

Adjacent vertex distinguishing edge coloring of IC-planar graphs

Zhuoya Liu¹ · Changqing Xu[1](http://orcid.org/0000-0002-3831-0173)

Accepted: 27 August 2021 / Published online: 15 September 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The adjacent vertex distinguishing edge coloring of a graph *G* is a proper edge coloring in which each pair of adjacent vertices is assigned different color sets. The smallest number of colors for which *G* has such a coloring is denoted by $\chi_a'(G)$. An important conjecture due to Zhang et al. (Appl Math Lett 15:623–626, 2002) asserts that $\chi'_a(G) \leq$ $\Delta(G) + 2$ for any connected graph *G* with order at least 6. By applying the discharging method, we show that this conjecture is true for any IC-planar graph *G* with $\Delta(G) \ge$ 16.

Keywords IC-planar graph · Adjacent vertex distinguishing edge coloring · Discharging method

1 Introduction

Throughout this paper, we are only concerned with finite and simple graphs. For a plane graph *G*, let $V(G)$, $E(G)$, $F(G)$, $\Delta(G)$ and $\delta(G)$ be the vertex set, edge set, face set, maximum degree and minimum degree of *G*, respectively. For an arbitrary *x* ∈ *V*(*G*)∪ *F*(*G*), let *d_G*(*x*) denote the degree of *x* in *G*. Let *N_G*(*v*) denote the set of neighbors of a vertex v in *G*. A vertex v satisfying $d_G(v) = k (d_G(v) \ge k, d_G(v) \le k)$ is a *k*-*vertex* (*k*+-*vertex*, *k*−*-vertex*). The *k-face* and *k*+-*face* are defined similarly. For each $v \in V(G)$, let $d_G^k(v)$ denote the number of *k*-vertices adjacent to v in *G*. We call a 3-vertex $v \in V(G)$ *bad* if $d_G^3(v) = 1$ and *good* if $d_G^3(v) = 0$. Let $d_G^{3b}(v)$ and $d_G^{3g}(v)$ denote the number of bad and good 3-vertices adjacent to v in *G*, respectively. A 3-face (or cycle) $v_1v_2v_3$ is called a (k_1, k_2, k_3) -face (or *cycle*) if v_i is a k_i -vertex for all $1 \le i \le 3$. A 3-cycle is *bad* if it is incident with two 3-vertices. Any undefined notation can refer to (Bondy and Murt[y](#page-16-0) [1976](#page-16-0)).

 \boxtimes Changqing Xu chqxu@hebut.edu.cn

School of Science, Hebei University of Technology, Tianjin 300401, China

A *proper k-edge coloring* of a graph *G* is a mapping $\varphi : E(G) \rightarrow \{1, 2, ..., k\}$ such that $\varphi(e) \neq \varphi(e')$ for any two adjacent edges *e* and *e'* of *G*. For any $v \in V(G)$, let $C_{\varphi}(v) = {\varphi(uv)|uv \in E(G)}$ be the color set of v with respect to φ . For two adjacent vertices *u* and *v*, we call *u conflict with v* respect to φ if $C_{\varphi}(u) = C_{\varphi}(v)$. A proper *k*-edge coloring ϕ is *a k-adjacent vertex distinguishing edge coloring* (*k*-*avdcoloring* for short) provided that $C_{\varphi}(u) \neq C_{\varphi}(v)$ for all $uv \in E(G)$. The *adjacent* α *vertex distinguishing edge chromatic index* of *G*, denoted by $\chi'_{a}(G)$, is the smallest *k* such that *G* has a *k*-avd-coloring. A graph without isolated edges is *normal*. Clearly, only normal graph can have avd-colorings. Thus, for avd-coloring, we only consider normal graphs.

Zhang et al[.](#page-16-1) [\(2002](#page-16-1)) first introduced the concept of avd-coloring and put forward the following conjecture.

Conjecture 1 Zhang et al[.](#page-16-1) [\(2002](#page-16-1)) *If G is a connected graph with order at least 6, then* $\chi_a'(G) \leq \Delta(G) + 2.$

Conjecture [1](#page-1-0) was determined by Balister et al[.](#page-16-2) [\(2007](#page-16-2)) for bipartite graphs and graphs with maximum degree 3[.](#page-16-3) Horňák et al. (2014) showed that Conjecture [1](#page-1-0) holds for planar graphs with maximum degree at least 12. Bonamy et al[.](#page-15-0) [\(2013](#page-15-0)) verified that $\chi'_a(G) \leq \Delta(G) + 1$ for any planar [g](#page-16-4)raph *G* with $\Delta(G) \geq 12$. Wang and Huang [\(2015\)](#page-16-4) proved that $\chi_a'(G) \leq \Delta(G) + 1$ for any planar graph *G* with $\Delta(G) \geq 16$ and $\chi_a'(G) = \Delta(G) + 1$ if and only if *G* contains two adjacent vertices of maximum degree.

A graph is *1-planar* if it can be drawn in the plane such that each edge is crossed by at most one other edge. Albertso[n](#page-15-1) [\(2008\)](#page-15-1) first introduced the definition of IC-planar graph. A graph is *IC*-*planar* if it admits a drawing in the plane where each edge is crossed at most once and no two crossings are incident with the same vertex. Clearly, each IC-planar graph is 1-planar. The *associated plane graph G*× of a 1-planar graph *G* is a plane graph obtained by turning all crossings of *G* into new 4-vertices. A vertex $v \in V(G^{\times})$ is *false* if v is not a vertex of G and *real* otherwise. A face is *false* if it is incident with at least one false vertex. Clearly, for an associated plane graph G^{\times} of an IC-planar graph *G*, each real vertex in G^{\times} is adjacent to at most one false vertex and incident with at most two false 3-faces in G^{\times} . In the following, we always assume that every IC-planar graph is drawn in a plane such that the number of crossings is as few as possible.

Lemma 1 Zhang and W[u](#page-16-5) [\(2011](#page-16-5)) *Let G be a 1-plane graph and G*× *be the associated plane graph of G. If* $d_G(u) = 3$ *and v is a false vertex of G*^{\times}*, then either uv* $\notin E(G^{\times})$ *or u*v *is not incident with two 3-faces.*

In this paper, we will prove that Conjecture [1](#page-1-0) is true for any IC-planar graph with maximum degree at least 16, which can be expressed more concisely as follows:

Theorem 1 Let G be an IC-planar graph, then $\chi_a'(G) \le \max{\{\Delta(G) + 2, 18\}}$.

2 The proof of Theorem [1](#page-1-1)

We will prove Theorem [1](#page-1-1) by contradiction. Let *G* be a counterexample to Theorem 1 minimizing $|V(G)|+|E(G)|$. Clearly, G is a connected graph. Let $t_G = \max{\{\Delta(G) +$ 2, 18} and $C = \{1, 2, ..., t_G\}$. Then $\{1, 2, ..., 18\} \subseteq C$. First we will prove the following claims.

Claim 1 *There is no edge uv* $\in E(G)$ *with* $d_G(u) = 1$ *and* $d_G(v) \leq 9$.

Proof Assume, to the contrary, that *G* contains an edge *uv* with $d_G(u) = 1$ and $d_G(v) \leq 9$. We have $d_G(v) \geq 2$ because G is normal. Let $H = G - u$. If H contains only one edge, then we color this edge with 1 and color *u*v with 2 to obtain a t_G -avd-coloring of G , a contradiction. If H contains at least two edges, H has a t_G -avd-coloring φ with the color set C by the minimality of G. Note that v has at most eight conflict vertices. Hence we can color *uv* with a color in $C \setminus C_\omega(v)$ such that v does not conflict with its neighbors, which yields a t_G -avd-coloring of G , a contradiction. \Box

Remark [1](#page-2-0) Claim 1 implies that for an arbitrary $e \in E(G)$, $H = G - e$ is normal. Therefore $\chi'_a(H) \le t_G$ by the minimality of *G*.

Remark 2 In the following, if $d_G(v) = k$, set $N_G(v) := \{v_1, v_2, ..., v_k\}$.

Claim 2 *Let v be a k-vertex of G with* $2 \leq k \leq 6$, *then* $d_G^k(v) \leq 1$.

Proof Assume, to the contrary, that *G* contains a *k*-vertex v (2 \leq $k \leq 6$) satisfying $d_G^k(v) \geq 2$. We prove the case that $k = 6$ (the proof can be given similarly and simply for $2 \le k \le 5$). Assume that $d_G(v_1) = d_G(v_2) = 6$. Let $N_G(v_1) = \{v, w_1, w_2, w_3, w_4, w_5\}.$ $N_G(v_1) = \{v, w_1, w_2, w_3, w_4, w_5\}.$ $N_G(v_1) = \{v, w_1, w_2, w_3, w_4, w_5\}.$ Let $H = G - vv_1$, by Remark 1, *H* has a t_G -avdcoloring φ with the color set *C*. Without loss of generality (W.l.o.g.), $\varphi(vv_i) = i - 1$ for $2 \le i \le 6$ and $\varphi(v_1w_i) = a_i$ for $1 \le i \le 5$. We consider the next three cases.

Case 1: 3 ≤ $|\{a_1, a_2, ..., a_5\} \cap \{1, 2, ..., 5\}|$ ≤ 5. If $|\{a_1, a_2, ..., a_5\} \cap$ $\{1, 2, \ldots, 5\}$ = 5, then we recolor vv_2 with a color in $C \setminus (C_{\varphi}(v) \cup C_{\varphi}(v_2))$ such that v_2 does not conflict with its neighbors. So we may assume that $3 \leq$ $|\{a_1, a_2, ..., a_5\} \cap \{1, 2, ..., 5\}|$ ≤ 4. Hence we can color vv₁ with a color in $C \setminus (C_\varphi(v) \cup C_\varphi(v_1))$ such that v and v₁ do not conflict with their neighbors, which yields a t_G -avd-coloring of G , a contradiction.

Case 2: 1 ≤ $\vert \{a_1, a_2, ..., a_5\} \cap \{1, 2, ..., 5\} \vert$ ≤ 2. Set $\vert \{a_1, a_2, ..., a_5\} \cap$ $\{1, 2, \ldots, 5\}$ = *l*, then $1 \le l \le 2$. W.l.o.g., $a_i = i$ for $1 \le i \le l$ and $a_i = i - l + 5$ for $l + 1 \le i \le 5$. Suppose that vv₁ cannot be colored without causing conflicts, say, $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i - l + 9\}$ for 2 ≤ *i* ≤ 6 and $C_{\varphi}(w_i) = \{1, 6, 7, 8, 16 - 7l, i - l + 15\}$ for $1 \leq i \leq l + 3$. We recolor vv₂ with a color in $\{13, 14, \ldots, 18\}$ such that v_2 does not conflict with its neighbors, then we color vv_1 with a color in {11, 12} such that v_1 does not conflict with its neighbors, which yields a *tG*-avd-coloring of *G*, a contradiction.

