

Adjacent vertex distinguishing edge coloring of IC-planar graphs

Zhuoya Liu¹ · Changqing Xu¹

Accepted: 27 August 2021 / Published online: 15 September 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The adjacent vertex distinguishing edge coloring of a graph *G* is a proper edge coloring in which each pair of adjacent vertices is assigned different color sets. The smallest number of colors for which *G* has such a coloring is denoted by $\chi'_a(G)$. An important conjecture due to Zhang et al. (Appl Math Lett 15:623–626, 2002) asserts that $\chi'_a(G) \leq \Delta(G) + 2$ for any connected graph *G* with order at least 6. By applying the discharging method, we show that this conjecture is true for any IC-planar graph *G* with $\Delta(G) \geq$ 16.

Keywords IC-planar graph \cdot Adjacent vertex distinguishing edge coloring \cdot Discharging method

1 Introduction

Throughout this paper, we are only concerned with finite and simple graphs. For a plane graph G, let V(G), E(G), F(G), $\Delta(G)$ and $\delta(G)$ be the vertex set, edge set, face set, maximum degree and minimum degree of G, respectively. For an arbitrary $x \in V(G) \cup F(G)$, let $d_G(x)$ denote the degree of x in G. Let $N_G(v)$ denote the set of neighbors of a vertex v in G. A vertex v satisfying $d_G(v) = k$ ($d_G(v) \ge k$, $d_G(v) \le k$) is a k-vertex (k⁺-vertex, k⁻-vertex). The k-face and k⁺-face are defined similarly. For each $v \in V(G)$, let $d_G^k(v)$ denote the number of k-vertices adjacent to v in G. We call a 3-vertex $v \in V(G)$ bad if $d_G^3(v) = 1$ and good if $d_G^3(v) = 0$. Let $d_G^{3b}(v)$ and $d_G^{3g}(v)$ denote the number of bad and good 3-vertices adjacent to v in G, respectively. A 3-face (or cycle) $v_1v_2v_3$ is called a (k_1, k_2, k_3) -face (or cycle) if v_i is a k_i -vertex for all $1 \le i \le 3$. A 3-cycle is bad if it is incident with two 3-vertices. Any undefined notation can refer to (Bondy and Murty 1976).

Changqing Xu chqxu@hebut.edu.cn

¹ School of Science, Hebei University of Technology, Tianjin 300401, China

A proper k-edge coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, ..., k\}$ such that $\varphi(e) \neq \varphi(e')$ for any two adjacent edges e and e' of G. For any $v \in V(G)$, let $C_{\varphi}(v) = \{\varphi(uv) | uv \in E(G)\}$ be the color set of v with respect to φ . For two adjacent vertices u and v, we call u conflict with v respect to φ if $C_{\varphi}(u) = C_{\varphi}(v)$. A proper k-edge coloring φ is a k-adjacent vertex distinguishing edge coloring (k-avdcoloring for short) provided that $C_{\varphi}(u) \neq C_{\varphi}(v)$ for all $uv \in E(G)$. The adjacent vertex distinguishing edge chromatic index of G, denoted by $\chi'_a(G)$, is the smallest k such that G has a k-avd-coloring. A graph without isolated edges is normal. Clearly, only normal graph can have avd-colorings. Thus, for avd-coloring, we only consider normal graphs.

Zhang et al. (2002) first introduced the concept of avd-coloring and put forward the following conjecture.

Conjecture 1 Zhang et al. (2002) If G is a connected graph with order at least 6, then $\chi'_a(G) \leq \Delta(G) + 2$.

Conjecture 1 was determined by Balister et al. (2007) for bipartite graphs and graphs with maximum degree 3. Horňák et al. (2014) showed that Conjecture 1 holds for planar graphs with maximum degree at least 12. Bonamy et al. (2013) verified that $\chi'_a(G) \leq \Delta(G) + 1$ for any planar graph *G* with $\Delta(G) \geq 12$. Wang and Huang (2015) proved that $\chi'_a(G) \leq \Delta(G) + 1$ for any planar graph *G* with $\Delta(G) \geq 16$ and $\chi'_a(G) = \Delta(G) + 1$ if and only if *G* contains two adjacent vertices of maximum degree.

A graph is *1-planar* if it can be drawn in the plane such that each edge is crossed by at most one other edge. Albertson (2008) first introduced the definition of IC-planar graph. A graph is *IC-planar* if it admits a drawing in the plane where each edge is crossed at most once and no two crossings are incident with the same vertex. Clearly, each IC-planar graph is 1-planar. The *associated plane graph* G^{\times} of a 1-planar graph *G* is a plane graph obtained by turning all crossings of *G* into new 4-vertices. A vertex $v \in V(G^{\times})$ is *f alse* if *v* is not a vertex of *G* and *real* otherwise. A face is *f alse* if it is incident with at least one false vertex. Clearly, for an associated plane graph G^{\times} of an IC-planar graph *G*, each real vertex in G^{\times} is adjacent to at most one false vertex and incident with at most two false 3-faces in G^{\times} . In the following, we always assume that every IC-planar graph is drawn in a plane such that the number of crossings is as few as possible.

Lemma 1 Zhang and Wu (2011) Let G be a 1-plane graph and G^{\times} be the associated plane graph of G. If $d_G(u) = 3$ and v is a false vertex of G^{\times} , then either $uv \notin E(G^{\times})$ or uv is not incident with two 3-faces.

In this paper, we will prove that Conjecture 1 is true for any IC-planar graph with maximum degree at least 16, which can be expressed more concisely as follows:

Theorem 1 Let G be an IC-planar graph, then $\chi'_{a}(G) \leq \max{\{\Delta(G) + 2, 18\}}$.

2 The proof of Theorem 1

We will prove Theorem 1 by contradiction. Let *G* be a counterexample to Theorem 1 minimizing |V(G)| + |E(G)|. Clearly, *G* is a connected graph. Let $t_G = \max{\{\Delta(G) + 2, 18\}}$ and $C = \{1, 2, ..., t_G\}$. Then $\{1, 2, ..., 18\} \subseteq C$. First we will prove the following claims.

Claim 1 There is no edge $uv \in E(G)$ with $d_G(u) = 1$ and $d_G(v) \le 9$.

Proof Assume, to the contrary, that G contains an edge uv with $d_G(u) = 1$ and $d_G(v) \leq 9$. We have $d_G(v) \geq 2$ because G is normal. Let H = G - u. If H contains only one edge, then we color this edge with 1 and color uv with 2 to obtain a t_G -avd-coloring of G, a contradiction. If H contains at least two edges, H has a t_G -avd-coloring φ with the color set C by the minimality of G. Note that v has at most eight conflict vertices. Hence we can color uv with a color in $C \setminus C_{\varphi}(v)$ such that v does not conflict with its neighbors, which yields a t_G -avd-coloring of G, a contradiction.

Remark 1 Claim 1 implies that for an arbitrary $e \in E(G)$, H = G - e is normal. Therefore $\chi'_a(H) \le t_G$ by the minimality of *G*.

Remark 2 In the following, if $d_G(v) = k$, set $N_G(v) := \{v_1, v_2, ..., v_k\}$.

Claim 2 Let v be a k-vertex of G with $2 \le k \le 6$, then $d_G^k(v) \le 1$.

Proof Assume, to the contrary, that G contains a k-vertex v $(2 \le k \le 6)$ satisfying $d_G^k(v) \ge 2$. We prove the case that k = 6 (the proof can be given similarly and simply for $2 \le k \le 5$). Assume that $d_G(v_1) = d_G(v_2) = 6$. Let $N_G(v_1) = \{v, w_1, w_2, w_3, w_4, w_5\}$. Let $H = G - vv_1$, by Remark 1, H has a t_G -avd-coloring φ with the color set C. Without loss of generality (W.l.o.g.), $\varphi(vv_i) = i - 1$ for $2 \le i \le 6$ and $\varphi(v_1w_i) = a_i$ for $1 \le i \le 5$. We consider the next three cases.

Case 1: $3 \leq |\{a_1, a_2, \ldots, a_5\} \cap \{1, 2, \ldots, 5\}| \leq 5$. If $|\{a_1, a_2, \ldots, a_5\} \cap \{1, 2, \ldots, 5\}| = 5$, then we recolor vv_2 with a color in $C \setminus (C_{\varphi}(v) \cup C_{\varphi}(v_2))$ such that v_2 does not conflict with its neighbors. So we may assume that $3 \leq |\{a_1, a_2, \ldots, a_5\} \cap \{1, 2, \ldots, 5\}| \leq 4$. Hence we can color vv_1 with a color in $C \setminus (C_{\varphi}(v) \cup C_{\varphi}(v_1))$ such that v and v_1 do not conflict with their neighbors, which yields a t_G -avd-coloring of G, a contradiction.

Case 2: $1 \leq |\{a_1, a_2, \ldots, a_5\} \cap \{1, 2, \ldots, 5\}| \leq 2$. Set $|\{a_1, a_2, \ldots, a_5\} \cap \{1, 2, \ldots, 5\}| = l$, then $1 \leq l \leq 2$. W.l.o.g., $a_i = i$ for $1 \leq i \leq l$ and $a_i = i - l + 5$ for $l + 1 \leq i \leq 5$. Suppose that vv_1 cannot be colored without causing conflicts, say, $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i - l + 9\}$ for $2 \leq i \leq 6$ and $C_{\varphi}(w_i) = \{1, 6, 7, 8, 16 - 7l, i - l + 15\}$ for $1 \leq i \leq l + 3$. We recolor vv_2 with a color in $\{13, 14, \ldots, 18\}$ such that v_2 does not conflict with its neighbors, then we color vv_1 with a color in $\{11, 12\}$ such that v_1 does not conflict with its neighbors, which yields a t_G -avd-coloring of G, a contradiction.

