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Abstract
Let G = (V (G), E(G)) be a connected graph. A set of vertices S ⊆ V (G) is an edge
metric generator of G if any pair of edges in G can be distinguished by their distance
to a vertex in S. The edge metric dimension edim(G) is the minimum cardinality of
an edge metric generator of G. In this paper, we first give a sharp bound on edim(G−
e)−edim(G) for a connected graphG and any edge e ∈ E(G). On the other hand, we
show that the value of edim(G) − edim(G − e) is unbounded for some graph G and
some edge e ∈ E(G). However, for a unicyclic graph H , we obtain that edim(H) −
edim(H − e) ≤ 1, where e is an edge of the unique cycle in H . And this conclusion
generalizes the result on the edge metric dimension of unicyclic graphs given by Knor
et al. Finally, we construct graphs G and H such that both edim(G) − edim(G − u)

and edim(H−v)−edim(H) can be arbitrarily large, where u ∈ V (G) and v ∈ V (H).
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1 Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. We
follow the notation and terminology of Bondy and Murty (2008) and Diestel (2005).
The concept of metric dimension was introduced independently by Harary and Melter
(1976) and Slater (1975) . Let G = (V (G), E(G)) be a connected graph and G be
its complement graph. For any pair of vertices x, y ∈ V (G), the distance between x
and y, which is denoted by dG(x, y), is the length of a shortest x − y path in G. A
x − y path with length dG(x, y) in G is a x − y geodesic. A vertex v ∈ V (G) is said
to distinguish vertices u and w if dG(u, v) �= dG(w, v). A vertex set S ⊆ V (G) is a
metric generator ofG if any pair of vertices inG can be distinguished by some element
of S. The minimum cardinality of a metric generator is the metric dimension of G,
denoted by dim(G). In Harary and Melter (1976), Harary and Melter determined the
exact values of the metric dimension for trees, grid graphs and characterized graphs
with small metric dimension. In addition, they obtained an approximation algorithm
for the metric dimension problem. Since then, it has been studied in various directions
by numerous researchers. For more details we refer to Beaudou et al. (2018); Cáceres
et al. (2007); Jiang and Polyanskii (2019); Tillquist et al. (Tillquist et al.).

Nowadays there exist some different kinds of metric generators in graphs, but there
are still quite a lot of other points of view which are still not completely taken into
account while describing a graph throughout these metric generators. Inspired by this,
(Kelenc et al. 2018) recently proposed the concept of an edge metric generator of a
graph. For any v ∈ V (G), e = xy ∈ E(G), the distance between them is defined as
dG(e, v) = min{dG(x, v), dG(y, v)}. For two edges e1, e2 ∈ E(G), if dG(e1, v) �=
dG(e2, v), then we say the vertex v distinguishes e1 and e2. A set of vertices S ⊆ V (G)

is an edge metric generator of G if any pair of edges can be distinguished by some
element of S. The minimum cardinality of an edge metric generator of G is the edge
metric dimension of G and is denoted by edim(G). Additionally, an edge metric
basis of G is an edge metric generator with cardinality edim(G). In Kelenc et al.
(2018), they proved that the problem of determining the edge metric dimension of
a connected graph is NP-hard. In Kelenc et al. (2018); Wei et al. (2020); Zubrilina
(2018); Geneson (2020); Zhu et al. (2019), the authors characterized the graphs G
of order n with edim(G) = n − 1, n − 2 or 2. (Peterin and Yero 2020) investigated
the edge metric dimension of the join, lexicographic and corona product of graphs.
For more results and details, we refer to Beaudou et al. (2018); Zhu et al. (2019);
Zubrilina (2018); Peterin and Yero (2020); Knor et al. (2021); Geneson (2020); Wei
et al. (2020); Jiang and Polyanskii (2019); Cáceres et al. (2007); Kuziak and Yero
(Kuziak and Yero).

For any graph G, both the exact values of dim(G) and edim(G) and their compu-
tational complexity attract the attention of researchers. In addition, researchers also
focus on the relationships between dim(G), edim(G) and some other graph param-
eters such as diameter, zero forcing number and so on. Furthermore, researchers pay
attention to the effects of different graph operations on dim(G) and edim(G). Partic-
ularly, the question as to the effect of the deletion of a vertex or of an edge on dim(G)

was raised as a fundamental question in graph theory by Chartrand and (Chartrand and
Zhang 2003) and further studied by Eroh et al. (2015). Inspired by their idea, we focus
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on the question how edim(G) will change after vertex or edge deletion. Recently,
(Knor et al. 2021) and (Zubrilina 2018) showed that both edim(G)

dim(G)
and dim(G)

edim(G)
are

not bounded for some certain graph G, which in a sense implies that the properties
of dim(G) and edim(G) may be much different. In this paper, we characterize the
difference between the edge metric dimension of the original graph and the resulting
graph after vertex or edge deletion. Additionally, (Knor et al. 2021) determined the
edge metric dimension of some unicyclic graphs in a certain class and our result on
the edge metric dimension of any unicyclic graphs generalizes it.