Case 3: $\{a_1, a_2, ..., a_5\} ∩ \{1, 2, ..., 5\}$ = 0. W.l.o.g., $a_i = i + 5$ for $1 ≤ i ≤$ 5. Suppose that vv_1 cannot be colored without causing conflicts, say, $C_\varphi(v_i)$ = $\{1, 2, 3, 4, 5, i + 9\}$ for $2 \le i \le 6$ and $C_{\varphi}(w_i) = \{6, 7, 8, 9, 10, i + 15\}$ for

 $1 \le i \le 3$, or $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i + 9\}$ for $2 \le i \le 5$ and $C_{\varphi}(w_i) =$ $\{6, 7, 8, 9, 10, i + 14\}$ for $1 \le i \le 4$. If $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i + 9\}$ for $2 \le i \le 6$ and $C_{\omega}(w_i) = \{6, 7, 8, 9, 10, i + 15\}$ for $1 \le i \le 3$, then we recolor vv_2 with a color in $\{6, 7, 8, 16, 17, 18\}$ such that v_2 does not conflict with its neighbors, and color vv_1 with a color in {12, 13, 14} such that v_1 does not conflict with w_4 and w_5 , which yields a *t_G*-avd-coloring of *G*, a contradiction. If $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i+9\}$ for $2 \le i \le 5$ and $C_\omega(w_i) = \{6, 7, 8, 9, 10, i + 14\}$ for $1 \le i \le 4$, then we recolor vv_2 with a color in $\{6, 7, 8, 9, 10, 18\}$ such that v_2 does not conflict with its neighbors, and color vv_1 with a color in $\{12, 13, 14\}$ such that v and v_1 do not conflict with their neighbors, which yields a *tG*-avd-coloring of *G*, a contradiction. П

Claim 3 *There is no edge* $vv_1 \in E(G)$ *with* $2 \leq d_G(v_1) \leq 6$ *and* $d_G(v_1) + 1 \leq 6$ $d_G(v) \leq 9$.

Proof Assume, to the contrary, that *G* contains an edge vv_1 with $2 \leq d_G(v_1) \leq 6$ and $d_G(v_1) + 1 \leq d_G(v) \leq 9$. We prove the case that $d_G(v_1) = 6$ and $d_G(v) = 9$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le 9$ and $C_{\omega}(v_1) \subseteq \{1, 2, ..., 13\}$ $C_{\omega}(v_1) \subseteq \{1, 2, ..., 13\}$ $C_{\omega}(v_1) \subseteq \{1, 2, ..., 13\}$. By Claim 2, every 6-vertex has at most one conflict vertex. Suppose that vv_1 cannot be colored without causing conflicts, say, $C_{\varphi}(v_i) = \{1, 2, ..., 8, i + 12\}$ for $2 \le i \le 5$ and $C_{\varphi}(v_1) = \{9, 10, ..., 13\}$. Without considering the conflict of v, for any given integer i ($2 \le i \le 5$), we select $\{b_i, d_i\}$ from $\{9, 10, \ldots, 18\} \setminus \{i + 12\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least two selected ways. Since *i* has four possibilities, we have at least $2 \times 4 = 8$ ways such that v_1 does not conflict with its neighbors and v does not conflict with v_2 , v_3 , v_4 and v_5 , while v has at most four conflict vertices other than v_2 , v_3 , v_4 and v_5 . So we can obtain a t_G -avd-coloring of *G*, a contradiction. \Box

Claim 4 *Let v be a k-vertex of G with* $10 \le k \le 11$ *, then* $d_G^{(16-k)^{-}}(v) \le 1$ *.*

Proof Assume, to the contrary, that *G* contains a *k*-vertex v ($10 \le k \le 11$) satisfying *d*_{*G*}^{(16−*k*)[−]} (*v*) ≥ 2. Suppose that *d_G*(*v*₁) = *d_G*(*v*₂) = 16 − *k* (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k+1, ..., 18\}|$ ≤ 15 − *k* for $1 \le i \le 2$. By Claim [2,](#page-2-2) every 6[−]-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i , and $|C_\varphi(v_i) \cap$ $\{k, k+1, \ldots, 18\}$ = 15 − *k* for 1 ≤ *i* ≤ 2, then we recolor $v_i w_i$ with a color in $\{2, 3, \ldots, 9\} \setminus C_{\omega}(w_i)$. Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least four available colors. (b): We select $\{b_1, b_2\}$ from $\{k, k+1, \ldots, 18\}$ to recolor vv_2 and color vv_1 such that v_2 and v_1 do not conflict with their neighbors. $\{b_1, b_2\}$ has at least $\frac{4 \times 3}{2} = 6$ selected ways. Hence we have at least $4 + 6 = 10$ ways, while v has at most $k - 2 \le 9$ conflict vertices. So we can obtain a t_G -avd-coloring of G , a contradiction. \Box

Claim 5 *Let v be a 12-vertex of G, then* $d_G^{3-}(v) \leq 1$ *.*

Proof Assume, to the contrary, that *G* contains a 12-vertex v satisfying $d_G^{3-}(v) \geq 2$. Suppose that $d_G(v_1) = d_G(v_2) = 3$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le 12$. Clearly, $|C_{\varphi}(v_i) \cap \{12, 13, ..., 18\}| \le 2$ for $1 \le i \le 2$. By Claim [2,](#page-2-2) each 3-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le 2$, we assume that $\varphi(v_iw_i) \notin \{12, 13, \ldots, 18\}$ (if $\varphi(v_iw_i) \in \{12, 13, \ldots, 18\}$, then we recolor v_iw_i with a color in $\{2, 3, \ldots, 11\}$ $(C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{12, 13, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least five available colors. (b): We select $\{b_1, b_2\}$ from $\{12, 13, \ldots, 18\}$ to recolor vv_2 and color vv_1 such that v_2 and v_1 do not conflict with their neighbors. $\{b_1, b_2\}$ has at least $\frac{5 \times 4}{2}$ = 10 selected ways. Hence we have at least 5 + 10 = 15 ways, while v has at most ten conflict vertices. So we can obtain a t_G -avd-coloring of G , a contradiction. Ц

Claim 6 *Let v be a k-vertex of G with* $11 \le k \le 12$ *, then* $d_G^{6}(v) \le 3k - 31$ *.*

Proof Assume, to the contrary, that *G* contains a *k*-vertex v ($11 \leq k \leq 12$) satisfying *d*⁶^{*G*} (*v*) ≥ 3*k* − 30. Suppose that $d_G(v_i) = 6$ for $1 ≤ i ≤ 3k − 30$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a *t_G*-avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k+1, ..., 18\}|$ ≤ 5 for $1 \le i \le 3k - 30$. By Claim [2,](#page-2-2) each 6-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i , and $|C_{\varphi}(v_i) \cap \{k, k+1, ..., 18\}|$ = 5 for 1 ≤ *i* ≤ 3*k* − 30, then we recolor $v_i w_i$ with a color in $\{3k - 30, 3k - 29, \ldots, k - 1\} \setminus C_\omega(w_i)$. Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least $14 - k$ available colors. (b): For any given integer *i* ($2 \le i \le 3k - 30$), we select $\{b_i, d_i\}$ from $\{k, k+1, \ldots, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least $\frac{(14-k)\times(13-k)}{2}$ selected ways. Since *i* has $3k - 31$ possibilities, we have at least $\frac{(14-k)\times(13-k)}{2} \times (3k-31) = 17-k$ different coloring ways. Hence we have at least $14 - k + 17 - k = 31 - 2k$ ways, while v has at most $k - (3k - 30) = 30 - 2k$ conflict vertices. So we can obtain a *tG*-avd-coloring of *G*, a contradiction. \Box

Claim 7 Let *v* be a k-vertex of G with $13 \leq k \leq 14$, then the following statements *hold.*

(1)
$$
d_G^{2^-}(v) \le k - 12
$$
;
(2) If $d_G^{m^-}(v) \ge 1$ for $m \le 18 - k$, then $d_G^k(v) \ge (19 - k - m)d_G^{(19-k)^-}(v) + 1$.

Proof (1) Assume, to the contrary, that *G* contains a *k*-vertex v (13 \leq $k \leq$ 14) satisfying $d_G^{2^-}(v) \geq k - 11$. Suppose that $d_G(v_i) = 2$ for $1 \leq i \leq k - 11$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a *t_G*-avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k+1, ..., 18\}|$ ≤ 1 for $1 \le i \le k - 11$. By Claim [2,](#page-2-2) each 2vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le k - 11$,

we assume that $\varphi(v_iw_i) \notin \{k, k+1, \ldots, 18\}$ (if $\varphi(v_iw_i) \in \{k, k+1, \ldots, 18\}$, then we recolor v_iw_i with a color in $\{3, 4, \ldots, 12\} \setminus (C_\varphi(v_i) \cup C_\varphi(w_i))$ to satisfy this condition). Without considering the conflict of v , we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least $18 - k \geq 4$ available colors. (b): For any given integer i ($2 \le i \le k - 11$), we select $\{b_i, d_i\}$ from $\{k, k + 1, \ldots, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. ${b_i, d_i}$ has at least $\frac{(18-k)(17-k)}{2}$ selected ways. Since *i* has $k-12$ possibilities, we have at least $\frac{(18-k)(17-k)}{2} \times (k-12) \ge 10$ different coloring ways. Hence we have at least $4+10 = 14$ ways, while v has at most eleven conflict vertices. So we can obtain a *tG*-avd-coloring of *G*, a contradiction.

(2) Assume, to the contrary, that there is a *k*-vertex $v \in V(G)$ (13 < *k* < 14) and an integer *m* ($m \le 18 - k$) satisfying $d_G^{m^-}(v) \ge 1$, where $d_G^k(v) \le (19 - k$ $m)d_G^{(19-k)^{-}}(v)$. Set $d_G^{(19-k)^{-}}(v) = l$. W.l.o.g., $d_G(v_1) = m$ and $d_G(v_i) \leq 19 - k$ for $1 \leq i \leq l$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. Suppose that $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k + 1, ..., 18\}| \le 18 - k$ for $1 \le i \le l$. By Claim [2,](#page-2-2) each 6⁻-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i , and $|C_{\varphi}(v_i) \cap \{k, k + 1, ..., 18\}| = d_G(v_i) - 1$ for $1 \le i \le l$, then we recolor $v_i w_i$ with a color in $\{7, 8, \ldots, 12\} \setminus C_\varphi(w_i)$. Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least 20 − *k* − *m* available colors. (b): For any given integer *i* (2 ≤ *i* ≤ *l*), we select $\{b_i, d_i\}$ from $\{k, k+1, \ldots, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors.{*bi*, *di*} has at least 19−*k*−*m* selected ways. Since *i* has $l - 1$ possibilities, we have at least $(19 - k - m)(l - 1)$ different coloring ways. Hence we have at least $(20-k-m)+(19-k-m)(l-1) = (19-k-m)l+1$ ways, while v has at most $(19-k-m)$ *l* conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction. \Box

Claim 8 *Let* v *be a 15-vertex of G, then the following statements hold.* $(1) d_G^{2−}(v) ≤ 3;$ (2) *If* $d_G^{2-}(v) \geq 1$ *, then* $d_G^{3-}(v) \leq 4$ *;* (3) *If* $d_G^{m^-}(v) \ge 1$ *for* $m \le 3$ *, then* $d_G^{15}(v) \ge (4-m)d_G^{4^-}(v) + 1$; (4) If *v* is incident with a bad 3-cycle, then $d_G^{15}(v) \geq 9$.

