, then all disks are either the disk in themiddle of no line transversal, or are 1-
intersecting. As we are now assuming that there is a line transversal of {D1,D2,D3},
we assume without loss of generality that its disk in the middle is D2, and we use
Lemmas 12, 13, 14, 15, 16 and 17 to conclude. �	
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7 Proof of Theorem 3

We first give some definitions. Vapnik and Chervonenkis have introduced the concept
of VC-dimension in Vapnik and Chervonenkis (1971). In this paper, we are only con-
cerned with the VC-dimension of the neighbourhood of some geometric intersection
graphs. In this context, the definition can be stated as follows:

Definition 14 Let F be a family of sets in R
d , and let G be the intersection graph of

F . We say that F ⊆ F is shattered if for every subset X of F , there exists a vertex
v in G that is adjacent to all vertices in X , and adjacent to no vertex in F \ X . The
VC-dimension of the neighbourhood of G is the maximum cardinality of a shattered
subset of F .

We define the class X (d, β, K ) as introduced by Bonamy et al. (2018). Let d
and K be in N, and let β be a real number such that 0 < β ≤ 1. Then X (d, β, K )

denotes the class of simple graphsG such that theVC-dimension of the neighbourhood
of G is at most d, α(G) ≥ β|V (G)|, and iocp(G) ≤ K . They show that there
exist EPTAS (Efficient Polynomial-Time Approximation Scheme) for computing a
maximum independent set in X (d, β, K ). An EPTAS for a maximisation problem
is an approximation algorithm that takes a parameter ε > 0 and outputs a (1 − ε)-
approximation of an optimal solution, and running in f (ε)nO(1) time. More formally,
we have the following:

Theorem 6 (Bonamy et al. 2018) For any constants d, K ∈ N, 0 < β ≤ 1, for
every ε > 0, there is a randomised (1 − ε)-approximation algorithm running in time

2Õ(1/ε3)nO(1) for maximum independent set on graphs of X (d, β, K ) with n vertices.

Recently, Dvořák and Pekárek (2020) have announced that it is not necessary
to have bounded VC-dimension. More explicitly, there is an EPTAS for the class
X (+∞, β, K ). However, their running time dependence in n is higher: Õ(n5) with
Dvořák and Pekárek’s algorithm compared to Õ(n2) with the one of Bonamy et al.
Also, Dvořák and Pekárek do not compute the dependence in ε. For this reason, we
prefer the algorithm of Bonamy et al., despite the fact that we have to show bounded
VC-dimension.

Theorem6 states that there exists anEPTAS for computing amaximum independent
set on graphs of X (d, β, K ), for any d, K ∈ N and 0 < β ≤ 1. Let G be in Π3. In
order to prove Theorem 3, we show that the VC-dimension of the neighbourhood
of any vertex in G is bounded. Observe that the VC-dimension of a graph and its
complement are equal. We aim at using the EPTAS mentioned above for computing
a maximum independent set in the complement, which is equivalent to computing a
maximum clique in the original graph. However a graph G inΠ3 does not necessarily
satisfy α(G) ≥ β|V (G)| for some 0 < β ≤ 1. Even if it does, we need to know
the value of β in order to use the EPTAS of Theorem 6. Therefore we show how to
compute a maximum clique in any G ∈ Π3 by using polynomially many times the
EPTAS of Theorem 6 on some subgraphs of G, which have the desired property.

In general, for intersection graphs of geometric objects that can be described with
finitely many parameters, the VC-dimension of the neighbourhood is bounded. For
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graphs inΠ3, we were able to show an upper bound of 28. We do not expect this value
to be tight, but showing any constant was sufficient for our purpose.

Proposition 1 The VC-dimension of the neighbourhood of a graph G = (V , E) inΠ3

is at most 28.

We use the fact that the VC-dimension of the neighbourhood of disk graphs (and
even pseudo-disk graphs) is at most 4, as proved by Aronov et al. (2018). Likewise,
the VC-dimension of the neighbourhood of unit ball graphs is at most 4, as noticed
by Bonamy et al. (2018). For any point c ∈ R

3 and any non-negative real number
ρ, we denote by B(c, ρ) the ball centred at c with radius ρ. Moreover, we denote by
P3(c, ρ) the 3-pancake that is the Minkowski sum of the unit ball centred at the origin
and the disk lying on the plane xOy, centred at c with radius ρ. Note that if ρ = 0,
then P3(c, ρ) is the unit ball centred at c. Before showing Proposition 1, we show the
following:

Lemma 18 Let B be a unit ball centred at c and let P3(c′, ρ) be a 3-pancake. We
denote by D the disk that is the intersection of B(c, 2) and the plane xOy. Also, we
denote by D′ the disk D(c′, ρ) (which is a strict subset of the intersection of P3 and
the plane xOy). We have that B and P3 intersect if and only if D and D′ intersect.

Proof By definition, B and P3 intersect if and only if there exists a unit ball B′
whose centre lies in D′ such that B and B′ intersect. This is equivalent to say that
B(c, 2) contains a point inD′. Finally, this statement is equivalent to havingD andD′
intersecting. �	
Proof of Proposition 1 First let us show that if V is shattered, then in any Π3 repre-
sentation of G there are at most four 3-pancakes. Let us assume by contradiction that
there exists a set S of five 3-pancakes, such that for every subset T of S, there exists
a unit ball or a 3-pancake intersecting all elements in T and intersecting no element
in S \ T . For each 3-pancake P3(ci , ρi ) in S, we denote by Di the disk D(ci , ρi )
lying on the plane xOy. Let T be a subset of S. If there exists a 3-pancake P3(c′, ρ′)
intersecting with the elements of T and with no element in S \ T , we denote by DT

the disk D(c′, ρ′ + 2) lying on the plane xOy. Otherwise there exists a unit ball B
centred at c′′ intersecting intersecting with the elements of T and with no element
in S \ T , and then we denote by DT the intersection between B(c′′, 2) and xOy. As
B intersects with a 3-pancake, DT is not empty. Using Lemma 18, we have that Di

intersects with DT if and only if P3(ci , ρi ) is in T . This implies that if S is shattered
by some 3-pancakes and unit balls, then the set {Di } is shattered by {DT | T ⊆ S}.
However this is not possible because the VC-dimension of the neighbourhood of disk
graphs is at most 4.

