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Abstract
The adjacent vertex distinguishing edge coloring of a graphG is a proper edge coloring
in which each pair of adjacent vertices is assigned different color sets. The smallest
number of colors for which G has such a coloring is denoted by χ ′

a(G). An important
conjecture due toZhang et al. (ApplMathLett 15:623–626, 2002) asserts thatχ ′

a(G) ≤
�(G)+2 for any connected graphG with order at least 6. By applying the discharging
method, we show that this conjecture is true for any IC-planar graph G with �(G) ≥
16.

Keywords IC-planar graph · Adjacent vertex distinguishing edge coloring ·
Discharging method

1 Introduction

Throughout this paper, we are only concerned with finite and simple graphs. For a
plane graph G, let V (G), E(G), F(G),�(G) and δ(G) be the vertex set, edge set,
face set, maximum degree and minimum degree of G, respectively. For an arbitrary
x ∈ V (G)∪ F(G), let dG(x) denote the degree of x in G. Let NG(v) denote the set of
neighbors of a vertex v inG. A vertex v satisfying dG(v) = k (dG(v) ≥ k, dG(v) ≤ k)
is a k-vertex (k+-vertex, k−-vertex). The k-face and k+-face are defined similarly. For
each v ∈ V (G), let dkG(v) denote the number of k-vertices adjacent to v in G. We
call a 3-vertex v ∈ V (G) bad if d3G(v) = 1 and good if d3G(v) = 0. Let d3bG (v) and

d3gG (v) denote the number of bad and good 3-vertices adjacent to v in G, respectively.
A 3-face (or cycle) v1v2v3 is called a (k1, k2, k3)-face (or cycle) if vi is a ki -vertex for
all 1 ≤ i ≤ 3. A 3-cycle is bad if it is incident with two 3-vertices. Any undefined
notation can refer to (Bondy and Murty 1976).
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A proper k-edge coloring of a graph G is a mapping ϕ : E(G) → {1, 2, . . . , k}
such that ϕ(e) �= ϕ(e′) for any two adjacent edges e and e′ of G. For any v ∈ V (G),
let Cϕ(v) = {ϕ(uv)|uv ∈ E(G)} be the color set of v with respect to ϕ. For two
adjacent vertices u and v, we call u conflict with v respect to ϕ if Cϕ(u) = Cϕ(v). A
proper k-edge coloring ϕ is a k-adjacent vertex distinguishing edge coloring (k-avd-
coloring for short) provided that Cϕ(u) �= Cϕ(v) for all uv ∈ E(G). The adjacent
vertex distinguishing edge chromatic index of G, denoted by χ ′

a(G), is the smallest k
such that G has a k-avd-coloring. A graph without isolated edges is normal. Clearly,
only normal graph can have avd-colorings. Thus, for avd-coloring, we only consider
normal graphs.

Zhang et al. (2002) first introduced the concept of avd-coloring and put forward
the following conjecture.

Conjecture 1 Zhang et al. (2002) If G is a connected graph with order at least 6, then
χ ′
a(G) ≤ �(G) + 2.

Conjecture 1 was determined by Balister et al. (2007) for bipartite graphs and
graphs with maximum degree 3. Horňák et al. (2014) showed that Conjecture 1 holds
for planar graphs with maximum degree at least 12. Bonamy et al. (2013) verified
that χ ′

a(G) ≤ �(G) + 1 for any planar graph G with �(G) ≥ 12. Wang and Huang
(2015) proved that χ ′

a(G) ≤ �(G) + 1 for any planar graph G with �(G) ≥ 16
and χ ′

a(G) = �(G) + 1 if and only if G contains two adjacent vertices of maximum
degree.

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed by
at most one other edge. Albertson (2008) first introduced the definition of IC-planar
graph. A graph is IC-planar if it admits a drawing in the plane where each edge is
crossed at most once and no two crossings are incident with the same vertex. Clearly,
each IC-planar graph is 1-planar. The associated plane graph G× of a 1-planar graph
G is a plane graph obtained by turning all crossings of G into new 4-vertices. A vertex
v ∈ V (G×) is f alse if v is not a vertex of G and real otherwise. A face is f alse if it
is incident with at least one false vertex. Clearly, for an associated plane graph G× of
an IC-planar graph G, each real vertex in G× is adjacent to at most one false vertex
and incident with at most two false 3-faces inG×. In the following, we always assume
that every IC-planar graph is drawn in a plane such that the number of crossings is as
few as possible.

Lemma 1 Zhang and Wu (2011) Let G be a 1-plane graph and G× be the associated
plane graph of G. If dG(u) = 3 and v is a false vertex of G×, then either uv /∈ E(G×)

or uv is not incident with two 3-faces.

In this paper, we will prove that Conjecture 1 is true for any IC-planar graph with
maximum degree at least 16, which can be expressed more concisely as follows:

Theorem 1 Let G be an IC-planar graph, then χ ′
a(G) ≤ max{�(G) + 2, 18}.
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2 The proof of Theorem 1

We will prove Theorem 1 by contradiction. Let G be a counterexample to Theorem 1
minimizing |V (G)|+|E(G)|. Clearly,G is a connected graph. Let tG = max{�(G)+
2, 18} and C = {1, 2, . . . , tG}. Then {1, 2, . . . , 18} ⊆ C . First we will prove the
following claims.

Claim 1 There is no edge uv ∈ E(G) with dG(u) = 1 and dG(v) ≤ 9.

Proof Assume, to the contrary, that G contains an edge uv with dG(u) = 1 and
dG(v) ≤ 9. We have dG(v) ≥ 2 because G is normal. Let H = G − u. If H
contains only one edge, then we color this edge with 1 and color uv with 2 to obtain
a tG -avd-coloring of G, a contradiction. If H contains at least two edges, H has a
tG-avd-coloring ϕ with the color set C by the minimality of G. Note that v has at
most eight conflict vertices. Hence we can color uv with a color in C \ Cϕ(v) such
that v does not conflict with its neighbors, which yields a tG-avd-coloring of G, a
contradiction. 
�
Remark 1 Claim 1 implies that for an arbitrary e ∈ E(G), H = G − e is normal.
Therefore χ ′

a(H) ≤ tG by the minimality of G.

Remark 2 In the following, if dG(v) = k, set NG(v) := {v1, v2, . . . , vk}.
Claim 2 Let v be a k-vertex of G with 2 ≤ k ≤ 6, then dkG(v) ≤ 1.

Proof Assume, to the contrary, that G contains a k-vertex v (2 ≤ k ≤ 6) sat-
isfying dkG(v) ≥ 2. We prove the case that k = 6 (the proof can be given
similarly and simply for 2 ≤ k ≤ 5). Assume that dG(v1) = dG(v2) = 6. Let
NG(v1) = {v,w1, w2, w3, w4, w5}. Let H = G−vv1, by Remark 1, H has a tG -avd-
coloring ϕ with the color set C . Without loss of generality (W.l.o.g.), ϕ(vvi ) = i − 1
for 2 ≤ i ≤ 6 and ϕ(v1wi ) = ai for 1 ≤ i ≤ 5. We consider the next three cases.

Case 1: 3 ≤ |{a1, a2, . . . , a5} ∩ {1, 2, . . . , 5}| ≤ 5. If |{a1, a2, . . . , a5} ∩
{1, 2, . . . , 5}| = 5, then we recolor vv2 with a color in C \ (Cϕ(v) ∪ Cϕ(v2))

such that v2 does not conflict with its neighbors. So we may assume that 3 ≤
|{a1, a2, . . . , a5} ∩ {1, 2, . . . , 5}| ≤ 4. Hence we can color vv1 with a color in
C \ (Cϕ(v) ∪ Cϕ(v1)) such that v and v1 do not conflict with their neighbors, which
yields a tG-avd-coloring of G, a contradiction.

Case 2: 1 ≤ |{a1, a2, . . . , a5} ∩ {1, 2, . . . , 5}| ≤ 2. Set |{a1, a2, . . . , a5} ∩
{1, 2, . . . , 5}| = l, then 1 ≤ l ≤ 2. W.l.o.g., ai = i for 1 ≤ i ≤ l and
ai = i − l + 5 for l + 1 ≤ i ≤ 5. Suppose that vv1 cannot be colored with-
out causing conflicts, say, Cϕ(vi ) = {1, 2, 3, 4, 5, i − l + 9} for 2 ≤ i ≤ 6 and
Cϕ(wi ) = {1, 6, 7, 8, 16 − 7l, i − l + 15} for 1 ≤ i ≤ l + 3. We recolor vv2 with
a color in {13, 14, . . . , 18} such that v2 does not conflict with its neighbors, then we
color vv1 with a color in {11, 12} such that v1 does not conflict with its neighbors,
which yields a tG -avd-coloring of G, a contradiction.

