
Journal of Combinatorial Optimization (2022) 44:557–582
https://doi.org/10.1007/s10878-022-00848-z

Pattern-based ILP models for the one-dimensional cutting
stock problemwith setup cost

Mateus Martin1,2 · Horacio Hideki Yanasse2 · Luiz Leduíno Salles-Neto2

Accepted: 15 January 2022 / Published online: 12 February 2022
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection
may apply 2022

Abstract
The one-dimensional cutting stock problem with setup cost (CSP-S) is a cutting prob-
lem that seeks a cutting plan with a minimum number of objects and a minimum
number of different patterns. This problem gains relevance in manufacturing set-
tings, where time consuming operations to set up the knives of the cutting machine
for the new patterns increases production costs. In this paper, we aim at solving the
bi-objective CSP-S that analyzes the trade-offs between the number of objects and
the number of patterns. We first derive an upper bound on the maximum frequency
of a pattern in the cutting plan. Then, we propose a pattern-based pseudo-polynomial
integer linear programming (ILP) formulation for the CSP-S. To obtain the Pareto opti-
mal frontier, this formulation is embedded into a straightforward framework which
solves the problem of minimizing the number of objects subject to a limited num-
ber of patterns in an iterative manner. Since we are not aware of other approaches
in the literature that have solved the bi-objective CSP-S exactly, we derive an ILP
formulation based on Harjunkoski et al. (Comput Chem Eng 20:121–126, 1996.
https://doi.org/10.1016/0098-1354(96)00031-2) into this framework to provide an
alternative exact approach. The results of the computational experiments using a
general-purpose ILP solver indicated that the approaches are proper for instances
with solutions characterized by a moderate number of objects and a few patterns in
the Pareto optimal frontier.

B Mateus Martin
mpmartin@id.uff.br

Horacio Hideki Yanasse
horacio.yanasse@unifesp.br

Luiz Leduíno Salles-Neto
luiz.leduino@unifesp.br

1 Departamento de Engenharia de Produção, Escola de Engenharia de Petrópolis, Universidade
Federal Fluminense, Rua Domingos Silvério 135, Petrópolis, RJ 25650-050, Brazil

2 Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Avenida Cesare Mansueto
Giulio Lattes 1201, São José dos Campos, SP 12247-014, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-022-00848-z&domain=pdf
http://orcid.org/0000-0002-6722-7571

558 Journal of Combinatorial Optimization (2022) 44:557–582

Keywords Cutting and packing · Cutting stock problem · Setup cost · Integer linear
programming · Multi-objective optimization

1 Introduction

The one-dimensional cutting stock problem with setup cost (CSP-S) addresses a set
of objects of length L and a set I = {1, . . . , M} of item types. Each item type i ∈ I
has length li and demand di . The objective is to minimize both the number of objects
used to manufacture all the demanded items and the number of (different) patterns. It
is known that the CSP-S is strongly NP-Hard (Garey and Johnson 1979; McDiarmid
1999). According to the typology of Wäscher et al. (2007) for Cutting and packing
problems, the CSP-S is classified as a variant of the one-dimensional single stock size
cutting stock problem (CSP), since it additionally considers how to reduce the number
of patterns. A feasible solution to the CSP-S can be seen as a cutting plan, that is, a
set of patterns and their frequencies, where:

(i) a pattern is aM-dimensional non-negative integer vector x = (x1, x2, . . . , xM)�,
where xi represents how many items of type i ∈ I are cut from a single object,
that satisfies the inequality

∑
i∈I li xi ≤ L (containment constraint);

(ii) the frequency of a pattern represents the number of objects that has to be applied
with the pattern;

(iii) the demand of each item type i ∈ I should be fulfilled exactly or in excess.

Real applications of the CSP-S include the cutting of objects in the paper, steel,
glass and plastic film industries to manufacture items. In this context, the production
is stopped to set up the knives of the cutting machine for each new pattern (Haessler
1975). The stages of production following the cutting machine tend to be impacted as
well. Thus, in addition to the main objective of minimum waste solutions, solutions
with a minimum number of patterns are also desired. A typical solution to the prob-
lem usually has a small number of patterns with high frequencies. From a practical
perspective, a satisfactory approach should tackle the bi-objective CSP-S to provide
a set of solutions that find the best trade-off between the number of objects and the
number of patterns (Umetani et al. 2003). This approach could be embedded into an
expert system to assist decision-making, and it would avoid determining the setup cost
explicitly.

1.1 Related work

TheCSP-S ismainly addressed byheuristics, commonly based onpattern generation or
meta-heuristics with local search (Henn andWäscher 2013). The Sequential Heuristic
Procedure (SHP) of Haessler (1975) was one of the first approaches for the CSP-S. A
SHP is a greedy algorithm that seeks to generate a few patterns with high frequencies
sequentially to satisfy the demands of some item types until complete exhaustion of
the demand. It usually requires short processing times, and has parameters to guide
the search in the trade-off between the number of objects and the number of patterns.
Yanasse and Limeira (2006), Cui and Liu (2011), Mobasher and Ekici (2013), Cui

123

Journal of Combinatorial Optimization (2022) 44:557–582 559

et al. (2015) and Martin et al. (2018) proposed other SHP-based approaches for the
CSP-S. These approaches differ mainly regarding how to generate feasible patterns,
and the use of (post-)optimization techniques to reduce the number of patterns further.
For instance, one could combine two patterns into a single new pattern heuristically,
where the frequency of the new pattern is equal to the sum of the frequencies of the
two previous patterns (Diegel et al. 1993). Foerster and Wäscher (2000) developed
the KOMBI method by combining p patterns into new p − 1 patterns, where p ≤ 4.

As formeta-heuristics algorithms,Umetani et al. (2003) developed an IteratedLocal
Search (ILS) algorithm for the CSP-S that searches for solutions with a constant num-
ber of p patterns. Constant p is varied in the algorithm to obtain themore advantageous
solution within an adaptive pattern generation technique used in the local search. Later
Umetani et al. (2006) further improved the previous work by proposing two types of
local search based on the 1-add neighborhood and the shift neighborhood, and an aux-
iliary linear program to reduce the size of the neighborhood. Lee (2007) developed
the Crawla algorithm for the bi-objective CSP-S which can be seen as a large large
neighborhood search (Henn andWäscher 2013). This iterative algorithm uses an inte-
ger linear programming (ILP) framework for generating and fixing new patterns in the
solution. Golfeto et al. (2009) and Araujo et al. (2014) also developed meta-heuristics
based on evolutionary algorithms with local search for the bi-objective CSP-S. More
recently, Aliano Filho et al. (2018) presented an interesting study on four scalarization
methods for the bi-objective CSP-S in which the patterns are given as input. They
applied the weighted sum method, the classical Chebyshev metric, a novel modified
Chebyshev metric and the ε-Constraint method. As for recent heuristic approaches
for two-dimensional cutting problems with setup cost, we refer the reader to Ma et al.
(2019) and Wang et al. (2020).

A problem related to the CSP-S is the Pattern Minimization Problem (PMP)
that consists of minimizing the number of patterns subject to a limited number of
objects. We are aware of three exact approaches that addressed the PMP by propos-
ing branch-price-and-cut algorithms that fulfilled the demand of items without surplus
(Vanderbeck 2000;Belov andScheithauer 2003;Alves andValérioDeCarvalho 2008).
Vanderbeck (2000) proposed a master problem, where each column represents a fea-
sible pattern associated with a possible frequency. His column generation procedure
relied on solving a quadratic integer sub-problem that was copied by solving a set of
bounded knapsacks for each possible value of frequency for each pattern. The author
proposed superadditive functions to strengthen the model. Alves and Valério De Car-
valho (2008) further improved the previous algorithm with the use of an upper bound
on the number of maximum frequencies of a pattern and of dual feasible functions. To
derive a robust branching scheme and stronger cuts, the authors also proposed an arc
flow formulation with integer variables xnrs that represent the flow over arcs (r , s) (dis-
crete positions within the object) in a pattern of frequency n. They also showed how
the use of an upper bound on trim loss can reduce themaximum number of frequencies
of a pattern. Belov and Scheithauer (2003) treated an extension of the Gilmore and
Gomory (1961)’s model that was discussed in Vanderbeck (2000) as a master prob-
lem, which leads to fewer number of variables, however with weaker LP-bounds. The
author seek to overcome this behavior with a branching scheme based on variables and
enforcing branching constraints on single fractional variables. In a short, better results

123

560 Journal of Combinatorial Optimization (2022) 44:557–582

was obtained by the algorithm of Alves and Valério De Carvalho (2008) considering
a set of 16 real-life instances. All these approaches had to tackle weaker lower bounds
in the column generation procedure due to the structure of the PMP, which differs
consistently from the tight bounds obtained by the approach of Gilmore and Gomory
(1961) for the CSP. In this context, Alves et al. (2009) developed more tight lower
bounds for the PMP which were obtained by solving a column generation framework.
They strengthened these lower bounds with a constraint programming approach and
valid inequalities.

Lastly, we note the ILP formulation of Johnston and Sadinlija (2004) for the CSP
that can easily address the CSP-S. The authors proposed binary variables xi jk that
are equal to 1, if k copies of item type i appear in the pattern j , and 0 otherwise.
To our knowledge, this model has not been specifically assessed with computational
experiments in the context of the bi-objective CSP-S.