Case 3: $|\{a_1, a_2, ..., a_5\} \cap \{1, 2, ..., 5\}| = 0$. W.l.o.g., $a_i = i + 5$ for $1 \le i \le 5$. Suppose that vv_1 cannot be colored without causing conflicts, say, $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i + 9\}$ for $2 \le i \le 6$ and $C_{\varphi}(w_i) = \{6, 7, 8, 9, 10, i + 15\}$ for 1 ≤ *i* ≤ 3, or $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i + 9\}$ for 2 ≤ *i* ≤ 5 and $C_{\varphi}(w_i) = \{6, 7, 8, 9, 10, i + 14\}$ for 1 ≤ *i* ≤ 4. If $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i + 9\}$ for 2 ≤ *i* ≤ 6 and $C_{\varphi}(w_i) = \{6, 7, 8, 9, 10, i + 15\}$ for 1 ≤ *i* ≤ 3, then we recolor vv_2 with a color in $\{6, 7, 8, 16, 17, 18\}$ such that v_2 does not conflict with its neighbors, and color vv_1 with a color in $\{12, 13, 14\}$ such that v_1 does not conflict with w_4 and w_5 , which yields a t_G -avd-coloring of G, a contradiction. If $C_{\varphi}(v_i) = \{1, 2, 3, 4, 5, i + 9\}$ for 2 ≤ *i* ≤ 5 and $C_{\varphi}(w_i) = \{6, 7, 8, 9, 10, i + 14\}$ for 1 ≤ *i* ≤ 4, then we recolor vv_2 with a color in $\{6, 7, 8, 9, 10, 18\}$ such that v_2 does not conflict with its neighbors, and color vv_1 with a color in $\{12, 13, 14\}$ such that v_2 does not conflict with their neighbors, which yields a t_G -avd-coloring of G, a contradiction. \Box

Claim 3 There is no edge $vv_1 \in E(G)$ with $2 \leq d_G(v_1) \leq 6$ and $d_G(v_1) + 1 \leq d_G(v) \leq 9$.

Proof Assume, to the contrary, that *G* contains an edge vv_1 with $2 \le d_G(v_1) \le 6$ and $d_G(v_1) + 1 \le d_G(v) \le 9$. We prove the case that $d_G(v_1) = 6$ and $d_G(v) = 9$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le 9$ and $C_{\varphi}(v_1) \subseteq \{1, 2, ..., 13\}$. By Claim 2, every 6-vertex has at most one conflict vertex. Suppose that vv_1 cannot be colored without causing conflicts, say, $C_{\varphi}(v_i) = \{1, 2, ..., 8, i + 12\}$ for $2 \le i \le 5$ and $C_{\varphi}(v_1) = \{9, 10, ..., 13\}$. Without considering the conflict of v, for any given integer $i \ (2 \le i \le 5)$, we select $\{b_i, d_i\}$ from $\{9, 10, ..., 18\} \setminus \{i + 12\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least two selected ways. Since i has four possibilities, we have at least $2 \times 4 = 8$ ways such that v_1 does not conflict with its neighbors and v does not conflict with v_2 , v_3 , v_4 and v_5 . So we can obtain a t_G -avd-coloring of *G*, a contradiction.

Claim 4 Let *v* be a *k*-vertex of *G* with $10 \le k \le 11$, then $d_G^{(16-k)^-}(v) \le 1$.

Proof Assume, to the contrary, that *G* contains a *k*-vertex v ($10 \le k \le 11$) satisfying $d_G^{(16-k)^-}(v) \ge 2$. Suppose that $d_G(v_1) = d_G(v_2) = 16 - k$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k + 1, \dots, 18\}| \le 15 - k$ for $1 \le i \le 2$. By Claim 2, every 6^- -vertex has at most one conflict vertex. If v_i has a conflict vertex w_i , and $|C_{\varphi}(v_i) \cap \{k, k + 1, \dots, 18\}| = 15 - k$ for $1 \le i \le 2$, then we recolor $v_i w_i$ with a color in $\{2, 3, \dots, 9\} \setminus C_{\varphi}(w_i)$. Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k + 1, \dots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least four available colors. (b): We select $\{b_1, b_2\}$ from $\{k, k + 1, \dots, 18\}$ to recolor vv_2 and color vv_1 such that v_2 and v_1 do not conflict with their neighbors. $\{b_1, b_2\}$ has at least $\frac{4 \times 3}{2} = 6$ selected ways. Hence we have at least 4 + 6 = 10 ways, while v has at most $k - 2 \le 9$ conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction.

Claim 5 Let v be a 12-vertex of G, then $d_G^{3^-}(v) \leq 1$.

Proof Assume, to the contrary, that *G* contains a 12-vertex *v* satisfying $d_G^{3^-}(v) \ge 2$. Suppose that $d_G(v_1) = d_G(v_2) = 3$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le 12$. Clearly, $|C_{\varphi}(v_i) \cap \{12, 13, \ldots, 18\}| \le 2$ for $1 \le i \le 2$. By Claim 2, each 3-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le 2$, we assume that $\varphi(v_iw_i) \notin \{12, 13, \ldots, 18\}$ (if $\varphi(v_iw_i) \in \{12, 13, \ldots, 18\}$, then we recolor v_iw_i with a color in $\{2, 3, \ldots, 11\} \setminus (C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{12, 13, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least five available colors. (b): We select $\{b_1, b_2\}$ from $\{12, 13, \ldots, 18\}$ to recolor vv_2 and color vv_1 such that v_2 and v_1 do not conflict with their neighbors. $\{b_1, b_2\}$ has at least $\frac{5 \times 4}{2} = 10$ selected ways. Hence we have at least 5 + 10 = 15 ways, while *v* has at most ten conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction.

Claim 6 Let v be a k-vertex of G with $11 \le k \le 12$, then $d_G^{6^-}(v) \le 3k - 31$.

Proof Assume, to the contrary, that G contains a k-vertex v ($11 \le k \le 12$) satisfying $d_G^{6^-}(v) \ge 3k - 30$. Suppose that $d_G(v_i) = 6$ for $1 \le i \le 3k - 30$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, H has a t_G-avd-coloring φ with the color set C. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k+1, ..., 18\}| \le 5$ for $1 \le i \le 3k - 30$. By Claim 2, each 6-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i , and $|C_{\varphi}(v_i) \cap \{k, k+1, \dots, 18\}| = 5$ for $1 \le i \le 3k - 30$, then we recolor $v_i w_i$ with a color in $\{3k - 30, 3k - 29, \dots, k - 1\} \setminus C_{\varphi}(w_i)$. Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least 14 - k available colors. (b): For any given integer $i (2 \le i \le 3k - 30)$, we select $\{b_i, d_i\}$ from $\{k, k+1, \ldots, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least $\frac{(14-k)\times(13-k)}{2}$ selected ways. Since *i* has 3k - 31 possibilities, we have at least $\frac{(14-k)\times(13-k)^2}{2} \times (3k - 31) = 17 - k$ different coloring ways. Hence we have at least 14 - k + 17 - k = 31 - 2k ways, while v has at most k - (3k - 30) = 30 - 2k conflict vertices. So we can obtain a t_G -avd-coloring of G, a contradiction.

Claim 7 Let v be a k-vertex of G with $13 \le k \le 14$, then the following statements hold.

(1)
$$d_G^{2^-}(v) \le k - 12;$$

(2) If $d_G^{m^-}(v) \ge 1$ for $m \le 18 - k$, then $d_G^k(v) \ge (19 - k - m)d_G^{(19-k)^-}(v) + 1.$

Proof (1) Assume, to the contrary, that *G* contains a *k*-vertex v ($13 \le k \le 14$) satisfying $d_G^{2^-}(v) \ge k - 11$. Suppose that $d_G(v_i) = 2$ for $1 \le i \le k - 11$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, *H* has a t_G -avd-coloring φ with the color set *C*. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k + 1, ..., 18\}| \le 1$ for $1 \le i \le k - 11$. By Claim 2, each 2-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le k - 11$,

we assume that $\varphi(v_i w_i) \notin \{k, k+1, \ldots, 18\}$ (if $\varphi(v_i w_i) \in \{k, k+1, \ldots, 18\}$, then we recolor $v_i w_i$ with a color in $\{3, 4, \ldots, 12\} \setminus (C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least $18 - k \ge 4$ available colors. (b): For any given integer i ($2 \le i \le k - 11$), we select $\{b_i, d_i\}$ from $\{k, k+1, \ldots, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least $\frac{(18-k)(17-k)}{2}$ selected ways. Since i has k - 12 possibilities, we have at least $\frac{(18-k)(17-k)}{2} \times (k-12) \ge 10$ different coloring ways. Hence we have at least 4 + 10 = 14 ways, while v has at most eleven conflict vertices. So we can obtain a t_G -avd-coloring of G, a contradiction.