This paper is organized as follows. In Sect. 2, we first prove that edim(G − e) −
edim(G) ≤ 2 for any connected graph G and any edge e ∈ E(G), and this bound is
sharp for some certain graphs. Thenwe show that the value of edim(G)−edim(G−e)
is unbounded for some graph G and some edge e ∈ E(G). However, for a unicyclic
graph H and e ∈ E(C), we conclude that edim(H) − edim(H − e) ≤ 1, where C
is the unique induced cycle of H . In Sect. 3, we prove that there exist two graphs G
and H such that both edim(G) − edim(G − u) and edim(H − v) − edim(H) can
be arbitrarily large, where u ∈ V (G) and v ∈ V (H).

2 The effect of edge deletion on edgemetric dimention of graphs

In this section, we focus on how the edge metric dimension of a graph changes upon
deletion of an edge. Before giving our main results, we need the following definitions.
Let T = (V (T ), E(T )) be a tree and v ∈ V (T ). Define the equivalence relation Rv

in the following way: for every two edges e, f ∈ E(T ), eRv f if and only if there is
a path in T including both e and f but does not have v as an internal vertex. We call
the subgraphs induced by the edges of the equivalence classes of E(T ) the bridges of
T relative to v. Furthermore, if a bridge at v in T is a path, then the bridge is a leg at
v and we denote the number of legs at v in T by �T (v).

Proposition 2.1 Kelenc et al. (2018) Let T = (V (T ), E(T )) be a tree. If T is not a
path, then edim(T ) = ∑

v∈V (T )
�T (v)>1

(�T (v) − 1).

Now our first result can be stated as follows.

Theorem 2.2 For any graph G and any edge e ∈ E(G), edim(G−e)−edim(G) ≤ 2.
Moreover, this bound is sharp for certain graphs.

Proof Note that edim(G) = edim(G1) + · · · + edim(Gm), where G1, . . . ,Gm are
all the connected components of G. Next we assume that G is connected. Let S be an
edge metric basis of G and e = uv. If S is also an edge metric generator of G − e,
then edim(G − e) ≤ edim(G). Otherwise, set S′ = S ∪ {u, v} and we will show that
S′ is an edge metric generator of G − e.

If G − e has two components, denoted by G1 and G2, then edim(G − e) =
edim(G1) + edim(G2). Without loss of generality, we may assume that u ∈ V (G1)

and v ∈ V (G2). For any pair of edges e1, e2 ∈ E(G1), if there exists w ∈
V (G2) ∩ S such that dG(e1, w) �= dG(e2, w), then dG(e1, u) �= dG(e2, u) since
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dG(e1, w) = dG(e1, u) + dG(u, w) and dG(e2, w) = dG(e2, u) + dG(u, w). That is
to say, dG1(e1, u) �= dG1(e2, u). This implies that edim(G1) ≤ |(S ∩ V (G1)) ∪ {u}|.
With similar analysis, we can obtain that edim(G2) ≤ |(S∩V (G2))∪{v}|. Therefore
edim(G − e) ≤ |S′| ≤ edim(G) + 2.

Now we suppose that G − e is connected. Take any pair of edges e1 = ab, e2 =
xy ∈ E(G − e) that are unable to be distinguished by any element of S. Since S
is an edge metric generator of G but not of G − e, there exists z ∈ S such that
dG(e1, z) �= dG(e2, z) and dG−e(e1, z) = dG−e(e2, z). We will complete the proof in
the following two cases.

Case I For one of the edges e1 and e2, say e2 , the distance to z is not changed
after removing the edge e. That means dG−e(e2, z) = dG(e2, z) and dG−e(e1, z) >

dG(e1, z). Thus dG(e2, z) > dG(e1, z). We may assume that dG(e1, z) = dG(a, z)
and dG(e2, z) = dG(x, z). It follows that dG(x, z) > dG(a, z).

Since dG−e(e1, z) > dG(e1, z) = dG(a, z), then dG−e(a, z) > dG(a, z). This
implies that the edge e lies on every z − a geodesic in G. Notice that if a geodesic
in G from z to a traverses the edge e in the order u, v, then each geodesic in G from
z to a traverses e in the order u, v. Without loss of generality, we may assume that
every geodesic in G from z to a traverses the edge e in the order u, v. Thus we have
dG(z, a) = dG(z, v) + dG(v, a). Now we will show that e1, e2 can be distinguished
by v in G − e.