1.2 Our contributions

In this paper, we propose a pattern-based pseudo-polynomial ILP formulation for the
CSP-S. It relies on the development of an upper bound on the maximum frequency
of each pattern in the cutting plan. The formulation is related to the master prob-
lem proposed in Vanderbeck (2000) in the sense that it considers a binary variable
for each pair of a pattern and a possible frequency. Then, we incorporate it into a
straightforward framework to solve the bi-objective CSP-S that minimizes the num-
ber of objects subject to a limited number of patterns. Since we are not aware of other
exact approaches for the problem, we derive an ILP formulation based on Harjunkoski
et al. (1996) into this framework to provide an alternative approach. We performed
computational experimentswith twowell-known sets of benchmark instances from the
literature to evaluate the advantages/disadvantages of the approaches. The results indi-
cated that the proposed models using a general-purpose ILP solver are able to obtain
Pareto (near-)optimal frontier for small and moderate-sized problem instances. They
are appropriate for instances with solutions characterized by a moderate number of
objects and a few patterns in the Pareto optimal frontier.We presume that these models
can benefit OR practitioners interested in solving the CSP-S with a general-purpose
ILP solver as a black box.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Sect. 2, we describe the CSP-S with
a bi-objective non-linear model. We discuss how to eliminate symmetries through an
upper bound on the maximum frequency of each pattern in the cutting plan, as well as
an upper bound on the number of items per type in a pattern. In Sect. 3, we introduce an
ILP formulation for the CSP-S that is based on the non-linear model, which consists in
modeling the frequencyof eachpattern as a binary expansion. Then,wepropose a novel
pseudo-polynomial ILP formulation for the CSP-S that considers each pair of a pattern
and a possible frequency as a binary variable. In Sect. 4, we develop a straightforward
framework that can use either of the two proposed models to solve the bi-objective

123

Journal of Combinatorial Optimization (2022) 44:557–582 561

CSP-S that minimizes the number of objects subject to a limited number of patterns.
In Sect. 5, the performance of the proposed models derived from this framework is
analyzed through computational experiments using two sets of benchmark instances
from the literature. We also present a brief discussion of the ILP formulations of
Johnston and Sadinlija (2004) and Alves and Valério De Carvalho (2008) with some
additional results. Final remarks and perspectives of future research are discussed in
Sect. 6.

2 A non-linear model for the CSP-S

The CSP-S is a cutting problem that seeks a cutting plan with a minimum number
of objects used to manufacture all the demanded items and a minimum number of
patterns. The problem arises in manufacturing settings with a limited capacity in the
stage of cutting operations. That is the case of production systems that improve the
productivity of the cutting machine (e.g. meters cut per hour) with fewer setups (i.e.
cutting plans with fewer patterns) at the expense of increasing the trim loss. Thus, it
is commonly assumed that the number of setups is equal to the number of different
patterns. Note that limited capacity is not an issue for most of the cutting problems,
like in the approach of Cerqueira et al. (2021) for the CSP, since they seek mainly
solutions with minimum waste for input minimization problems or maximum profit
for output maximization problems (Wäscher et al. 2007). However, these solutions
could even not be feasible in the context mentioned above. We define the following
parameters and sets to be used in the presentation of the models:

L is the length of the objects;
I = {1, . . . , M} is the set of item types;
li and di are the length and demand of item type i ∈ I , respectively; and
K = {1, . . . , N } is the set of patterns.

We assume that li ≤ L and di , i ∈ I , are positive integers. Parameter N of the
maximum number of patterns can be obtained by solving a heuristic for the CSP with-
out considering the setup cost or by a previous definition of the decision-maker. We
next formulate the CSP-S as a Bi-objective Integer Non-linear Programming model,
inspired in a pattern-based approach (Kantorovich 1960; Scheithauer 2018). The for-
mulation is given by Model (1), where the patterns are not given a priori.

Minimize
∑

k∈K
zk . (1a)

Minimize
∑

k∈K
yk . (1b)

subject to

123

562 Journal of Combinatorial Optimization (2022) 44:557–582

∑

i∈I
li xki ≤ Lyk, k ∈ K . (1c)

∑

k∈K
zkxki ≥ di , i ∈ I . (1d)

zk ≤ Mk yk, k ∈ K . (1e)

xki ∈ Z+, k ∈ K , i ∈ I . (1f)

zk ∈ Z+, yk ∈ {0, 1}, k ∈ K , (1g)

where

xki is an integer variable that represents how many items of type i ∈ I are produced when
cutting one object with pattern k ∈ K ;

zk is an integer variable that represents the frequency of pattern k ∈ K , i.e, the number of
objects that have to be cut with this pattern; and

yk is a binary variable that equals (1), if pattern k ∈ K is used, and (0) otherwise.

Objective function (1a) minimizes the number of objects, and objective function
(1b) minimizes the number of patterns. These are conflicting objectives, since improv-
ing one usually is to the detriment of the other (Aliano Filho et al. 2018). Constraints
(1c) ensure that the sum of the length li of the items does not exceed the length L of
the object, for each pattern k ∈ K . These constraints also enforce that xki = 0 for
each i ∈ I , when yk = 0. Constraints (1d) ensure that the demand of each item type
i ∈ I is fulfilled exactly or in excess. Constraints (1e) enforce that yk = 1, when
zk > 0 for each k ∈ K . Constraints (1f) and (1g) define the domain of the variables.
Model (1) is non-linear and non-convex due to the bilinear terms in the left-hand side
of constraints (1d). In Sect. 3, we present equivalent mixed-integer linear models to
this non-linear model, which allow employing general-purpose ILP solvers, such as
CPLEX and GUROBI, to solve more practical problem instances of the CSP-S. Note
that we can reformulate Model (1) as a mono-objective ILP formulation by replacing
only objective functions (1a) and (1b) with the following objective function:

Minimize co
∑

k∈K
zk + cp

∑

k∈K
yk,

thatminimizes the total cost of objects and patterns,where co and cp are the coefficients
that represent the unitary cost of a object and of a pattern, respectively.

2.1 Eliminating symmetries or equivalent solutions

The pattern-based formulations for theCSP and its variants present the disadvantage of
the symmetries on the patterns, that is, the interchangeability of indices k ∈ K , which
may lead to difficulties in a branch-and-bound procedure (Vanderbeck 2000). One
strategy to partially circumvent the disadvantage is to introduce the valid inequalities

123

Journal of Combinatorial Optimization (2022) 44:557–582 563

zk ≥ zk+1, k ∈ K\{N }. These valid inequalities ensure that the patterns in the cutting
plan are sorted in a non-increasing order of the frequencies of the patterns (Johnston
and Sadinlija 2004). To attenuate other equivalent solutions, we define the following
parameters to focus on the domain of variables zk and xki next:

z is the upper bound on the number of objects in the solution;
y is the lower bound on the number of patterns in the solution;
dmax = max

i∈I {di } is the maximum demand of the item types;

Mk is the upper bound on the frequency of pattern k ∈ K ; and
Oi is the upper bound on the number of items of type i ∈ I in any pattern.

In Theorem 1 we state an upper bound on each variable zk , k ∈ K .

Theorem 1 An upper bound on each variable zk , k ∈ K, in the cutting plan is given
by Mk = min{�(z − max{0, y − k})/k�, dmax }.
Proof We assume that valid inequalities zk ≥ zk+1, k ∈ K\{N }, hold. It is easy to see
that z1 ≤ min{z, dmax }, since the frequency of a pattern in an optimal solution cannot
be greater than the total number of objects in the solution, nor themaximum demand of
any item type. Recall that z1 ≥ z2 and z1 + z2 ≤ z. Therefore, z2 + z2 ≤ z1 + z2 ≤ z.
Then 2z2 ≤ z, and so z2 ≤ �z/2�. More precisely, z2 ≤ min{�z/2�, dmax }. Using a
similar reasoning by induction, we can derive z3 ≤ min{�z/3�, dmax }. In a general
form, zk ≤ min{�z/k�, dmax } for each k ∈ K . Considering that any solution has at
least y patterns, then zk ≤ min{�(z − max{0, y − k})/k�, dmax } for each k ∈ K . �	

An upper bound on each variable xki , k ∈ K and i ∈ I , is given by Oi =
min{�L/li�, di }. Alternatively stated, it is the minimum value between the geometric
bound �L/li� and the demand di of item type i ∈ I (Nitsche et al. 1999).

3 Two pattern-based ILP formulations for the CSP-S

In this section, we introduce two pattern-based ILP formulations for the CSP-S. The
first is based on the non-linear model of the previous section, and it consists of repre-
senting variables zk as a binary expansion. The second is a novel pseudo-polynomial
formulation that considers each possible combination of pattern and frequency as a
binary variable. These two formulationsmake use of the upper bounds discussed in the
previous section, especially upper bound Mk on the frequency of each pattern k ∈ K ,
since it determines their number of variables and constraints.

3.1 Representing the frequency of each pattern as a binary expansion

The bilinear terms in the left-hand side of constraints (1d) can be circumvented in
the following way: let xki and yk be as defined in the previous section, and let zk =∑

j∈Jk
2 j zk j , where:

123

564 Journal of Combinatorial Optimization (2022) 44:557–582

Jk = {0, 1, . . . , 1 + � log2(Mk)�} is the set of bits to represent the frequency of
pattern k ∈ K ; and

zk j ∈ {0, 1} is the binary variable for bit j ∈ Jk of pattern k ∈ K .

The bilinear constraints (1d) are reformulated as:

∑

k∈K

∑

j∈Jk

2 j zk j xki ≥ di , i ∈ I ,

which can be replaced by a set of disjunctive inequalities that expresses the terms
wki j = zk j xki , k ∈ K , i ∈ I , and j ∈ Jk in a linear form (Harjunkoski et al. 1996).
Having defined all the parameters and variables, we formulate a bi-objective integer
linear programming formulation for the CSP-S in model (2). We refer to this model
as Model-A.