(2) Assume, to the contrary, that there is a k-vertex $v \in V(G)$ (13 $\leq k \leq$ 14) and an integer m ($m \le 18 - k$) satisfying $d_G^{m^-}(v) \ge 1$, where $d_G^k(v) \le (19 - k - k)$ $m d_G^{(19-k)^-}(v)$. Set $d_G^{(19-k)^-}(v) = l$. W.l.o.g., $d_G(v_1) = m$ and $d_G(v_i) \le 19 - k$ for $1 \le i \le l$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, H has a t_G-avd-coloring φ with the color set C. Suppose that $\varphi(vv_i) = i - 1$ for $2 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{k, k + 1, \dots, 18\}| \le 18 - k$ for $1 \le i \le l$. By Claim 2, each 6⁻-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i , and $|C_{\varphi}(v_i) \cap \{k, k+1, \dots, 18\}| = d_G(v_i) - 1$ for $1 \le i \le l$, then we recolor $v_i w_i$ with a color in $\{7, 8, \ldots, 12\} \setminus C_{\varphi}(w_i)$. Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in $\{k, k+1, \ldots, 18\}$ such that v_1 does not conflict with its neighbors. There are at least 20 - k - m available colors. (b): For any given integer i $(2 \le i \le l)$, we select $\{b_i, d_i\}$ from $\{k, k+1, \ldots, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least 19-k-m selected ways. Since *i* has l-1 possibilities, we have at least (19-k-m)(l-1) different coloring ways. Hence we have at least (20 - k - m) + (19 - k - m)(l - 1) = (19 - k - m)l + 1 ways, while v has at most (19 - k - m)l conflict vertices. So we can obtain a t_G-avd-coloring of G, a contradiction.

Claim 8 Let v be a 15-vertex of G, then the following statements hold. (1) $d_G^{2^-}(v) \leq 3$; (2) If $d_G^{2^-}(v) \geq 1$, then $d_G^{3^-}(v) \leq 4$; (3) If $d_G^{m^-}(v) \geq 1$ for $m \leq 3$, then $d_G^{15}(v) \geq (4 - m)d_G^{4^-}(v) + 1$; (4) If v is incident with a bad 3-cycle, then $d_G^{15}(v) \geq 9$.

Proof (1) Assume, to the contrary, that *G* contains a 15-vertex *v* satisfying $d_G^{2^-}(v) \ge 4$. Suppose that $d_G(v_i) = 2$ for $1 \le i \le 4$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, *H* has a t_G -avd-coloring φ with the color set *C*. Suppose that $\varphi(vv_i) = i - 1$ for $2 \le i \le 15$. Clearly, $|C_{\varphi}(v_i) \cap \{15, 16, 17, 18\}| \le 1$ for $1 \le i \le 4$. By Claim 2, each 2-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le 4$, we assume that $\varphi(v_iw_i) \notin \{15, 16, 17, 18\}$ (if $\varphi(v_iw_i) \in \{15, 16, 17, 18\}$, then we recolor v_iw_i with a color in $\{4, 5, \ldots, 14\} \setminus (C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in {15, 16, 17, 18} such that v_1 does not conflict with its neighbors. There are at least three available colors. (b): For any given integer i $(2 \le i \le 4)$, we select $\{b_i, d_i\}$ from {15, 16, 17, 18} to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least three selected ways. Since i has three possibilities, we have at least $3 \times 3 = 9$ different coloring ways. Hence we have at least 3 + 9 = 12 ways, while v has at most eleven conflict vertices. So we can obtain a t_G -avd-coloring of G, a contradiction.

(2) Assume, to the contrary, that G contains a 15-vertex v satisfying $d_G^{2^-}(v) \ge 1$, where $d_G^{3^-}(v) \ge 5$. Suppose that $d_G(v_1) = 2$ and $d_G(v_i) = 3$ for $2 \le i \le 5$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, H has a t_G -avd-coloring φ with the color set C. W.l.o.g., $\varphi(vv_i) = i - 1$ for $2 \le i \le 15$. Clearly, $|C_{\varphi}(v_i) \cap \{15, 16, 17, 18\}| \le 2$ for $1 \le i \le 5$. By Claim 2, each 3⁻-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for 1 < i < 5, we assume that $\varphi(v_i w_i) \notin \{15, 16, 17, 18\}$ (if $\varphi(v_i w_i) \in \{15, 16, 17, 18\}$, then we recolor $v_i w_i$ with a color in $\{8, 9, \ldots, 14\} \setminus (C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in {15, 16, 17, 18} such that v_1 does not conflict with its neighbors. There are at least three available colors. (b): For any given integer i $(2 \le i \le 5)$, we select $\{b_i, d_i\}$ from $\{15, 16, 17, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least two selected ways. Since *i* has four possibilities, we have at least $2 \times 4 = 8$ different coloring ways. Hence we have at least 3 + 8 = 11 ways, while v has at most ten conflict vertices. So we can obtain a t_G -avd-coloring of G, a contradiction.

(3) Assume, to the contrary, that there is a 15-vertex $v \in V(G)$ and an integer m $(m \leq 3)$ satisfying $d_G^{m^-}(v) \geq 1$, where $d_G^{15}(v) \leq (4-m)d_G^{4^-}(v)$. Set $d_G^{4^-}(v) = l$. Suppose that $d_G(v_1) = m$ and $d_G(v_i) \leq 4$ for $1 \leq i \leq l$ (the proof can be given similarly and simply for other cases). Let $H = G - vv_1$, by Remark 1, H has a t_G -avd-coloring φ with the color set C. Suppose that $\varphi(vv_i) = i - 1$ for $2 \le i \le 15$. Clearly, $|C_{\varphi}(v_i) \cap \{15, 16, 17, 18\}| \leq 3$ for $1 \leq i \leq l$. By Claim 2, each 4⁻-vertex has at most one conflict vertex. If v_i has a conflict vertex w_i for $1 \le i \le l$, we assume that $\varphi(v_i w_i) \notin \{15, 16, 17, 18\}$ (if $\varphi(v_i w_i) \in \{15, 16, 17, 18\}$, then we recolor $v_i w_i$ with a color in $\{8, 9, \ldots, 14\} \setminus (C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following two types of proper colorings. (a): We color vv_1 with a color in {15, 16, 17, 18} such that v_1 does not conflict with its neighbors. There are at least 5 - m available colors. (b): For any given integer i $(2 \le i \le l)$, we select $\{b_i, d_i\}$ from $\{15, 16, 17, 18\}$ to recolor vv_i and color vv_1 such that v_i and v_1 do not conflict with their neighbors. $\{b_i, d_i\}$ has at least 4 - m selected ways. Since *i* has l-1 possibilities, we have at least (4-m)(l-1) different coloring ways. Hence we have at least (5 - m) + (4 - m)(l - 1) = (4 - m)l + 1 ways, while v has at most (4 - m)l conflict vertices. So we can obtain a t_G -avd-coloring of G, a contradiction.

(4) Assume, to the contrary, that there exists a 15-vertex $v \in V(G)$ incident with a bad 3-cycle vv_1v_2 ($d_G(v_1) = d_G(v_2) = 3$), where $d_G^{15}(v) \le 8$. Let w_i ($1 \le i \le 2$) be the neighbor of v_i other than v, v_{3-i} . Let $H = G - v_1v_2$, by Remark 1, H has a t_G -avd-coloring φ with the color set C. By Claim 2, v_i ($1 \le i \le 2$) has exactly one conflict

vertex. If $C_{\varphi}(v_1) \neq C_{\varphi}(v_2)$, then we color v_1v_2 with a color in $C \setminus (C_{\varphi}(v_1) \cup C_{\varphi}(v_2))$ to get a t_G -avd-coloring of G, a contradiction. If $C_{\varphi}(v_1) = C_{\varphi}(v_2)$, w.l.o.g., $\varphi(vv_1) = \varphi(v_2w_2) = 1$, $\varphi(vv_2) = \varphi(v_1w_1) = 2$ and $\varphi(vv_i) = i$ for $3 \leq i \leq 15$. Without considering the conflict of v, we have the following two types of proper colorings. (a): For any given integer i ($1 \leq i \leq 2$), we recolor vv_i with an arbitrary color in {16, 17, 18} and color v_1v_2 with 3. Since i has two possibilities, we have $3 \times 2 = 6$ different coloring ways. (b): We select $\{b_1, b_2\}$ from {16, 17, 18} to recolor vv_1 and vv_2 , and color v_1v_2 with 3. $\{b_1, b_2\}$ has three selected ways. Hence we have 6+3=9ways, while v has at most eight conflict vertices. So we can obtain a t_G -avd-coloring of G, a contradiction.

Claim 9 Let v be a k-vertex of G with $k \ge 14$, then v is incident with at most one bad 3-cycle.