First we show that dG−e(e1, v) < dG−e(v, x). Since dG(z, v) + dG(v, x) ≥
dG(z, x) > dG(z, a) = dG(z, v) + dG(v, a), that is to say, dG(v, x) > dG(v, a).
It follows that dG−e(v, x) ≥ dG(v, x) > dG(v, a) = dG−e(v, a). If dG−e(e1, v) =
dG−e(v, a), then we have dG−e(e1, v) < dG−e(v, x). If dG−e(e1, v) < dG−e(v, a),
then dG−e(v, a) > dG−e(v, b) and dG(z, v) + dG−e(v, a) > dG(z, v) + dG−e(v, b).
Since dG−e(v, a) = dG(v, a) and dG−e(v, b) ≥ dG(v, b), dG(z, a) > dG(z, v) +
dG(v, b) ≥ dG(z, b), which contradicts to the assumption that dG(z, a) ≤ dG(z, b).

Now we prove dG−e(e1, v) < dG−e(v, y), i.e., dG−e(v, a) < dG−e(v, y). Suppose
that dG−e(v, a) ≥ dG−e(v, y). We can get dG(z, v) + dG−e(v, a) ≥ dG(z, v) +
dG−e(v, y). Since dG−e(v, a) = dG(v, a) and dG−e(v, y) ≥ dG(v, y), we have
dG(z, v) + dG(v, a) ≥ dG(z, v) + dG(v, y) ≥ dG(z, y) ≥ dG(z, x). That is to
say, dG(z, a) ≥ dG(z, x), which contradicts to dG(z, a) < dG(z, x). As a result,
dG−e(v, a) < dG−e(v, y) and it follows that dG−e(e1, v) < dG−e(v, y). Therefore,
dG−e(e1, v) < dG−e(e2, v) since dG−e(e2, v) = min{dG−e(v, x), dG−e(v, y)}. This
implies that e1, e2 can be distinguished by v. Thus S′ = S ∪ {u, v} is an edge metric
generator of G − e and then edim(G − e) ≤ edim(G) + 2.

Case II For both e1 and e2, the distances to z are increased after removing the edge
e, that is to say, dG−e(e1, z) > dG(e1, z) and dG−e(e2, z) > dG(e2, z). Without loss
of generality, we may assume that dG(e1, z) = dG(z, a) and dG(e2, z) = dG(z, x).
It follows that dG−e(z, a) > dG(z, a) and dG−e(z, x) > dG(z, x). This implies that
the edge e lies on every z − a and every z − x geodesic in G. Here we may assume
that every geodesic in G from z to a traverses the edge e in the order u, v. Thus we
know that every geodesic in G from z to x traverses the edge e also in the order u, v,
since otherwise we can find a shorter path than its geodesic from z to x . As a result,
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Fig. 1 The graph Gp,q,r
2k+1

dG(z, v) + dG(v, a) = dG(z, a) = dG(e1, z) and dG(z, v) + dG(v, x) = dG(z, x) =
dG(e2, z).

Without loss of generality, we may assume that dG(e1, z) > dG(e2, z) and hence
dG(v, a) > dG(v, x). We claim that the vertex v distinguishes the edges e1 and e2.
Indeed, since there exist v − a and v − x geodesic in G that does not contain the
edge e, dG−e(v, a) = dG(v, a) and dG−e(v, x) = dG(v, x). Therefore we have
dG−e(v, a) > dG−e(v, x). On the other hand, dG(z, v) + dG(v, b) ≥ dG(z, b) ≥
dG(z, a) = dG(z, v) + dG(v, a), that is to say, dG(v, b) ≥ dG(v, a). It follows
that dG−e(v, b) ≥ dG(v, b) ≥ dG(v, a) = dG−e(v, a) > dG−e(v, x). So we have
dG−e(e1, v) > dG−e(v, x) ≥ dG−e(e2, v), which implies that the edges e1, e2 can be
distinguished by v in G − e. Therefore S′ = S ∪ {u, v} is an edge metric generator of
G − e and thus edim(G − e) ≤ edim(G) + 2, as desired. 
�

Finally, we show the sharpness of the bound by proving that edim(Gp,q,r
2k+1 − e) =

edim(Gp,q,r
2k+1) + 2, where the graph Gp,q,r

2k+1 is depicted in Figure 1. Let C2k+1 =
u1u2 . . . u2k+1 be an odd cycle of length 2k + 1, where k ≥ 3. Attach p, q, r pendant
vertices to u2, uk, u2k respectively,where p, q, r ≥ 2.Denote the newgraph asGp,q,r

2k+1 .
It is easy to verify that S1 = {v2, . . . , vp, w2, . . . , wq , x2, . . . , xr } is an edge metric
basis ofGp,q,r