Case 3: |{a1, a2, . . . , a5} ∩ {1, 2, . . . , 5}| = 0. W.l.o.g., ai = i + 5 for 1 ≤ i ≤
5. Suppose that vv1 cannot be colored without causing conflicts, say, Cϕ(vi ) =
{1, 2, 3, 4, 5, i + 9} for 2 ≤ i ≤ 6 and Cϕ(wi ) = {6, 7, 8, 9, 10, i + 15} for
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1 ≤ i ≤ 3, or Cϕ(vi ) = {1, 2, 3, 4, 5, i + 9} for 2 ≤ i ≤ 5 and Cϕ(wi ) =
{6, 7, 8, 9, 10, i + 14} for 1 ≤ i ≤ 4. If Cϕ(vi ) = {1, 2, 3, 4, 5, i + 9} for 2 ≤ i ≤ 6
and Cϕ(wi ) = {6, 7, 8, 9, 10, i + 15} for 1 ≤ i ≤ 3, then we recolor vv2 with a color
in {6, 7, 8, 16, 17, 18} such that v2 does not conflict with its neighbors, and color vv1
with a color in {12, 13, 14} such that v1 does not conflict withw4 andw5, which yields
a tG-avd-coloring ofG, a contradiction. IfCϕ(vi ) = {1, 2, 3, 4, 5, i+9} for 2 ≤ i ≤ 5
and Cϕ(wi ) = {6, 7, 8, 9, 10, i + 14} for 1 ≤ i ≤ 4, then we recolor vv2 with a color
in {6, 7, 8, 9, 10, 18} such that v2 does not conflict with its neighbors, and color vv1
with a color in {12, 13, 14} such that v and v1 do not conflict with their neighbors,
which yields a tG -avd-coloring of G, a contradiction. 
�
Claim 3 There is no edge vv1 ∈ E(G) with 2 ≤ dG(v1) ≤ 6 and dG(v1) + 1 ≤
dG(v) ≤ 9.

Proof Assume, to the contrary, that G contains an edge vv1 with 2 ≤ dG(v1) ≤ 6
and dG(v1) + 1 ≤ dG(v) ≤ 9. We prove the case that dG(v1) = 6 and dG(v) = 9
(the proof can be given similarly and simply for other cases). Let H = G − vv1, by
Remark 1, H has a tG-avd-coloring ϕ with the color set C . W.l.o.g., ϕ(vvi ) = i − 1
for 2 ≤ i ≤ 9 and Cϕ(v1) ⊆ {1, 2, . . . , 13}. By Claim 2, every 6-vertex has at most
one conflict vertex. Suppose that vv1 cannot be colored without causing conflicts, say,
Cϕ(vi ) = {1, 2, . . . , 8, i + 12} for 2 ≤ i ≤ 5 and Cϕ(v1) = {9, 10, ..., 13}. Without
considering the conflict of v, for any given integer i (2 ≤ i ≤ 5), we select {bi , di }
from {9, 10, . . . , 18} \ {i + 12} to recolor vvi and color vv1 such that vi and v1 do
not conflict with their neighbors. {bi , di } has at least two selected ways. Since i has
four possibilities, we have at least 2 × 4 = 8 ways such that v1 does not conflict with
its neighbors and v does not conflict with v2, v3, v4 and v5, while v has at most four
conflict vertices other than v2, v3, v4 and v5. So we can obtain a tG-avd-coloring of
G, a contradiction. 
�
Claim 4 Let v be a k-vertex of G with 10 ≤ k ≤ 11, then d(16−k)−

G (v) ≤ 1.

Proof Assume, to the contrary, that G contains a k-vertex v (10 ≤ k ≤ 11) satisfying

d(16−k)−
G (v) ≥ 2. Suppose that dG(v1) = dG(v2) = 16 − k (the proof can be given

similarly and simply for other cases). Let H = G − vv1, by Remark 1, H has a
tG-avd-coloring ϕ with the color set C . W.l.o.g., ϕ(vvi ) = i − 1 for 2 ≤ i ≤ k.
Clearly, |Cϕ(vi ) ∩ {k, k + 1, . . . , 18}| ≤ 15 − k for 1 ≤ i ≤ 2. By Claim 2, every
6−-vertex has at most one conflict vertex. If vi has a conflict vertex wi , and |Cϕ(vi ) ∩
{k, k + 1, . . . , 18}| = 15 − k for 1 ≤ i ≤ 2, then we recolor viwi with a color in
{2, 3, . . . , 9} \ Cϕ(wi ). Without considering the conflict of v, we have the following
two types of proper colorings. (a): We color vv1 with a color in {k, k+1, . . . , 18} such
that v1 does not conflict with its neighbors. There are at least four available colors.
(b): We select {b1, b2} from {k, k + 1, . . . , 18} to recolor vv2 and color vv1 such that
v2 and v1 do not conflict with their neighbors. {b1, b2} has at least 4×3

2 = 6 selected
ways. Hence we have at least 4+ 6 = 10 ways, while v has at most k − 2 ≤ 9 conflict
vertices. So we can obtain a tG-avd-coloring of G, a contradiction. 
�
Claim 5 Let v be a 12-vertex of G, then d3

−
G (v) ≤ 1.
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Proof Assume, to the contrary, that G contains a 12-vertex v satisfying d3
−

G (v) ≥ 2.
Suppose that dG(v1) = dG(v2) = 3 (the proof can be given similarly and simply for
other cases). Let H = G−vv1, by Remark 1, H has a tG-avd-coloring ϕ with the color
setC .W.l.o.g.,ϕ(vvi ) = i−1 for 2 ≤ i ≤ 12. Clearly, |Cϕ(vi )∩{12, 13, . . . , 18}| ≤ 2
for 1 ≤ i ≤ 2. By Claim 2, each 3-vertex has at most one conflict vertex. If vi has
a conflict vertex wi for 1 ≤ i ≤ 2, we assume that ϕ(viwi ) /∈ {12, 13, . . . , 18} (if
ϕ(viwi ) ∈ {12, 13, . . . , 18}, then we recolor viwi with a color in {2, 3, . . . , 11} \
(Cϕ(vi ) ∪ Cϕ(wi )) to satisfy this condition). Without considering the conflict of v,
we have the following two types of proper colorings. (a): We color vv1 with a color
in {12, 13, . . . , 18} such that v1 does not conflict with its neighbors. There are at least
five available colors. (b): We select {b1, b2} from {12, 13, . . . , 18} to recolor vv2 and
color vv1 such that v2 and v1 do not conflict with their neighbors. {b1, b2} has at least
5×4
2 = 10 selected ways. Hence we have at least 5 + 10 = 15 ways, while v has at

most ten conflict vertices. So we can obtain a tG-avd-coloring of G, a contradiction.

�
Claim 6 Let v be a k-vertex of G with 11 ≤ k ≤ 12, then d6

−
G (v) ≤ 3k − 31.

Proof Assume, to the contrary, that G contains a k-vertex v (11 ≤ k ≤ 12) satisfying
d6

−
G (v) ≥ 3k − 30. Suppose that dG(vi ) = 6 for 1 ≤ i ≤ 3k − 30 (the proof can be

given similarly and simply for other cases). Let H = G − vv1, by Remark 1, H has
a tG-avd-coloring ϕ with the color set C . W.l.o.g., ϕ(vvi ) = i − 1 for 2 ≤ i ≤ k.
Clearly, |Cϕ(vi ) ∩ {k, k + 1, . . . , 18}| ≤ 5 for 1 ≤ i ≤ 3k − 30. By Claim 2,
each 6-vertex has at most one conflict vertex. If vi has a conflict vertex wi , and
|Cϕ(vi ) ∩ {k, k + 1, . . . , 18}| = 5 for 1 ≤ i ≤ 3k − 30, then we recolor viwi with
a color in {3k − 30, 3k − 29, . . . , k − 1} \ Cϕ(wi ). Without considering the conflict
of v, we have the following two types of proper colorings. (a): We color vv1 with a
color in {k, k + 1, . . . , 18} such that v1 does not conflict with its neighbors. There are
at least 14 − k available colors. (b): For any given integer i (2 ≤ i ≤ 3k − 30), we
select {bi , di } from {k, k + 1, . . . , 18} to recolor vvi and color vv1 such that vi and v1
do not conflict with their neighbors. {bi , di } has at least (14−k)×(13−k)

2 selected ways.

Since i has 3k − 31 possibilities, we have at least (14−k)×(13−k)
2 × (3k − 31) = 17− k

different coloring ways. Hence we have at least 14 − k + 17 − k = 31 − 2k ways,
while v has at most k − (3k − 30) = 30 − 2k conflict vertices. So we can obtain a
tG-avd-coloring of G, a contradiction. 
�
Claim 7 Let v be a k-vertex of G with 13 ≤ k ≤ 14, then the following statements
hold.
(1) d2

−
G (v) ≤ k − 12;

(2) If dm
−

G (v) ≥ 1 for m ≤ 18 − k, then dkG(v) ≥ (19 − k − m)d(19−k)−
G (v) + 1.