Minimize
∑

k∈K

∑

j∈Jk

2 j zk j . (2a)

Minimize
∑

k∈K
yk . (2b)

subject to
∑

i∈I
li xki ≤ Lyk, k ∈ K . (2c)

∑

k∈K

∑

j∈Jk

2 jwk ji ≥ di , i ∈ I . (2d)

∑

j∈Jk

2 j zk j ≤ Mk yk, k ∈ K . (2e)

∑

j∈Jk

2 j zk j ≥
∑

j∈Jk+1

2 j z(k+1) j , k ∈ K\{N }. (2f)

wki j ≤ xki , k ∈ K , i ∈ I , j ∈ Jk . (2g)
∑

i∈I
wki j ≤

∑

i∈I
Oi zk j , k ∈ K , i ∈ I . (2h)

wki j ≥ xki − Oi (1 − zk j), k ∈ K , i ∈ I , j ∈ Jk . (2i)

xki ∈ Z+, xki ≤ Oi , k ∈ K , i ∈ I . (2j)

zk j ∈ {0, 1}, k ∈ K , j ∈ Jk . (2k)

yk ∈ {0, 1}, k ∈ K . (2l)

0 ≤ wki j ≤ Oi , k ∈ K , i ∈ I , j ∈ Jk . (2m)

Objective function (2a) minimizes the number of objects, and objective function (2b)
minimizes the number of patterns. Constraints (2c) ensure that the sum of the length
li of the items does not exceed the length L of the object, for each pattern k ∈ K .

123

Journal of Combinatorial Optimization (2022) 44:557–582 565

Constraints (2d) ensure that the demand of each item type i ∈ I is fulfilled exactly or
in excess. Constraints (2e) enforce that yk = 1 when the frequency of pattern k ∈ K
is not zero (i.e.,

∑
j∈Jk 2

j zk j > 0). Valid inequalities (2f) ensure that the patterns are
sorted in a non-increasing order of their frequencies. Constraints (2g), (2h), and (2i) are
the set of disjunctive linear inequalities that formulates the expression wki j = zk j xki ,
k ∈ K , i ∈ I , and j ∈ Jk . In other words, these constraints enforce that wki j = 0
when zk j = 0, and wki j = xki when zk j = 1. Constraints (2j) to (2m) define the
domain of the variables.

3.2 A novel pseudo-polynomial ILP formulation

In this section, we present an alternative modeling approach that links the pattern and
its frequency in a single decision variable. Then we make use of several knapsacks
represented by disjunctive inequalities to guarantee the feasibility of the patterns. Thus,
we now redefine sets Jk to be:

Jk = {0, 1, . . . , Mk} is the set of possible frequencies of pattern k ∈ K .

The two sets of variables of the proposed model are as follows:

λk j binary variable that equals (1), if pattern k ∈ K has frequency j ∈ Jk , and (0),
otherwise;

αk ji integer variable that represents the number of items of type i ∈ I that are produced
when cutting one object with pattern k ∈ K that has frequency j ∈ Jk\{0}.

Having defined all the parameters and variables, we formulate a novel bi-objective
integer linear programming formulation for the CSP-S in model (3). We refer to this
model as Model-B.

Minimize
∑

k∈K

∑

j∈Jk

jλk j . (3a)

Minimize
∑

k∈K

∑

j∈Jk

λk j . (3b)

subject to
∑

i∈I
liαk ji ≤ Lλk j , k ∈ K , j ∈ Jk\{0}. (3c)

∑

k∈K

∑

j∈Jk\{0}
jαk ji ≥ di , i ∈ I . (3d)

∑

j∈Jk

λk j = 1, k ∈ K . (3e)

∑

j∈Jk

jλk j ≥
∑

j∈Jk+1

jλ(k+1) j , k ∈ K\{N }. (3f)

123

566 Journal of Combinatorial Optimization (2022) 44:557–582

Table 1 Number of variables and constraints of the ILP models

Model* Number of variables Number of constraints

Model-A N
∑

k∈K
|Jk |(M + 1) + N (M + 1) 2MN

∑

k∈K
|Jk | + MN + 3N + M − 1

Model-B N
∑

k∈K
|Jk |(M + 1) − MN N

∑

k∈K
|Jk | + M + N − 1

*The definition of sets Jk is different in Model-A and Model-B

λk j ∈ {0, 1}, k ∈ K , j ∈ Jk . (3g)

αk ji ∈ Z+, αk ji ≤ Oi , k ∈ K , j ∈ Jk\{0}, i ∈ I . (3h)

Objective function (3a) minimizes the number of objects, and objective function (3b)
minimizes the number of patterns. Constraints (3c) ensure that the sum of the length
li of the items does not exceed the length L of the object for each pattern k ∈ K
of frequency j ∈ Jk . Note that these constraints are also disjunctive inequalities that
enforce

∑
i∈I αk ji = 0, when λk j = 0, for each k ∈ K and j ∈ Jk\{0}. Constraints

(3d) ensure that the demand of each item type i ∈ I is fulfilled exactly or in excess.
Constraints (3e) ensure that each pattern k ∈ K has only one frequency j ∈ Jk (sets
Jk include the value of zero). Valid inequalities (3f) ensure that the patterns are sorted
in a non-increasing order of their frequencies. Constraints (3g) and (3h) define the
domain of the variables. We chose to not define variables αk ji when j = 0, because
these variables would not have a contribution in the left-hand side of constraints (3d).

In Table 1, we present the number of variables and constraints of Model-A and
Model-B in terms of the problem instance and sets Jk .

We highlight the importance of the proposed upper bound Mk used to define sets
Jk in order to obtain a model with fewer variables and constraints, which is usually
helpful to accelerate the convergence of the branch-and-bound procedure in the context
of an ILP solver. This is in contrast, for example, with Harjunkoski et al. (1996)
who when addressing a mono-objective optimization problem, suggested the constant
M̄k = ∑

i∈I di , k ∈ K . Note that the parameters M and N also affect the number of
variables and constraints of Model-A and Model-B, and so they are analyzed in the
next section.

4 A framework for generating the Pareto optimal frontier

We develop a straightforward framework that makes use of either of the two models
proposed in the previous section to generate the Pareto optimal frontier for the CSP-S.
For this purpose, we first discuss a simple preprocessing operation. Let E = (M, l =
(l1, . . . , lM)�, d = (d1, . . . , dM)�, L) be a problem instance of the CSP-S. We seek
to obtain an equivalent instance by modifying single input data as follows:

(P1) Two item types a ∈ I and b ∈ I , a < b, with the same length (i.e., la = lb) are
aggregated. In other terms, we set da := da + db, and then item type b is removed
from set I .

123

Journal of Combinatorial Optimization (2022) 44:557–582 567

Other authors also considered using (P1) before solving the problem instance (Lee
2007; Golfeto et al. 2009; Araujo et al. 2014). At first, (P1) is relevant to reduce the
number M of (different) item types. In addition, we highlight its relevance to avoid
loss of optimality in Preposition 1:

Proposition 1 A problem instance E=(M, l=(l1, . . . , lM)�, d=(d1, . . . , dM)�, L)

with two or more item types of the same length considered as different item types may
lead to loss of optimality.

Proof Consider a problem instance E = (2, l = (l1, l2)�, d = (d1, d2)�, L), where
L/2 < la = lb ≤ L . For this non-aggregated instance, the Pareto optimal frontier has
a single cutting plan with two patterns, that is, a first pattern with a single item of type
1 (frequency of d1), and a second pattern with a single item of type 2 (frequency of
d2). However, if we apply (P1), then we obtain an equivalent instance Ē = (1, l =
(l1)�, d = (d1 + d2)�, L) that reaches an optimal cutting plan of one pattern with a
single item of type 1 (frequency of d1 + d2). �	

We focus now on the two nadir vectors, which are the two solutions in the Pareto
optimal frontier characterized by having the minimum value in one objective function
and the maximum value for the other objective function. Thus, let:

z∗ minimum value on the number of objects, which we obtain by solving the arc-flow model
of Valério de Carvalho (1999, 2002) for the CSP;

y∗ minimum value on the number of patterns, which we obtain by solving the associated Bin
Packing Problem (BPP), where the demand of all item types i ∈ I is set to d ′

i = 1.

Notice that we also obtain parameter N as a result of solving the arc-flow model
and post-processing the solution into a cutting plan. And, we also obtain parameter z
as a result of solving the associated BPP, where each bin represents a pattern whose
frequency is post-processed to be equal to the highest (original) demand di of its
packed items.

In Algorithm 1we present a pseudocode of the developed framework for generating
the Pareto optimal frontier for the CSP-S, taking into account Model-B. It is easy to
adapt the algorithm to make use of Model-A. Algorithm 1 consists of solving the
version of Model-B that minimizes the number of objects subject to a limited number
of patterns in a iterative manner, which starts as y := y∗ patterns and increases by
one unit in each iteration. In contrast, the number of objects z tends to decrease as
the algorithm iterates. Note that if a (short) time limit is considered as an additional
stopping criterion on the execution of the ILP solver, then there is no guarantee to
obtain efficient solutions only. We alter the (real) size of the model to be solved (i.e.,
the number of variables and constraints) in line 9 of Algorithm 1, since the presolve
of the ILP solver will consider the variables with the same lower and upper bounds as
constants. Thus, we expect the solver to find an optimal solution more quickly in the
first iterations of the algorithm. We emphasize that one could limit the solution space
of each iteration of the algorithm to exactly y patterns. However, we chose to limit

123

568 Journal of Combinatorial Optimization (2022) 44:557–582

the solution space to up to y patterns so that the solution from the previous iteration
would also be feasible for the current iteration.

Algorithm 1: A framework for generating the Pareto optimal frontier for the
CSP-S.

Data: Instance E = (M, l = (l1, . . . , lM)�, d = (d1, . . . , dM)�, L).
Result: Pareto optimal frontier.