2k+1 and thus edim(Gp,q,r
2k+1) = p+q+r−3.AndbyProposition 2.1,wehave

edim(Gp,q,r
2k+1−e) = (�Gp,q,r

2k+1−e(u2)−1)+(�Gp,q,r
2k+1−e(uk)−1)+(�Gp,q,r

2k+1−e(u2k)−1) =
p + q + r − 1. So we arrive at edim(Gp,q,r

2k+1 − e) − edim(Gp,q,r
2k+1) = 2 and thus we

complete the proof.
Let k be a positive integer. Let E1, E2, . . . , Ek be cycles of length 9 and

S1, S2, . . . , Sk be stars with center vertices g1, g2, . . . , gk and pendent vertex sets
{h1, c1, d1}, {h2, c2, d2}, . . . , {hk, ck, dk}. Let Gk = (V (Gk), E(Gk)), depicted in
Figure 2, where V (Gk) = V (E1) ∪ · · · ∪ V (Ek) ∪ V (S1) ∪ · · · ∪ V (Sk) ∪
{w1, . . . , wk} ∪ {A, B} and E(Gk) = E(E1) ∪ · · · ∪ E(Ek) ∪ E(S1) ∪ · · · ∪ E(Sk) ∪
{e, ui A, ciwi , diwi , wi B, vi hi : i ∈ [k]}.
Theorem 2.3 Let Gk be the graph depicted in Figure 2. For any positive integer k,
edim(Gk) − edim(Gk − e) = k − 1.

Proof Let S be an edge metric generator of Gk and S′ be an edge metric generator
of Gk − e. Note that, for 1 ≤ i ≤ k, |S ∩ {ci , di }| ≥ 1 since gi ci , gidi are unable
to be distinguished by any element of V (G) \ {ci , di }. Similarly, |S′ ∩ {ci , di }| ≥ 1.
Without loss of generality, we may assume that {c1, c2, . . . , ck} ⊆ S ∩ S′. Set S0 =
{c1, c2, . . . , ck}.
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Fig. 2 The graphs Gk and Gk − e

First we will show that edim(Gk) = 2k. For 1 ≤ i, j ≤ k, dGk (c j , uiai ) =
dGk (c j , uibi ) = 4 and then uiai , uibi are unable to be distinguished by any ele-
ment of S0. Simultaneously, dGk (d j , uiai ) = dGk (d j , uibi ) = 4, dGk (w j , uiai ) =
dGk (w j , uibi ) = 3, dGk (A, uiai ) = dGk (A, uibi ) = 1, dGk (B, uiai ) = dGk (B, uibi )
= 2 and dGk (g j , uiai ) = dGk (g j , uibi ) = 5. If there exists some i such that
(V (Ei ) ∪ {hi }) ∩ S = ∅, then uiai , uibi are unable to be distinguished by any
element of S, which contradicts that S is an edge metric generator of Gk . There-
fore, we have |(V (Ei ) ∪ {hi }) ∩ S| ≥ 1 for 1 ≤ i ≤ k, which implies that
edim(Gk) ≥ 2k. On the other hand, S1 = S0 ∪ {a1, a2, . . . , ak} is an edge met-
ric generator of Gk . Indeed, for any edges e1 = mn, e2 = st ∈ E(Gk) such that
{m, n, s, t} ∩ S1 �= ∅ and {m, n} ∩ {s, t} = ∅, then e1, e2 can be distinguished by any
element of {m, n, s, t} ∩ S1; for any edges e1 = mn, e2 = mt ∈ E(Gk) such that
n ∈ {m, n, t} ∩ S1 or t ∈ {m, n, t} ∩ S1, then e1, e2 can be distinguished by n or t ;
if e1 = ai pi , e2 = aiui (1 ≤ i ≤ k), then dGk (ci , e1) = 5 and dGk (ci , e2) = 4; if
e1 = ci gi , e2 = ciwi (1 ≤ i ≤ k), then dGk (ai , e1) = 5 and dGk (ai , e2) = 4. Now
we focus on the edges whose end vertices are both in V (G)\ S1. For edges e1 = Bwi ,
e2 = Bw j (1 ≤ i �= j ≤ k), we have dGk (ci , e1) = 1 and dGk (ci , e2) = 2. For
edges e1 = Aui , e2 = Au j (1 ≤ i �= j ≤ k), we have dGk (ai , e1) = 1 and
dGk (ai , e2) = 2. And if e1 = e = AB, e2 = v1h1, then dGk (a1, e1) = 2 and
dGk (a1, e2) = 3. Next we will check that the edges which have the same distance to
ai can be distinguished by ci or a j , and also the edges which have the same distance
to ci can be distinguished by ai or c j , where 1 ≤ i �= j ≤ k. Indeed, if e1 = p1x1,
e2 = u1A, e3 = u1b1, then dGk (c1, e1) = 4, dGk (c1, e2) = 3, dGk (c1, e3) = 4,
dGk (a2, e1) = 5 and dGk (a2, e3) = 3. For edges e1 = x1v1, e2 = b1q1, e3 = e = AB,
we have dGk (c1, e1) = 3, dGk (c1, e2) = 5 and dGk (c1, e3) = 2. For edges e1 = v1h1,
e2 = v1y1, e3 = q1r1, we have dGk (c1, e1) = 2, dGk (c1, e2) = 3 and dGk (c1, e3) = 5.
For edges e1 = g1h1, e2 = g1d1, e3 = d1w1 and e4 = Bw1, we have dGk (c2, e1) = 5,
dGk (c2, e2) = 4, dGk (c2, e3) = 3 and dGk (c2, e4) = 2. And for other pair of edges,
one can easily check that they can also be distinguished by some element of S1, which
implies that S1 is indeed an edge metric generator of Gk . This means edim(Gk) ≤ 2k
and hence edim(Gk) = 2k.
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Fig. 3 The graphs Pn + e.