Proof (1) Assume, to the contrary, that G contains a k-vertex v (13 ≤ k ≤ 14)
satisfying d2

−
G (v) ≥ k − 11. Suppose that dG(vi ) = 2 for 1 ≤ i ≤ k − 11 (the proof

can be given similarly and simply for other cases). Let H = G−vv1, by Remark 1, H
has a tG-avd-coloring ϕ with the color set C . W.l.o.g., ϕ(vvi ) = i − 1 for 2 ≤ i ≤ k.
Clearly, |Cϕ(vi ) ∩ {k, k + 1, . . . , 18}| ≤ 1 for 1 ≤ i ≤ k − 11. By Claim 2, each 2-
vertex has at most one conflict vertex. If vi has a conflict vertexwi for 1 ≤ i ≤ k−11,
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we assume that ϕ(viwi ) /∈ {k, k + 1, . . . , 18} (if ϕ(viwi ) ∈ {k, k + 1, . . . , 18}, then
we recolor viwi with a color in {3, 4, . . . , 12} \ (Cϕ(vi ) ∪ Cϕ(wi )) to satisfy this
condition). Without considering the conflict of v, we have the following two types of
proper colorings. (a): We color vv1 with a color in {k, k+1, . . . , 18} such that v1 does
not conflict with its neighbors. There are at least 18 − k ≥ 4 available colors. (b):
For any given integer i (2 ≤ i ≤ k − 11), we select {bi , di } from {k, k + 1, . . . , 18}
to recolor vvi and color vv1 such that vi and v1 do not conflict with their neighbors.
{bi , di } has at least (18−k)(17−k)

2 selected ways. Since i has k − 12 possibilities, we

have at least (18−k)(17−k)
2 × (k − 12) ≥ 10 different coloring ways. Hence we have at

least 4+ 10 = 14 ways, while v has at most eleven conflict vertices. So we can obtain
a tG-avd-coloring of G, a contradiction.

(2) Assume, to the contrary, that there is a k-vertex v ∈ V (G) (13 ≤ k ≤ 14)
and an integer m (m ≤ 18 − k) satisfying dm

−
G (v) ≥ 1, where dkG(v) ≤ (19 − k −

m)d(19−k)−
G (v). Set d(19−k)−

G (v) = l. W.l.o.g., dG(v1) = m and dG(vi ) ≤ 19 − k
for 1 ≤ i ≤ l (the proof can be given similarly and simply for other cases). Let
H = G−vv1, by Remark 1, H has a tG-avd-coloring ϕ with the color set C . Suppose
that ϕ(vvi ) = i − 1 for 2 ≤ i ≤ k. Clearly, |Cϕ(vi ) ∩ {k, k + 1, . . . , 18}| ≤ 18 − k
for 1 ≤ i ≤ l. By Claim 2, each 6−-vertex has at most one conflict vertex. If vi has
a conflict vertex wi , and |Cϕ(vi ) ∩ {k, k + 1, . . . , 18}| = dG(vi ) − 1 for 1 ≤ i ≤ l,
then we recolor viwi with a color in {7, 8, . . . , 12} \Cϕ(wi ). Without considering the
conflict of v, we have the following two types of proper colorings. (a): We color vv1
with a color in {k, k+1, . . . , 18} such that v1 does not conflict with its neighbors. There
are at least 20 − k − m available colors. (b): For any given integer i (2 ≤ i ≤ l), we
select {bi , di } from {k, k + 1, . . . , 18} to recolor vvi and color vv1 such that vi and v1
do not conflict with their neighbors. {bi , di } has at least 19−k−m selectedways. Since
i has l − 1 possibilities, we have at least (19− k −m)(l − 1) different coloring ways.
Hence we have at least (20−k−m)+ (19−k−m)(l−1) = (19−k−m)l+1 ways,
while v has at most (19−k−m)l conflict vertices. So we can obtain a tG-avd-coloring
of G, a contradiction. 
�
Claim 8 Let v be a 15-vertex of G, then the following statements hold.
(1) d2

−
G (v) ≤ 3;

(2) If d2
−

G (v) ≥ 1, then d3
−

G (v) ≤ 4;

(3) If dm
−

G (v) ≥ 1 for m ≤ 3, then d15G (v) ≥ (4 − m)d4
−

G (v) + 1;
(4) If v is incident with a bad 3-cycle, then d15G (v) ≥ 9.

Proof (1)Assume, to the contrary, thatG contains a 15-vertex v satisfying d2
−

G (v) ≥ 4.
Suppose that dG(vi ) = 2 for 1 ≤ i ≤ 4 (the proof can be given similarly and
simply for other cases). Let H = G − vv1, by Remark 1, H has a tG-avd-coloring
ϕ with the color set C . Suppose that ϕ(vvi ) = i − 1 for 2 ≤ i ≤ 15. Clearly,
|Cϕ(vi ) ∩ {15, 16, 17, 18}| ≤ 1 for 1 ≤ i ≤ 4. By Claim 2, each 2-vertex has at
most one conflict vertex. If vi has a conflict vertex wi for 1 ≤ i ≤ 4, we assume
that ϕ(viwi ) /∈ {15, 16, 17, 18} (if ϕ(viwi ) ∈ {15, 16, 17, 18}, then we recolor viwi

with a color in {4, 5, . . . , 14} \ (Cϕ(vi ) ∪ Cϕ(wi )) to satisfy this condition). Without
considering the conflict of v, we have the following two types of proper colorings.
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(a): We color vv1 with a color in {15, 16, 17, 18} such that v1 does not conflict with
its neighbors. There are at least three available colors. (b): For any given integer i
(2 ≤ i ≤ 4), we select {bi , di } from {15, 16, 17, 18} to recolor vvi and color vv1 such
that vi and v1 do not conflict with their neighbors. {bi , di } has at least three selected
ways. Since i has three possibilities, we have at least 3 × 3 = 9 different coloring
ways. Hence we have at least 3 + 9 = 12 ways, while v has at most eleven conflict
vertices. So we can obtain a tG-avd-coloring of G, a contradiction.

(2) Assume, to the contrary, that G contains a 15-vertex v satisfying d2
−

G (v) ≥ 1,

where d3
−

G (v) ≥ 5. Suppose that dG(v1) = 2 and dG(vi ) = 3 for 2 ≤ i ≤ 5 (the proof
can be given similarly and simply for other cases). Let H = G−vv1, by Remark 1, H
has a tG -avd-coloring ϕ with the color set C . W.l.o.g., ϕ(vvi ) = i − 1 for 2 ≤ i ≤ 15.
Clearly, |Cϕ(vi ) ∩ {15, 16, 17, 18}| ≤ 2 for 1 ≤ i ≤ 5. By Claim 2, each 3−-vertex
has at most one conflict vertex. If vi has a conflict vertex wi for 1 ≤ i ≤ 5, we assume
that ϕ(viwi ) /∈ {15, 16, 17, 18} (if ϕ(viwi ) ∈ {15, 16, 17, 18}, then we recolor viwi

with a color in {8, 9, . . . , 14} \ (Cϕ(vi ) ∪ Cϕ(wi )) to satisfy this condition). Without
considering the conflict of v, we have the following two types of proper colorings.
(a): We color vv1 with a color in {15, 16, 17, 18} such that v1 does not conflict with
its neighbors. There are at least three available colors. (b): For any given integer i
(2 ≤ i ≤ 5), we select {bi , di } from {15, 16, 17, 18} to recolor vvi and color vv1 such
that vi and v1 do not conflict with their neighbors. {bi , di } has at least two selected
ways. Since i has four possibilities, we have at least 2×4 = 8 different coloring ways.
Hence we have at least 3+ 8 = 11 ways, while v has at most ten conflict vertices. So
we can obtain a tG-avd-coloring of G, a contradiction.

(3) Assume, to the contrary, that there is a 15-vertex v ∈ V (G) and an integer m
(m ≤ 3) satisfying dm

−
G (v) ≥ 1, where d15G (v) ≤ (4 − m)d4

−
G (v). Set d4

−
G (v) = l.

Suppose that dG(v1) = m and dG(vi ) ≤ 4 for 1 ≤ i ≤ l (the proof can be given
similarly and simply for other cases). Let H = G − vv1, by Remark 1, H has a
tG-avd-coloring ϕ with the color set C . Suppose that ϕ(vvi ) = i − 1 for 2 ≤ i ≤ 15.
Clearly, |Cϕ(vi ) ∩ {15, 16, 17, 18}| ≤ 3 for 1 ≤ i ≤ l. By Claim 2, each 4−-vertex
has at most one conflict vertex. If vi has a conflict vertex wi for 1 ≤ i ≤ l, we assume
that ϕ(viwi ) /∈ {15, 16, 17, 18} (if ϕ(viwi ) ∈ {15, 16, 17, 18}, then we recolor viwi

with a color in {8, 9, . . . , 14} \ (Cϕ(vi ) ∪ Cϕ(wi )) to satisfy this condition). Without
considering the conflict of v, we have the following two types of proper colorings.
(a): We color vv1 with a color in {15, 16, 17, 18} such that v1 does not conflict with
its neighbors. There are at least 5 − m available colors. (b): For any given integer i
(2 ≤ i ≤ l), we select {bi , di } from {15, 16, 17, 18} to recolor vvi and color vv1 such
that vi and v1 do not conflict with their neighbors. {bi , di } has at least 4−m selected
ways. Since i has l − 1 possibilities, we have at least (4−m)(l − 1) different coloring
ways. Hence we have at least (5−m) + (4 −m)(l − 1) = (4 −m)l + 1 ways, while
v has at most (4 − m)l conflict vertices. So we can obtain a tG-avd-coloring of G, a
contradiction.