Now let us prove the claim. Assume by contradiction that we have a shattered set
with 29 elements. As shown above, in any Π3 representation there are at least 25 unit
balls. Let us consider such a representation. We denote by S1, . . . , S5 five sets of five
unit balls each. As the VC-dimension of the neighbourhood of unit ball graphs is at
most 4, for each set Si there exists a non-empty subset Ti ⊆ Si such that no unit ball
can intersect with the unit balls in Ti , but not with those in Si \ Ti . Therefore the
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absolute height of the centre of any unit ball in Ti is at most 2, since Ti is realised by
a 3-pancake. For each Ti , we choose arbitrarily one unit ball Bi , and define a new set
T as {B1, . . . ,B5}. Moreover for each unit ball Bi centred at ci , we denote by Di the
intersection between B(ci , 2) and the plane xOy. Note that Di is not empty. Let T ′
be a subset of T , and let us consider the set ∪Bi∈T ′Ti , that we denote by T ′+. Note that
unless T ′ = ∅, no unit ball can intersect with all elements in T ′+ and with no element
in S \T ′+. Therefore this can only be achieved by a 3-pancake P3(c, ρ), and we denote
by DT ′ the disk D(c, ρ) lying on the plane xOy. Using Lemma 18, the five disks Di

are shattered by the disks in {DT ′ | T ′ ⊆ T }, which is impossible. �	

Proof of Theorem 3 LetG be a graph inΠ3 with n vertices. Since theVC-dimension of
a graph is the same as its complement, Proposition 1 implies that the VC-dimension of
G is at most 28. First let us assume that a representation ofG is given. For every vertex
represented by a unit ball, we are going to compute a maximum clique containing this
vertex. As noticed by Bonamy et al. (2018), for any vertex v represented by a unit
ball, we have |N (v)| ≤ 25ω(G). Let us denote by Gv the subgraph induced byN (v).
Thus we have α(Gv) ≥ |N (v)|/25. This shows that Gv is in X (28, 1/25, K ). Using
Theorem 6, we have a randomised EPTAS for computing a maximum independent
set in Gv , which is equivalent to computing a maximum clique in Gv . Note that
computing a maximum clique in Gv for each vertex v represented by a unit ball adds
at most a multiplicative factor n in the running time. It remains to compute amaximum
clique that only contains vertices represented by 3-pancakes. Instead of considering
3-pancakes, one can only look at the corresponding disks on the plane xOy. This can
be done as suggested in Bonamy et al. (2018): find four piercing points in timeO(n8),
then consider the subgraph H of disks that are pierced by at least one of these points.
We have α(H) ≥ n′/4 where n′ denotes the number of vertices in H . This implies
that H is in X (28, 1/4, K ), and we can conclude as before.

Now assume that a representation is not given. As we do not know whether a vertex
can be represented by a unit ball, we cannot compute a maximum clique as was done
above. If there exists a representation of G with at least one vertex v represented as a
unit ball, then α(Gv) ≤ 12, because the kissing number for unit spheres is 12. Indeed
for any 3-pancake P3 intersecting a unit ball B, there exists a unit ball B ′ ⊆ P3 such
that B and B ′ intersect. Thus, if instead of each pancake there were such a unit ball,
we would have the desired inequality. But since such a unit ball B ′ is contained in
the corresponding 3-pancake P3, the independence number of Gv can only decrease
when considering the actual 3-pancakes, which implies α(Gv) ≤ 12. If there exists a
representation only with 3-pancakes, then the vertex v corresponding the 3-pancake
with the smallest radius satisfies α(Gv) ≤ 6. Therefore in any case there must be a
vertex v with α(Gv) ≤ 12. We can find such a vertex in O(n13) time by testing for
each v whether there is an independent of size 12 in Gv .

In order to give a linear lower bound on α(Gv), we first give an upper bound on
the chromatic number of any graph in Π3. Let G̃ be a graph in Π3, given with a fixed
representation. We denote by V1 the set of vertices represented by unit balls, and by
V2 those represented by 3-pancakes. We denote by G̃1 the graph induced by V1. As
noted in Bonamy et al. (2018), we have for each v1 ∈ V1, |N (v1)| ≤ 25ω(G̃1). Since
ω(G̃1) ≤ ω(G̃), the maximum degree in G̃1 is at most 25ω(G̃) − 1, which implies
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that we can colour the vertices in V1 using at most 25ω(G̃) colours. For disk graphs,
the chromatic number is at most 6 times the clique number. Thus we can colour the
vertices in V2 using atmost 6ω(G̃) other colours. So in total we haveχ(G̃) ≤ 31ω(G̃).

Going back to the subgraph Gv , we have α(Gv)ω(Gv) ≥ α(Gv)χ(Gv)/31 ≥
|N (v)|/31. Therefore we obtain ω(Gv) ≥ |N (v)|/372. This implies that Gv is in
X (28, 1/372, K ), and therefore we have an EPTAS for computing a maximum clique
containing v. We can iterate this process in the graph G where v has been removed to
compute a maximum clique that does not contain v. As we repeat this process linearly
many times, we obtain an EPTAS for computing a maximum clique in G. �	
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