1 Do preprocessing operation (P1) on instance E ;
2 Set z∗ and N by solving the arc-flow model for the CSP;
3 Set y∗ and S by solving the associated BPP;
4 Mount Model-B without objective function (3b);
5 Set y := y∗;
6 Set z := S;
7 repeat
8 Restore the original lower and upper bounds of all variables in Model-B;
9 Disable all variables λk j and αk ji , where k ∈ K | k > y or j ∈ Jk\{0} | j > S; // i.e.,

set their lower and upper bounds as zero.
10 Set z by solving Model-B without objective function (3b); // and with patterns

k ∈ K | k ≤ y.
11 Save this cutting plan of y patterns and z objects;
12 if S > z then
13 Set S := z;

14 Set y := y + 1;
15 until z > z∗ and y ≤ N.

Additional preprocessing operations could be done in line 1 of Algorithm 1. For
instance, removing an item type i ∈ I that li + mini∈I {li } > L , or the reduction
method to decrease the length L of the object and increase the length li of the item
types (Scheithauer 2018). We chose to not consider these preprocessing operations
because we also report results on trim loss in Sect. 5.

4.1 An illustrative example

In Table 2, we provide an illustrative problem instance of the CSP-S, initially proposed
in Haessler (1975). In Fig. 1 we illustrate the Pareto optimal frontier of this instance
obtained with Algorithm 1 considering Model-B. In Table 3, we present details on
the cutting plan of 6 patterns and 25 objects, where each item type is represented
by its length and its number of copies is in parenthesis. For this example, we note
that Vahrenkamp (1996) found a cutting plan of 20 patterns and 25 objects, which is
essentially different from the solution presented in this table.

123

Journal of Combinatorial Optimization (2022) 44:557–582 569

Table 2 An illustrative example
of the CSP-S with L = 141,000
and m = 27 item types (Haessler
1975)

i li di i li di i li di

1 54,000 4 10 19,500 10 19 11,625 7

2 52,500 2 11 18,250 2 20 11,250 3

3 47,500 3 12 17,500 16 21 10,125 3

4 26,500 4 13 15,250 6 22 10,000 37

5 25,000 8 14 13,875 2 23 9250 4

6 24,750 10 15 13,750 2 24 9125 3

7 23,250 13 16 12,500 28 25 8750 1

8 22,500 8 17 12,250 5 26 8500 14

9 20,000 5 18 12,000 10 27 7000 2

*This instance originally had the lengths of the objects and item types
as fractional numbers; thus, we multiplied them by a factor of one
thousand to get integer numbers

Fig. 1 Pareto optimal frontier of
the illustrative example defined
in Table 2

3 4 5 6 7
24

26

28

30

32

25

26

31

Number of patterns

N
um

be
r
of

ob
je
ct
s

Table 3 A cutting plan of 6 patterns and 25 objects for the illustrative example defined in Table 2

Patterns Frequencies Trim loss

24750(1), 23250(1), 19500(1), 17500(1), 12500(2), 10000(3) 10 10,000

25000(1), 22500(1), 20000(1), 15250(1), 12250(1),
12000(2), 11625(1), 10000(1)

5 1875

54000(1), 26500(1), 17500(1), 12500(2), 9250(1), 8500(1) 4 1000

47500(1), 23250(1), 22500(1), 11250(1), 10125(1), 9125(1), 8500(2) 3 750

52500(1), 25000(1), 17500(1), 11625(1), 10000(1), 8500(2), 7000(1) 2 750

25000(1), 18250(2), 15250(1), 13875(2), 13750(2), 8750(1) 1 250

Sum 25 14,625

123

570 Journal of Combinatorial Optimization (2022) 44:557–582

We also generated the Pareto optimal frontier of this instance for the case in which
the demand of the items should be fulfilled exactly (without surplus), i.e., we changed
the sign of constraints (3d) from ≥ to =. For this new case, the Pareto optimal frontier
has a single cutting plan of 6 patterns and 25 objects. In other words, there is no
cutting plan with less than 6 patterns that fulfills exactly the demand of the items for
this instance. Note that additional patterns could be required in this new case in order
to reach a solution with the minimum number of objects, but this was not the case for
this instance.

5 Computational experiments

In this section we present the results of computational experiments performed with
the developed framework with Model-A and Model-B. This section is divided into
three parts. In Sect. 5.1, we consider 90 problem instances (out of 1800) randomly
generated by problem generator CutGen1 (Gau and Wäscher 1995). We used them
to assess the relative performance of the mono-objective versions of the proposed
models in order to report information about the number of variables and constraints,
the value of the linear relaxation, and, especially the scenarios in which the models
perform better or worse. In Sect. 5.2, we consider 40 problem instances taken from a
real fiber company in Japan (Umetani et al. 2003), which were used to assess the
performance of the developed framework with the models to generate the Pareto
optimal frontier. We considered the Pareto frontiers provided in Umetani et al. (2003)
and Lee (2007) as benchmark approaches. In Sect. 5.3, we present a brief discussion
of the ILP formulations of Johnston and Sadinlija (2004) and Alves and Valério De
Carvalho (2008) with some additional results. All the instances are available at https://
sites.google.com/site/shunjiumetani/benchmark, and they are further detailed at the
beginning of each section. Our approaches were coded in C++, using the GUROBI
v.9.1.1 as the general-purpose ILP solver. The experiments were carried out on a PC
with an Intel Xeon E5-2680 (2.7 GHz), limited to 4 threads, 32 GB of RAM, running
the Ubuntu 16.04 LTS Operating System.

5.1 Results for CutGen1 instances

Foerster andWäscher (2000) used the problem generator CutGen1 to randomly gener-
ate a set of instances with 18 different classes for the CSP-S. A class is characterized
by the number of item types (M), the length of the object L = 1, 000, the values
v1 and v2 that determine the length of the items in the interval [v1L, v2L], and the
average of the demands (dav) for each item type. These classes are divided into three
groups: (G1) six classes of small items (v1 = 0.01 and v2 = 0.20), (G2) six classes
of assorted items (v1 = 0.01 and v2 = 0.80), and (G3) six classes of large items
(v1 = 0.20 and v2 = 0.80). Parameter M assumes the values of 10, 20, and 40 item
types, while parameter dav assumes the values of 10 and 100 copies of items. For each
class, they generated 100 instances, but we considered here just the first 5 instances
generated for each class in a total of 90 (=18×5) instances.

123

https://sites.google.com/site/shunjiumetani/benchmark
https://sites.google.com/site/shunjiumetani/benchmark

Journal of Combinatorial Optimization (2022) 44:557–582 571

We considered the weight summethod with unitary costs co and cp to obtain mono-
objective ILP formulations derived from Model-A and Model-B, similar to what was
discussed in Sect. 2. As in Cui et al. (2015), we used co = 1,000 and cp = 100,
which tend to cause a lexicographic hierarchy in the two objective functions. Thus, we
carried out lines 1 to 4 in Algorithm 1 with the adaptation in the objective function,
and then executed the solver with a time limit of 3600 s. For each class of instances, we
report the class identification, the number of item types (M), the values of v1 and v2
and the average demand (dav) in Table 4. For Model-A andModel-B and each class of
instances, we also report the number of variables (var), number of constraints (cons),
relative optimality gap in percentage (gap[%]), processing time in seconds (time [s]),
value of the linear relaxation (LR), and number of instances in the class with certificate
of optimality (opt). The relative optimality gap is calculated as 100 × (z p − zd)/z p,
where z p is the incumbent objective value and zd is the lower bound.

The results in Table 4 show that the solver with Model-A obtained average gaps
of 1.69% (2203.59 s), 10.00% (2304.26 s) and 14.80% (2,544.21 s) for instances of
groups G1, G2 and G3, respectively, while the solver with Model-B obtained average
gaps of 1.04% (1,838.50 s), 5.59% (2344.94 s) and 11.29% (2567.69 s). The optimality
was proven by the solver in 34 (out of 90) instances with Model-A and in 40 (out of
90) instances with Model-B. As expected, the models performed better (resp. worse)
in those classes with small (resp. large) values of the number of item types (M) and/or
(resp. large) small value of the average demand (dav). For instance, the optimality
was proven by the solver with Model-B in all instances of classes 1, 3 and 5 of group
G1, where these classes have dav = 10. In contrast, the average gaps are higher for
both models in classes 6, 12 and 18, which have M = 40 and dav = 100. We ran
additional computational experiments with Model-B considering all 100 instances
in classes 1, 3, 7, and 13. The optimality was proven by the solver in all these 400
(=4×100) instances. The average number of objects (setups) obtained by the solver
withModel-B was 11.48 (2.90), 22.13 (4.19), 50.24 (6.32), and 63.47 (7.51) in classes
1, 3, 7, and 13, respectively. As a comparison, for these classes, the state-of-the-art
heuristic of Cui et al. (2015) reported 11.49 (3.73), 22.13 (5.42), 50.24 (6.40), and
63.47 (7.52). For both models, we believe that a longer time limit would contribute to
obtaining more certificates of optimality only in classes with up to M = 20 item types
or dav = 10, given that most of the time spent by the solver is to prove the optimality
of the solution.

We note the quality of the linear relaxation of Model-B in comparison to Model-
A reported in Table 4. For instance, the average values of the linear relaxation of
Model-A and Model-B in class 1 was 1465.33 and 10,984.99, respectively, while
the average value of the optimal solutions was 11,720.00. However, the quality of
the linear relaxation of Model-B tends to decrease as the number of variables and
constraints also increase. For example, the average values of the optimal solutions in
classes 7 and 13 were 51,820.00 and 63,580.00, respectively. Indeed, the number of
variables and constraints of both models increase as the number of item types also
increases; they increase quickly as the average demands also increase, but notably in
Model-B. In summary, Model-B outperformed Model-A in instances of group G1,
while both models performed similarly in groups G2 and G3, with better average gaps
for Model-B, and slightly better average times for Model-A.