(4) Assume, to the contrary, that there exists a 15-vertex v ∈ V (G) incident with a
bad 3-cycle vv1v2 (dG(v1) = dG(v2) = 3), where d15G (v) ≤ 8. Let wi (1 ≤ i ≤ 2) be
the neighbor of vi other than v, v3−i . Let H = G−v1v2, by Remark 1, H has a tG -avd-
coloring ϕ with the color set C . By Claim 2, vi (1 ≤ i ≤ 2) has exactly one conflict
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vertex. If Cϕ(v1) �= Cϕ(v2), then we color v1v2 with a color in C \ (Cϕ(v1)∪Cϕ(v2))

to get a tG-avd-coloring ofG, a contradiction. IfCϕ(v1) = Cϕ(v2), w.l.o.g., ϕ(vv1) =
ϕ(v2w2) = 1, ϕ(vv2) = ϕ(v1w1) = 2 and ϕ(vvi ) = i for 3 ≤ i ≤ 15. Without
considering the conflict of v, we have the following two types of proper colorings.
(a): For any given integer i (1 ≤ i ≤ 2), we recolor vvi with an arbitrary color in
{16, 17, 18} and color v1v2 with 3. Since i has two possibilities, we have 3 × 2 = 6
different coloring ways. (b): We select {b1, b2} from {16, 17, 18} to recolor vv1 and
vv2, and color v1v2 with 3. {b1, b2} has three selected ways. Hence we have 6+3 = 9
ways, while v has at most eight conflict vertices. So we can obtain a tG-avd-coloring
of G, a contradiction. 
�
Claim 9 Let v be a k-vertex of G with k ≥ 14, then v is incident with at most one bad
3-cycle.

Proof Assume, to the contrary, that there exists a k-vertex v ∈ V (G) (k ≥ 14)
incident with two bad 3-cycles vv1v2, vv3v4, where dG(vi ) = 3 for 1 ≤ i ≤ 4.
Let wi be the neighbor of vi for 1 ≤ i ≤ 4. Let H = G − v1v2, by Remark 1,
H has a tG-avd-coloring ϕ with the color set C . By Claim 2, each 3-vertex has at
most one conflict vertex. If Cϕ(v1) �= Cϕ(v2), then we color v1v2 with an arbitrary
color in C \ (Cϕ(v1) ∪ Cϕ(v2)) to yield a tG-avd-coloring of G, a contradiction.
If Cϕ(v1) = Cϕ(v2), w.l.o.g., ϕ(vv1) = ϕ(v2w2) = 1, ϕ(vv2) = ϕ(v1w1) = 2
and ϕ(vvi ) = i for 3 ≤ i ≤ k. Note that |{ϕ(v3w3), ϕ(v4w4)} ∩ {3, 4}| ≤ 1, w.l.o.g.,
ϕ(v4w4) �= 3. Clearly, |{ϕ(v4w4)}∩{1, 2}| ≤ 1, w.l.o.g., ϕ(v4w4) �= 1.We first delete
the color of v3v4, switch the colors of vv1 and vv4, then color v1v2, v3v4 properly to
yield a tG-avd-coloring of G, a contradiction. 
�
Claim 10 Let v be a k-vertex of G with k ≥ 16. If v is incident with a bad 3-cycle,
then dkG(v) ≥ 2d4

−
G (v) + 1.

Proof Assume, to the contrary, that there exists a k-vertex v ∈ V (G) (k ≥ 16)
incident with a bad 3-cycle vv1v2 (dG(v1) = dG(v2) = 3), where dkG(v) ≤ 2d4

−
G (v).

Let wi (1 ≤ i ≤ 2) be the neighbor of vi other than v, v3−i . Set d4
−

G (v) = m.
Suppose that dG(vi ) ≤ 4 for 1 ≤ i ≤ m. Let H = G − v1v2, by Remark 1, H
has a tG-avd-coloring ϕ with the color set C . By Claim 2, each 4−-vertex has at
most one conflict vertex. If Cϕ(v1) �= Cϕ(v2), then we color v1v2 with an arbitrary
color in C \ (Cϕ(v1) ∪ Cϕ(v2)) to yield a tG-avd-coloring of G, a contradiction.
If Cϕ(v1) = Cϕ(v2), w.l.o.g., ϕ(vv1) = ϕ(v2w2) = 1, ϕ(vv2) = ϕ(v1w1) = 2
and ϕ(vvi ) = i for 3 ≤ i ≤ k. Clearly, |Cϕ(vi ) ∩ {1, 2, k + 1, k + 2}| ≤ 3 for
1 ≤ i ≤ m. If vi has a conflict vertex wi for 3 ≤ i ≤ m, we assume that ϕ(viwi ) /∈
{1, 2, k + 1, k + 2} (if ϕ(viwi ) ∈ {1, 2, k + 1, k + 2}, then we recolor viwi with a
color in {k − 6, k − 5, . . . , k} \ (Cϕ(vi ) ∪Cϕ(wi )) to satisfy this condition). Without
considering the conflict of v, we have the following three types of proper colorings.
(a): For any given integer i (1 ≤ i ≤ 2), we recolor vvi with an arbitrary color in
{k + 1, k + 2} and color v1v2 with 3. Since i has two possibilities, we have 2× 2 = 4
different coloring ways. (b): We recolor vvi with k + i for 1 ≤ i ≤ 2 and color
v1v2 with 3. (c): For any given integer i (3 ≤ i ≤ m), we recolor vvi with bi in
{1, 2, k + 1, k + 2} such that vi does not conflict with its neighbors. If bi ∈ {1, 2},
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Table 1 The relation between dG (v) and dH (v)

dG (v) 3 ≤ dG (v) ≤ 9 10 11 12 13 14 15 16 17 ≥ 18

dH (v) = dG (v) ≥ 9 ≥ 10 ≥ 11 ≥ 12 ≥ 12 ≥ 12 ≥ 9 ≥ 9 ≥ 10

then we recolor vvbi with k + 1 or k + 2 and color v1v2 with 3, so there are two
coloring ways. If bi ∈ {k + 1, k + 2}, then we recolor vv1 or vv2 with a color in
{k + 1, k + 2} \ {bi } and color v1v2 with 3, so there are two ways. Since i has m − 2
possibilities, we have 2(m − 2) ways. Hence we have 4 + 1 + 2(m − 2) = 2m + 1
ways, while v has at most 2m conflict vertices. So we can obtain a tG -avd-coloring of
G, a contradiction. 
�
Claim 11 Yan et al. (2012) Let v be a k-vertex of G with k ≥ 16. If d2

−
G (v) ≥ 1, then

d3
−

G (v) ≤ ⌈ k
2

⌉ − 1 and dkG(v) ≥ d3
−

G (v) + 1.

Let H be one of the connected component of the graph which is obtained from G
by deleting all 2−-vertices. By Claims 1, 3–5, 7–8, 11, the relation between dG(v) and
dH (v) is as in Table 1.

By Table 1, we deduce that δ(H) ≥ 3, and for any v ∈ V (H), we have dkH (v) =
dkG(v), where 3 ≤ k ≤ 6. Let H× be the associated plane graph of H . By Claims 2–4,
11 and Table 1, every 3-face of H× is one of the following types:

Type I: (3, 3, 4)-faces, (4, 4, 4)-faces;
Type II: (3, 3, 10+)-faces, (3, 4, 10+)-faces, (4, 4, 9+)-faces, (4, 5, 9+)-faces;
Type III: (3, 10+, 10+)-faces, (4, 5, 5)-faces, (4, 6, 6)-faces, (4, 6, 9+)-faces,

(4, 7+, 7+)-faces, (5, 5, 9+)-faces, (5, 9+, 9+)-faces, (6, 6, 9+)-faces, (6, 9+, 9+)-
faces;

Type IV: (7+, 7+, 7+)-faces.

Let c f be the false vertex incident with a false 3-face f , and N f̄ (c f ) be the set
of neighbors of c f which are not incident with f . f is the corresponding face of the
vertices in N f̄ (c f ). By Claims 2–3, v has at most one corresponding 3-face of Type
I. A vertex v is of Type I if it has a corresponding 3-face of Type I. Let ni (v) be
the number of 3-faces of Type i incident with v, i ∈ {II, III, IV}. Let n4+(v) be the
number of 4+-faces incident with v in H×.

By Euler’s formula |V (H×)| − |E(H×)| + |F(H×)| = 2, we have:

∑

v∈V (H×)

(dH×(v) − 4) +
∑

f ∈F(H×)

(dH×( f ) − 4) = −8

Next, we will apply the discharging method to derive a contradiction. We define
the initial charge function w(x) = dH×(x) − 4 for x ∈ V (H×) ∪ F(H×), and design
discharging rules to redistribute charges. Letw′ be the new charge after the discharging
process, then we will show that w′(x) ≥ 0 for x ∈ V (H×) ∪ F(H×), which leads to
a contradiction.