Proof Assume, to the contrary, that there exists a *k*-vertex $v \in V(G)$ ($k \ge 14$) incident with two bad 3-cycles vv_1v_2, vv_3v_4 , where $d_G(v_i) = 3$ for $1 \le i \le 4$. Let w_i be the neighbor of v_i for $1 \le i \le 4$. Let $H = G - v_1v_2$, by Remark 1, H has a t_G -avd-coloring φ with the color set C. By Claim 2, each 3-vertex has at most one conflict vertex. If $C_{\varphi}(v_1) \ne C_{\varphi}(v_2)$, then we color v_1v_2 with an arbitrary color in $C \setminus (C_{\varphi}(v_1) \cup C_{\varphi}(v_2))$ to yield a t_G -avd-coloring of G, a contradiction. If $C_{\varphi}(v_1) = C_{\varphi}(v_2)$, w.l.o.g., $\varphi(vv_1) = \varphi(v_2w_2) = 1, \varphi(vv_2) = \varphi(v_1w_1) = 2$ and $\varphi(vv_i) = i$ for $3 \le i \le k$. Note that $|\{\varphi(v_3w_3), \varphi(v_4w_4)\} \cap \{3, 4\}| \le 1$, w.l.o.g., $\varphi(v_4w_4) \ne 3$. Clearly, $|\{\varphi(v_4w_4)\} \cap \{1, 2\}| \le 1$, w.l.o.g., $\varphi(v_4w_4) \ne 1$. We first delete the color of v_3v_4 , switch the colors of vv_1 and vv_4 , then color v_1v_2, v_3v_4 properly to yield a t_G -avd-coloring of G, a contradiction.

Claim 10 Let v be a k-vertex of G with $k \ge 16$. If v is incident with a bad 3-cycle, then $d_G^k(v) \ge 2d_G^{4^-}(v) + 1$.

Proof Assume, to the contrary, that there exists a k-vertex $v \in V(G)$ $(k \ge 16)$ incident with a bad 3-cycle vv_1v_2 ($d_G(v_1) = d_G(v_2) = 3$), where $d_G^k(v) \le 2d_G^{4^-}(v)$. Let w_i $(1 \le i \le 2)$ be the neighbor of v_i other than v, v_{3-i} . Set $d_G^{4^-}(v) = m$. Suppose that $d_G(v_i) \leq 4$ for $1 \leq i \leq m$. Let $H = G - v_1 v_2$, by Remark 1, H has a t_G -avd-coloring φ with the color set C. By Claim 2, each 4⁻-vertex has at most one conflict vertex. If $C_{\varphi}(v_1) \neq C_{\varphi}(v_2)$, then we color v_1v_2 with an arbitrary color in $C \setminus (C_{\varphi}(v_1) \cup C_{\varphi}(v_2))$ to yield a t_G -avd-coloring of G, a contradiction. If $C_{\varphi}(v_1) = C_{\varphi}(v_2)$, w.l.o.g., $\varphi(vv_1) = \varphi(v_2w_2) = 1$, $\varphi(vv_2) = \varphi(v_1w_1) = 2$ and $\varphi(vv_i) = i$ for $3 \le i \le k$. Clearly, $|C_{\varphi}(v_i) \cap \{1, 2, k+1, k+2\}| \le 3$ for $1 \le i \le m$. If v_i has a conflict vertex w_i for $3 \le i \le m$, we assume that $\varphi(v_i w_i) \notin \varphi(v_i w_i)$ $\{1, 2, k + 1, k + 2\}$ (if $\varphi(v_i w_i) \in \{1, 2, k + 1, k + 2\}$, then we recolor $v_i w_i$ with a color in $\{k - 6, k - 5, ..., k\} \setminus (C_{\varphi}(v_i) \cup C_{\varphi}(w_i))$ to satisfy this condition). Without considering the conflict of v, we have the following three types of proper colorings. (a): For any given integer i $(1 \le i \le 2)$, we recolor vv_i with an arbitrary color in $\{k + 1, k + 2\}$ and color v_1v_2 with 3. Since *i* has two possibilities, we have $2 \times 2 = 4$ different coloring ways. (b): We recolor vv_i with k + i for $1 \le i \le 2$ and color v_1v_2 with 3. (c): For any given integer $i \ (3 \le i \le m)$, we recolor vv_i with b_i in $\{1, 2, k+1, k+2\}$ such that v_i does not conflict with its neighbors. If $b_i \in \{1, 2\}$,

Table 1 The relation between $d_G(v)$ and $d_H(v)$

$d_G(v)$	$3 \leq d_G(v) \leq 9$	10	11	12	13	14	15	16	17	≥ 18
$d_H(v)$	$= d_G(v)$	≥ 9	≥ 10	≥ 11	≥ 12	≥ 12	≥ 12	≥ 9	≥ 9	≥ 10

then we recolor vv_{b_i} with k + 1 or k + 2 and color v_1v_2 with 3, so there are two coloring ways. If $b_i \in \{k + 1, k + 2\}$, then we recolor vv_1 or vv_2 with a color in $\{k + 1, k + 2\} \setminus \{b_i\}$ and color v_1v_2 with 3, so there are two ways. Since *i* has m - 2 possibilities, we have 2(m - 2) ways. Hence we have 4 + 1 + 2(m - 2) = 2m + 1 ways, while *v* has at most 2m conflict vertices. So we can obtain a t_G -avd-coloring of *G*, a contradiction.

Claim 11 Yan et al. (2012) Let v be a k-vertex of G with $k \ge 16$. If $d_G^{2^-}(v) \ge 1$, then $d_G^{3^-}(v) \le \lfloor \frac{k}{2} \rfloor - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$.

Let *H* be one of the connected component of the graph which is obtained from *G* by deleting all 2⁻-vertices. By Claims 1, 3–5, 7–8, 11, the relation between $d_G(v)$ and $d_H(v)$ is as in Table 1.

By Table 1, we deduce that $\delta(H) \ge 3$, and for any $v \in V(H)$, we have $d_H^k(v) = d_G^k(v)$, where $3 \le k \le 6$. Let H^{\times} be the associated plane graph of H. By Claims 2–4, 11 and Table 1, every 3-face of H^{\times} is one of the following types:

Type I: (3, 3, 4)-faces, (4, 4, 4)-faces;

Type II: (3, 3, 10⁺)-faces, (3, 4, 10⁺)-faces, (4, 4, 9⁺)-faces, (4, 5, 9⁺)-faces;

Type III: $(3, 10^+, 10^+)$ -faces, (4, 5, 5)-faces, (4, 6, 6)-faces, $(4, 6, 9^+)$ -faces, $(4, 7^+, 7^+)$ -faces, $(5, 5, 9^+)$ -faces, $(5, 9^+, 9^+)$ -faces, $(6, 6, 9^+)$ -faces, $(6, 9^+, 9^+)$ -faces;

Type IV: (7⁺, 7⁺, 7⁺)-faces.

Let c_f be the false vertex incident with a false 3-face f, and $N_{\bar{f}}(c_f)$ be the set of neighbors of c_f which are not incident with f. f is the *corresponding face* of the vertices in $N_{\bar{f}}(c_f)$. By Claims 2–3, v has at most one corresponding 3-face of **Type** I. A vertex v is of *Type I* if it has a corresponding 3-face of **Type I**. Let $n_i(v)$ be the number of 3-faces of **Type i** incident with $v, i \in \{II, III, IV\}$. Let $n_{4^+}(v)$ be the number of 4⁺-faces incident with v in H^{\times} .

By Euler's formula $|V(H^{\times})| - |E(H^{\times})| + |F(H^{\times})| = 2$, we have:

$$\sum_{v \in V(H^{\times})} (d_{H^{\times}}(v) - 4) + \sum_{f \in F(H^{\times})} (d_{H^{\times}}(f) - 4) = -8$$

Next, we will apply the discharging method to derive a contradiction. We define the initial charge function $w(x) = d_{H^{\times}}(x) - 4$ for $x \in V(H^{\times}) \cup F(H^{\times})$, and design discharging rules to redistribute charges. Let w' be the new charge after the discharging process, then we will show that $w'(x) \ge 0$ for $x \in V(H^{\times}) \cup F(H^{\times})$, which leads to a contradiction.

The discharging rules are defined as follows. In the following rules, the degree of a vertex refers to its degree in H.

R1: Each 3-face f of **Type I** gets $\frac{1}{2}$ from every 9⁺-vertex in $N_{\bar{f}}(c_f)$ (by Claims 2–3, f is false and $N_{\bar{f}}(c_f)$ consists of two 9⁺-vertices);

R2: Each 3-face of Type II gets 1 from its incident 9⁺-vertex;

R3: Each of $(5, 9^+, 9^-)$ -faces and $(6, 9^+, 9^+)$ -faces gets $\frac{1}{2}$ from every incident 9⁺-vertex, and each other 3-face of **Type III** gets $\frac{1}{2}$ from every incident 5⁺-vertex;

R4: Each 3-face of **Type IV** gets $\frac{1}{3}$ from every incident 7⁺-vertex;

R5: Each good 3-vertex gets $\frac{1}{3}$ from every adjacent 10⁺-vertex in *H*, and each bad 3-vertex gets $\frac{1}{2}$ from every adjacent 10⁺-vertex in *H*.

We first verify the new charge of $f \in F(H^{\times})$.

• $d_{H^{\times}}(f) = 3$. By **R1–R4**, $w'(f) \ge 0$.

• $d_{H^{\times}}(f) \ge 4$. The charge remains unchanged, $w'(f) = d_{H^{\times}}(f) - 4 \ge 0$.

Next, we verify the new charge of $v \in V(H^{\times})$. For each real vertex $v \in V(H^{\times})$, we have $d_{H^{\times}}(v) = d_G(v) - d_G^{2^-}(v)$.