123

572 Journal of Combinatorial Optimization (2022) 44:557–582

Ta
bl
e
4

R
es
ul
ts
fo
r
th
e
C
ut
G
en
1
in
st
an
ce
s

C
la
ss

M
v
1

v
2

d a
v

M
od

el
-A

M
od

el
-B

V
ar

C
on

s
G
ap

[%
]

T
im

e
[s
]

L
R

O
pt

V
ar

C
on

s
G
a
p[%

]
T
im

e
[s
]

L
R

O
pt

1
10

0.
01

0.
20

10
29

7.
00

46
7.
80

0.
00

0.
46

1,
46

5.
33

5
28

4.
00

48
.8
0

0.
00

0.
18

10
,
98

4.
99

5

2
10

0.
01

0.
20

10
0

80
8.
40

13
63

.4
0

0.
18

23
39

.9
3

76
44

.0
7

3
35

11
.0
0

35
5.
40

0.
16

17
64

.5
9

10
8,
94

5.
14

4

3
20

0.
01

0.
20

10
12

46
.0
0

19
45

.4
0

0.
00

81
.1
3

16
62

.5
3

5
13

41
.8
0

11
4.
20

0.
00

12
.9
5

22
,
64

0.
64

5

4
20

0.
01

0.
20

10
0

30
88

.4
0

52
65

.2
0

0.
90

tl
81

81
.5
4

0
15

,
91

6.
20

85
6.
40

1.
22

tl
22

5,
25

7.
93

0

5
40

0.
01

0.
20

10
49

89
.2
0

76
66

.6
0

2.
01

tl
15

46
.6
2

0
53

40
.0
0

23
6.
00

0.
00

20
53

.2
8

42
,
14

8.
81

5

6
40

0.
01

0.
20

10
0

15
,
95

8.
40

26
,
92

4.
40

7.
07

tl
71

74
. 9
1

0
69

,
20

5.
60

19
47

.2
0

4.
88

tl
42

0,
70

0.
35

0

A
vg

./s
um

43
97

.9
0

72
72

.1
3

1.
69

22
03

.5
9

46
12

.5
0

13
15

,
93

3.
10

35
58

1.
04

18
38

.5
0

13
8,
44

6.
31

19

7
10

0.
01

0.
80

10
50

3.
80

83
2.
40

0.
00

24
.2
4

40
96

.5
2

5
96

7.
00

11
3.
80

0.
00

40
.8
4

42
,
32

5.
97

5

8
10

0.
01

0.
80

10
0

80
7.
40

14
08

.4
0

0.
12

10
09

.8
1

23
,
12

7.
70

4
98

72
.8
0

92
3.
80

0.
13

14
96

.7
5

42
1,
14

5.
39

3

9
20

0.
01

0.
80

10
21

75
.6
0

36
07

.4
0

0.
91

28
85

.2
3

41
62

.2
9

1
42

59
.4
0

25
7.
80

0.
40

28
83

.7
0

87
,
79

5.
33

1

10
20

0.
01

0.
80

10
0

33
22

.2
0

58
53

.6
0

1.
70

29
22

.3
1

21
,
98

4.
11

1
43

,
43

2.
60

21
22

.8
0

1.
70

30
36

.3
8

87
3,
76

7.
07

1

11
40

0.
01

0.
80

10
80

11
.2
0

13
,
30

0.
80

5.
51

tl
34

31
.0
9

0
15

,
50

6.
00

49
0.
40

1.
17

30
11

.9
9

16
2,

72
5.
93

1

12
40

0.
01

0.
80

10
0

12
,
83

1.
40

22
,
71

2.
80

51
.7
2

tl
21

,
34

8.
93

0
16

3,
34

5.
40

41
52

.8
0

30
.1
2

tl
16

23
,
41

8.
72

0

A
vg

./s
um

46
08

.6
0

79
52

.5
7

10
.0
0

23
40

.2
6

13
,
02

5.
11

11
39

,
56

3.
87

80
61

5.
59

23
44

.9
4

53
5,
19

6.
40

11

13
10

0.
20

0.
80

10
62

2.
60

10
26

.8
0

0.
04

76
1.
52

59
49

.2
7

4
12

13
.0
0

13
9.
60

0.
00

21
6.
02

51
,
49

4.
52

5

14
10

0.
20

0.
80

10
0

91
0.
80

15
91

.4
0

0.
06

16
07

.5
1

56
,
57

3.
41

3
12

,
12

6.
40

11
30

.2
0

0.
15

28
26

.8
6

51
2,

38
5.
34

2

15
20

0.
20

0.
80

10
22

34
.4
0

37
37

.4
0

0.
36

25
75

.0
6

63
49

.7
1

2
48

89
.0
0

28
7.
00

0.
32

21
99

.8
0

10
5,
34

6.
45

2

16
20

0.
20

0.
80

10
0

35
61

.6
0

62
90

.6
0

0.
36

31
21

.1
8

57
,
07

6.
57

1
51

,
06

4.
80

24
87

.8
0

1.
17

tl
10

48
,
55

6.
50

0

17
40

0.
20

0.
80

10
88

08
.2
0

14
,
70

7.
60

23
.7
3

tl
60

17
.7
5

0
18

,
45

5.
20

56
5.
40

0.
40

29
63

.4
9

20
0,

95
8.
75

1

18
40

0.
20

0.
80

10
0

14
,
18

1.
00

25
,
16

5.
00

64
.2
4

tl
55

,
86

7.
73

0
19

5,
02

4.
20

49
19

.8
0

65
.7
3

tl
20

03
,
13

5.
91

0

A
vg

./s
um

50
53

.1
0

87
53

.1
3

14
.8
0

25
44

.2
1

31
,
30

5.
74

10
47

,
12

8.
77

95
30

11
.2
9

25
67

.6
9

65
3,
64

6.
24

10

N
ot
es
:(
1)

W
e
co
ns
id
er
ed

th
e
m
on

o-
ob

je
ct
iv
e
ve
rs
io
ns

of
M
od

el
-A

an
d
M
od

el
-B

w
ith

co
ef
fic

ie
nt
s
c o

=
1,
00

0
an
d
c p

=
10

0.
(2
)
th
e
le
tte
rs
“t
l”
in
di
ca
te
w
he
n
th
e
tim

e
lim

it
w
as

re
ac
he
d
in

al
l5

in
st
an
ce
s
of

th
e
cl
as
s

123

Journal of Combinatorial Optimization (2022) 44:557–582 573

5.2 Results for Fiber instances

In this section, we present the results performed to assess the quality of the Pareto
frontiers obtained by the developed framework of Sect. 4 withModel-A andModel-B.
We limited each execution of the solver to 900 s and stopped the algorithm if there was
no improvement in reducing the number of objects for three consecutive iterations.We
considered the set of 40 practical instances for the CSP-S provided by Umetani et al.
(2003) whichwere taken from a chemical fiber industry. In these instances, the number
of item types M varied from 6 to 29, the length of the items varied from 500 to 2000,
and the demand of each item type varied from 2 to 264. They were divided into two
groups: the first twenty instances had L = 5180 and the remaining twenty instances
had L = 9080. After applying preprocessing (P1) of Algorithm 1, the number of
item types M varied from 4 to 20. The heuristic approaches of Umetani et al. (2003),
Lee (2007), Golfeto et al. (2009) and Araujo et al. (2014) for the CSP-S used these
instances to provide solutions with minimum trim loss for different fixed numbers of
patterns. They calculated the trim loss as the percentage ratio of the total trim loss to
the total length of the items, i.e., 100 × (Lẑ − ∑

i∈I li di)/
∑

i∈I li di , where ẑ is the
number of objects required in the cutting plan. Aswe are not aware of other approaches
in the literature that have solved the CSP-S exactly, we considered the approaches of
Umetani et al. (2003) and Lee (2007) as benchmark approaches, denoted as ILS03 and
Crawla, respectively.We note that the performance of the algorithms of Lee (2007) and
Golfeto et al. (2009) was similar, while the genetic algorithm of Araujo et al. (2014)
found more solutions with minimum trim loss, but required a significant additional
number of patterns.

In Tables 5 and 6, we report the Pareto frontiers obtained by ILS03, Crawla, Model-
A and Model-B for this set of instances where L = 5180 and L = 9080, respectively.
For each of the approaches, we present the percentage of trim loss obtained by the
approach when considering the respective number of patterns (column y). For Model-
A and Model-B, we report three additional pieces out information. The first is the
processing time in seconds required to generate the Pareto frontier, which is reported
in italic on the same line of the instance name.Thenwe report their entries of percentage
trim loss in bold, when the optimality was proven by the solver. Finally, we use the
symbol * to indicate when the approach was not able to find a cutting plan with the
minimum amount of trim loss, which is indicated in parentheses next to the instance
name, when neither Model-A nor Model-B was able to achieve the minimum. Since
the computational environment of the benchmark approaches is less powerful, we limit
the analysis to the quality of the solution next. We note that ILS03 was executed in
seconds/minutes (Umetani et al. 2003), while Crawla required from 1 to 20 min (Lee
2007).