The discharging rules are defined as follows. In the following rules, the degree of
a vertex refers to its degree in H .
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R1:Each 3-face f of Type I gets 1
2 fromevery 9+-vertex in N f̄ (c f ) (byClaims 2–3,

f is false and N f̄ (c f ) consists of two 9+-vertices);
R2: Each 3-face of Type II gets 1 from its incident 9+-vertex;
R3: Each of (5, 9+, 9+)-faces and (6, 9+, 9+)-faces gets 1

2 from every incident
9+-vertex, and each other 3-face of Type III gets 1

2 from every incident 5+-vertex;
R4: Each 3-face of Type IV gets 1

3 from every incident 7+-vertex;
R5: Each good 3-vertex gets 1

3 from every adjacent 10+-vertex in H , and each bad
3-vertex gets 1

2 from every adjacent 10+-vertex in H .

We first verify the new charge of f ∈ F(H×).
• dH×( f ) = 3. By R1–R4, w′( f ) ≥ 0.
• dH×( f ) ≥ 4. The charge remains unchanged, w′( f ) = dH×( f ) − 4 ≥ 0.
Next, we verify the new charge of v ∈ V (H×). For each real vertex v ∈ V (H×),

we have dH×(v) = dG(v) − d2
−

G (v).

• dH×(v) = 3. By Claims 2–4 and Table 1, d9
−

H (v) = d3H (v) ≤ 1. If v is good, then

d10
+

H (v) = 3, otherwise d10
+

H (v) = 2. ByR5,w′(v) ≥ 3−4+min{ 13 ×3, 1
2 ×2} = 0.

• dH×(v) = 4. No rule applies to v, then w′(v) = 4 − 4 = 0.
• dH×(v) = 5. By Claims 2–3 and Table 1, d8

−
H (v) = d5H (v) ≤ 1. By R3, only

(4, 5, 5)-faces and (5, 5, 9+)-faces incident with v get charges from v. There are at
most two such faces incident with v. By R3, w′(v) ≥ 5 − 4 − 1

2 × 2 = 0.

• dH×(v) = 6. By Claims 2–3 and Table 1, d8
−

H (v) = d6H (v) ≤ 1. By R3, only
(4, 6, 6)-faces, (4, 6, 9+)-faces and (6, 6, 9+)-faces incident with v get charges from
v. There are at most four such faces incident with v. ByR3,w′(v) ≥ 6−4− 1

2 ×4 = 0.

• 7 ≤ dH×(v) ≤ 8. By Claim 3 and Table 1, d6
−

H (v) = 0 and v is not of Type I. Thus
we have nIII(v) ≤ 2. ByR3–R4, w′(v) ≥ dH×(v)−4− 1

2 ×2− 1
3 × (dH×(v) − 2) =

2dH× (v)−13
3 > 0.

• dH×(v) = 9. We first give the following fact.

Fact 1 If dH×(v) = 9, then d3H (v) = 0 and d6
−

H (v) ≤ 1.

Proof By Table 1, we have dG(v) ∈ {9, 10, 16, 17}. If dG(v) = 9, by Claim 3,
d6

−
H (v) = 0. If dG(v) = 10, then d2

−
G (v) = 1. By Claim 4, d6

−
H (v) = 0. If dG(v) = k

(16 ≤ k ≤ 17), then d2
−

G (v) = k − 9. By Claim 11, d3
−

G (v) ≤ 
 k
2� − 1 = k − 9

and dkG(v) ≥ d3
−

G (v) + 1. Thus d3H (v) = 0 and d6
−

H (v) ≤ k − d2
−

G (v) − dkG(v) ≤
k − (k − 9) − (k − 8) ≤ 1. 
�

By Fact 1, if v is of Type I, then nII(v) = 0, otherwise nII(v) ≤ 1. By R1–R4,
w′(v) ≥ 9 − 4 − max{ 12 + 1

2 × 9, 1 + 1
2 × 8} = 0.

• dH×(v) = 10. We first give the following fact.

Fact 2 If dH×(v) = 10, then d3H (v) ≤ 1 and d6
−

H (v) ≤ 3.

Proof By Table 1, we have dG(v) ∈ {10, 11} or dG(v) ≥ 16. If dG(v) = 10, by
Claim 4, d6

−
H (v) ≤ 1. If dG(v) = 11, then d2

−
G (v) = 1. By Claims 4 and 6, d5

−
G (v) ≤ 1

and d6
−

G (v) ≤ 2. Thus d3
−

H (v) = 0 and d6
−

H (v) ≤ 1. If dG(v) = k (k ≥ 16), then
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d2
−

G (v) = k − 10. By Claim 11, d3
−

G (v) ≤ 
 k
2� − 1 and dkG(v) ≥ d3

−
G (v) + 1 ≥

d2
−

G (v)+1. Thus d3H (v) ≤ 
 k
2�−1−(k−10) ≤ 1 and d6

−
H (v) ≤ k−d2

−
G (v)−dkG(v) ≤

k − (k − 10) − (k − 9) ≤ 3. 
�
ByFact 2, if v is of Type I, then nII(v) ≤ 1 and nIII(v) ≤ 5; otherwisewe have either

nII(v) ≤ 1, or nII(v) = 2 and nIII(v) ≤ 4. Noting that d3H (v) ≤ 1, byR1–R5, we have
w′(v) ≥ 10−4−max{ 12 +1+ 1

2 ×5+ 1
3 ×4, 1+ 1

2 ×9, 1×2+ 1
2 ×4+ 1

3 ×4}− 1
2 = 0.

• dH×(v) = 11. We first give the following fact.

Fact 3 If dH×(v) = 11, then d3H (v) ≤ 2 and d6
−

H (v) ≤ 5 − d3H (v).

Proof By Table 1, we have dG(v) ∈ {11, 12} or dG(v) ≥ 16. If dG(v) = 11, by
Claims 4 and 6, d3

−
H (v) ≤ 1 and d6

−
H (v) ≤ 2. If dG(v) = 12, then d2

−
G (v) = 1.

By Claims 5–6, d3
−

G (v) ≤ 1 and d6
−

G (v) ≤ 5. Thus d3H (v) = 0 and d6
−

H (v) ≤ 4.

If dG(v) = k (k ≥ 16), then d2
−

G (v) = k − 11. By Claim 11, d3
−

G (v) ≤ 
 k
2� − 1

and dkG(v) ≥ d3
−

G (v) + 1. Thus d3H (v) = d3G(v) ≤ 
 k
2� − 1 − (k − 11) ≤ 2 and

d6
−

H (v) ≤ k − d2
−

G (v) − dkG(v) ≤ k − (k − 11) − (k − 10 + d3G(v)) ≤ 5 − d3H (v). 
�
- d3H (v) �= 0. By Fact 3, if v is of Type I, then nII(v) ≤ 1 and nIII(v) ≤ 7; otherwise

we have either nII(v) ≤ 1 or nII(v) = 2 and nIII(v) ≤ 6. Noting that d3H (v) ≤ 2, by
R1–R5, we have w′(v) ≥ 11− 4−max{ 12 + 1+ 1

2 × 7+ 1
3 × 3, 1+ 1

2 × 10, 1× 2+
1
2 × 6 + 1

3 × 3} − 1
2 × 2 = 0.

- d3H (v) = 0. By Fact 3, if v is of Type I, then nII(v) ≤ 2, otherwise nII(v) ≤ 3.
By R1–R4, w′(v) ≥ 11 − 4 − max{ 12 + 1 × 2 + 1

2 × 9, 1 × 3 + 1
2 × 8} = 0.

• dH×(v) = 12. We first give the following fact.

Fact 4 If dH×(v) = 12, then either d3H (v) ≤ 1 and d5
−

H (v) ≤ 7 − d3H (v), or 2 ≤
d3H (v) ≤ 3 and d6

−
H (v) ≤ 7 − d3H (v).

Proof By Table 1, we have dG(v) ≥ 12. (a): dG(v) = 12. By Claims 5–6, d3H (v) ≤ 1

and d5
−

H (v) ≤ 5. So, in this case, Fact 4 holds. (b): dG(v) = k (13 ≤ k ≤ 14).

Then d2
−

G (v) = k − 12 > 0, by Claim 7(2), let m = 2, we have dkG(v) ≥ (17 −
k)d(19−k)−

G (v) + 1. Noting that d(19−k)−
G (v) + dkG(v) ≤ k, we get that d(19−k)−

H (v) =
d(19−k)−
G (v) − d2

−
G (v) ≤ � k−1

18−k � − (k − 12) = 1. So, in this case, Fact 4 holds.