• $d_{H^{\times}}(v) = 3$. By Claims 2–4 and Table 1, $d_{H}^{9^{-}}(v) = d_{H}^{3}(v) \le 1$. If v is good, then $d_{H}^{10^{+}}(v) = 3$, otherwise $d_{H}^{10^{+}}(v) = 2$. By **R5**, $w'(v) \ge 3 - 4 + \min\{\frac{1}{3} \times 3, \frac{1}{2} \times 2\} = 0$. • $d_{H^{\times}}(v) = 4$. No rule applies to v, then w'(v) = 4 - 4 = 0.

• $d_{H^{\times}}(v) = 5$. By Claims 2–3 and Table 1, $d_H^{8^-}(v) = d_H^5(v) \le 1$. By **R3**, only (4, 5, 5)-faces and (5, 5, 9⁺)-faces incident with v get charges from v. There are at most two such faces incident with v. By **R3**, $w'(v) \ge 5 - 4 - \frac{1}{2} \times 2 = 0$.

• $d_{H^{\times}}(v) = 6$. By Claims 2–3 and Table 1, $d_H^{8^-}(v) = d_H^6(v) \le 1$. By **R3**, only (4, 6, 6)-faces, (4, 6, 9⁺)-faces and (6, 6, 9⁺)-faces incident with v get charges from v. There are at most four such faces incident with v. By **R3**, $w'(v) \ge 6-4-\frac{1}{2}\times 4=0$.

• $7 \le d_{H^{\times}}(v) \le 8$. By Claim 3 and Table 1, $d_{H}^{6^{-}}(v) = 0$ and v is not of Type I. Thus we have $n_{\text{III}}(v) \le 2$. By **R3–R4**, $w'(v) \ge d_{H^{\times}}(v) - 4 - \frac{1}{2} \times 2 - \frac{1}{3} \times (d_{H^{\times}}(v) - 2) = \frac{2d_{H^{\times}}(v) - 13}{2} > 0$.

• $d_{H^{\times}}(v) = 9$. We first give the following fact.

Fact 1 If $d_{H^{\times}}(v) = 9$, then $d_H^3(v) = 0$ and $d_H^{6^-}(v) \le 1$.

Proof By Table 1, we have $d_G(v) \in \{9, 10, 16, 17\}$. If $d_G(v) = 9$, by Claim 3, $d_H^{6^-}(v) = 0$. If $d_G(v) = 10$, then $d_G^{2^-}(v) = 1$. By Claim 4, $d_H^{6^-}(v) = 0$. If $d_G(v) = k$ ($16 \le k \le 17$), then $d_G^{2^-}(v) = k - 9$. By Claim 11, $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1 = k - 9$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = 0$ and $d_H^{6^-}(v) \le k - d_G^{2^-}(v) - d_G^k(v) \le k - (k - 9) - (k - 8) \le 1$.

By Fact 1, if v is of Type I, then $n_{II}(v) = 0$, otherwise $n_{II}(v) \le 1$. By **R1–R4**, $w'(v) \ge 9 - 4 - \max\{\frac{1}{2} + \frac{1}{2} \times 9, 1 + \frac{1}{2} \times 8\} = 0$. • $d_{H^{\times}}(v) = 10$. We first give the following fact.

Fact 2 If $d_{H^{\times}}(v) = 10$, then $d_{H}^{3}(v) \le 1$ and $d_{H}^{6^{-}}(v) \le 3$.

Proof By Table 1, we have $d_G(v) \in \{10, 11\}$ or $d_G(v) \ge 16$. If $d_G(v) = 10$, by Claim 4, $d_H^{6^-}(v) \le 1$. If $d_G(v) = 11$, then $d_G^{2^-}(v) = 1$. By Claims 4 and 6, $d_G^{5^-}(v) \le 1$ and $d_G^{6^-}(v) \le 2$. Thus $d_H^{3^-}(v) = 0$ and $d_H^{6^-}(v) \le 1$. If $d_G(v) = k$ ($k \ge 16$), then

 $\begin{array}{l} d_{G}^{2^{-}}(v) = k - 10. \text{ By Claim } 11, \, d_{G}^{3^{-}}(v) \leq \lceil \frac{k}{2} \rceil - 1 \text{ and } d_{G}^{k}(v) \geq d_{G}^{3^{-}}(v) + 1 \geq \\ d_{G}^{2^{-}}(v) + 1. \text{ Thus } d_{H}^{3}(v) \leq \lceil \frac{k}{2} \rceil - 1 - (k - 10) \leq 1 \text{ and } d_{H}^{6^{-}}(v) \leq k - d_{G}^{2^{-}}(v) - d_{G}^{k}(v) \leq \\ k - (k - 10) - (k - 9) \leq 3. \end{array}$

By Fact 2, if *v* is of Type I, then $n_{II}(v) \le 1$ and $n_{III}(v) \le 5$; otherwise we have either $n_{II}(v) \le 1$, or $n_{II}(v) = 2$ and $n_{III}(v) \le 4$. Noting that $d_H^3(v) \le 1$, by **R1–R5**, we have $w'(v) \ge 10-4-\max\{\frac{1}{2}+1+\frac{1}{2}\times5+\frac{1}{3}\times4, 1+\frac{1}{2}\times9, 1\times2+\frac{1}{2}\times4+\frac{1}{3}\times4\}-\frac{1}{2}=0$. • $d_{H^{\times}}(v) = 11$. We first give the following fact.

Fact 3 If $d_{H^{\times}}(v) = 11$, then $d_H^3(v) \le 2$ and $d_H^{6^-}(v) \le 5 - d_H^3(v)$.

Proof By Table 1, we have $d_G(v) \in \{11, 12\}$ or $d_G(v) \ge 16$. If $d_G(v) = 11$, by Claims 4 and 6, $d_H^{3^-}(v) \le 1$ and $d_H^{6^-}(v) \le 2$. If $d_G(v) = 12$, then $d_G^{2^-}(v) = 1$. By Claims 5–6, $d_G^{3^-}(v) \le 1$ and $d_G^{6^-}(v) \le 5$. Thus $d_H^3(v) = 0$ and $d_H^{6^-}(v) \le 4$. If $d_G(v) = k$ ($k \ge 16$), then $d_G^{2^-}(v) = k - 11$. By Claim 11, $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \le \lceil \frac{k}{2} \rceil - 1 - (k - 11) \le 2$ and $d_H^{6^-}(v) \le k - d_G^{2^-}(v) - d_G^k(v) \le k - (k - 11) - (k - 10 + d_G^3(v)) \le 5 - d_H^3(v)$.

 $d_{H}^{3}(v) \neq 0$. By Fact 3, if v is of Type I, then $n_{II}(v) \leq 1$ and $n_{III}(v) \leq 7$; otherwise we have either $n_{II}(v) \leq 1$ or $n_{II}(v) = 2$ and $n_{III}(v) \leq 6$. Noting that $d_{H}^{3}(v) \leq 2$, by **R1–R5**, we have $w'(v) \geq 11 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 7 + \frac{1}{3} \times 3, 1 + \frac{1}{2} \times 10, 1 \times 2 + \frac{1}{2} \times 6 + \frac{1}{3} \times 3\} - \frac{1}{2} \times 2 = 0$.

- $d_H^3(v) = 0$. By Fact 3, if v is of Type I, then $n_{\text{II}}(v) \le 2$, otherwise $n_{\text{II}}(v) \le 3$. By **R1–R4**, $w'(v) \ge 11 - 4 - \max\{\frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 9, 1 \times 3 + \frac{1}{2} \times 8\} = 0$. • $d_{H^{\times}}(v) = 12$. We first give the following fact.

Fact 4 If $d_{H^{\times}}(v) = 12$, then either $d_H^3(v) \le 1$ and $d_H^{5^-}(v) \le 7 - d_H^3(v)$, or $2 \le d_H^3(v) \le 3$ and $d_H^{6^-}(v) \le 7 - d_H^3(v)$.

Proof By Table 1, we have $d_G(v) \ge 12$. (a): $d_G(v) = 12$. By Claims 5–6, $d_H^3(v) \le 1$ and $d_H^{5^-}(v) \le 5$. So, in this case, Fact 4 holds. (b): $d_G(v) = k$ (13 ≤ k ≤ 14). Then $d_G^{2^-}(v) = k - 12 > 0$, by Claim 7(2), let m = 2, we have $d_G^k(v) \ge (17 - k)d_G^{(19-k)^-}(v) + 1$. Noting that $d_G^{(19-k)^-}(v) + d_G^k(v) \le k$, we get that $d_H^{(19-k)^-}(v) = d_G^{(19-k)^-}(v) - d_G^{2^-}(v) \le \lfloor \frac{k-1}{18-k} \rfloor - (k-12) = 1$. So, in this case, Fact 4 holds. (c): $d_G(v) = 15$, then $d_G^{2^-}(v) = 3$. By Claim 8(2), $d_H^3(v) = d_G^{3^-}(v) - d_G^{2^-}(v) \le 1$. By Claim 8(3), let m = 2, we have $d_G^{15}(v) \ge 2d_G^{4^-}(v) + 1$. Thus $d_H^{5^-}(v) \le d_G(v) - d_G^{2^-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2^-}(v) = 5$. So, in this case, Fact 4 holds. (d): $d_G(v) = k$ (k ≥ 16), then $d_G^{2^-}(v) = k - 12$. By Claim 11, $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) - d_G^k(v) \le k - (k-12) - (k-11+d_G^3(v)) \le 7 - d_H^3(v)$. So, in this case, Fact 4 holds. □