Proof (1) Assume, to the contrary, that *G* contains a 15-vertex v satisfying $d_G^{2-}(v) \geq 4$. Suppose that $d_G(v_i) = 2$ for $1 \le i \le 4$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. Suppose that $\varphi(vv_i) = i - 1$ for $2 \le i \le 15$. Clearly, $|C_{\varphi}(v_i) \cap \{15, 16, 17, 18\}| \le 1$ for $1 \le i \le 4$. By Claim [2,](#page-2-2) each 2-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le 4$, we assume that $\varphi(v_iw_i) \notin \{15, 16, 17, 18\}$ (if $\varphi(v_iw_i) \in \{15, 16, 17, 18\}$, then we recolor v_iw_i with a color in $\{4, 5, \ldots, 14\} \setminus (C_\omega(v_i) \cup C_\omega(w_i))$ to satisfy this condition). Without considering the conflict of v , we have the following two types of proper colorings. (a): We color vv_1 with a color in {15, 16, 17, 18} such that v_1 does not conflict with its neighbors. There are at least three available colors. (b): For any given integer *i* $(2 \le i \le 4)$, we select $\{b_i, d_i\}$ from $\{15, 16, 17, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least three selected ways. Since *i* has three possibilities, we have at least $3 \times 3 = 9$ different coloring ways. Hence we have at least $3 + 9 = 12$ ways, while v has at most eleven conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction.

(2) Assume, to the contrary, that *G* contains a 15-vertex v satisfying $d_G^{2-}(v) \ge 1$, where $d_G^{3^-}(v) \ge 5$. Suppose that $d_G(v_1) = 2$ and $d_G(v_i) = 3$ for $2 \le i \le 5$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a *t_G*-avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le 15$. Clearly, $|C_{\varphi}(v_i) \cap \{15, 16, 17, 18\}|$ ≤ 2 for $1 \le i \le 5$. By Claim [2,](#page-2-2) each 3⁻-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le 5$, we assume that $\varphi(v_iw_i) \notin \{15, 16, 17, 18\}$ (if $\varphi(v_iw_i) \in \{15, 16, 17, 18\}$, then we recolor v_iw_i with a color in $\{8, 9, \ldots, 14\} \setminus (C_\omega(v_i) \cup C_\omega(w_i))$ to satisfy this condition). Without considering the conflict of v , we have the following two types of proper colorings. (a): We color vv_1 with a color in {15, 16, 17, 18} such that v_1 does not conflict with its neighbors. There are at least three available colors. (b): For any given integer *i* $(2 \le i \le 5)$, we select $\{b_i, d_i\}$ from $\{15, 16, 17, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least two selected ways. Since *i* has four possibilities, we have at least $2 \times 4 = 8$ different coloring ways. Hence we have at least $3 + 8 = 11$ ways, while v has at most ten conflict vertices. So we can obtain a t_G -avd-coloring of G , a contradiction.

(3) Assume, to the contrary, that there is a 15-vertex $v \in V(G)$ and an integer *m* $(m \le 3)$ satisfying $d_G^{m^-}(v) \ge 1$, where $d_G^{15}(v) \le (4-m)d_G^{4^-}(v)$. Set $d_G^{4^-}(v) = l$. Suppose that $d_G(v_1) = m$ and $d_G(v_i) \leq 4$ for $1 \leq i \leq l$ (the proof can be given similarly and simply for other cases). Let $H = G - v v_1$, by Remark [1,](#page-2-1) *H* has a *t_G*-avd-coloring φ with the color set *C*. Suppose that $\varphi(vv_i) = i - 1$ for $2 \le i \le 15$. Clearly, $|C_{\varphi}(v_i) \cap \{15, 16, 17, 18\}|$ ≤ 3 for $1 \le i \le l$. By Claim [2,](#page-2-2) each 4⁻-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le l$, we assume that $\varphi(v_iw_i) \notin \{15, 16, 17, 18\}$ (if $\varphi(v_iw_i) \in \{15, 16, 17, 18\}$, then we recolor v_iw_i with a color in {8, 9, ..., 14} \ $(C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v , we have the following two types of proper colorings. (a): We color vv_1 with a color in {15, 16, 17, 18} such that v_1 does not conflict with its neighbors. There are at least 5 − *m* available colors. (b): For any given integer *i* $(2 \le i \le l)$, we select $\{b_i, d_i\}$ from $\{15, 16, 17, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least 4 − *m* selected ways. Since *i* has *l* −1 possibilities, we have at least (4−*m*)(*l* −1) different coloring ways. Hence we have at least $(5 - m) + (4 - m)(l - 1) = (4 - m)l + 1$ ways, while *v* has at most $(4 - m)$ *l* conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction.

(4) Assume, to the contrary, that there exists a 15-vertex $v \in V(G)$ incident with a bad 3-cycle vv_1v_2 ($d_G(v_1) = d_G(v_2) = 3$), where $d_G^{15}(v) \le 8$. Let w_i ($1 \le i \le 2$) be the neighbor of v_i other than v , v_{3-i} . Let $H = G - v_1v_2$, by Remark [1,](#page-2-1) *H* has a t_G -avdcoloring φ with the color set *C*. By Claim [2,](#page-2-2) v_i ($1 \le i \le 2$) has exactly one conflict

vertex. If $C_\omega(v_1) \neq C_\omega(v_2)$, then we color v_1v_2 with a color in $C \setminus (C_\omega(v_1) \cup C_\omega(v_2))$ to get a t_G -avd-coloring of *G*, a contradiction. If $C_\omega(v_1) = C_\omega(v_2)$, w.l.o.g., $\varphi(v_1) =$ $\varphi(v_2w_2) = 1, \varphi(v_2) = \varphi(v_1w_1) = 2$ and $\varphi(v_2) = i$ for $3 \le i \le 15$. Without considering the conflict of v , we have the following two types of proper colorings. (a): For any given integer i ($1 \le i \le 2$), we recolor vv_i with an arbitrary color in $\{16, 17, 18\}$ and color v_1v_2 with 3. Since *i* has two possibilities, we have $3 \times 2 = 6$ different coloring ways. (b): We select $\{b_1, b_2\}$ from $\{16, 17, 18\}$ to recolor vv_1 and vv_2 , and color v_1v_2 with 3. $\{b_1, b_2\}$ has three selected ways. Hence we have $6+3=9$ ways, while v has at most eight conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction. Ч

Claim 9 Let v be a k-vertex of G with $k \ge 14$, then v is incident with at most one bad *3-cycle.*

Proof Assume, to the contrary, that there exists a *k*-vertex $v \in V(G)$ ($k \ge 14$) incident with two bad 3-cycles vv_1v_2 , vv_3v_4 , where $d_G(v_i) = 3$ for $1 \le i \le 4$. Let w_i be the neighbor of v_i for $1 \leq i \leq 4$. Let $H = G - v_1v_2$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. By Claim [2,](#page-2-2) each 3-vertex has at most one conflict vertex. If $C_\varphi(v_1) \neq C_\varphi(v_2)$, then we color v_1v_2 with an arbitrary color in *C* \ ($C_{\varphi}(v_1) \cup C_{\varphi}(v_2)$) to yield a t_G -avd-coloring of *G*, a contradiction. If $C_{\varphi}(v_1) = C_{\varphi}(v_2)$, w.l.o.g., $\varphi(v_1) = \varphi(v_2w_2) = 1, \varphi(v_2v_2) = \varphi(v_1w_1) = 2$ and $\varphi(vv_i) = i$ for $3 \le i \le k$. Note that $|\{\varphi(v_3w_3), \varphi(v_4w_4)\} \cap \{3, 4\}| \le 1$, w.l.o.g., $\varphi(v_4w_4) \neq 3$. Clearly, $|\{\varphi(v_4w_4)\} \cap \{1, 2\}| \leq 1$, w.l.o.g., $\varphi(v_4w_4) \neq 1$. We first delete the color of v_3v_4 , switch the colors of vv_1 and vv_4 , then color v_1v_2 , v_3v_4 properly to yield a *tG*-avd-coloring of *G*, a contradiction. \Box

Claim 10 *Let v be a k-vertex of G with* $k \ge 16$ *. If <i>v is incident with a bad 3-cycle, then* $d_G^k(v) \ge 2d_G^{4-}(v) + 1$.

Proof Assume, to the contrary, that there exists a *k*-vertex $v \in V(G)$ ($k > 16$) incident with a bad 3-cycle vv_1v_2 ($d_G(v_1) = d_G(v_2) = 3$), where $d_G^k(v) \le 2d_G^{4-}(v)$. Let w_i (1 ≤ *i* ≤ 2) be the neighbor of v_i other than v, v_{3-i} . Set $d_G^{4-}(v) = m$. Suppose that $d_G(v_i) \leq 4$ for $1 \leq i \leq m$. Let $H = G - v_1v_2$, by Remark [1,](#page-2-1) *H* has a t_G -avd-coloring φ with the color set *C*. By Claim [2,](#page-2-2) each 4⁻-vertex has at most one conflict vertex. If $C_\varphi(v_1) \neq C_\varphi(v_2)$, then we color v_1v_2 with an arbitrary color in $C \setminus (C_{\varphi}(v_1) \cup C_{\varphi}(v_2))$ to yield a t_G -avd-coloring of G , a contradiction. If $C_{\varphi}(v_1) = C_{\varphi}(v_2)$, w.l.o.g., $\varphi(v_1) = \varphi(v_2w_2) = 1, \varphi(v_2v_2) = \varphi(v_1w_1) = 2$ and $\varphi(vv_i) = i$ for $3 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{1, 2, k + 1, k + 2\}| \le 3$ for $1 \leq i \leq m$. If v_i has a conflict vertex w_i for $3 \leq i \leq m$, we assume that $\varphi(v_iw_i) \notin$ $\{1, 2, k + 1, k + 2\}$ (if $\varphi(v_i w_i) \in \{1, 2, k + 1, k + 2\}$, then we recolor $v_i w_i$ with a color in $\{k - 6, k - 5, \ldots, k\} \setminus (C_\varphi(v_i) \cup C_\varphi(w_i))$ to satisfy this condition). Without considering the conflict of v , we have the following three types of proper colorings. (a): For any given integer i ($1 \le i \le 2$), we recolor vv_i with an arbitrary color in ${k + 1, k + 2}$ and color v_1v_2 with 3. Since *i* has two possibilities, we have $2 \times 2 = 4$ different coloring ways. (b): We recolor vv_i with $k + i$ for $1 \le i \le 2$ and color v_1v_2 with 3. (c): For any given integer i ($3 \le i \le m$), we recolor vv_i with b_i in $\{1, 2, k + 1, k + 2\}$ such that v_i does not conflict with its neighbors. If $b_i \in \{1, 2\}$,