(c): dG(v) = 15, then d2
−

G (v) = 3. By Claim 8(2), d3H (v) = d3
−

G (v) − d2
−

G (v) ≤
1. By Claim 8(3), let m = 2, we have d15G (v) ≥ 2d4

−
G (v) + 1. Thus d5

−
H (v) ≤

dG(v) − d2
−

G (v) − d15G (v) ≤ 14 − 3d2
−

G (v) = 5. So, in this case, Fact 4 holds. (d):

dG(v) = k (k ≥ 16), then d2
−

G (v) = k − 12. By Claim 11, d3
−

G (v) ≤ 
 k
2� − 1

and dkG(v) ≥ d3
−

G (v) + 1. Thus d3H (v) = d3G(v) ≤ 
 k
2� − 1 − (k − 12) ≤ 3 and

d6
−

H (v) ≤ k − d2
−

G (v) − dkG(v) ≤ k − (k − 12) − (k − 11+ d3G(v)) ≤ 7− d3H (v). So,
in this case, Fact 4 holds. 
�

- d3H (v) = 3 and d6
−

H (v) ≤ 4. If v is of Type I, by Lemma 1, we have nII(v) ≤ 1 and
n4+(v) ≥ 1; otherwise we have either nII(v) ≤ 1, or nII(v) = 2 and nIII(v) ≤ 6. By
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R1–R5,w′(v) ≥ 12−4−max{ 12+1+ 1
2×10, 1+ 1

2×11, 1×2+ 1
2×6+ 1

3×4}− 1
2×3 =

0.
- d3H (v) = 2 and d6

−
H (v) ≤ 5. If v is of Type I, then either nII(v) ≤ 1, or nII(v) = 2

and nIII(v) ≤ 6; otherwise we have either nII(v) ≤ 2, or nII(v) = 3 and nIII(v) ≤ 6.
By R1–R5, w′(v) ≥ 12− 4−max{ 12 + 1+ 1

2 × 11, 1
2 + 1× 2+ 1

2 × 6+ 1
3 × 4, 1×

2 + 1
2 × 10, 1 × 3 + 1

2 × 6 + 1
3 × 3} − 1

2 × 2 = 0.
- d3H (v) ≤ 1. By Fact 4, if v is of Type I, then nII(v) ≤ 3 − d3H (v), otherwise

nII(v) ≤ 4− d3H (v). By R1–R5, w′(v) ≥ 12− 4−max{ 12 + 1× (3− d3H (v)) + 1
2 ×

(12 − (3 − d3H (v))), 1 × (4 − d3H (v)) + 1
2 × (12 − (4 − d3H (v)))} − 1

2d
3
H (v) = 0.

• dH×(v) = 13. We first give the following fact.

Fact 5 If dH×(v) = 13, then d3H (v) ≤ 4 and d5
−

H (v) ≤ 9 − d3H (v). Furthermore, if

2 ≤ d3H (v) ≤ 4 and d5
−

H (v) ≥ 7− d3H (v), then v is not incident with any bad 3-cycle.

Proof By Table 1, we have dG(v) ≥ 13. (a): dG(v) = 13. If d3G(v) ≥ 1, by Claim 7(2),

d13G (v) ≥ 3d6
−

G (v) + 1. Noting that d6
−

G (v) + d13G (v) ≤ 13, we have d5
−

H (v) ≤
d6

−
G (v) ≤ 3. If d3G(v) = 0 and d5

−
G (v) ≥ 1, by Claim 7(2), d13G (v) ≥ d5

−
G (v) + 1.

Noting that d5
−

G (v) + d13G (v) ≤ 13, we have d5
−

H (v) ≤ d5
−

G (v) ≤ 6. So, in this

case, Fact 5 holds. (b): dG(v) = 14, then d2
−

G (v) = 1. By Claim 7(2), let m = 2,

we have d14G (v) ≥ 3d5
−

G (v) + 1. Noting that d5
−

G (v) + d14G (v) ≤ 14, we get that

d5
−

H (v) = d5
−

G (v)−d2
−

G (v) ≤ 3−1 = 2. So, in this case, Fact 5 holds. (c): dG(v) = 15,

then d2
−

G (v) = 2. By Claim 8(2), we have d3H (v) = d3
−

G (v) − d2
−

G (v) ≤ 2. By

Claim 8(3), let m = 2, we have d15G (v) ≥ 2d4
−

G (v) + 1. Thus d5
−

H (v) ≤ dG(v) −
d2

−
G (v) − d15G (v) ≤ 14 − 3d2

−
G (v) − 2d3G(v) = 8 − 2d3H (v). So, in this case, Fact 5

holds. (d): dG(v) = k (k ≥ 16), then d2
−

G (v) = k−13. ByClaim 11, d3
−

G (v) ≤ 
 k
2�−1

and dkG(v) ≥ d3
−

G (v) + 1. Thus d3H (v) = d3G(v) ≤ 
 k
2� − 1 − (k − 13) ≤ 4 and

d5
−

H (v) ≤ k − d2
−

G (v) − dkG(v) ≤ k − (k − 13) − (k − 12 + d3G(v)) ≤ 9 − d3H (v).

Furthermore, suppose that 2 ≤ d3H (v) ≤ 4 and d5
−

H (v) ≥ 7 − d3H (v). Assume that

v is incident with a bad 3-cycle, by Claim 10, dkG(v) ≥ 2d4
−

G (v) + 1. Noting that

d2
−

G (v) + d5
−

H (v) + dkG(v) − k ≤ 0, while d2
−

G (v) + d5
−

H (v) + dkG(v) − k ≥ k − 13+
7− d3H (v) + 2(k − 13) + 2d3H (v) + 1− k > 2k − 31 > 0, a contradiction. So, in this
case, Fact 5 holds. 
�

- d3H (v) = 4 and d5
−

H (v) ≤ 5. By Fact 5, v is not incident with any bad 3-cycle. If
v is of Type I, by Lemma 1, nII(v) = 0, otherwise nII(v) ≤ 1. By R1–R5, w′(v) ≥
13 − 4 − max{ 12 + 1

2 × 13, 1 + 1
2 × 12} − 1

2 × 4 = 0.

- d3H (v) = 3. By Fact 5, d5
−

H (v) = 3, or 4 ≤ d5
−

H (v) ≤ 6 and v is not incident with
any bad 3-cycle. If v is of Type I, then nII(v) ≤ 1, otherwise nII(v) ≤ 2. By R1–R5,
w′(v) ≥ 13 − 4 − max{ 12 + 1 + 1

2 × 12, 1 × 2 + 1
2 × 11} − 1

2 × 3 = 0.

- d3H (v) = 2. By Fact 5, d5
−

H (v) ≤ 4, or 5 ≤ d5
−

H (v) ≤ 7 and v is not incident with
any bad 3-cycle. If v is of Type I, then nII(v) ≤ 2, otherwise nII(v) ≤ 3. By R1–R5,
w′(v) ≥ 13 − 4 − max{ 12 + 1 × 2 + 1

2 × 11, 1 × 3 + 1
2 × 10} − 1

2 × 2 = 0.
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- d3H (v) ≤ 1. By Fact 5, if v is of Type I, then nII(v) ≤ 4 − d3H (v), otherwise
nII(v) ≤ 5− d3H (v). By R1–R5, w′(v) ≥ 13− 4−max{ 12 + 1× (4− d3H (v)) + 1

2 ×
(13− (4− d3H (v))), 1× (5− d3H (v)) + 1

2 × (13− (5− d3H (v)))} − 1
2 × d3H (v) = 0.

• dH×(v) = 14. We first give the following fact.

Fact 6 If dH×(v) = 14, then either d3H (v) = 0, or 1 ≤ d3H (v) ≤ 5 and d5
−

H (v) ≤
11 − d3H (v). Furthermore, if d3H (v) ≥ 4 and d5

−
H (v) ≥ 5, or 2 ≤ d3H (v) ≤ 3 and

d5
−

H (v) ≥ 6, then v is not incident with any bad 3-cycle.

Proof By Table 1, we have dG(v) ≥ 14. (a): dG(v) = 14. If d3G(v) ≥ 1, by Claim 7(2),

d14G (v) ≥ 2d5
−

G (v) + 1. Noting that d5
−

G (v) + d14G (v) ≤ 14, we have d5
−

H (v) ≤
d5

−
G (v) ≤ 4. So, in this case, Fact 6 holds. (b): dG(v) = 15, then d2

−
G (v) = 1. By

Claim8(2),we have d3H (v) = d3
−

G (v)−d2
−

G (v) ≤ 3.ByClaim8(3), letm = 2,we have

d15G (v) ≥ 2d4
−

G (v) + 1. Thus d5
−

H (v) ≤ dG(v) − d2
−

G (v) − d15G (v) ≤ 14− 3d2
−

G (v) −
2d3G(v) − 2d4G(v) ≤ 11 − 2d3H (v), which implies that d3H (v) ≤ 3. Furthermore, if

d5
−

H (v) ≥ 6, by d2
−

G (v) + d5
−

H (v) + d15G (v) ≤ 15 and Claim 8(4), v is not incident
with any bad 3-cycle. So, in this case, Fact 6 holds. (c): dG(v) = k (k ≥ 16), then
d2

−
G (v) = k − 14. By Claim 11, d3

−
G (v) ≤ 
 k

2� − 1 and dkG(v) ≥ d3
−

G (v) + 1. Thus

d3H (v) = d3G(v) ≤ 
 k
2� − 1 − (k − 14) ≤ 5 and d5

−
H (v) ≤ k − d2

−
G (v) − dkG(v) ≤

k−(k−14)−(k−13+d3G(v)) ≤ 11−d3H (v). Furthermore, suppose thatd3H (v) ≥ 4 and

d5
−

H (v) ≥ 5, or 2 ≤ d3H (v) ≤ 3 and d5
−

H (v) ≥ 6.Assume that v is incidentwith a bad 3-

cycle, byClaim10,dkG(v) ≥ 2d4
−

G (v)+1.Noting thatd2
−

G (v)+d5
−

H (v)+dkG(v)−k ≤ 0,

while d2
−

G (v)+d5
−

H (v)+dkG(v)−k ≥ d2
−

G (v)+d5
−

H (v)+2d4
−

G (v)+1−k ≥ 3d2
−

G (v)+
2d3H (v)+d5

−
H (v)+1−k ≥ 3(k−14)+min{2×4+5, 2×2+6}+1−k = 2k−31 > 0,

a contradiction. So, in this case, Fact 6 holds. 
�
By Fact 6, we consider the following cases.
- d3H (v) = 5 and d5