Next we will show that edim(Gk − e) = k + 1. For 1 ≤ i �= j ≤ k,
dGk−e(c j , xivi ) = dGk−e(c j , yivi ) = 7, dGk−e(ci , xivi ) = dGk−e(ci , yivi ) = 3
and then xivi , yivi are unable to be distinguished by any element of S0. It follows
that edim(Gk − e) > |S0| = k, i.e., edim(Gk − e) ≥ k + 1. Set S2 = S0 ∪ {A}.
One can check that S2 is an edge metric generator of Gk − e, which implies that
edim(Gk − e) ≤ k + 1 and thus edim(Gk − e) = k + 1. Therefore, we have
edim(Gk) − edim(Gk − e) = k − 1 and the theorem holds. 
�

In the rest of this section, we pay attention to the upper bound on edim(G) −
edim(G − e) for a unicyclic graph G.

Lemma 2.4 Let Pn be a path of order n. If e is an edge of Pn, then edim(Pn + e) =
edim(Pn) + 1 = 2.

Proof It is easy to verify that the graph Pn + e has one of the following three types
(see Fig. 3).

If Pn + e has type (I ), then Pn + e ∼= Cn and so edim(Pn + e) = 2.
When Pn + e has type (I I ), we set S = {x1, y1}. We claim that S is an edge metric

generator of Pn + e. Indeed, for any pair of edges f1, f2 ∈ Pn + e, it is impossible
that d( f1, x1) = d( f2, x1) and d( f1, y1) = d( f2, y1) hold simultaneously. Thus
edim(Pn + e) ≤ 2. On the other side, any single vertex of Pn + e is unable to
distinguish all pairs of edges, which implies that edim(Pn + e) ≥ 2. Consequently,
edim(Pn + e) = 2.

Finally we consider the case that Pn + e has type (I I I ). Set Q = {x2, y2}. We will
show that Q is an edge metric generator of Pn + e. One can check that for any pair of
edges g1, g2 ∈ Pn +e, the equalities d(g1, x2) = d(g2, x2) and d(g1, y2) = d(g2, y2)
are unable to hold at the same time. So we have edim(Pn + e) ≤ 2. Simultaneously,
edim(Pn + e) ≥ 2 since any single vertex is not an edge metric generator of Pn + e.
As a result, edim(Pn + e) = 2. 
�
Theorem 2.5 Let T be a tree. If e is an edge of T , then edim(T + e) − edim(T ) ≤ 1.

Proof By Lemma 2.4, we know that edim(T + e) = edim(T ) + 1 when T is a path.
So we consider that T is a tree which is not a path. Obviously, edim(T ) ≥ 2. Denote
the vertices of the unique cycle Ck in T + e as u1, u2, . . . , uk and the component of
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T + e − E(Ck) which contains ui as Ti . Let S be an edge metric basis of T and set
Si = S ∩ V (Ti ) for 1 ≤ i ≤ k. Without loss of generality, we may assume S1 �= ∅.

If Si = ∅ for 2 ≤ i ≤ k, then T − T1 is a path and thus S ∪ {u2} or S ∪ {uk} is an
edge metric generator of T + e. Therefore, we have edim(T + e) ≤ edim(T ) + 1.
On the other hand, if there exists some i (2 ≤ i ≤ k) such that Si �= ∅, then we
will complete the proof in two cases. If there exist i, j (1 ≤ i < j ≤ k) such that
Si �= ∅, S j �= ∅ and dT+e(ui , u j ) = � k

2�, then take x0 ∈ V (Ck) \ {ui , u j } and set
S′ = S ∪ {x0}. Otherwise, we will take x0 = u� k

2 �+1 and set S′ = S ∪ {x0}.
Next we will show that S′ is an edge metric generator of T + e. Since the analyses

of the two cases are similar, then we pay attention to the case that there exist i, j (1 ≤
i < j ≤ k) such that Si �= ∅, S j �= ∅ and dT+e(ui , u j ) = � k

2�. Set S0 = {x0, xi , x j },
where xi ∈ Si , x j ∈ S j and thus S0 ⊆ S′.