The results in Tables 5 and 6 show that the Pareto optimal frontier was obtained by
Model-A and Model-B in 26 (out of 40) instances. In addition, Model-A found the
solution with minimum trim loss in instance fiber17_5180, while Model-B in instance
fiber20_5180. The processing times of Model-B were better than those of Model-A in
almost all instances. We highlight the quality of the Pareto frontiers of Model-A and
Model-B in comparison to ILS03 and Crawla. For instance, in fiber13a_5180, ILS03

123

574 Journal of Combinatorial Optimization (2022) 44:557–582

Ta
bl
e
5

R
es
ul
ts
fo
r
th
e
Fi
be
r
in
st
an
ce
s
of

L
=

51
80

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

fib
er
06

_5
18

0
62

.0
5

8.
36

fib
er
13

b_
51

80
1.
96

0.
84

fib
er
20

_5
18

0
2,
89

6.
94

1,
20

5.
81

7
5.
19

9
6.
59

8
13

.4
1

0.
81

6
5.
19

8
6.
59

7
19

.7
1

7.
11

*
3.
96

5
5.
19

2.
09

2.
09

7
6.
59

6
26

.0
2

10
.2
6

3.
96

3.
96

4
8.
28

8.
28

5.
19

5.
19

6
6.
59

5
54

.3
7

22
.8
6

7.
11

7.
11

3
8.
28

12
.4
7

8.
28

8.
28

5
6.
59

4
57

.5
2

54
.3
7

19
.7
1

19
.7
1

2
48

.5
0

17
.5
6

17
.5
6

4
6.
59

2.
92

2.
92

fib
er
23

_5
18

0
(0
.7
0)

9,
00

0.
00

46
51

.9
6

fib
er
07

_5
18

0
0.
15

0.
28

3
10

.2
7

6.
59

6.
59

15
4.
98

10
4.
98

2
10

5.
83

21
.2
9

21
.2
9

14
2.
84

9
4.
98

fib
er
14

_5
18

0
(1
.1
5)

1,
38

9.
40

1,
94

8.
02

13
6.
41

8
4.
98

11
5.
45

12
9.
27

*

7
4.
98

10
5.
45

11
17

.8
4

2.
12

6
8.
16

9
5.
45

10
4.
27

3
8.
16

4.
98

4.
98

8
7.
61

9
2.
84

4.
98

2
11

.3
4

11
.3
4

11
.3
4

7
9.
76

*
*

8
4.
27

4.
98

*

1
68

.6
1

68
.6
1

68
.6
1

6
3.
30

3.
30

7
5.
70

5.
70

2.
84

fib
er
08

_5
18

0
1.
00

2.
98

5
5.
45

3.
30

3.
30

6
7.
84

7.
84

4.
27

10
4.
47

4
9.
76

5.
45

5.
45

5
19

.9
8

10
.6
9

7.
84

9
4.
47

3
14

.0
6

9.
76

9.
76

4
20

.6
9

20
.6
9

8
4.
47

2
63

.5
6

63
.5
6

63
.5
6

fib
er
26

_5
18

0
(2
.3
1)

6,
30

0.
00

5,
97

2.
31

7
4.
47

fib
er
15

_5
18

0
10

2.
02

15
.7
9

29
3.
39

6
4.
47

14
4.
76

28
2.
31

5
13

4.
76

27
3.
39

4
3.
26

3.
26

12
4.
76

26
3.
39

123

Journal of Combinatorial Optimization (2022) 44:557–582 575

Ta
bl
e
5

co
nt
in
ue
d

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

3
4.
46

4.
46

4.
46

11
4.
76

25
3.
93

2
5.
67

5.
67

5.
67

10
6.
56

9
*

*

1
12

6.
94

12
6.
94

5
2.
95

2.
95

8
4.
47

2.
85

2.
85

fib
er
09

_5
18

0
10

30
.7
8

12
91

.8
1

4
4.
76

4.
76

4.
76

7
5.
01

3.
39

3.
39

9
9.
27

3
10

.1
7

6.
56

6.
56

6
7.
16

3.
93

3.
93

8
9.
27

2
49

.9
1

39
.0
7

39
.0
7

5
15

.7
8

5.
01

5.
01

7
9.
27

fib
er
16

_5
18

0
(0
.3
4)

63
34

.1
2

46
83

.5
2

4
78

.2
4

20
.0
8

20
.0
8

6
11

.2
9

7.
24

7.
24

10
7.
68

fib
er
28

a_
51

80
(0
.0
6)

6,
30

0.
00

1,
75

6.
81

5
11

.2
9

9.
27

9.
27

9
6.
46

*
11

9.
70

4
11

.2
9

11
.2
9

11
.2
9

8
8.
91

1.
56

*
10

10
.9
1

3
23

.4
3

11
.2
9

11
.2
9

7
8.
91

4.
01

2.
79

1.
56

9
10

.9
1

2
47

.7
1

47
.7
1

47
.7
1

6
27

.2
6

5.
24

2.
79

2.
79

8
18

.1
4

4.
88

*

fib
er
10

_5
18

0
13

.7
6

26
.0
4

5
11

.3
5

4.
01

4.
01

7
26

.5
8

7.
29

1.
26

*

14
4.
20

4
13

.8
0

7.
68

7.
68

6
9.
70

2.
47

1.
26

13
4.
20

3
45

.6
2

28
.4
8

28
.4
8

5
13

.3
2

3.
67

3.
67

12
4.
20

fib
er
17

_5
18

0
1,
43

8.
49

2,
91

8.
21

4
28

.9
9

16
.9
3

16
.9
3

11
4.
20

9
5.
46

3
15

6.
77

15
6.
77

10
4.
20

8
6.
69

fib
er
28

b_
51

80
(0
.5
3)

9,
00

0.
00

6,
30

0.
00

5
4.
20

2.
71

2.
71

7
7.
92

1.
78

15
5.
69

4
5.
69

4.
20

4.
20

6
17

.2
8

4.
24

3.
01

*
14

6.
55

3
7.
18

5.
69

5.
69

5
22

.6
3

6.
69

3.
01

3.
01

13
6.
55

2
22

.0
6

22
.0
6

22
.0
6

4
7.
92

5.
46

5.
46

12
8.
27

*

fib
er
11

_5
18

0
71

.0
9

25
.6
1

3
29

.9
9

23
.8
6

23
.8
6

11
6.
55

2.
25

12
6.
06

fib
er
18

_5
18

0
19

35
.8
3

19
05

.9
0

10
3.
11

123

576 Journal of Combinatorial Optimization (2022) 44:557–582

Ta
bl
e
5

co
nt
in
ue
d

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

11
6.
06

11
5.
10

9
3.
11

*

10
4.
52

10
6.
16

8
5.
69

3.
97

3.
11

9
4.
52

9
5.
10

7
8.
27

8.
27

4.
83

8
6.
06

8
10

.4
1

6
15

.1
4

9.
99

9.
13

5
6.
06

2.
98

2.
98

7
11

.4
7

1.
91

1.
91

5
34

.9
0

22
.8
7

22
.0
1

4
7.
59

4.
52

4.
52

6
5.
10

2.
97

2.
97

4
20

2.
46

11
9.
97

3
10

.6
7

9.
13

9.
13

5
6.
16

4.
04

4.
04

fib
er
29

_5
18

0
46

71
.5
4

26
27

.3
5

2
52

.1
7

52
.1
7

4
7.
22

6.
16

6.
16

13
11

.0
3

fib
er
13

a_
51

80
16

.5
4

6.
89

3
18

.9
0

18
.9
0

18
.9
0

12
9.
40

14
2.
41

fib
er
19

_5
18

0
13

35
.6
2

27
33

.3
2

11
14

.3
0

13
4.
24

25
4.
98

10
9.
40

12
2.
41

24
5.
77

9
12

.6
6

4.
50

1.
23

11
4.
24

23
4.
98

8
9.
40

2.
87

1.
23

10
4.
24

22
4.
98

7
14

.2
9

2.
87

2.
87

4
13

.3
8

2.
41

2.
41

21
4.
98

6
24

.0
9

4.
50

4.
50

3
28

.0
1

9.
73

9.
73

9
5.
77

5
32

.2
6

27
.3
6

15
.9
3

2
51

.7
9

51
.7
9

8
6.
56

4
11

3.
89

11
3.
89

7
7.
35

4.
98

6
8.
14

4.
98

5.
77

5
9.
72

6.
56

6.
56

4
14

.4
5

11
.3
0

11
.3
0

3
32

.6
1

32
.6
1

N
ot
es
:(
1)

W
e
co
ns
id
er
ed

th
e
fr
am

ew
or
k
of

A
lg
or
ith

m
(1
)
fo
r
th
e
re
su
lts

of
M
od

el
-A

an
d
M
od

el
-B

(2
)
A
n
en
tr
y
in

ita
lic

re
pr
es
en
ts
th
e
pr
oc
es
si
ng

tim
e
in

se
co
nd
s
re
qu
ir
ed

to
ge
ne
ra
te
th
e
Pa
re
to

fr
on
tie
r

(3
)
A
n
en
tr
y
in

bo
ld

in
di
ca
te
s
th
at
th
e
op
tim

al
ity

w
as

pr
ov
en

123

Journal of Combinatorial Optimization (2022) 44:557–582 577

Ta
bl
e
6

R
es
ul
ts
fo
r
th
e
Fi
be
r
in
st
an
ce
s
of

L
=

90
80

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

fib
er
06

_9
08

0
0.
38

0.
14

fib
er
14

_9
08

0
0.
38

0.
14

fib
er
23

_9
08

0
(0
.1
5)