−
H (v) ≤ 6, or d3H (v) = 4 and 5 ≤ d5

−
H (v) ≤ 7. By Fact 6,

v is not incident with any bad 3-cycle. If v is of Type I, by Lemma 1, we have
nII(v) ≤ 5 − d3H (v), otherwise nII(v) ≤ 6 − d3H (v). By R1–R5, w′(v) ≥ 14 − 4 −
max{ 12 + 1× (5− d3H (v)) + 1

2 × (14− (5− d3H (v))), 1× (6− d3H (v)) + 1
2 × (14−

(6 − d3H (v)))} − 1
2d

3
H (v) = 0.

- d3H (v) = d5
−

H (v) = 4. If v is of Type I, by Lemma 1, we have nII(v) ≤ 1,
otherwise, by Claim 9, we have nII(v) ≤ 2. By R1–R5, w′(v) ≥ 14 − 4 − max{ 12 +
1 + 1

2 × 13, 1 × 2 + 1
2 × 12} − 1

2 × 4 = 0.

- 2 ≤ d3H (v) ≤ 3 and d5
−

H (v) ≤ 5, or d3H (v) = 3 and 6 ≤ d5
−

H (v) ≤ 8 and v is not
incident with any bad 3-cycle. If v is of Type I, then nII(v) ≤ 2, otherwise nII(v) ≤ 3.
Noting that d3H (v) ≤ 3, by R1–R5, we have w′(v) ≥ 14− 4−max{ 12 + 1× 2+ 1

2 ×
12, 1 × 3 + 1

2 × 11} − 1
2 × 3 = 0.

- d3H (v) = 2, 6 ≤ d5
−

H (v) ≤ 9 and v is not incident with any bad 3-cycle. If v is of
Type I, then nII(v) ≤ 3, otherwise nII(v) ≤ 4. ByR1–R5,w′(v) ≥ 14−4−max{ 12 +
1 × 3 + 1

2 × 11, 1 × 4 + 1
2 × 10} − 1

2 × 2 = 0.

123



Journal of Combinatorial Optimization (2022) 43:710–726 723

- d3H (v) = 1 and d5
−

H (v) ≤ 10. If v is of Type I, then nII(v) ≤ 4, otherwise
nII(v) ≤ 5.ByR1–R5,w′(v) ≥ 14−4−max{ 12+1×4+ 1

2×10, 1×5+ 1
2×9}− 1

2 = 0.
- d3H (v) = 0. Then nII(v) ≤ 5, or nII(v) = 6 and n4+(v) ≥ 1, or nII(v) = 7 and

n4+(v) ≥ 5 by Claims 2–3. By R1–R4, w′(v) ≥ 14 − 4 − 1
2 − max{1 × 5 + 1

2 ×
9, 1 × 6 + 1

2 × 7, 1 × 7 + 1
2 × 2} = 0.

Remark 3 For any 15+-vertex v ∈ V (H×), if v is not incident with any bad 3-cycle
and d3bH (v) ≥ 2, then n4+(v) ≥ 1.

• dH×(v) = 15. We first give the following fact.

Fact 7 If dH×(v) = 15, then either d3H (v) = 0, or 1 ≤ d3H (v) ≤ 7 and d6
−

H (v) ≤
14−d3H (v). Furthermore, ifd3H (v) ≥ 3 andd6

−
H (v) ≥ 7, ord3H (v) = 2 andd6

−
H (v) ≥ 9,

then v is not incident with any bad 3-cycle.

Proof By Table 1, we have dG(v) ≥ 15. (a): dG(v) = 15. If d3G(v) ≥ 1, by Claim 8(3),

let m = 3, we have d15G (v) ≥ d4
−

G (v) + 1. Noting that d3H (v) ≤ d4
−

G (v) ≤ d6
−

G (v) ≤
dG(v) − d15G (v), we have d3H (v) ≤ 7 and d6

−
H (v) ≤ 14 − d3H (v). Furthermore, if

d6
−

H (v) ≥ 7, by d6
−

G (v) + d15G (v) ≤ 15 and Claim 8(4), v is not incident with any bad

3-cycle. So, in this case, Fact 7 holds. (b): dG(v) = k (k ≥ 16), then d2
−

G (v) = k−15.

By Claim 11, d3
−

G (v) ≤ 
 k
2� − 1 and dkG(v) ≥ d3

−
G (v) + 1. Thus d3H (v) = d3G(v) ≤


 k
2� − 1 − (k − 15) ≤ 6 and d6

−
H (v) ≤ k − d2

−
G (v) − dkG(v) ≤ k − (k − 15) − (k −

14 + d3G(v)) < 14 − d3H (v). Furthermore, suppose that d3H (v) ≥ 3 and d6
−

H (v) ≥ 7,

or d3H (v) = 2 and d6
−

H (v) ≥ 9. Assume that v is incident with a bad 3-cycle, by

Claim 10, dkG(v) ≥ 2d4
−

G (v)+1. Noting that d2
−

G (v)+d6
−

H (v)+dkG(v)−k ≤ 0, while

d2
−

G (v) + d6
−

H (v) + dkG(v) − k ≥ d2
−

G (v) + d6
−

H (v) + 2d4
−

G (v) + 1 − k ≥ 3d2
−

G (v) +
2d3H (v)+d6

−
H (v)+1−k ≥ 3(k−15)+min{2×3+7, 2×2+9}+1−k = 2k−31 > 0,

a contradiction. So, in this case, Fact 7 holds. 
�
By Fact 7, we consider the following cases.
- d3H (v) = d6

−
H (v) = 7, and v is not incident with any bad 3-cycle. If v is of Type

I, by Lemma 1, we have nII(v) = 0 and n4+(v) ≥ 1; otherwise we have nII(v) ≤ 1
and either d3bH (v) ≤ 1 or n4+(v) ≥ 1 by Remark 3. By R1–R5, w′(v) ≥ 15 − 4 −
max{ 12 + 1

2 × 14 + 1
2 × 7, 1 + 1

2 × 14 + 1
2 + 1

3 × 6, 1 + 1
2 × 13 + 1

2 × 7} = 0.

- d3H (v) = d6
−

H (v) = 6. By Claim 9, v is incident with at most one bad 3-cycle. If v

is of Type I, by Lemma 1, then nII(v) ≤ 1 and n4+(v) ≥ 1; otherwise we have either
nII(v) ≤ 1, or nII(v) = 2 and nIII(v) ≤ 10. By R1–R5, w′(v) ≥ 15 − 4 − max{ 12 +
1 + 1

2 × 13, 1 + 1
2 × 14, 1 × 2 + 1

2 × 10 + 1
3 × 3} − 1

2 × 6 = 0.

- d3H (v) = 6, 7 ≤ d6
−

H (v) ≤ 8, and v is not incident with any bad 3-cycle. If v is
of Type I, we have nII(v) ≤ 1 and either d3bH (v) ≤ 1 or n4+(v) ≥ 1 by Remark 3;
otherwise we have nII(v) ≤ 2 and either d3bH (v) ≤ 1 or n4+(v) ≥ 1 by Remark 3. By
R1–R5, w′(v) ≥ 15− 4−max{ 12 + 1+ 1

2 × 14+ 1
2 + 1

3 × 5, 1
2 + 1+ 1

2 × 13+ 1
2 ×

6, 1 × 2 + 1
2 × 13 + 1

2 + 1
3 × 5, 1 × 2 + 1

2 × 12 + 1
2 × 6} = 0.
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- d3H (v) = 5 and d6
−

H (v) ≤ 6. By Claim 9, v is incident with at most one bad
3-cycle. If v is of Type I, then nII(v) ≤ 1, otherwise nII(v) ≤ 2. By R1–R5, w′(v) ≥
15 − 4 − max{ 12 + 1 + 1

2 × 14, 1 × 2 + 1
2 × 13} − 1

2 × 5 = 0.

- d3H (v) = 5, 7 ≤ d6
−

H (v) ≤ 9, and v is not incident with any bad 3-cycle. If v

is of Type I, then either nII(v) ≤ 1, or nII(v) = 2 and n4+(v) ≥ 1 by Claims 2–3;
otherwise we have nII(v) ≤ 3 and either d3bH (v) ≤ 1 or n4+(v) ≥ 1 by Remark 3. By
R1–R5, w′(v) ≥ 15− 4−max{ 12 + 1+ 1

2 × 14+ 1
2 × 5, 1

2 + 1× 2+ 1
2 × 12+ 1

2 ×
5, 1 × 3 + 1

2 × 12 + 1
2 + 1

3 × 4, 1 × 3 + 1
2 × 11 + 1

2 × 5} = 0.