For any pair of edges e1, e2 ∈ T�(1 ≤ � ≤ k), there exists some z ∈ S such that
dT (e1, z) �= dT (e2, z). If z ∈ V (T�), then dT+e(e1, z) = dT (e1, z), dT+e(e2, z) =
dT (e2, z) and thus dT+e(e1, z) �= dT+e(e2, z). If z ∈ V (Ck), then dT+e(e1, z) =
dT+e(e1, u�) + dT+e(u�, z) and dT+e(e2, z) = dT+e(e2, u�) + dT+e(u�, z). Since
dT (e1, z) = dT (e1, u�) + dT (u�, z), dT (e2, z) = dT (e2, u�) + dT (u�, z) and
dT (e1, u�) = dT+e(e1, u�), dT (e2, u�) = dT+e(e2, u�), we come to the conclu-
sion that dT+e(e1, z) �= dT+e(e2, z). For the case z ∈ V (T�′)(�′ �= �), we have
dT+e(e1, z) = dT+e(e1, u�) + dT+e(u�, u�′) + dT+e(u�′ , z) and dT+e(e2, z) =
dT+e(e2, u�) + dT+e(u�, u�′) + dT+e(u�′ , z). Note that dT (e1, z) = dT (e1, u�) +
dT (u�, u�′) + dT (u�′ , z), dT (e2, z) = dT (e2, u�) + dT (u�, u�′) + dT (u�′ , z) and
dT (e1, u�) = dT+e(e1, u�), dT (e2, u�) = dT+e(e2, u�). It follows that dT+e(e1, z)
�= dT+e(e2, z).

Consider any two edges f1 ∈ T�, f2 ∈ T�′ (1 ≤ � �= �′ ≤ k). We denote the
three segments of the cycle Ck as x0Ckui , uiCku j and u jCkx0. If {u�, u�′ } ⊆ x0Ckui ,
without loss of generality, we may assume that dT+e(x0, u�) < dT+e(x0, u�′) and
thus dT+e(ui , u�) > dT+e(ui , u�′). If further dT+e( f1, x0) = dT+e( f2, x0), then
dT+e( f1, u�) > dT+e( f2, u�′). Since dT+e( f1, xi ) = dT+e( f1, u�) + dT+e(u�, ui ) +
dT+e(ui , xi ) and dT+e( f2, xi ) = dT+e( f2, u�′) + dT+e(u�′ , ui ) + dT+e(ui , xi ), we
have dT+e( f1, xi ) > dT+e( f2, xi ). Similarly, we can obtain that f1, f2 can be dis-
tinguished by some element of S0 for {u�, u�′ } ⊆ uiCku j or {u�, u�′ } ⊆ u jCkx0.
Now we consider the case u� ∈ x0Ckui and u�′ ∈ uiCku j . If dT+e( f1, u�) =
dT+e( f2, u�′) and dT+e(u�, x0) �= dT+e(u�′ , x0), then we have dT+e( f1, x0) �=
dT+e( f2, x0) since dT+e( f1, x0) = dT+e( f1, u�) + dT+e(u�, x0), dT+e( f2, x0) =
dT+e( f2, u�′) + dT+e(u�′ , x0). For the case that dT+e( f1, u�) = dT+e( f2, u�′)
and dT+e(x0, u�) = dT+e(x0, u�′), we have dT+e( f1, x j ) > dT+e( f2, x j ) since
dT+e( f1, x j ) = dT+e( f1, u�) + dT+e(u�, u j ) + dT+e(u j , x j ), dT+e( f2, x j ) =
dT+e( f2, u�′) + dT+e(u�′ , u j ) + dT+e(u j , x j ) and dT+e(u�, u j ) = dT+e(u�, x0) +
dT+e(x0, x j ) > dT+e(u�′ , u j ). With similar analysis, for the cases dT+e( f1, u�) >

dT+e( f2, u�′), dT+e(ui , u�) = dT+e(ui , u�′) and dT+e( f1, u�) > dT+e( f2, u�′),
dT+e(ui , u�) > dT+e(ui , u�′), we have dT+e( f1, xi ) > dT+e( f2, xi ). Meanwhile,
if dT+e( f1, u�) > dT+e( f2, u�′) and also dT+e(ui , u�) < dT+e(ui , u�′), then
dT+e(u j , u�) > dT+e(u j , u�′) and thus dT+e( f1, x j ) > dT+e( f2, x j ). Furthermore,
we can similarly obtain that f1, f2 can be distinguished by some element of S0 when
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Fig. 4 The graph T + e.

dT+e( f1, u�) < dT+e( f2, u�′). For the cases u� ∈ uiCku j and u�′ ∈ u jCkx0 or
u� ∈ u jCkx0 and u�′ ∈ x0Ckui , the analysis is similar to that of u� ∈ x0Ckui and
u�′ ∈ uiCku j , so we omit the details here.