 $-d_H^3(v) = 3$ and $d_H^{6^-}(v) \le 4$. If v is of Type I, by Lemma 1, we have $n_{II}(v) \le 1$ and $n_{4^+}(v) \ge 1$; otherwise we have either $n_{II}(v) \le 1$, or $n_{II}(v) = 2$ and $n_{III}(v) \le 6$. By

R1-R5, $w'(v) \ge 12 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 10, 1 + \frac{1}{2} \times 11, 1 \times 2 + \frac{1}{2} \times 6 + \frac{1}{3} \times 4\} - \frac{1}{2} \times 3 = 0.$

 $-d_{H}^{3}(v) = 2 \text{ and } d_{H}^{6^{-}}(v) \le 5. \text{ If } v \text{ is of Type I, then either } n_{\Pi}(v) \le 1, \text{ or } n_{\Pi}(v) = 2 \text{ and } n_{\Pi}(v) \le 6; \text{ otherwise we have either } n_{\Pi}(v) \le 2, \text{ or } n_{\Pi}(v) = 3 \text{ and } n_{\Pi}(v) \le 6. \text{ By } \mathbf{R1}-\mathbf{R5}, w'(v) \ge 12 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 11, \frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 6 + \frac{1}{3} \times 4, 1 \times 2 + \frac{1}{2} \times 10, 1 \times 3 + \frac{1}{2} \times 6 + \frac{1}{3} \times 3\} - \frac{1}{2} \times 2 = 0.$

 $-d_{H}^{3}(v) \leq 1.$ By Fact 4, if v is of Type I, then $n_{\Pi}(v) \leq 3 - d_{H}^{3}(v)$, otherwise $n_{\Pi}(v) \leq 4 - d_{H}^{3}(v)$. By **R1–R5**, $w'(v) \geq 12 - 4 - \max\{\frac{1}{2} + 1 \times (3 - d_{H}^{3}(v)) + \frac{1}{2} \times (12 - (3 - d_{H}^{3}(v))), 1 \times (4 - d_{H}^{3}(v)) + \frac{1}{2} \times (12 - (4 - d_{H}^{3}(v)))\} - \frac{1}{2}d_{H}^{3}(v) = 0.$ • $d_{H^{\times}}(v) = 13$. We first give the following fact.

Fact 5 If $d_{H^{\times}}(v) = 13$, then $d_H^3(v) \le 4$ and $d_H^{5^-}(v) \le 9 - d_H^3(v)$. Furthermore, if $2 \le d_H^3(v) \le 4$ and $d_H^{5^-}(v) \ge 7 - d_H^3(v)$, then v is not incident with any bad 3-cycle.

Proof By Table 1, we have $d_G(v) \ge 13$. (a): $d_G(v) = 13$. If $d_G^3(v) \ge 1$, by Claim 7(2), $d_G^{13}(v) \geq 3d_G^{6-}(v) + 1$. Noting that $d_G^{6-}(v) + d_G^{13}(v) \leq 13$, we have $d_H^{5-}(v) \leq 1$ $d_G^{6^-}(v) \le 3$. If $d_G^3(v) = 0$ and $d_G^{5^-}(v) \ge 1$, by Claim 7(2), $d_G^{13}(v) \ge d_G^{5^-}(v) + 1$. Noting that $d_G^{5^-}(v) + d_G^{13}(v) \le 13$, we have $d_H^{5^-}(v) \le d_G^{5^-}(v) \le 6$. So, in this case, Fact 5 holds. (b): $d_G(v) = 14$, then $d_G^{2^-}(v) = 1$. By Claim 7(2), let m = 2, we have $d_G^{14}(v) \ge 3d_G^{5^-}(v) + 1$. Noting that $d_G^{5^-}(v) + d_G^{14}(v) \le 14$, we get that $d_{H}^{5^{-}}(v) = d_{G}^{5^{-}}(v) - d_{G}^{2^{-}}(v) \le 3 - 1 = 2$. So, in this case, Fact 5 holds. (c): $d_{G}(v) = 15$, then $d_G^{2^-}(v) = 2$. By Claim 8(2), we have $d_H^3(v) = d_G^{3^-}(v) - d_G^{2^-}(v) \le 2$. By Claim 8(3), let m = 2, we have $d_G^{15}(v) \ge 2d_G^{4^-}(v) + 1$. Thus $d_H^{5^-}(v) \le d_G(v) - 1$ $d_G^{2^-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2^-}(v) - 2d_G^3(v) = 8 - 2d_H^3(v)$. So, in this case, Fact 5 holds. (d): $d_G(v) = k$ ($k \ge 16$), then $d_G^{2^-}(v) = k - 13$. By Claim 11, $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \le \lceil \frac{k}{2} \rceil - 1 - (k - 13) \le 4$ and $d_{H}^{5^{-}}(v) \leq k - d_{G}^{2^{-}}(v) - d_{G}^{k}(v) \leq k - (k - 13) - (k - 12 + d_{G}^{3}(v)) \leq 9 - d_{H}^{3}(v).$ Furthermore, suppose that $2 \le d_H^3(v) \le 4$ and $d_H^{5^-}(v) \ge 7 - d_H^3(v)$. Assume that v is incident with a bad 3-cycle, by Claim 10, $d_G^k(v) \ge 2d_G^{4^-}(v) + 1$. Noting that $d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^k(v) - k \le 0$, while $d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^k(v) - k \ge k - 13 + 13$ $7 - d_H^3(v) + 2(k-13) + 2d_H^3(v) + 1 - k > 2k - 31 > 0$, a contradiction. So, in this case, Fact 5 holds.

 $d_{H}^{3}(v) = 4$ and $d_{H}^{5^{-}}(v) \le 5$. By Fact 5, v is not incident with any bad 3-cycle. If v is of Type I, by Lemma 1, $n_{\Pi}(v) = 0$, otherwise $n_{\Pi}(v) \le 1$. By **R1–R5**, $w'(v) \ge 13 - 4 - \max\{\frac{1}{2} + \frac{1}{2} \times 13, 1 + \frac{1}{2} \times 12\} - \frac{1}{2} \times 4 = 0$.

 $-d_{H}^{3}(v) = 3$. By Fact 5, $d_{H}^{5^{-}}(v) = 3$, or $4 \le d_{H}^{5^{-}}(v) \le 6$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\Pi}(v) \le 1$, otherwise $n_{\Pi}(v) \le 2$. By **R1–R5**, $w'(v) \ge 13 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 12, 1 \times 2 + \frac{1}{2} \times 11\} - \frac{1}{2} \times 3 = 0$.

 $-d_{H}^{3}(v) = 2$. By Fact 5, $d_{H}^{5^{-}}(v) \le 4$, or $5 \le d_{H}^{5^{-}}(v) \le 7$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\Pi}(v) \le 2$, otherwise $n_{\Pi}(v) \le 3$. By **R1–R5**, $w'(v) \ge 13 - 4 - \max\{\frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 11, 1 \times 3 + \frac{1}{2} \times 10\} - \frac{1}{2} \times 2 = 0$.

🖉 Springer

 $-d_{H}^{3}(v) \leq 1.$ By Fact 5, if v is of Type I, then $n_{\Pi}(v) \leq 4 - d_{H}^{3}(v)$, otherwise $n_{\Pi}(v) \leq 5 - d_{H}^{3}(v)$. By **R1–R5**, $w'(v) \geq 13 - 4 - \max\{\frac{1}{2} + 1 \times (4 - d_{H}^{3}(v)) + \frac{1}{2} \times (13 - (4 - d_{H}^{3}(v))), 1 \times (5 - d_{H}^{3}(v)) + \frac{1}{2} \times (13 - (5 - d_{H}^{3}(v)))\} - \frac{1}{2} \times d_{H}^{3}(v) = 0.$ • $d_{H^{\times}}(v) = 14$. We first give the following fact.

Fact 6 If $d_{H^{\times}}(v) = 14$, then either $d_H^3(v) = 0$, or $1 \le d_H^3(v) \le 5$ and $d_H^{5^-}(v) \le 11 - d_H^3(v)$. Furthermore, if $d_H^3(v) \ge 4$ and $d_H^{5^-}(v) \ge 5$, or $2 \le d_H^3(v) \le 3$ and $d_H^{5^-}(v) \ge 6$, then v is not incident with any bad 3-cycle.