3,
11

2.
41

2,
77

7.
96

5
8.
46

5
5.
63

7
11

.4
1

4
8.
46

4
5.
63

6
12

.6
7

6.
41

*
*

3
8.
46

8.
46

3.
04

3.
04

3
43

.3
5

5.
63

1.
86

1.
86

5
16

.4
2

7.
66

1.
40

1.
40

2
19

.3
0

8.
46

8.
46

2
24

.4
9

13
.1
7

13
.1
7

4
11

.4
1

3.
90

3.
90

1
73

.5
3

73
.5
3

73
.5
3

fib
er
15

_9
08

0
1.
12

0.
80

3
20

.1
8

13
.9
2

13
.9
2

fib
er
07

_9
08

0
0.
01

0.
02

5
10

.8
1

2
12

6.
58

12
6.
58

4
5.
95

4
7.
64

4.
48

1.
31

1.
31

fib
er
26

_9
08

0
23

3.
33

23
1.
76

3
5.
95

3
32

.9
7

7.
64

4.
48

4.
48

9
6.
66

2
5.
95

5.
95

5.
95

5.
95

2
23

.4
7

7.
64

7.
64

8
7.
61

1
17

.1
0

17
.1
0

17
.1
0

1
20

0.
77

20
0.
77

7
8.
55

fib
er
08

_9
08

0
0.
24

0.
49

fib
er
16

_9
08

0
54

3.
28

61
.8
1

6
1.
94

4
3.
13

6
7.
25

5
3.
83

1.
00

1.
00

3
7.
34

1.
03

1.
03

1.
03

5
7.
25

7.
25

0.
81

0.
81

4
10

.4
4

1.
94

1.
94

2
17

.8
7

7.
34

3.
13

3.
13

4
13

.6
8

9.
39

2.
96

2.
96

3
33

.0
9

9.
50

9.
50

1
32

.6
0

32
.6
0

32
.6
0

3
17

.9
7

7.
25

7.
25

2
17

3.
74

17
3.
74

fib
er
09

_9
08

0
0.
34

0.
77

2
45

.8
6

28
.7
0

28
.7
0

fib
er
28

a_
90

80
36

0.
00

10
5.
35

5
9.
95

fib
er
17

_9
08

0
46

.2
7

17
.2
8

8
9.
88

4
9.
95

6.
41

12
5.
33

7
9.
88

3
9.
95

9.
95

2.
86

2.
86

11
5.
33

6
18

.3
3

2
27

.6
9

13
.5
0

13
.5
0

10
3.
18

5
5.
66

1.
43

1.
43

1
25

4.
69

25
4.
69

5
3.
18

4
11

.9
9

3.
54

3.
54

fib
er
10

_9
08

0
0.
28

0.
69

4
5.
33

1.
03

1.
03

3
20

.4
5

9.
88

9.
88

5
6.
98

3
7.
48

5.
33

5.
33

2
60

.6
0

60
.6
0

60
.6
0

123

578 Journal of Combinatorial Optimization (2022) 44:557–582

Ta
bl
e
6

co
nt
in
ue
d

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

y
IL
S0

3
C
ra
w
la

M
od

el
-A

M
od

el
-B

4
6.
98

1.
76

2
26

.8
3

24
.6
8

24
.6
8

fib
er
28

b_
90

80
3,
37

8.
21

1,
36

1.
93

3
9.
59

4.
37

1.
76

1.
76

fib
er
18

_9
08

0
85

.2
4

29
.8
9

12
3.
93

2
14

.8
1

6.
98

6.
98

6
6.
07

11
6.
94

1
72

.2
1

72
.2
1

5
15

.3
7

2.
35

0.
49

0.
49

10
14

.4
7

fib
er
11

_9
08

0
2.
18

1.
60

4
19

.0
9

4.
21

2.
35

2.
35

8
0.
91

5
7.
77

3
7.
93

4.
21

4.
21

6
3.
93

2.
42

0.
91

4
5.
08

7.
77

2.
38

2.
38

2
33

.9
8

19
.0
9

19
.0
9

5
6.
94

3.
93

2.
42

3
10

.4
7

10
.4
7

5.
08

5.
08

fib
er
19

_9
08

0
(1
.0
0)

12
54

.7
4

20
76

.4
4

4
14

.4
7

6.
94

5.
43

2
34

.7
1

13
.1
6

13
.1
6

8
3.
77

3
29

.5
3

23
.5
1

23
.5
1

1
22

8.
70

22
8.
70

7
6.
54

fib
er
29

_9
08

0
40

9.
59

38
1.
10

fib
er
13

a_
90

80
10

.4
2

2.
38

6
6.
54

*
13

5.
90

6
5.
79

5
2.
39

*
12

8.
76

5
8.
99

4
3.
27

2.
39

2.
39

11
11

.6
2

4
12

.2
0

8.
99

2.
58

2.
58

3
6.
10

5.
16

5.
16

6
5.
90

3
15

.4
0

5.
79

5.
79

2
49

.9
6

30
.0
6

30
.0
6

5
8.
76

0.
17

0.
17

2
31

.4
3

12
.2
0

12
.2
0

fib
er
20

_9
08

0
16

.5
5

1.
28

4
20

.2
1

5.
90

5.
90

1
40

6.
49

40
6.
49

7
15

.9
7

3
45

.9
7

20
.2
1

20
.2
1

fib
er
13

b_
90

80
2.
60

0.
83

6
15

.9
7

4
15

.9
7

5
15

.9
7

10
.4
5

3
9.
53

3.
09

3.
09

4
15

.9
7

4.
92

4.
92

2
22

.4
2

9.
53

9.
53

9.
53

3
27

.0
1

10
.4
5

10
.4
5

1
13

8.
39

13
8.
39

13
8.
39

2
13

7.
46

13
1.
94

13
1.
94

N
ot
es
:(
1)

W
e
co
ns
id
er
ed

th
e
fr
am

ew
or
k
of

A
lg
or
ith

m
(1
)
fo
r
th
e
re
su
lts

of
M
od

el
-A

an
d
M
od

el
-B

(2
)
A
n
en
tr
y
in

ita
lic

re
pr
es
en
ts
th
e
pr
oc
es
si
ng

tim
e
in

se
co
nd
s
re
qu
ir
ed

to
ge
ne
ra
te
th
e
Pa
re
to

fr
on
tie
r

(3
)
A
n
en
tr
y
in

bo
ld

in
di
ca
te
s
th
at
th
e
op
tim

al
ity

w
as

pr
ov
en

123

Journal of Combinatorial Optimization (2022) 44:557–582 579

ranged from 10 to 14 patterns, while Crawla and the proposed approaches required less
than half that number of patterns. Note that Crawla did not report results in this instance
for y = 2, and obtained much higher trim loss values than the proposed approaches
for y = 3 and y = 4. We did not report in bold, but we highlight that Crawla found a
few optimal solutions, for instance, in fiber07_5180 and fiber09_5180. Considering
instances with approximate Pareto frontiers as in fiber29a_5180, the trim loss values
obtained by Model-A and Model-B were considerably lower than the benchmark
approaches. As expected, these results show that increasing the number of patterns
significantly reduces the trim loss in the first cutting plans of the Pareto curve (i.e.,
when y is close to y∗), as shown in Table 6. In the last cutting plans of the Pareto
curve when z is close to z∗, this behavior was attenuated, as shown in Table 5. We
also note the cases of fiber06_5180 (y from 3 to 4) and fiber14_5180 (y from 5 to 6),
in which the trim loss remained even with the increase in the number of patterns. In
summary, the better results in Table 6 than in Table 5 can be explained by the increase
of L from 5180 to 9080. Since the length of the item types is maintained, this increase
requires cutting planes with fewer objects, which, in turn, requires fewer variables and
constraints.

5.3 Comments on other ILP formulations

In the development phase of this study, we performed preliminary computational
experiments with the ILP formulations of Johnston and Sadinlija (2004) and Alves
and Valério De Carvalho (2008) that can be adapted to address the CSP-S. Since the
variables in these formulations are indexed in the number of items that fit in the object,
they tend to have a better (resp. worse) performance when the number of items in a
pattern is small (resp. large). For instance, for the Cutgen1 instances, the optimality
was proven by the solver with the adapted version of the arc flow model of Alves and
Valério De Carvalho (2008) in 1 out of 30 instances in group G1 and in 25 out of 30
instances in group G3. Certificates of optimality were obtained by the solver with the
adapted version of the model of Johnston and Sadinlija (2004) in 9 out of 30 instances
in group G1 and in 12 out of 30 instances in group G3. Note that the average number
of items in a pattern of group G3 was 2 (v1 = 0.20 and v2 = 0.80). Another difficulty
was in the instances with large values for the maximum frequency of the patterns,
especially in the first cutting plans of the Pareto curves for the Fiber instances. Indeed,
the framework of Sect. 1 reached the stopping criterion without solutions in 19 out of
40 of Fiber instances with this formulation. Therefore, we consider that the proposed
pattern-based formulations were more suitable for the practical scenarios we intend
to solve.

6 Conclusions

We proposed an exact framework to obtain the Pareto optimal frontier for the One-
dimensional Cutting Stock Problem with the bi-objective function of minimizing the
number of objects and the number of distinct patterns. Instead of using decomposi-

123

580 Journal of Combinatorial Optimization (2022) 44:557–582

tion methods for solving the Pattern Minimization Problem as in Vanderbeck (2000),
we relied on the development of ILP formulations to be solved by a general-purpose
solver. The results of the computational experiments showed that the approaches are
appropriate for instances with solutions characterized by amoderate number of objects
and a few patterns in the Pareto optimal frontier. As future research, a challenging pos-
sibility is the development of new valid inequalities to strengthen the linear relaxation
of the ILP formulations, as well as to avoid symmetries in the solutions. Since the
problem is mainly addressed by heuristics, another possibility would be the develop-
ment of a highly flexible algorithm based on a Sequential Heuristic Procedure. This
algorithm would identify the characteristics of the problem instance, for instance, to
generate patterns, by closing the demand of more than one item type and to consider
patterns with trim loss, as in the illustrative example provided.

Acknowledgements The authors are grateful to the anonymous reviewers for their valuable comments and
suggestions of revisions. We also thank Prof. Silvio Araujo and Prof. Kelly Poldi for sharing with us part
of their results.

Author Contributions All authors contributed to the study conception and design. Material preparation,
data collection and analysis were performed by Mateus Martin, Horacio Hideki Yanasse and Luiz Leduíno
Salles Neto. The first draft of the manuscript was written by Mateus Martin and all authors commented on
previous versions of the manuscript. All authors read and approved the final manuscript.

Funding The authors would like to thank the São Paulo Research Foundation (FAPESP-Brazil) [grant num-
bers 2020/00747-2, 2016/01860-1] and the National Council for Scientific and Technological Development
(CNPq-Brazil) [grant number 304144/2019-3] for the financial support. Research was carried out using the
computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI) funded
by FAPESP-Brazil [grant number 2013/07375-0].