Table 1 The relation between $d_G(v)$ and $d_H(v)$

$d_G(v)$ $3 \le d_G(v) \le 9$ 10 11 12 13 14 15 16 17 ≥ 18					
$d_H(v) = d_G(v)$ ≥ 9 ≥ 10 ≥ 11 ≥ 12 ≥ 12 ≥ 12 ≥ 9 ≥ 9 ≥ 10					

then we recolor vv_{b_i} with $k + 1$ or $k + 2$ and color v_1v_2 with 3, so there are two coloring ways. If $b_i \in \{k+1, k+2\}$, then we recolor vv_1 or vv_2 with a color in ${k + 1, k + 2} \setminus {b_i}$ and color v_1v_2 with 3, so there are two ways. Since *i* has $m - 2$ possibilities, we have $2(m − 2)$ ways. Hence we have $4 + 1 + 2(m − 2) = 2m + 1$ ways, while v has at most 2m conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction. \Box

Claim 11 Yan et al[.](#page-16-6) [\(2012\)](#page-16-6) *Let v be a k-vertex of G with k* ≥ 16 *. If* $d_G^{2-}(v) \geq 1$ *, then* $d_G^{3-}(v) \le \left\lceil \frac{k}{2} \right\rceil - 1$ *and* $d_G^k(v) \ge d_G^{3-}(v) + 1$ *.*

Let *H* be one of the connected component of the graph which is obtained from *G* by deleting all 2⁻-vertices. By Claims [1,](#page-2-0) [3](#page-3-0)[–5,](#page-3-1) [7–](#page-4-0)[8,](#page-5-0) [11,](#page-8-0) the relation between $d_G(v)$ and $d_H(v)$ is as in Table [1.](#page-8-1)

By Table [1,](#page-8-1) we deduce that $\delta(H) \geq 3$, and for any $v \in V(H)$, we have $d_H^k(v) =$ $d_G^k(v)$, where $3 \le k \le 6$. Let H^\times be the associated plane graph of *H*. By Claims [2–](#page-2-2)[4,](#page-3-2) [11](#page-8-0) and Table [1,](#page-8-1) every 3-face of H^{\times} is one of the following types:

Type I: (3, 3, 4)-faces, (4, 4, 4)-faces;

Type II: $(3, 3, 10^+)$ -faces, $(3, 4, 10^+)$ -faces, $(4, 4, 9^+)$ -faces, $(4, 5, 9^+)$ -faces;

Type III: $(3, 10^+, 10^+)$ -faces, $(4, 5, 5)$ -faces, $(4, 6, 6)$ -faces, $(4, 6, 9^+)$ -faces, $(4, 7^+, 7^+)$ -faces, $(5, 5, 9^+)$ -faces, $(5, 9^+, 9^+)$ -faces, $(6, 6, 9^+)$ -faces, $(6, 9^+, 9^+)$ faces;

Type IV: $(7^+, 7^+, 7^+)$ -faces.

Let c_f be the false vertex incident with a false 3-face f, and $N_{\bar{f}}(c_f)$ be the set of neighbors of c_f which are not incident with f, f is the *corresponding face* of the vertices in $N_f(c_f)$. By Claims [2–](#page-2-2)[3,](#page-3-0) v has at most one corresponding 3-face of **Type I**. A vertex v is of *Type I* if it has a corresponding 3-face of **Type I**. Let $n_i(v)$ be the number of 3-faces of **Type** *i* incident with $v, i \in \{II, III, IV\}$. Let $n_{4+}(v)$ be the number of 4^+ -faces incident with v in H^{\times} .

By Euler's formula $|V(H^{\times})| - |E(H^{\times})| + |F(H^{\times})| = 2$, we have:

$$
\sum_{v \in V(H^{\times})} (d_{H^{\times}}(v) - 4) + \sum_{f \in F(H^{\times})} (d_{H^{\times}}(f) - 4) = -8
$$

Next, we will apply the discharging method to derive a contradiction. We define the initial charge function $w(x) = d_{H^{\times}}(x) - 4$ for $x \in V(H^{\times}) \cup F(H^{\times})$, and design discharging rules to redistribute charges. Let w' be the new charge after the discharging process, then we will show that $w'(x) \ge 0$ for $x \in V(H^{\times}) \cup F(H^{\times})$, which leads to a contradiction.

The discharging rules are defined as follows. In the following rules, the degree of a vertex refers to its degree in *H*.

R1: Each 3-face f of **Type I** gets $\frac{1}{2}$ from every 9⁺-vertex in $N_{\bar{f}}(c_f)$ (by Claims [2–](#page-2-2)[3,](#page-3-0) *f* is false and $N_{\bar{f}}(c_f)$ consists of two 9⁺-vertices);

R2: Each 3-face of **Type II** gets 1 from its incident 9⁺-vertex;

R3: Each of $(5, 9^+, 9^+)$ -faces and $(6, 9^+, 9^+)$ -faces gets $\frac{1}{2}$ from every incident 9⁺-vertex, and each other 3-face of **Type III** gets $\frac{1}{2}$ from every incident 5⁺-vertex;

R4: Each 3-face of **Type IV** gets $\frac{1}{3}$ from every incident 7⁺-vertex;

R5: Each good 3-vertex gets $\frac{1}{3}$ from every adjacent 10⁺-vertex in *H*, and each bad 3-vertex gets $\frac{1}{2}$ from every adjacent 10⁺-vertex in *H*.

We first verify the new charge of $f \in F(H^{\times})$.

• $d_{H^{\times}}(f) = 3$. By **R1–R4**, $w'(f) \ge 0$.

• $d_{H^{\times}}(f) \geq 4$. The charge remains unchanged, $w'(f) = d_{H^{\times}}(f) - 4 \geq 0$.

Next, we verify the new charge of $v \in V(H^{\times})$. For each real vertex $v \in V(H^{\times})$, we have $d_{H^{\times}}(v) = d_G(v) - d_G^{2^{-}}(v)$.

• $d_{H^\times}(v) = 3$. By Claims [2](#page-2-2)[–4](#page-3-2) and Table [1,](#page-8-1) $d_H^{9^-}(v) = d_H^3(v) \le 1$. If v is good, then $d_H^{10^+}(v) = 3$, otherwise $d_H^{10^+}(v) = 2$. By **R5**, $w'(v) \ge 3 - 4 + \min\{\frac{1}{3} \times 3, \frac{1}{2} \times 2\} = 0$. • $d_{H^{\times}}(v) = 4$. No rule applies to v, then $w'(v) = 4 - 4 = 0$.

• $d_{H} \times (v) = 5$. By Claims [2](#page-2-2)[–3](#page-3-0) and Table [1,](#page-8-1) $d_H^{8-}(v) = d_H^5(v) \le 1$. By **R3**, only $(4, 5, 5)$ -faces and $(5, 5, 9^+)$ -faces incident with v get charges from v. There are at most two such faces incident with v. By **R3**, $w'(v) \ge 5 - 4 - \frac{1}{2} \times 2 = 0$.

• $d_{H^{\times}}(v) = 6$. By Claims [2](#page-2-2)[–3](#page-3-0) and Table [1,](#page-8-1) $d_{H}^{8^{-}}(v) = d_{H}^{6}(v) \le 1$. By **R3**, only $(4, 6, 6)$ -faces, $(4, 6, 9^+)$ -faces and $(6, 6, 9^+)$ -faces incident with v get charges from v. There are at most four such faces incident with v. By **R3**, $w'(v) \ge 6 - 4 - \frac{1}{2} \times 4 = 0$.

• $7 \le d_{H^{\times}}(v) \le 8$. By Claim [3](#page-3-0) and Table [1,](#page-8-1) $d_H^{6-}(v) = 0$ and v is not of Type I. Thus we have $n_{\text{III}}(v) \le 2$. By **R3–R4**, $w'(v) \ge d_{H^\times}(v) - 4 - \frac{1}{2} \times 2 - \frac{1}{3} \times (d_{H^\times}(v) - 2) = \frac{2d_{H^\times}(v) - 13}{2} > 0$ $\frac{2d_{H^{\times}}(v)-13}{2} > 0.$

• $\vec{d}_{H^{\times}}(v) = 9$. We first give the following fact.

Fact 1 If $d_{H^{\times}}(v) = 9$, then $d_H^3(v) = 0$ and $d_H^{6-}(v) \le 1$.

Proof By Table [1,](#page-8-1) we have $d_G(v) \in \{9, 10, 16, 17\}$. If $d_G(v) = 9$, by Claim [3,](#page-3-0) $d_H^{6-}(v) = 0$. If $d_G(v) = 10$, then $d_G^{2-}(v) = 1$. By Claim [4,](#page-3-2) $d_H^{6-}(v) = 0$. If $d_G(v) = k$ $(16 \le k \le 17)$, then $d_G^{2^{-}}(v) = k - 9$. By Claim [11,](#page-8-0) $d_G^{3^{-}}(v) \le \lceil \frac{k}{2} \rceil - 1 = k - 9$ and $d_G^k(v) \geq d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = 0$ and $d_H^{6^-}(v) \leq k - d_G^{2^-}(v) - d_G^k(v) \leq$ $k - (k - 9) - (k - 8) \leq 1.$

By Fact [1,](#page-9-0) if v is of Type I, then $n_{\text{II}}(v) = 0$, otherwise $n_{\text{II}}(v) \le 1$. By **R1–R4**, $w'(v) \ge 9 - 4 - \max\{\frac{1}{2} + \frac{1}{2} \times 9, 1 + \frac{1}{2} \times 8\} = 0.$ • $d_{H^{\times}}(v) = 10$. We first give the following fact.

Fact 2 If $d_{H^{\times}}(v) = 10$, then $d_H^3(v) \le 1$ and $d_H^{6-}(v) \le 3$.