For any pair of edges g1, g2, if g1, g2 ∈ Ck , then it is easy to check that g1, g2 can
be distinguished by some element of S0 and so we consider the case g1 ∈ Ck , g2 ∈
T� (1 ≤ � ≤ k). If g1 lies on one shortest path fromw to u� in T+e, wherew ∈ S0, then
dT+e(g1, w) < dT+e(g2, w). Otherwise, we claim that g1, g2 can be distinguished by
some element of S0. Herewe take the case g1 ∈ u jCkx0 and u� ∈ uiCku j for example,
and the other cases are similar. If dT+e(g1, x j ) �= dT+e(g2, x j ), then we finish the
proof. Otherwise, dT+e(g1, u j ) = dT+e(g2, u j ) = dT+e(g2, u�)+dT+e(u�, u j ) since
dT+e(g1, x j ) = dT+e(g1, u j ) + dT+e(u j , x j ) and dT+e(g2, x j ) = dT+e(g2, u j ) +
dT+e(u j , x j ). If dT+e(g2, u�) �= 0, then we have dT+e(g1, u j ) > dT+e(u�, u j ) and
thus dT+e(g1, ui ) < dT+e(u�, ui ). This implies that dT+e(g1, xi ) < dT+e(g2, xi ).
If dT+e(g2, u�) = 0, then dT+e(g1, u j ) = dT+e(u�, u j ) and thus dT+e(g1, x0) <

dT+e(u�, x0) = dT+e(g2, x0). Therefore, S′ is an edge metric generator of T + e and
thus we complete the proof. 
�

Consequently, if G is a unicyclic graph and e is an edge on its unique cycle, then
by Lemma 2.4 and Theorem 2.5, we have edim(G) − edim(G − e) ≤ 1.

In summary, we come to the following conclusion.

Theorem 2.6 There exist somegraphG and some edge e ∈ E(G) such that edim(G)−
edim(G − e) can be arbitrarily large. While for any unicyclic graph H, edim(H) −
edim(H − e) ≤ 1, where e is an edge of the unique cycle in H.

3 The effect of vertex deletion on edgemetric dimention of graphs

The join graph G + H is the graph obtained from G and H by adding all possible
edges between any vertex of G and any vertex of H . Obviously, the wheel graphW1,n
is isomorphic to Cn + K1 and we refer to the vertex of degree n in W1,n as its center
vertex.
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Fig. 5 The graph Gk,t .

Proposition 3.1 Kelenc et al. (2018) If W1,n is a wheel graph, then

edim(W1,n) =
{

n i f n = 3, 4;
n − 1 i f n ≥ 5.

Proposition 3.2 Kelenc et al. (2018) For any integer n ≥ 3, edim(Cn) = 2.

From Propositions 3.1 and 3.2, we can obtain the following observation immedi-
ately.

Observation 3.3 Let k ≥ 2 be an positive integer. If v0 is the center vertex of the wheel
graph W1,k+3, then edim(W1,k+3) − edim(W1,k+3 − v0) = k.

Let k ≥ 8, t ≥ 24 be positive integers and P = u1u2 . . . uk be a path. For 1 ≤ i ≤ k,
attach ti (≥ 3) pendant vertices vi1, v

i
2, . . . , v

i
ti to ui and denote the resulting graph by

Hk,t , where t =
k∑

i=1
ti . Let Gk,t be the graph with vertex set V (Hk,t ) ∪ {v} and edge

set E(Hk,t ) ∪ {vv11, vv21, . . . , vvk1} (see Fig. 5).
Lemma 3.4 Let k ≥ 8, t ≥ 24 be positive integers. If v ∈ V (Gk,t ) is the vertex as
depicted in Figure 5, then edim(Gk,t − v) − edim(Gk,t ) = k.

Proof Since Gk,t − v is a tree, we have edim(Gk,t − v) = t − k by Proposition 2.1.
Next we will show that edim(Gk,t ) = t − 2k, which implies that edim(Gk,t − v) −
edim(Gk,t ) = k. Set S = {v13, . . . , v1t1} ∪ {v23, . . . , v2t2} ∪ · · · ∪ {vk3, . . . , vktk }. For any
pair of edges e = x1y1, f = x2y2 ∈ E(Gk,t ), if {x1, x2, y1, y2} ∩ S �= ∅, then e, f
can be distinguished by any element of S∩{x1, x2, y1, y2}. Hence we can assume that
e, f ∈ {uiui+1, vvi1, uiv

i
1, uiv

i
2 : 1 ≤ i ≤ k}.