Data availability The datasets analysed during the current study are available in the Shunji Umetani’s
website [https://sites.google.com/site/shunjiumetani/benchmark] and from the corresponding author upon
reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Aliano Filho A, Moretti AC, Pato MV (2018) A comparative study of exact methods for the bi-objective
integer one-dimensional cutting stock problem. J Oper Res Soc 69:91–107. https://doi.org/10.1057/
s41274-017-0214-7

Alves C, Macedo R, Valério de Carvalho J (2009) New lower bounds based on column generation and
constraint programming for the pattern minimization problem. Comput Oper Res 36:2944–2954.
https://doi.org/10.1016/j.cor.2009.01.008

Alves C, Valério DeCarvalho JM (2008)A branch-and-price-and-cut algorithm for the patternminimization
problem. RAIRO Oper Res 42:435–453. https://doi.org/10.1051/ro:2008027

Araujo SA, Poldi KC, Smith J (2014) A genetic algorithm for the one-dimensional cutting stock problem
with setups. Pesqui Oper 34:165–187. https://doi.org/10.1590/0101-7438.2014.034.02.0165

Belov G, Scheithauer G (2003) The number of setups (different patterns) in one-dimensional stock cutting.
Technical Report Institute for Numerical Mathematics, Dresden University, MATH-NM-15-2003

123

https://sites.google.com/site/shunjiumetani/benchmark
https://doi.org/10.1057/s41274-017-0214-7
https://doi.org/10.1057/s41274-017-0214-7
https://doi.org/10.1016/j.cor.2009.01.008
https://doi.org/10.1051/ro:2008027
https://doi.org/10.1590/0101-7438.2014.034.02.0165

Journal of Combinatorial Optimization (2022) 44:557–582 581

Cerqueira GR, Aguiar SS, Marques M (2021) Modified Greedy Heuristic for the one-dimensional cutting
stock problem. J Comb Optim. https://doi.org/10.1007/s10878-021-00695-4

Cui Y, Liu Z (2011) C-Sets-based sequential heuristic procedure for the one-dimensional cutting
stock problem with pattern reduction. Optim Methods Softw 26:155–167. https://doi.org/10.1080/
10556780903420531

Cui Y, Zhong C, Yao Y (2015) Pattern-set generation algorithm for the one-dimensional cutting stock
problem with setup cost. Eur J Oper Res 243:540–546. https://doi.org/10.1016/j.ejor.2014.12.015

Diegel A, Chetty M, Van Schalkwyck S, Naidoo S (1993) Setup combining in the trim loss problem-3-to-2
& 2-to-1. Technical Report Business Administration, University of Natal, Durban, First Draft

Foerster H, Wäscher G (2000) Pattern reduction in one-dimensional cutting stock problems. Int J Prod Res
38:1657–1676. https://doi.org/10.1080/002075400188780

Garey MR, Johnson DS (1979) Computers and intractability; a guide to the theory of NP-completeness. W.
H. Freeman & Co, New York

Gau T, Wäscher G (1995) CUTGEN1: a problem generator for the standard one-dimensional cutting stock
problem. Eur J Oper Res 84:572–579. https://doi.org/10.1016/0377-2217(95)00023-J

Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem. Oper Res
9:849–859. https://doi.org/10.1287/opre.9.6.849

Golfeto RR,Moretti AC, Neto LLdS (2009) A genetic symbiotic algorithm applied to cutting stock problem
with multiple objectives. Adv Model Optim 11:473–501

Haessler RW (1975) Controlling cutting pattern changes in one-dimensional trim problems. Oper Res
23:483–493. https://doi.org/10.1287/opre.23.3.483

Harjunkoski I, Westerlund T, Isaksson J, Skrifvars H (1996) Different formulations for solving trim loss
problems in a paper-converting mill with ILP. Comput Chem Eng 20:121–126. https://doi.org/10.
1016/0098-1354(96)00031-2

Henn S, Wäscher G (2013) Extensions of cutting problems: setups. Pesqui Oper 33:133–162. https://doi.
org/10.1590/S0101-74382013000200001

Johnston RE, Sadinlija E (2004) A new model for complete solutions to one-dimensional cutting stock
problems. Eur J Oper Res 153:176–183. https://doi.org/10.1016/S0377-2217(02)00704-X

Kantorovich LV (1960) Mathematical methods of organizing and planning production. Manage Sci 6:366–
422. https://doi.org/10.1287/mnsc.6.4.366

Lee J (2007) In situ column generation for a cutting-stock problem. Comput Oper Res 34:2345–2358.
https://doi.org/10.1016/j.cor.2005.09.007

Ma N, Liu Y, Zhou Z (2019) Two heuristics for the capacitated multi-period cutting stock problem with
pattern setup cost. Comput Oper Res 109:218–229. https://doi.org/10.1016/j.cor.2019.05.013

Martin M, Moretti A, Gomes-Ruggiero M, Neto LS (2018) Modification of Haessler’s sequential heuristic
procedure for the one-dimensional cutting stock problem with setup cost. Producao. https://doi.org/
10.1590/0103-6513.20170105

McDiarmid C (1999) Pattern minimisation in cutting stock problems. Discrete Appl Math 98:121–130.
https://doi.org/10.1016/S0166-218X(99)00112-2

Mobasher A, Ekici A (2013) Solution approaches for the cutting stock problem with setup cost. Comput
Oper Res 40:225–235. https://doi.org/10.1016/j.cor.2012.06.007

Nitsche C, Scheithauer G, Terno J (1999) Tighter relaxations for the cutting stock problem. Eur J Oper Res
112:654–663. https://doi.org/10.1016/S0377-2217(97)00404-9

Scheithauer G (2018) Introduction to cutting and packing optimization: problems, modeling approaches,
solution methods. In: International series in operations research and management science. Springer.
https://doi.org/10.1007/978-3-319-64143-0

Umetani S, Yagiura M, Ibaraki T (2003) One-dimensional cutting stock problem to minimize the number
of different patterns. Eur J Oper Res 146:388–402. https://doi.org/10.1016/S0377-2217(02)00239-4

Umetani S, Yagiura M, Ibaraki T (2006) One-dimensional cutting stock problem with a given number
of setups: a hybrid approach of metaheuristics and linear programming. J Math Model Algorithms
5:43–64. https://doi.org/10.1007/s10852-005-9031-0

Vahrenkamp R (1996) Random search in the one-dimensional cutting stock problem. Eur J Oper Res
95:191–200. https://doi.org/10.1016/0377-2217(95)00198-0

Valério de Carvalho JM (1999) Exact solution of cutting stock problems using column generation and
branch-and-bound. Ann Oper Res 86:629–659. https://doi.org/10.1023/a:1018952112615

Valério de Carvalho JM (2002) LP models for bin packing and cutting stock problems. Eur J Oper Res
141:253–273. https://doi.org/10.1016/S0377-2217(02)00124-8

123

https://doi.org/10.1007/s10878-021-00695-4
https://doi.org/10.1080/10556780903420531
https://doi.org/10.1080/10556780903420531
https://doi.org/10.1016/j.ejor.2014.12.015
https://doi.org/10.1080/002075400188780
https://doi.org/10.1016/0377-2217(95)00023-J
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1287/opre.23.3.483
https://doi.org/10.1016/0098-1354(96)00031-2
https://doi.org/10.1016/0098-1354(96)00031-2
https://doi.org/10.1590/S0101-74382013000200001
https://doi.org/10.1590/S0101-74382013000200001
https://doi.org/10.1016/S0377-2217(02)00704-X
https://doi.org/10.1287/mnsc.6.4.366
https://doi.org/10.1016/j.cor.2005.09.007
https://doi.org/10.1016/j.cor.2019.05.013
https://doi.org/10.1590/0103-6513.20170105
https://doi.org/10.1590/0103-6513.20170105
https://doi.org/10.1016/S0166-218X(99)00112-2
https://doi.org/10.1016/j.cor.2012.06.007
https://doi.org/10.1016/S0377-2217(97)00404-9
https://doi.org/10.1007/978-3-319-64143-0
https://doi.org/10.1016/S0377-2217(02)00239-4
https://doi.org/10.1007/s10852-005-9031-0
https://doi.org/10.1016/0377-2217(95)00198-0
https://doi.org/10.1023/a:1018952112615
https://doi.org/10.1016/S0377-2217(02)00124-8

582 Journal of Combinatorial Optimization (2022) 44:557–582

Vanderbeck F (2000) Exact algorithm for minimising the number of setups in the one-dimensional cutting
stock problem. Oper Res 48:915–926. https://doi.org/10.1287/opre.48.6.915.12391

Wang D, Xiao F, Zhou L, Liang Z (2020) Two-dimensional skiving and cutting stock problem with setup
cost based on column-and-row generation. Eur J Oper Res 286:547–563. https://doi.org/10.1016/j.
ejor.2020.03.060

Wäscher G, Haußner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur
J Oper Res 183:1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047

Yanasse HH, Limeira MS (2006) A hybrid heuristic to reduce the number of different patterns in cutting
stock problems. Comput Oper Res 33:2744–2756. https://doi.org/10.1016/j.cor.2005.02.026

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1287/opre.48.6.915.12391
https://doi.org/10.1016/j.ejor.2020.03.060
https://doi.org/10.1016/j.ejor.2020.03.060
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1016/j.cor.2005.02.026

	Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contributions
	1.3 Organization of the paper

	2 A non-linear model for the CSP-S
	2.1 Eliminating symmetries or equivalent solutions

	3 Two pattern-based ILP formulations for the CSP-S
	3.1 Representing the frequency of each pattern as a binary expansion
	3.2 A novel pseudo-polynomial ILP formulation

	4 A framework for generating the Pareto optimal frontier
	4.1 An illustrative example

	5 Computational experiments
	5.1 Results for CutGen1 instances
	5.2 Results for Fiber instances
	5.3 Comments on other ILP formulations

	6 Conclusions
	Acknowledgements
	References