Proof By Table [1,](#page-8-1) we have $d_G(v) \in \{10, 11\}$ or $d_G(v) \ge 16$. If $d_G(v) = 10$, by Claim [4,](#page-3-2) $d_H^{6-} (v)$ ≤ 1. If $d_G(v) = 11$, then $d_G^{2-} (v) = 1$. By Claims [4](#page-3-2) and [6,](#page-4-1) $d_G^{5-} (v) \le 1$ and $d_G^{6-}(v) \le 2$. Thus $d_H^{3-}(v) = 0$ and $d_H^{6-}(v) \le 1$. If $d_G(v) = k$ ($k \ge 16$), then

 \mathcal{L} Springer

*d*_{G}²[−]</sup>(*v*) = *k* − 10. By Claim [11,](#page-8-0) $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1 \ge$ *d*_{*G*}⁻ (*v*) + 1. Thus *d*_{*H*}³(*v*) ≤ $\lceil \frac{k}{2} \rceil - 1 - (k - 10) \le 1$ and $d_H^{6-} (v) \le k - d_G^{2-} (v) - d_G^{k} (v) \le$ $k - (k - 10) - (k - 9) \leq 3.$ Ч

By Fact [2,](#page-9-1) if v is of Type I, then $n_{\text{II}}(v) < 1$ and $n_{\text{III}}(v) < 5$; otherwise we have either $n_{\text{II}}(v) \le 1$, or $n_{\text{II}}(v) = 2$ and $n_{\text{III}}(v) \le 4$. Noting that $d_H^3(v) \le 1$, by **R1–R5**, we have $w'(v) \ge 10 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 5 + \frac{1}{3} \times 4, 1 + \frac{1}{2} \times 9, 1 \times 2 + \frac{1}{2} \times 4 + \frac{1}{3} \times 4\} - \frac{1}{2} = 0.$ • $d_{H^{\times}}(v) = 11$. We first give the following fact.

Fact 3 If $d_{H^{\times}}(v) = 11$, then $d_H^3(v) \le 2$ and $d_H^{6-}(v) \le 5 - d_H^3(v)$.

Proof By Table [1,](#page-8-1) we have $d_G(v) \in \{11, 12\}$ or $d_G(v) > 16$. If $d_G(v) = 11$, by Claims [4](#page-3-2) and [6,](#page-4-1) $d_H^{3-}(v)$ ≤ 1 and $d_H^{6-}(v)$ ≤ 2. If $d_G(v) = 12$, then $d_G^{2-}(v) = 1$. By Claims [5–](#page-3-1)[6,](#page-4-1) $d_G^{3-}(v) \le 1$ and $d_G^{6-}(v) \le 5$. Thus $d_H^3(v) = 0$ and $d_H^{6-}(v) \le 4$. If *d_G*(*v*) = *k* (*k* ≥ 16), then $d_G^{2-}(v) = k - 11$. By Claim [11,](#page-8-0) $d_G^{3-}(v) \leq \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \geq d_G^{3-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \leq \lceil \frac{k}{2} \rceil - 1 - (k - 11) \leq 2$ and *d*_{*H*}^{*G*} (*v*) ≤ *k* − *d*_{*G*}² (*v*) − *d*^{*k*}_{*G*}(*v*) ≤ *k* − (*k* − 11) − (*k* − 10 + *d*_{*G*}³(*v*)) ≤ 5 − *d*_{*H*}_{*d*} (*v*). □

 $-d_H^3(v) \neq 0$. By Fact [3,](#page-10-0) if v is of Type I, then $n_H(v) \leq 1$ and $n_H(v) \leq 7$; otherwise we have either $n_{\text{II}}(v) \leq 1$ or $n_{\text{II}}(v) = 2$ and $n_{\text{III}}(v) \leq 6$. Noting that $d_H^3(v) \leq 2$, by **R1–R5**, we have $w'(v) \ge 11 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 7 + \frac{1}{3} \times 3, 1 + \frac{1}{2} \times 10, 1 \times 2 + \frac{1}{2} \times 10\}$ $\frac{1}{2} \times 6 + \frac{1}{3} \times 3 - \frac{1}{2} \times 2 = 0.$

 $-d_H^3(v) = 0$. By Fact [3,](#page-10-0) if v is of Type I, then $n_H(v) \le 2$, otherwise $n_H(v) \le 3$. By **R1–R4**, $w'(v) \ge 11 - 4 - \max\{\frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 9, 1 \times 3 + \frac{1}{2} \times 8\} = 0.$ • $d_{H^{\times}}(v) = 12$. We first give the following fact.

Fact 4 If $d_{H^{\times}}(v) = 12$, then either $d_H^3(v) \le 1$ and $d_H^{5^{-}}(v) \le 7 - d_H^3(v)$, or $2 \le$ $d_H^3(v) \leq 3$ and $d_H^{6-}(v) \leq 7 - d_H^3(v)$.

Proof By Table [1,](#page-8-1) we have $d_G(v) \ge 12$. (a): $d_G(v) = 12$. By Claims [5](#page-3-1)[–6,](#page-4-1) $d_H^3(v) \le 1$ and $d_H^{5^-}(v) \le 5$. So, in this case, Fact [4](#page-10-1) holds. (b): $d_G(v) = k$ (13 ≤ *k* ≤ 14). Then $d_G^{2-}(v) = k - 12 > 0$, by Claim [7\(](#page-4-0)2), let $m = 2$, we have $d_G^k(v) \geq (17 - 12)$ k) $d_G^{(19-k)^{-}}(v) + 1$. Noting that $d_G^{(19-k)^{-}}(v) + d_G^{k}(v) \le k$, we get that $d_H^{(19-k)^{-}}(v) =$ $d_G^{(19-k)^{-}}(v) - d_G^{2^{-}}(v) \le \lfloor \frac{k-1}{18-k} \rfloor - (k-12) = 1$. So, in this case, Fact [4](#page-10-1) holds. (c): $d_G(v) = 15$, then $d_G^{2-}(v) = 3$. By Claim [8\(](#page-5-0)2), $d_H^3(v) = d_G^{3-}(v) - d_G^{2-}(v)$ ≤ 1. By Claim [8\(](#page-5-0)3), let *m* = 2, we have $d_G^{15}(v) \ge 2d_G^{4-}(v) + 1$. Thus $d_H^{5-}(v) \le$ $d_G(v) - d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) = 5$ $d_G(v) - d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) = 5$ $d_G(v) - d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) = 5$. So, in this case, Fact 4 holds. (d): $d_G(v) = k$ ($k \ge 16$), then $d_G^{2-}(v) = k - 12$. By Claim [11,](#page-8-0) $d_G^{3-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \geq d_G^{3-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \leq \lceil \frac{k}{2} \rceil - 1 - (k - 12) \leq 3$ and $d_H^{6-}(v) \le k - d_G^{2-}(v) - d_G^k(v) \le k - (k - 12) - (k - 11 + d_G^3(v)) \le 7 - d_H^3(v)$. So, in this case, Fact [4](#page-10-1) holds. \Box

 $-d_H^3(v) = 3$ and $d_H^{6-}(v) \le 4$. If v is of Type I, by Lemma [1,](#page-1-2) we have $n_H(v) \le 1$ and $n_{4+}(v) \geq 1$; otherwise we have either $n_{\text{II}}(v) \leq 1$, or $n_{\text{II}}(v) = 2$ and $n_{\text{III}}(v) \leq 6$. By

R1–R5, $w'(v) \ge 12-4-\max\{\frac{1}{2}+1+\frac{1}{2}\times 10, 1+\frac{1}{2}\times 11, 1\times2+\frac{1}{2}\times6+\frac{1}{3}\times4\}-\frac{1}{2}\times3=$ 0.

 $-d_H^3(v) = 2$ and $d_H^{6-}(v) \le 5$. If v is of Type I, then either $n_H(v) \le 1$, or $n_H(v) = 2$ and $n_{\text{III}}(v) \leq 6$; otherwise we have either $n_{\text{II}}(v) \leq 2$, or $n_{\text{II}}(v) = 3$ and $n_{\text{III}}(v) \leq 6$. By **R1–R5**, $w'(v) \ge 12 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 11, \frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 6 + \frac{1}{3} \times 4, 1 \times \frac{1}{2} \}$ $2 + \frac{1}{2} \times 10$, $1 \times 3 + \frac{1}{2} \times 6 + \frac{1}{3} \times 3$ $- \frac{1}{2} \times 2 = 0$.

 $-d_H^3(v) \leq 1$. By Fact [4,](#page-10-1) if v is of Type I, then $n_H(v) \leq 3 - d_H^3(v)$, otherwise $n_{\text{II}}(v) \leq 4 - d_H^3(v)$. By **R1–R5**, $w'(v) \geq 12 - 4 - \max\{\frac{1}{2} + 1 \times (3 - d_H^3(v)) + \frac{1}{2} \times$ $(12 - (3 - d_H^3(v))), 1 \times (4 - d_H^3(v)) + \frac{1}{2} \times (12 - (4 - d_H^3(v)))\} - \frac{1}{2}d_H^3(v) = 0.$ • $d_{H^{\times}}(v) = 13$. We first give the following fact.

Fact 5 If $d_{H} \times (v) = 13$, then $d_H^3(v) \leq 4$ and $d_H^{5-}(v) \leq 9 - d_H^3(v)$. Furthermore, if $2 \le d_H^3(v) \le 4$ and $d_H^{5^-}(v) \ge 7 - d_H^3(v)$, then v is not incident with any bad 3-cycle.

Proof By Table [1,](#page-8-1) we have $d_G(v) \ge 13$. (a): $d_G(v) = 13$. If $d_G^3(v) \ge 1$, by Claim [7\(](#page-4-0)2), *d*_{*G*}^{*G*}(*v*) ≥ 3*d*_{*G*}^{*G*}(*v*) + 1. Noting that $d_G^{6}(v) + d_G^{13}(v) \le 13$, we have $d_H^{5}(v) \le$ *d*_{*G*}^{*G*} (*v*) ≤ 3. If $d_G^3(v) = 0$ and $d_G^{5^-}(v) \ge 1$, by Claim [7\(](#page-4-0)2), $d_G^{13}(v) \ge d_G^{5^-}(v) + 1$. Noting that $d_G^{5^-}(v) + d_G^{13}(v) \le 13$, we have $d_H^{5^-}(v) \le d_G^{5^-}(v) \le 6$. So, in this case, Fact [5](#page-11-0) holds. (b): $d_G(v) = 14$, then $d_G^{2^-}(v) = 1$. By Claim [7\(](#page-4-0)2), let $m = 2$, we have $d_G^{14}(v) \ge 3d_G^{5^{-}}(v) + 1$. Noting that $d_G^{5^{-}}(v) + d_G^{14}(v) \le 14$, we get that $d_H^{5-}(v) = d_G^{5-}(v) - d_G^{2-}(v) \le 3 - 1 = 2$ $d_H^{5-}(v) = d_G^{5-}(v) - d_G^{2-}(v) \le 3 - 1 = 2$ $d_H^{5-}(v) = d_G^{5-}(v) - d_G^{2-}(v) \le 3 - 1 = 2$. So, in this case, Fact 5 holds. (c): $d_G(v) = 15$, then $d_G^{2-}(v) = 2$. By Claim [8\(](#page-5-0)2), we have $d_H^3(v) = d_G^{3-}(v) - d_G^{2-}(v) \le 2$. By Claim [8\(](#page-5-0)3), let $m = 2$, we have $d_G^{15}(v) \ge 2d_G^{4-}(v) + 1$. Thus $d_H^{5-}(v) \le d_G(v) d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) - 2d_G^3(v) = 8 - 2d_H^3(v)$ $d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) - 2d_G^3(v) = 8 - 2d_H^3(v)$ $d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) - 2d_G^3(v) = 8 - 2d_H^3(v)$. So, in this case, Fact 5 holds. (d): $d_G(v) = k$ ($k \ge 16$), then $d_G^{2-}(v) = k - 13$. By Claim $11, d_G^{3-}(v) \le \lceil \frac{k}{2} \rceil - 1$ $11, d_G^{3-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \geq d_G^{3-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \leq \lceil \frac{k}{2} \rceil - 1 - (k - 13) \leq 4$ and $d_H^{5^-}(v) \le k - d_G^{2^-}(v) - d_G^k(v) \le k - (k - 13) - (k - 12 + d_G^3(v)) \le 9 - d_H^3(v).$ Furthermore, suppose that $2 \le d_H^3(v) \le 4$ and $d_H^{5^-}(v) \ge 7 - d_H^3(v)$. Assume that v is incident with a bad 3-cycle, by Claim [10,](#page-7-0) $d_G^k(v) \ge 2d_G^{4-}(v) + 1$. Noting that $d_G^{2-}(v) + d_H^{5-}(v) + d_G^{k}(v) - k \le 0$, while $d_G^{2-}(v) + d_H^{5-}(v) + d_G^{k}(v) - k \ge k - 13 + 1$ $7 - d_H^3(v) + 2(k - 13) + 2d_H^3(v) + 1 - k > 2k - 31 > 0$, a contradiction. So, in this case, Fact [5](#page-11-0) holds. \Box