If e = uiui+1, f = u ju j+1 (i < j), then d(e, vi3) = 1, d( f , vi3) ≥ 2 and e, f can

be distinguished by vi3 ∈ S. If e = vvi1, f = vv
j
1 , then d(e, vi3) = 2, d( f , vi3) = 3

and e, f can be distinguished by vi3 ∈ S. For e = uivi1, f = u jv
j
1 , we have that

e, f can be distinguished by vi3 ∈ S since d(e, vi3) = 1 and d( f , vi3) ≥ 2. And for

e = uivi2, f = u jv
j
2 , one can easily verify that d(e, vi3) = 1, d( f , vi3) ≥ 2 and then

e, f can be distinguished by vi3 ∈ S.
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For the case that e = uiui+1, f = vvi1,wehaved(e, vi3) = 1,d( f , vi3) = 2 and e, f

can be distinguished by vi3 ∈ S. If e = uiui+1, f = vv
j
1 (i �= j), then d(e, vi3) = 1,

d( f , vi3) = 3 and e, f can be distinguished by vi3 ∈ S. If e = uiui+1, f = uivi1 or e =
uiui+1, f = uivi2, then d(e, vi+1

3 ) = 1, d( f , vi+1
3 ) = 2 and e, f can be distinguished

by vi+1
3 ∈ S. For e = uiui+1, f = u jv

j
1 (i �= j) or e = uiui+1, f = u jv

j
2 (i �= j), we

have that e, f can be distinguished by vi3 ∈ S since d(e, vi3) = 1 and d( f , vi3) ≥ 2.
Nextwe come to the case that e = vvi1, f = uivi1 or e = vvi1, f = uivi2. Obviously,

d(e, vi3) = 2, d( f , vi3) = 1 and thus e, f can be distinguished by vi3 ∈ S. If e =
vvi1, f = u jv

j
1 (i �= j) or e = vvi1, f = u jv

j
2 (i �= j), then d(e, v j

3 ) = 3, d( f , v j
3 ) =

1 and e, f can be distinguished by v
j
3 ∈ S. For e = uivi1, f = uivi2, we have

d(e, vi+4
3 ) = 4, d( f , vi+4

3 ) = 5 for i ≤ k − 4 and d(e, vi−4
3 ) = 4, d( f , vi−4

3 ) = 5 for
k − 3 ≤ i ≤ k and thus e, f can be distinguished by vi+4

3 ∈ S (or vi−4
3 ∈ S). Finally,

for e = uivi1, f = u jv
j
2 (i �= j), we obtain that e, f can be distinguished by vi3 ∈ S

since d(e, vi3) = 1, d( f , vi3) ≥ 2.
Therefore, S is an edge metric generator of Gk,t and thus edim(Gk,t ) ≤ t −2k. On

the other hand, letW be an arbitrary edge metric generator of Gk,t . If there exist some
i (1 ≤ i ≤ k) such that |W ∩ {vi2, . . . , viti }| < ti − 2, then the edges uivia and uiv

i
b are

unable to be distinguished by any element ofW , where via, v
i
b ∈ {vi2, . . . , viti }\W . We

arrive at a contradiction and thus edim(Gk,t ) ≥ t−2k. Therefore, edim(Gk,t ) = t−2k
and then edim(Gk,t − v) − edim(Gk,t ) = k, as desired. 
�

From Observation 3.3 and Lemma 3.4, we arrive at the following conclusion.

Theorem 3.5 For any positive integer k, there exist graphs G and H such that both
edim(G) − edim(G − u) and edim(H − v) − edim(H) can be at least k, where
u ∈ V (G) and v ∈ V (H).

4 Concluding remarks

In this paper, we analyze what happens with the edge metric dimension if one edge
or one vertex is deleted. For any graph G and any edge e ∈ E(G), edim(G − e) −
edim(G) ≤ 2. On the other hand, the value of edim(G)−edim(G−e) is unbounded
for some graph G and some edge e ∈ E(G). However, for a unicyclic graph H ,
edim(H)−edim(H −e) ≤ 1, where e is an edge of the unique cycle in H . Addition-
ally, the difference between the edge metric dimension of the original graph and the
resulting graph after vertex deletion can be arbitrarily large. And as a future work, it’s
interesting to think about whether it is possible to bound the corresponding difference
between the edge metric dimension of the original graph and the resulting graph using
the vertex degree.
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