- 3 ≤ d3H (v) ≤ 4 and d6
−

H (v) ≤ 6. By Claim 9, v is incident with at most one bad 3-
cycle. If v is of Type I, then nII(v) ≤ 2, otherwise nII(v) ≤ 3. Noting that d3H (v) ≤ 4,
byR1–R5, we havew′(v) ≥ 15−4−max{ 12+1×2+ 1

2×13, 1×3+ 1
2×12}− 1

2×4 = 0.

- 3 ≤ d3H (v) ≤ 4, 7 ≤ d6
−

H (v) ≤ 14 − d3H (v), and v is not incident with any bad
3-cycle. If v is of Type I, then either nII(v) ≤ 6 − d3H (v), or nII(v) = 7 − d3H (v)

and n4+(v) ≥ 1 by Claims 2–3; otherwise we have either nII(v) ≤ 7 − d3H (v), or
nII(v) = 8 − d3H (v) and n4+(v) ≥ 1 by Claims 2–3. By R1–R5, w′(v) ≥ 15 − 4 −
max{ 12 + 1 × (6 − d3H (v)) + 1

2 × (15 − (6 − d3H (v))), 1
2 + 1 × (7 − d3H (v)) + 1

2 ×
(14− (7− d3H (v))), 1× (7− d3H (v)) + 1

2 × (15− (7− d3H (v))), 1× (8− d3H (v)) +
1
2 × (14 − (8 − d3H (v)))} − 1

2d
3
H (v) = 0.

- d3H (v) = 2 and d6
−

H (v) ≤ 8. If v is of Type I, then nII(v) ≤ 4, otherwise nII(v) ≤ 5.
By R1–R5, w′(v) ≥ 15−4−max{ 12 +1× 4+ 1

2 × 11, 1× 5+ 1
2 × 10}− 1

2 × 2 = 0.

- d3H (v) = 2, 9 ≤ d6
−

H (v) ≤ 12, and v is not incident with any bad 3-cycle. If v

is of Type I, then either nII(v) ≤ 4, or nII(v) = 5 and n4+(v) ≥ 1 by Claims 2–3;
otherwise we have either nII(v) ≤ 5, or nII(v) = 6 and n4+(v) ≥ 1 by Claims 2–3.
By R1–R5, w′(v) ≥ 15− 4−max{ 12 + 1× 4+ 1

2 × 11, 1
2 + 1× 5+ 1

2 × 9, 1× 5+
1
2 × 10, 1 × 6 + 1

2 × 8} − 1
2 × 2 = 0.

- d3H (v) ≤ 1 and d6
−

H (v) ≤ 15 − 2d3H (v). If v is of Type I, then either nII(v) ≤
6− d3H (v), or nII(v) = 7− d3H (v) and n4+(v) ≥ 1 by Claims 2–3; otherwise we have
either nII(v) ≤ 7− d3H (v), or nII(v) = 8− d3H (v) and n4+(v) ≥ 1 by Claims 2–3. By
R1–R5, w′(v) ≥ 15− 4−max{ 12 + 1× (6− d3H (v)) + 1

2 × (15− (6− d3H (v))), 1
2 +

1 × (7 − d3H (v)) + 1
2 × (14 − (7 − d3H (v))), 1 × (7 − d3H (v)) + 1

2 × (15 − (7 −
d3H (v))), 1 × (8 − d3H (v)) + 1

2 × (14 − (8 − d3H (v)))} − 1
2d

3
H (v) = 0.

• dH×(v) = k (k ≥ 16). By Claim 2 and Table 1, every 5−-vertex has at most one
conflict vertex.

- d3H (v) = 0. (a): 3nII(v) ≤ k + 5. By R1–R4, w′(v) ≥ k − 4 − 1
2 − 1 × nII(v) −

1
2 × (k − nII(v)) ≥ k−16

3 ≥ 0. (b): 3nII(v) > k + 5. Note that a 3-face of Type
II is incident with two 5−-vertices. If v is not adjacent to any false vertex, then
d9

+
H (v) ≤ k − 2nII(v) and n4+(v) ≥ nII(v) − d9

+
H (v); otherwise we have d9

+
H (v) ≤

k − 2nII(v) + 2 and n4+(v) ≥ nII(v) − d9
+

H (v) − 1. Thus n4+(v) ≥ min{nII(v) −
(k − 2nII(v)), nII(v) − (k − 2nII(v) + 2) − 1} = 3nII(v) − k − 3. By R1–R4,
w′(v) ≥ k−4− 1

2−1×nII(v)− 1
2×(k−nII(v)−n4+(v)) = 1

2 (k−nII(v)+n4+(v)−9) ≥
1
2 (k − nII(v) + (3nII(v) − k − 3) − 9) = nII(v) − 6 > k+5

3 − 6 > 0.
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- d3H (v) ≥ 1 and v is incident with a bad 3-cycle. (a): If v is of Type I, then v is
not incident with any (4, 5, 16+)-face. By Lemma 1 and Claim 9, we have nII(v) ≤
d4H (v)

2 +1. (b): If v is not of Type I.Noting that v is incidentwith atmost two (4, 5, 16+)-

faces, we have nII(v) ≤ d4H (v)

2 +3. By Claim 10, d3H (v)+d4H (v) ≤ d4
−

G (v) ≤ k−1
3 . By

R1–R5,w′(v) ≥ k−4−max{ 12 +1× (
d4H (v)

2 +1)+ 1
2 × (k− d4H (v)

2 −1), 1× (
d4H (v)

2 +
3)+ 1

2 ×(k− d4H (v)

2 −3)}− 1
2d

3
H (v) = k

2 − d3H (v)

2 − d4H (v)

4 − 11
2 ≥ k−11

2 − d3H (v)+d4H (v)

2 ≥
k−11
2 − k−1

6 = k−16
3 ≥ 0.

- d3H (v) ≥ 1 and v is not incident with any bad 3-cycle.
- - n4+(v) = 0. Then 3nII(v) + 2d3H (v) − 4 ≤ k. By Remark 3, d3bH (v) ≤ 1. By

R1–R5, w′(v) ≥ k − 4− 1
2 − 1× nII(v) − 1

2 × (k − nII(v)) − ( 12 + 1
3 (d

3
H (v) − 1)) =

k
2 − 1

6 (3nII(v) + 2d3H (v)) − 14
3 ≥ k

2 − k+4
6 − 14

3 = k−16
3 ≥ 0.

- - n4+(v) ≥ 1 and 3nII(v)+2d3gH (v)+3� d3bH (v)

2 � ≤ k+4. Note that v is not incident

with any bad 3-cycle. If v is of Type I, n4+(v) ≥ 
 d3bH (v)

2 �; otherwise we have n4+(v) ≥

 d3bH (v)

2 � − 1. By R1–R5, w′(v) ≥ k − 4 − max{ 12 + 1 × nII(v) + 1
2 × (k − nII(v) −


 d3bH (v)

2 �), 1×nII(v)+ 1
2 ×(k−nII(v)−(
 d3bH (v)

2 �−1))}−( 13 ×d3gH (v)+ 1
2 ×d3bH (v)) =

k−9
2 − nII(v)

2 − d3gH (v)

3 − d3bH (v)

2 + 1
2


d3bH (v)

2 � = k−9
2 − 1

6 (3nII(v)+2d3gH (v)+3� d3bH (v)

2 �) ≥
k−9
2 − k+4

6 = 2k−31
6 > 0.

- - n4+(v) ≥ 1 and 3nII(v)+2d3gH (v)+3� d3bH (v)

2 � ≥ k+5. Note that v is not incident

with any bad 3-cycle. If v is of Type I, n4+(v) ≥ 3nII(v) + 2d3gH (v) + 3� d3bH (v)

2 � −
(k + 5) + 
 d3bH (v)

2 �; otherwise we have n4+(v) ≥ 3nII(v) + 2d3gH (v) + 3� d3bH (v)

2 � −
(k + 5) + (
 d3bH (v)

2 � − 1). By R1–R5, w′(v) ≥ k − 4 − max{ 12 + 1 × nII(v) + 1
2 ×

(k − nII(v) − (3nII(v) + 2d3gH (v) + 3� d3bH (v)

2 � − (k + 5) + 
 d3bH (v)

2 �)), 1 × nII(v) +
1
2 × (k − nII(v) − (3nII(v) + 2d3gH (v) + 3� d3bH (v)

2 � − (k + 5) + 
 d3bH (v)

2 � − 1))} − ( 13 ×
d3gH (v) + 1

2 × d3bH (v)) = nII(v) + 2
3d

3g
H (v) + 1

2

d3bH (v)

2 � + 3
2�

d3bH (v)

2 � − d3bH (v)

2 − 7 =
1
3 (3nII(v) + 2d3gH (v) + 3� d3bH (v)

2 �) − 7 ≥ k+5
3 − 7 ≥ 0.

In conclusion, the new charge of x ∈ V (H×) ∪ F(H×) is nonnegative, a contra-
diction. The proof of Theorem 1 is done.
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