 $-d_H^3(v) = 4$ and $d_H^{5^-}(v) \le 5$. By Fact [5,](#page-11-0) v is not incident with any bad 3-cycle. If v is of Type I, by Lemma [1,](#page-1-2) $n_{\text{II}}(v) = 0$, otherwise $n_{\text{II}}(v) \le 1$. By **R1–R5**, $w'(v) \ge$ $13 - 4 - \max\{\frac{1}{2} + \frac{1}{2} \times 13, 1 + \frac{1}{2} \times 12\} - \frac{1}{2} \times 4 = 0.$

 $-d_H^3(v) = 3$. By Fact [5,](#page-11-0) $d_H^{5^-}(v) = 3$, or $4 \le d_H^{5^-}(v) \le 6$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\text{II}}(v) \leq 1$, otherwise $n_{\text{II}}(v) \leq 2$. By **R1–R5**, $w'(v) \ge 13 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 12, 1 \times 2 + \frac{1}{2} \times 11\} - \frac{1}{2} \times 3 = 0.$

 $-d_H^3(v) = 2$. By Fact [5,](#page-11-0) $d_H^{5^-}(v) \le 4$, or $5 \le d_H^{5^-}(v) \le 7$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\text{II}}(v) \leq 2$, otherwise $n_{\text{II}}(v) \leq 3$. By **R1–R5**, $w'(v) \ge 13 - 4 - \max\{\frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 11, 1 \times 3 + \frac{1}{2} \times 10\} - \frac{1}{2} \times 2 = 0.$

 \mathcal{L} Springer

 $-d_H^3(v) \le 1$. By Fact [5,](#page-11-0) if v is of Type I, then $n_\text{II}(v) \le 4 - d_H^3(v)$, otherwise $n_H(v) \leq 5 - d_H^3(v)$. By **R1–R5**, $w'(v) \geq 13 - 4 - \max\{\frac{1}{2} + 1 \times (4 - d_H^3(v)) + \frac{1}{2} \times$ $(13 - (4 - d_H^3(v))), 1 \times (5 - d_H^3(v)) + \frac{1}{2} \times (13 - (5 - d_H^3(v)))\} - \frac{1}{2} \times d_H^3(v) = 0.$ • $d_{H^{\times}}(v) = 14$. We first give the following fact.

Fact 6 If $d_{H^{\times}}(v) = 14$, then either $d_H^3(v) = 0$, or $1 \le d_H^3(v) \le 5$ and $d_H^{5^{-}}(v) \le$ 11 − $d_H^3(v)$. Furthermore, if $d_H^3(v) \ge 4$ and $d_H^{5^-}(v) \ge 5$, or $2 \le d_H^3(v) \le 3$ and $d_H^{5^-}(v) \ge 6$, then v is not incident with any bad 3-cycle.

Proof By Table [1,](#page-8-1) we have $d_G(v) \ge 14$. (a): $d_G(v) = 14$. If $d_G^3(v) \ge 1$, by Claim [7\(](#page-4-0)2), $d_G^{14}(v) \ge 2d_G^{5-}(v) + 1$. Noting that $d_G^{5-}(v) + d_G^{14}(v) \le 14$, we have $d_H^{5-}(v) \le$ $d_G^{5^-}(v) \leq 4$. So, in this case, Fact [6](#page-12-0) holds. (b): $d_G(v) = 15$, then $d_G^{2^-}(v) = 1$. By Claim [8\(](#page-5-0)2), we have $d_H^3(v) = d_G^{3^-}(v) - d_G^{2^-}(v) \le 3$. By Claim 8(3), let $m = 2$, we have $d_G^{15}(v) \ge 2d_G^{4-}(v) + 1$. Thus $d_H^{5-}(v) \le d_G(v) - d_G^{2-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2-}(v) 2d_G^3(v) - 2d_G^4(v) \le 11 - 2d_H^3(v)$, which implies that $d_H^3(v) \le 3$. Furthermore, if $d_H^{5-}(v) \ge 6$, by $d_G^{2-}(v) + d_H^{5-}(v) + d_G^{15}(v) \le 15$ and Claim [8\(](#page-5-0)4), *v* is not incident with any bad 3-cycle. So, in this case, Fact [6](#page-12-0) holds. (c): $d_G(v) = k$ ($k \ge 16$), then *d*²^{*G*} (*v*) = *k* − 14. By Claim [11,](#page-8-0) $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \le \lceil \frac{k}{2} \rceil - 1 - (k - 14) \le 5$ and $d_H^{5^-}(v) \le k - d_G^{2^-}(v) - d_G^k(v) \le k$ *k*−(*k*−14)−(*k*−13+*d*³_{*G*}(*v*)) ≤ 11−*d*³_{*H*}(*v*). Furthermore, suppose that d^3 _{*H*}(*v*) ≥ 4 and $d_H^{5^-}(v) \ge 5$, or $2 \le d_H^3(v) \le 3$ and $d_H^{5^-}(v) \ge 6$. Assume that v is incident with a bad 3cycle, by Claim 10 , $d_G^k(v) \ge 2d_G^{4-}(v)+1$. Noting that $d_G^{2-}(v)+d_H^{5-}(v)+d_G^k(v)-k \le 0$, $\text{while } d_G^{2-}(v) + d_H^{5-}(v) + d_G^k(v) - k \geq d_G^{2-}(v) + d_H^{5-}(v) + 2d_G^{4-}(v) + 1 - k \geq 3d_G^{2-}(v) + 3d_G^{2-}(v)$ $2d_H^3(v) + d_H^{5^-}(v) + 1 - k \ge 3(k-14) + \min\{2 \times 4 + 5, 2 \times 2 + 6\} + 1 - k = 2k-31 > 0,$ a contradiction. So, in this case, Fact [6](#page-12-0) holds. \Box

By Fact [6,](#page-12-0) we consider the following cases.

*a*¹_{*H*} (*v*) = 5 and d_{H}^{5-} (*v*) ≤ [6,](#page-12-0) or $d_{H}^{3}(v) = 4$ and 5 ≤ $d_{H}^{5-}(v)$ ≤ 7. By Fact 6, v is not incident with any bad 3-cycle. If v is of Type I, by Lemma [1,](#page-1-2) we have $n_{\text{II}}(v) \leq 5 - d_H^3(v)$, otherwise $n_{\text{II}}(v) \leq 6 - d_H^3(v)$. By **R1–R5**, $w'(v) \geq 14 - 4 \max{\{\frac{1}{2} + 1 \times (5 - d_H^3(v)) + \frac{1}{2} \times (14 - (5 - d_H^3(v))), 1 \times (6 - d_H^3(v)) + \frac{1}{2} \times (14 - d_H^3(v))\}}$ $(6 - d_H^3(v)))\} - \frac{1}{2}d_H^3(v) = 0.$

 $-d_H^3(v) = d_H^{5^-}(v) = 4$. If v is of Type I, by Lemma [1,](#page-1-2) we have $n_{\text{II}}(v) \leq 1$, otherwise, by Claim [9,](#page-7-1) we have $n_{\text{II}}(v) \le 2$. By **R1–R5**, $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + \frac{1}{2}v\}$ $1 + \frac{1}{2} \times 13$, $1 \times 2 + \frac{1}{2} \times 12$ } $- \frac{1}{2} \times 4 = 0$.

 $-2 \le d_H^3(v) \le 3$ and $d_H^{5^-}(v) \le 5$, or $d_H^3(v) = 3$ and $6 \le d_H^{5^-}(v) \le 8$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\text{II}}(v) \leq 2$, otherwise $n_{\text{II}}(v) \leq 3$. Noting that $d_H^3(v) \le 3$, by **R1–R5**, we have $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + 1 \times 2 + \frac{1}{2} \times \frac{1}{2} \}$ $12, 1 \times 3 + \frac{1}{2} \times 11 - \frac{1}{2} \times 3 = 0.$

 $-d_H^3(v) = 2, 6 \le d_H^{5^-}(v) \le 9$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\text{II}}(v) \le 3$, otherwise $n_{\text{II}}(v) \le 4$. By **R1–R5**, $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}\}$ $1 \times 3 + \frac{1}{2} \times 11$, $1 \times 4 + \frac{1}{2} \times 10$ } - $\frac{1}{2} \times 2 = 0$.

 $-d_H^3(v) = 1$ and $d_H^{5^-}(v) \le 10$. If v is of Type I, then $n_{\text{II}}(v) \le 4$, otherwise $n_{\text{II}}(v) \leq 5. \text{By R1-R5}, w'(v) \geq 14-4-\max\{\frac{1}{2}+1\times4+\frac{1}{2}\times10, 1\times5+\frac{1}{2}\times9\}-\frac{1}{2}=0.$ $-d_H^3(v) = 0$. Then $n_H(v) \le 5$, or $n_H(v) = 6$ and $n_{4+}(v) \ge 1$, or $n_H(v) = 7$ and $n_{4+}(v) \ge 5$ by Claims [2–](#page-2-2)[3.](#page-3-0) By **R1–R4**, $w'(v) \ge 14 - 4 - \frac{1}{2} - \max\{1 \times 5 + \frac{1}{2} \times \frac{1}{2} \}$ $9, 1 \times 6 + \frac{1}{2} \times 7, 1 \times 7 + \frac{1}{2} \times 2$ } = 0.

Remark 3 For any 15⁺-vertex $v \in V(H^{\times})$, if v is not incident with any bad 3-cycle and $d_H^{3b}(v) \ge 2$, then $n_{4+}(v) \ge 1$.