Proof By Table 1, we have $d_G(v) \ge 14$. (a): $d_G(v) = 14$. If $d_G^3(v) \ge 1$, by Claim 7(2), $d_G^{14}(v) \ge 2d_G^{5^-}(v) + 1$. Noting that $d_G^{5^-}(v) + d_G^{14}(v) \le 14$, we have $d_H^{5^-}(v) \le d_G^{5^-}(v) \le 4$. So, in this case, Fact 6 holds. (b): $d_G(v) = 15$, then $d_G^{2^-}(v) = 1$. By Claim 8(2), we have $d_H^3(v) = d_G^{3^-}(v) - d_G^{2^-}(v) \le 3$. By Claim 8(3), let m = 2, we have $d_G^{15}(v) \ge 2d_G^{4^-}(v) + 1$. Thus $d_H^{5^-}(v) \le d_G(v) - d_G^{2^-}(v) - d_G^{15}(v) \le 14 - 3d_G^{2^-}(v) - 2d_G^3(v) - 2d_G^4(v) \le 11 - 2d_H^3(v)$, which implies that $d_H^3(v) \le 3$. Furthermore, if $d_H^{5^-}(v) \ge 6$, by $d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^{15}(v) \le 15$ and Claim 8(4), v is not incident with any bad 3-cycle. So, in this case, Fact 6 holds. (c): $d_G(v) = k$ ($k \ge 16$), then $d_G^{2^-}(v) = k - 14$. By Claim 11, $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \le \lceil \frac{k}{2} \rceil - 1 - (k - 14) \le 5$ and $d_H^{5^-}(v) \le k - d_G^{2^-}(v) - d_G^k(v) \le k - (k-14) - (k-13+d_G^3(v)) \le 11-d_H^3(v)$. Furthermore, suppose that $d_H^3(v) \ge 4$ and $d_H^{5^-}(v) \ge 5$, or $2 \le d_H^3(v) \le 2d_G^{4^-}(v)+1$. Noting that $d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^k(v) - k \le 0$, while $d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^k(v) - k \ge d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^k(v) - k \le 0$, while $d_G^{2^-}(v) + d_H^{5^-}(v) + d_G^k(v) - k \ge d_G^{2^-}(v) + d_H^{5^-}(v) + 1 - k \ge 3d_G^{2^-}(v) + d_H^{5^-}(v) + 1 - k \ge 3d_G^{2^-}(v) + d_H^{5^-}(v) + 1 - k \ge 3(k-14) + \min\{2 \times 4 + 5, 2 \times 2 + 6\} + 1 - k \ge 2k - 31 > 0$, a contradiction. So, in this case, Fact 6 holds. □

By Fact 6, we consider the following cases.

 $d_{H}^{3}(v) = 5$ and $d_{H}^{5^{-}}(v) \le 6$, or $d_{H}^{3}(v) = 4$ and $5 \le d_{H}^{5^{-}}(v) \le 7$. By Fact 6, v is not incident with any bad 3-cycle. If v is of Type I, by Lemma 1, we have $n_{\text{II}}(v) \le 5 - d_{H}^{3}(v)$, otherwise $n_{\text{II}}(v) \le 6 - d_{H}^{3}(v)$. By **R1–R5**, $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + 1 \times (5 - d_{H}^{3}(v)) + \frac{1}{2} \times (14 - (5 - d_{H}^{3}(v))), 1 \times (6 - d_{H}^{3}(v)) + \frac{1}{2} \times (14 - (6 - d_{H}^{3}(v)))\} - \frac{1}{2}d_{H}^{3}(v) = 0.$

 $d_{H}^{3}(v) = d_{H}^{5^{-}}(v) = 4$. If v is of Type I, by Lemma 1, we have $n_{II}(v) \le 1$, otherwise, by Claim 9, we have $n_{II}(v) \le 2$. By **R1–R5**, $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 13, 1 \times 2 + \frac{1}{2} \times 12\} - \frac{1}{2} \times 4 = 0$.

 $-2 \le d_H^3(v) \le 3$ and $d_H^{5^-}(v) \le 5$, or $d_H^3(v) = 3$ and $6 \le d_H^{5^-}(v) \le 8$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{II}(v) \le 2$, otherwise $n_{II}(v) \le 3$. Noting that $d_H^3(v) \le 3$, by **R1–R5**, we have $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 12, 1 \times 3 + \frac{1}{2} \times 11\} - \frac{1}{2} \times 3 = 0$.

 $-d_{H}^{3}(v) = 2, 6 \le d_{H}^{5^{-}}(v) \le 9$ and v is not incident with any bad 3-cycle. If v is of Type I, then $n_{\Pi}(v) \le 3$, otherwise $n_{\Pi}(v) \le 4$. By **R1–R5**, $w'(v) \ge 14 - 4 - \max\{\frac{1}{2} + 1 \times 3 + \frac{1}{2} \times 11, 1 \times 4 + \frac{1}{2} \times 10\} - \frac{1}{2} \times 2 = 0$.

 $-d_{H}^{3}(v) = 1 \text{ and } d_{H}^{5^{-}}(v) \leq 10. \text{ If } v \text{ is of Type I, then } n_{\Pi}(v) \leq 4, \text{ otherwise} \\ n_{\Pi}(v) \leq 5. \text{ By R1-R5}, w'(v) \geq 14-4-\max\{\frac{1}{2}+1\times4+\frac{1}{2}\times10, 1\times5+\frac{1}{2}\times9\}-\frac{1}{2}=0. \\ -d_{H}^{3}(v) = 0. \text{ Then } n_{\Pi}(v) \leq 5, \text{ or } n_{\Pi}(v) = 6 \text{ and } n_{4^{+}}(v) \geq 1, \text{ or } n_{\Pi}(v) = 7 \text{ and} \\ n_{4^{+}}(v) \geq 5 \text{ by Claims } 2-3. \text{ By R1-R4}, w'(v) \geq 14-4-\frac{1}{2}-\max\{1\times5+\frac{1}{2}\times9, 1\times6+\frac{1}{2}\times7, 1\times7+\frac{1}{2}\times2\}=0.$

Remark 3 For any 15⁺-vertex $v \in V(H^{\times})$, if v is not incident with any bad 3-cycle and $d_H^{3b}(v) \ge 2$, then $n_{4^+}(v) \ge 1$.

• $d_{H^{\times}}(v) = 15$. We first give the following fact.

Fact 7 If $d_{H^{\times}}(v) = 15$, then either $d_H^3(v) = 0$, or $1 \le d_H^3(v) \le 7$ and $d_H^{6^-}(v) \le 14 - d_H^3(v)$. Furthermore, if $d_H^3(v) \ge 3$ and $d_H^{6^-}(v) \ge 7$, or $d_H^3(v) = 2$ and $d_H^{6^-}(v) \ge 9$, then v is not incident with any bad 3-cycle.

Proof By Table 1, we have $d_G(v) \ge 15$. (a): $d_G(v) = 15$. If $d_G^3(v) \ge 1$, by Claim 8(3), let m = 3, we have $d_G^{15}(v) \ge d_G^{4^-}(v) + 1$. Noting that $d_H^3(v) \le d_G^{4^-}(v) \le d_G^{6^-}(v) \le d_G^{6^-}(v) \le d_G^{6^-}(v) \ge 7$, by $d_G^{6^-}(v) + d_G^{15}(v) \le 7$ and $d_H^{6^-}(v) \le 14 - d_H^3(v)$. Furthermore, if $d_H^{6^-}(v) \ge 7$, by $d_G^{6^-}(v) + d_G^{15}(v) \le 15$ and Claim 8(4), v is not incident with any bad 3-cycle. So, in this case, Fact 7 holds. (b): $d_G(v) = k$ ($k \ge 16$), then $d_G^{2^-}(v) = k - 15$. By Claim 11, $d_G^{3^-}(v) \le \lceil \frac{k}{2} \rceil - 1$ and $d_G^k(v) \ge d_G^{3^-}(v) + 1$. Thus $d_H^3(v) = d_G^3(v) \le \lceil \frac{k}{2} \rceil - 1 - (k - 15) \le 6$ and $d_H^{6^-}(v) \le k - d_G^{2^-}(v) - d_G^k(v) \le k - (k - 15) - (k - 14 + d_G^3(v)) < 14 - d_H^3(v)$. Furthermore, suppose that $d_H^3(v) \ge 3$ and $d_H^{6^-}(v) \ge 7$, or $d_H^3(v) = 2$ and $d_H^{6^-}(v) \ge 9$. Assume that v is incident with a bad 3-cycle, by Claim 10, $d_G^k(v) \ge 2d_G^{4^-}(v) + 1$. Noting that $d_G^{2^-}(v) + d_H^{6^-}(v) - k \le 0$, while $d_G^{2^-}(v) + d_H^{6^-}(v) + d_G^k(v) - k \ge d_G^{2^-}(v) + d_H^{6^-}(v) + 1 - k \ge 3d_G^{2^-}(v) + 2d_H^{3^+}(v) + 1 - k \ge 3d_G^{2^-}(v) + 2d_H^{3^+}(v) + d_H^{6^-}(v) + 1 - k \ge 3(k - 15) + \min\{2 \times 3 + 7, 2 \times 2 + 9\} + 1 - k \ge 2k - 31 > 0$, a contradiction. So, in this case, Fact 7 holds. □

By Fact 7, we consider the following cases.

 $-d_{H}^{3}(v) = d_{H}^{6^{-}}(v) = 7$, and v is not incident with any bad 3-cycle. If v is of Type I, by Lemma 1, we have $n_{\Pi}(v) = 0$ and $n_{4^{+}}(v) \ge 1$; otherwise we have $n_{\Pi}(v) \le 1$ and either $d_{H}^{3b}(v) \le 1$ or $n_{4^{+}}(v) \ge 1$ by Remark 3. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + \frac{1}{2} \times 14 + \frac{1}{2} \times 7, 1 + \frac{1}{2} \times 14 + \frac{1}{2} + \frac{1}{3} \times 6, 1 + \frac{1}{2} \times 13 + \frac{1}{2} \times 7\} = 0$.

 $-d_{H}^{3}(v) = d_{H}^{6^{-}}(v) = 6$. By Claim 9, v is incident with at most one bad 3-cycle. If v is of Type I, by Lemma 1, then $n_{\Pi}(v) \le 1$ and $n_{4^{+}}(v) \ge 1$; otherwise we have either $n_{\Pi}(v) \le 1$, or $n_{\Pi}(v) = 2$ and $n_{\Pi}(v) \le 10$. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 13, 1 + \frac{1}{2} \times 14, 1 \times 2 + \frac{1}{2} \times 10 + \frac{1}{3} \times 3\} - \frac{1}{2} \times 6 = 0$.