• $d_{H^{\times}}(v) = 15$. We first give the following fact.

Fact 7 If $d_{H} \times (v) = 15$, then either $d_H^3(v) = 0$, or $1 \le d_H^3(v) \le 7$ and $d_H^{6^{-}}(v) \le$ 14− $d_H^3(v)$. Furthermore, if $d_H^3(v) \ge 3$ and $d_H^{6-}(v) \ge 7$, or $d_H^3(v) = 2$ and $d_H^{6-}(v) \ge 9$, then v is not incident with any bad 3-cycle.

Proof By Table [1,](#page-8-1) we have $d_G(v) \ge 15$. (a): $d_G(v) = 15$. If $d_G^3(v) \ge 1$, by Claim [8\(](#page-5-0)3), let $m = 3$, we have $d_G^{15}(v) \ge d_G^{4-}(v) + 1$. Noting that $d_H^3(v) \le d_G^{4-}(v) \le d_G^{6-}(v) \le$ *d_G*(*v*) − *d*_{*G*}¹⁵(*v*), we have $d_H^3(v) \le 7$ and $d_H^{6^-}(v) \le 14 - d_H^3(v)$. Furthermore, if $d_H^{6-} (v)$ ≥ 7, by $d_G^{6-} (v) + d_G^{15}(v)$ ≤ 15 and Claim [8\(](#page-5-0)4), *v* is not incident with any bad 3-cycle. So, in this case, Fact [7](#page-13-0) holds. (b): $d_G(v) = k$ ($k \ge 16$), then $d_G^{2^{-}}(v) = k - 15$. By Claim [11,](#page-8-0) $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v)$ ≤ $\lceil \frac{k}{2} \rceil - 1 - (k - 15) \le 6$ and $d_H^{6-}(v) \le k - d_G^{2-}(v) - d_G^k(v) \le k - (k - 15) - (k - 15)$ 14 + $d_G^3(v)$) < 14 − $d_H^3(v)$. Furthermore, suppose that $d_H^3(v) \ge 3$ and $d_H^{6^-}(v) \ge 7$, or $d_H^3(v) = 2$ and $d_H^{6-}(v) \ge 9$. Assume that v is incident with a bad 3-cycle, by Claim [10,](#page-7-0) $d_G^k(v)$ ≥ 2 $d_G^{4-}(v)$ + 1. Noting that $d_G^{2-}(v) + d_H^{6-}(v) + d_G^k(v) - k ≤ 0$, while $d_G^{2-}(v) + d_H^{6-}(v) + d_G^{k}(v) - k \geq d_G^{2-}(v) + d_H^{6-}(v) + 2d_G^{4-}(v) + 1 - k \geq 3d_G^{2-}(v) +$ $2d_H^3(v) + d_H^{6-}(v) + 1 - k \ge 3(k-15) + \min\{2 \times 3 + 7, 2 \times 2 + 9\} + 1 - k = 2k-31 > 0,$ a contradiction. So, in this case, Fact [7](#page-13-0) holds. \Box

By Fact [7,](#page-13-0) we consider the following cases.

 $-d_H^3(v) = d_H^{6-}(v) = 7$, and v is not incident with any bad 3-cycle. If v is of Type I, by Lemma [1,](#page-1-2) we have $n_{\text{II}}(v) = 0$ and $n_{4+}(v) \ge 1$; otherwise we have $n_{\text{II}}(v) \le 1$ and either $d_H^{3b}(v) \le 1$ or $n_{4+}(v) \ge 1$ by Remark [3.](#page-13-1) By **R1–R5**, $w'(v) \ge 15 - 4 \max\{\frac{1}{2} + \frac{1}{2} \times 14 + \frac{1}{2} \times 7, 1 + \frac{1}{2} \times 14 + \frac{1}{2} + \frac{1}{3} \times 6, 1 + \frac{1}{2} \times 13 + \frac{1}{2} \times 7\} = 0.$

 $-d_H^3(v) = d_H^{6-}(v) = 6$. By Claim [9,](#page-7-1) v is incident with at most one bad 3-cycle. If v is of Type I, by Lemma [1,](#page-1-2) then $n_{\text{II}}(v) \leq 1$ and $n_{4+}(v) \geq 1$; otherwise we have either $n_{\text{II}}(v) \leq 1$, or $n_{\text{II}}(v) = 2$ and $n_{\text{III}}(v) \leq 10$. By **R1–R5**, $w'(v) \geq 15 - 4 - \max\{\frac{1}{2} + \frac{1}{2}\}$ $1 + \frac{1}{2} \times 13$, $1 + \frac{1}{2} \times 14$, $1 \times 2 + \frac{1}{2} \times 10 + \frac{1}{3} \times 3$ } - $\frac{1}{2} \times 6 = 0$.

 $-d_H^3(v) = 6, 7 \le d_H^{6-}(v) \le 8$, and v is not incident with any bad 3-cycle. If v is of Type I, we have $n_{\text{II}}(v) \leq 1$ and either $d_H^{3b}(v) \leq 1$ or $n_{4+}(v) \geq 1$ by Remark [3;](#page-13-1) otherwise we have $n_{\text{II}}(v) \leq 2$ and either $d_H^{3b}(v) \leq 1$ or $n_{4+}(v) \geq 1$ by Remark [3.](#page-13-1) By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 14 + \frac{1}{2} + \frac{1}{3} \times 5, \frac{1}{2} + 1 + \frac{1}{2} \times 13 + \frac{1}{2} \times \frac{1}{2} \}$ 6, $1 \times 2 + \frac{1}{2} \times 13 + \frac{1}{2} + \frac{1}{3} \times 5$, $1 \times 2 + \frac{1}{2} \times 12 + \frac{1}{2} \times 6$ = 0.

 \mathcal{L} Springer

 $-d_H^3(v) = 5$ and $d_H^{6-}(v) \le 6$. By Claim [9,](#page-7-1) v is incident with at most one bad 3-cycle. If v is of Type I, then $n_{\text{II}}(v) \le 1$, otherwise $n_{\text{II}}(v) \le 2$. By **R1–R5**, $w'(v) \ge$ $15 - 4 - \max{\frac{1}{2} + 1 + \frac{1}{2} \times 14, 1 \times 2 + \frac{1}{2} \times 13} - \frac{1}{2} \times 5 = 0.$

 $-d_H^3(v) = 5, 7 \le d_H^{6-}(v) \le 9$, and v is not incident with any bad 3-cycle. If v is of Type I, then either $n_{\text{II}}(v) \leq 1$, or $n_{\text{II}}(v) = 2$ $n_{\text{II}}(v) = 2$ and $n_{4+}(v) \geq 1$ by Claims 2[–3;](#page-3-0) otherwise we have $n_{\text{II}}(v) \leq 3$ and either $d_{\text{H}}^{3b}(v) \leq 1$ or $n_{4+}(v) \geq 1$ by Remark [3.](#page-13-1) By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 14 + \frac{1}{2} \times 5, \frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 12 + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{$ $5, 1 \times 3 + \frac{1}{2} \times 12 + \frac{1}{2} + \frac{1}{3} \times 4, 1 \times 3 + \frac{1}{2} \times 11 + \frac{1}{2} \times 5$ = 0.

 $-3 \le d_H^3(v) \le 4$ and $d_H^{6-}(v) \le 6$. By Claim [9,](#page-7-1) v is incident with at most one bad 3cycle. If v is of Type I, then $n_{\text{II}}(v) \leq 2$, otherwise $n_{\text{II}}(v) \leq 3$. Noting that $d_H^3(v) \leq 4$, by **R1–R5**, we have $w'(v) \ge 15-4-\max\{\frac{1}{2}+1\times2+\frac{1}{2}\times13, 1\times3+\frac{1}{2}\times12\}-\frac{1}{2}\times4=0.$

 $-3 \le d_H^3(v) \le 4, 7 \le d_H^{6-}(v) \le 14 - d_H^3(v)$, and v is not incident with any bad 3-cycle. If v is of Type I, then either $n_H(v) \leq 6 - d_H^3(v)$, or $n_H(v) = 7 - d_H^3(v)$ and $n_{4+}(v) \ge 1$ by Claims [2](#page-2-2)[–3;](#page-3-0) otherwise we have either $n_{\text{II}}(v) \le 7 - d_H^3(v)$, or $n_{\text{II}}(v) = 8 - d_H^3(v)$ and $n_{4+}(v) \ge 1$ by Claims [2](#page-2-2)[–3.](#page-3-0) By **R1–R5**, $w'(v) \ge 15 - 4 \max\{\frac{1}{2} + 1 \times (6 - d_H^3(v)) + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \frac{1}{2} + 1 \times (7 - d_H^3(v)) + \frac{1}{2} \times$ $(14 - (7 - d_H^3(v))), 1 \times (7 - d_H^3(v)) + \frac{1}{2} \times (15 - (7 - d_H^3(v))), 1 \times (8 - d_H^3(v)) +$ $\frac{1}{2} \times (14 - (8 - d_H^3(v)))\} - \frac{1}{2}d_H^3(v) = 0.$

 $-d_H^3(v) = 2$ and $d_H^{6-}(v) \le 8$. If v is of Type I, then $n_H(v) \le 4$, otherwise $n_H(v) \le 5$. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 \times 4 + \frac{1}{2} \times 11, 1 \times 5 + \frac{1}{2} \times 10\} - \frac{1}{2} \times 2 = 0$.

 $-d_H^3(v) = 2, 9 \le d_H^{6-}(v) \le 12$, and v is not incident with any bad 3-cycle. If v is of Type I, then either $n_{\text{II}}(v) \leq 4$, or $n_{\text{II}}(v) = 5$ and $n_{4+}(v) \geq 1$ by Claims [2](#page-2-2)[–3;](#page-3-0) otherwise we have either $n_{\text{II}}(v) \leq 5$, or $n_{\text{II}}(v) = 6$ and $n_{4+}(v) \geq 1$ by Claims [2–](#page-2-2)[3.](#page-3-0) By **R1–R5**, $w'(v)$ ≥ 15 – 4 – max $\{\frac{1}{2} + 1 \times 4 + \frac{1}{2} \times 11, \frac{1}{2} + 1 \times 5 + \frac{1}{2} \times 9, 1 \times 5 + \frac{1}{2} \times 11\}$ $\frac{1}{2} \times 10, 1 \times 6 + \frac{1}{2} \times 8$ – $\frac{1}{2} \times 2 = 0$.

 $-d_H^3(v)$ ≤ 1 and $d_H^{6-}(v)$ ≤ 15 − 2 $d_H^3(v)$. If v is of Type I, then either $n_\text{II}(v)$ ≤ $6 - d_H^3(v)$, or $n_H(v) = 7 - d_H^3(v)$ and $n_{4+}(v) \ge 1$ by Claims [2–](#page-2-2)[3;](#page-3-0) otherwise we have either $n_{\text{II}}(v)$ ≤ 7 − $d_H^3(v)$, or $n_{\text{II}}(v)$ = 8 − $d_H^3(v)$ and $n_{4+}(v)$ ≥ 1 by Claims [2–](#page-2-2)[3.](#page-3-0) By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 \times (6 - d_H^3(v)) + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \frac{1}{2} + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \frac{1}{2} + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \frac{1}{2} + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \frac{1}{2} + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \frac{1}{2} + \frac{1}{2} \times (15 - (6 - d_H^3(v))), \$ $1 \times (7 - d_H^3(v)) + \frac{1}{2} \times (14 - (7 - d_H^3(v))), 1 \times (7 - d_H^3(v)) + \frac{1}{2} \times (15 - (7 - d_H^3(v)))$ $d_H^3(v)$)), $1 \times (8 - d_H^3(v)) + \frac{1}{2} \times (14 - (8 - d_H^3(v))) - \frac{1}{2} d_H^3(v) = 0.$

• $d_{H^{\times}}(v) = k$ ($k \ge 16$). By Claim [2](#page-2-2) and Table [1,](#page-8-1) every 5⁻-vertex has at most one conflict vertex.

 $-d_H^3(v) = 0$. (a): $3n_H(v) \le k + 5$. By **R1–R4**, $w'(v) \ge k - 4 - \frac{1}{2} - 1 \times n_H(v) -$
 $\frac{1}{2} \times (k - n_H(v)) \ge k - 16 \ge 0$. (b): $3n_H(v) \ge k + 5$. Note that a 3-face of Type $\frac{1}{2}$ × (*k* − *n*_{II}(*v*)) ≥ $\frac{k-16}{3}$ ≥ 0. (b): $3n_{\text{II}}(v)$ > *k* + 5. Note that a 3-face of **Type II** is incident with two 5[−]-vertices. If v is not adjacent to any false vertex, then $d_H^{9^+}(v) \le k - 2n_\text{II}(v)$ and $n_{4^+}(v) \ge n_\text{II}(v) - d_H^{9^+}(v)$; otherwise we have $d_H^{9^+}(v) \le$ $k - 2n_{\text{II}}(v) + 2$ and $n_{4+}(v) \ge n_{\text{II}}(v) - d_H^{9+}(v) - 1$. Thus $n_{4+}(v) \ge \min\{n_{\text{II}}(v) - 1\}$ $(k - 2n_{\text{II}}(v)), n_{\text{II}}(v) - (k - 2n_{\text{II}}(v) + 2) - 1$ = $3n_{\text{II}}(v) - k - 3$. By **R1–R4**, $w'(v) \ge k - 4 - \frac{1}{2} - 1 \times n_{\text{II}}(v) - \frac{1}{2} \times (k - n_{\text{II}}(v) - n_{4} + (v)) = \frac{1}{2}(k - n_{\text{II}}(v) + n_{4} + (v) - 9) \ge$ $\frac{1}{2}(k - n_{\text{II}}(v) + (3n_{\text{II}}(v) - k - 3) - 9) = n_{\text{II}}(v) - 6 > \frac{k+5}{3} - 6 > 0.$

 $-d_H^3(v) \ge 1$ and v is incident with a bad 3-cycle. (a): If v is of Type I, then v is not incident with any (4, 5, [1](#page-1-2)6⁺)-face. By Lemma 1 and Claim [9,](#page-7-1) we have $n_{\text{II}}(v) \le$ $\frac{d^4_H(v)}{2}$ + 1. (b): If v is not of Type I. Noting that v is incident with at most two (4, 5, 16⁺)faces, we have $n_{\text{II}}(v) \le \frac{d_H^4(v)}{2} + 3$. By Claim [10,](#page-7-0) $d_H^3(v) + d_H^4(v) \le d_G^{4-}(v) \le \frac{k-1}{3}$. By **R1–R5**, $w'(v) \ge k - 4 - \max\{\frac{1}{2} + 1 \times (\frac{d_H^4(v)}{2} + 1) + \frac{1}{2} \times (k - \frac{d_H^4(v)}{2} - 1), 1 \times (\frac{d_H^4(v)}{2} + \frac{1}{2})\}$ $(3) + \frac{1}{2} \times (k - \frac{d_H^4(v)}{2} - 3) - \frac{1}{2}d_H^3(v) = \frac{k}{2} - \frac{d_H^3(v)}{2} - \frac{d_H^4(v)}{4} - \frac{11}{2} \ge \frac{k-11}{2} - \frac{d_H^3(v) + d_H^4(v)}{2} \ge$ $\frac{k-11}{2} - \frac{k-1}{6} = \frac{k-16}{3} \ge 0.$ $-d_H^3(v) \ge 1$ and v is not incident with any bad 3-cycle. $- n_{4+}(v) = 0$. Then $3n_{\text{II}}(v) + 2d_H^3(v) - 4 \le k$. By Remark [3,](#page-13-1) $d_H^{3b}(v) \le 1$. By **R1-R5**, $w'(v) \ge k - 4 - \frac{1}{2} - 1 \times n_{\text{II}}(v) - \frac{1}{2} \times (k - n_{\text{II}}(v)) - (\frac{1}{2} + \frac{1}{3}(d_H^3(v) - 1)) =$
 $\frac{k}{2} - \frac{1}{6}(3n_{\text{II}}(v) + 2d_H^3(v)) - \frac{14}{3} \ge \frac{k}{2} - \frac{k+4}{6} - \frac{14}{3} = \frac{k-16}{3} \ge 0.$ $- n_{4+}(v) \geq 1$ and $3n_{\text{II}}(v) + 2d_H^{3g}(v) + 3 \left\lfloor \frac{d_H^{3b}(v)}{2} \right\rfloor \leq k+4$. Note that v is not incident with any bad 3-cycle. If v is of Type I, $n_{4+}(v) \geq \lceil \frac{d_H^{3b}(v)}{2} \rceil$; otherwise we have $n_{4+}(v) \geq$ \mid $\frac{d^{\frac{3b}{2}}(v)}{v^2}$] − 1. By **R1–R5**, $w'(v) \ge k - 4 - \max\{\frac{1}{2} + 1 \times n_H(v) + \frac{1}{2} \times (k - n_H(v) - \frac{1}{2})\}$ \mid $\frac{d_H^{3b}(v)}{2}$]), $1 \times n_{\text{II}}(v) + \frac{1}{2} \times (k - n_{\text{II}}(v) - (\lceil \frac{d_H^{3b}(v)}{2} \rceil - 1)) - (\frac{1}{3} \times d_H^{3g}(v) + \frac{1}{2} \times d_H^{3b}(v)) =$ $\frac{k-9}{2} - \frac{n_{\text{II}}(v)}{2} - \frac{d_H^{3g}(v)}{2} - \frac{d_H^{3b}(v)}{2} + \frac{1}{2}$ $\left(\frac{d_H^{3b}(v)}{2}\right] = \frac{k-9}{2} - \frac{1}{6}(3n_{\text{II}}(v) + 2d_H^{3g}(v) + 3\left(\frac{d_H^{3b}(v)}{2}\right)) \ge$ $\frac{k-9}{2} - \frac{k+4}{6} = \frac{2k-31}{6} > 0.$

 $- n_{4+}(v) \ge 1$ and $3n_{\text{II}}(v) + 2d_H^{3g}(v) + 3\left\lfloor \frac{d_H^{3b}(v)}{2} \right\rfloor \ge k+5$. Note that v is not incident with any bad 3-cycle. If v is of Type I, $n_{4}+(v) \ge 3n_{\text{II}}(v) + 2d_H^{\frac{3g}{2}}(v) + 3\left\lfloor \frac{d_H^{\frac{3h}{2}}(v)}{r^2} \right\rfloor$ $(k + 5) + \left[\frac{d_H^{3b}(v)}{2}\right]$; otherwise we have $n_{4+}(v) \ge 3n_H(v) + 2d_H^{3g}(v) + 3\left[\frac{d_H^{3b}(v)}{2}\right]$ $(k + 5) + (\lceil \frac{d_H^{3b}(v)}{2} \rceil - 1)$. By **R1–R5**, $w'(v) \ge k - 4 - \max\{\frac{1}{2} + 1 \times n_H(v) + \frac{1}{2} \times$ $(k - n_{\text{II}}(v) - (3n_{\text{II}}(v) + 2d_H^{3g}(v) + 3\left\lfloor \frac{d_H^{3b}(v)}{2} \right\rfloor - (k+5) + \left\lceil \frac{d_H^{3b}(v)}{2} \right\rceil), 1 \times n_{\text{II}}(v) +$ $\frac{1}{2} \times (k - n_{\text{II}}(v) - (3n_{\text{II}}(v) + 2d_H^{3g}(v) + 3\left[\frac{d_H^{3b}(v)}{2}\right] - (k+5) + \left[\frac{d_H^{3b}(v)}{2}\right] - 1\right)) - (\frac{1}{3} \times$ $d_H^{3g}(v) + \frac{1}{2} \times d_H^{3b}(v) = n_{\Pi}(v) + \frac{2}{3} d_H^{3g}(v) + \frac{1}{2} \Gamma$ $\frac{d^{3b}_H(v)}{2}$ ¹ + $\frac{3}{2}$ ¹ $\frac{d^{3b}_H(v)}{2}$ – $\frac{d^{3b}_H(v)}{2}$ – 7 = $\frac{1}{3}(3n_{\text{II}}(v) + 2d_H^{3g}(v) + 3\left[\frac{d_H^{3b}(v)}{2}\right]) - 7 \geq \frac{k+5}{3} - 7 \geq 0.$

In conclusion, the new charge of $x \in V(H^{\times}) \cup F(H^{\times})$ is nonnegative, a contradiction. The proof of Theorem [1](#page-1-1) is done.

Acknowledgements This work was supported by the National Natural Science Foundation of China (12071260, 12001154), and the Natural Science Foundation of Hebei Province(A2021202025).

References

- Albertson MO (2008) Chromatic number, independence ratio, and crossing number. ARS Math Contemp 1:1–6
- Bonamy M, Bousquet N, Hocquard H (2013) Adjacent vertex-distinguishing edge colorings of graphs. EuroComb 16:313–318

Balister PN, Györi E, Lehel J, Schelp RH (2007) Adjacent vertex distinguishing edge-colorings. SIAM J Discrete Math 21(1):237–250

Bondy JA, Murty USR (1976) Graph theory with applications. North-Holland, New York

Horňák M, Huang DJ, Wang WF (2014) On neighbor-distinguishing index of planar graphs. J Graph Theory 76(4):262–278

Wang WF, Huang DJ (2015) A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree. SIAM J Discrete Math 29(4):2412–2431

Yan CC, Huang DJ, Wang WF (2012) Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least four. J Math Study 45(4):331–341

Zhang ZF, Liu LZ, Wang JF (2002) Adjacent strong edge coloring of graphs. Appl Math Lett 15:623–626 Zhang X, Wu JL (2011) On edge colorings of 1-planar graphs. Inf Process Lett 111:124–128

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.