 $d_{H}^{3}(v) = 6, 7 \le d_{H}^{6^{-}}(v) \le 8$, and v is not incident with any bad 3-cycle. If v is of Type I, we have $n_{II}(v) \le 1$ and either $d_{H}^{3b}(v) \le 1$ or $n_{4^{+}}(v) \ge 1$ by Remark 3; otherwise we have $n_{II}(v) \le 2$ and either $d_{H}^{3b}(v) \le 1$ or $n_{4^{+}}(v) \ge 1$ by Remark 3. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 14 + \frac{1}{2} + \frac{1}{3} \times 5, \frac{1}{2} + 1 + \frac{1}{2} \times 13 + \frac{1}{2} \times 6, 1 \times 2 + \frac{1}{2} \times 13 + \frac{1}{2} + \frac{1}{3} \times 5, 1 \times 2 + \frac{1}{2} \times 12 + \frac{1}{2} \times 6\} = 0.$

Springer

 $d_{H}^{3}(v) = 5$ and $d_{H}^{6-}(v) \le 6$. By Claim 9, v is incident with at most one bad 3-cycle. If v is of Type I, then $n_{\Pi}(v) \le 1$, otherwise $n_{\Pi}(v) \le 2$. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 14, 1 \times 2 + \frac{1}{2} \times 13\} - \frac{1}{2} \times 5 = 0$.

 $d_{H}^{3}(v) = 5, 7 \le d_{H}^{6^{-}}(v) \le 9$, and v is not incident with any bad 3-cycle. If v is of Type I, then either $n_{II}(v) \le 1$, or $n_{II}(v) = 2$ and $n_{4^{+}}(v) \ge 1$ by Claims 2–3; otherwise we have $n_{II}(v) \le 3$ and either $d_{H}^{3b}(v) \le 1$ or $n_{4^{+}}(v) \ge 1$ by Remark 3. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 + \frac{1}{2} \times 14 + \frac{1}{2} \times 5, \frac{1}{2} + 1 \times 2 + \frac{1}{2} \times 12 + \frac{1}{2} \times 5, 1 \times 3 + \frac{1}{2} \times 12 + \frac{1}{2} + \frac{1}{3} \times 4, 1 \times 3 + \frac{1}{2} \times 11 + \frac{1}{2} \times 5\} = 0.$

 $-3 \le d_H^3(v) \le 4$ and $d_H^{6-}(v) \le 6$. By Claim 9, v is incident with at most one bad 3cycle. If v is of Type I, then $n_{\Pi}(v) \le 2$, otherwise $n_{\Pi}(v) \le 3$. Noting that $d_H^3(v) \le 4$, by **R1–R5**, we have $w'(v) \ge 15-4-\max\{\frac{1}{2}+1\times 2+\frac{1}{2}\times 13, 1\times 3+\frac{1}{2}\times 12\}-\frac{1}{2}\times 4=0$.

 $-3 \le d_{H}^{3}(v) \le 4, 7 \le d_{H}^{6-}(v) \le 14 - d_{H}^{3}(v), \text{ and } v \text{ is not incident with any bad } 3 \text{-cycle. If } v \text{ is of Type I, then either } n_{\Pi}(v) \le 6 - d_{H}^{3}(v), \text{ or } n_{\Pi}(v) = 7 - d_{H}^{3}(v) \text{ and } n_{4+}(v) \ge 1 \text{ by Claims } 2 \text{-} 3; \text{ otherwise we have either } n_{\Pi}(v) \le 7 - d_{H}^{3}(v), \text{ or } n_{\Pi}(v) = 8 - d_{H}^{3}(v) \text{ and } n_{4+}(v) \ge 1 \text{ by Claims } 2 \text{-} 3. \text{ By } \mathbf{R1} \text{-} \mathbf{R5}, w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 \times (6 - d_{H}^{3}(v)) + \frac{1}{2} \times (15 - (6 - d_{H}^{3}(v))), \frac{1}{2} + 1 \times (7 - d_{H}^{3}(v)) + \frac{1}{2} \times (14 - (7 - d_{H}^{3}(v))), 1 \times (7 - d_{H}^{3}(v)) + \frac{1}{2} \times (15 - (7 - d_{H}^{3}(v))), 1 \times (8 - d_{H}^{3}(v)) + \frac{1}{2} \times (14 - (8 - d_{H}^{3}(v)))\} - \frac{1}{2}d_{H}^{3}(v) = 0.$

 $-d_{H}^{3}(v) = 2$ and $d_{H}^{6^{-}}(v) \le 8$. If v is of Type I, then $n_{\text{II}}(v) \le 4$, otherwise $n_{\text{II}}(v) \le 5$. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 \times 4 + \frac{1}{2} \times 11, 1 \times 5 + \frac{1}{2} \times 10\} - \frac{1}{2} \times 2 = 0$.

 $d_{H}^{3}(v) = 2, 9 \le d_{H}^{6^{-}}(v) \le 12$, and v is not incident with any bad 3-cycle. If v is of Type I, then either $n_{\text{II}}(v) \le 4$, or $n_{\text{II}}(v) = 5$ and $n_{4^{+}}(v) \ge 1$ by Claims 2–3; otherwise we have either $n_{\text{II}}(v) \le 5$, or $n_{\text{II}}(v) = 6$ and $n_{4^{+}}(v) \ge 1$ by Claims 2–3. By **R1–R5**, $w'(v) \ge 15 - 4 - \max\{\frac{1}{2} + 1 \times 4 + \frac{1}{2} \times 11, \frac{1}{2} + 1 \times 5 + \frac{1}{2} \times 9, 1 \times 5 + \frac{1}{2} \times 10, 1 \times 6 + \frac{1}{2} \times 8\} - \frac{1}{2} \times 2 = 0.$

 $\begin{array}{l} -d_{H}^{3}(v) \leq 1 \text{ and } d_{H}^{6-}(v) \leq 15 - 2d_{H}^{3}(v). \text{ If } v \text{ is of Type I, then either } n_{II}(v) \leq 6 - d_{H}^{3}(v), \text{ or } n_{II}(v) = 7 - d_{H}^{3}(v) \text{ and } n_{4+}(v) \geq 1 \text{ by Claims 2-3; otherwise we have either } n_{II}(v) \leq 7 - d_{H}^{3}(v), \text{ or } n_{II}(v) = 8 - d_{H}^{3}(v) \text{ and } n_{4+}(v) \geq 1 \text{ by Claims 2-3. By } \\ \mathbf{R1-R5}, w'(v) \geq 15 - 4 - \max\{\frac{1}{2} + 1 \times (6 - d_{H}^{3}(v)) + \frac{1}{2} \times (15 - (6 - d_{H}^{3}(v))), \frac{1}{2} + 1 \times (7 - d_{H}^{3}(v)) + \frac{1}{2} \times (14 - (7 - d_{H}^{3}(v))), 1 \times (7 - d_{H}^{3}(v)) + \frac{1}{2} \times (15 - (7 - d_{H}^{3}(v))), 1 \times (8 - d_{H}^{3}(v)) + \frac{1}{2} \times (14 - (8 - d_{H}^{3}(v)))\} - \frac{1}{2}d_{H}^{3}(v) = 0. \end{array}$

• $d_{H^{\times}}(v) = k$ ($k \ge 16$). By Claim 2 and Table 1, every 5⁻-vertex has at most one conflict vertex.

 $-d_{H}^{3}(v) = 0. \text{ (a): } 3n_{\Pi}(v) \le k + 5. \text{ By } \mathbf{R1} - \mathbf{R4}, w'(v) \ge k - 4 - \frac{1}{2} - 1 \times n_{\Pi}(v) - \frac{1}{2} \times (k - n_{\Pi}(v)) \ge \frac{k - 16}{3} \ge 0. \text{ (b): } 3n_{\Pi}(v) > k + 5. \text{ Note that a 3-face of } \mathbf{Type}$ **II** is incident with two 5⁻-vertices. If v is not adjacent to any false vertex, then $d_{H}^{9^+}(v) \le k - 2n_{\Pi}(v)$ and $n_{4^+}(v) \ge n_{\Pi}(v) - d_{H}^{9^+}(v)$; otherwise we have $d_{H}^{9^+}(v) \le k - 2n_{\Pi}(v) + 2$ and $n_{4^+}(v) \ge n_{\Pi}(v) - d_{H}^{9^+}(v) - 1. \text{ Thus } n_{4^+}(v) \ge \min\{n_{\Pi}(v) - (k - 2n_{\Pi}(v)), n_{\Pi}(v) - (k - 2n_{\Pi}(v) + 2) - 1\} = 3n_{\Pi}(v) - k - 3. \text{ By } \mathbf{R1} - \mathbf{R4}, w'(v) \ge k - 4 - \frac{1}{2} - 1 \times n_{\Pi}(v) - \frac{1}{2} \times (k - n_{\Pi}(v) - n_{4^+}(v)) = \frac{1}{2}(k - n_{\Pi}(v) + n_{4^+}(v) - 9) \ge \frac{1}{2}(k - n_{\Pi}(v) + (3n_{\Pi}(v) - k - 3) - 9) = n_{\Pi}(v) - 6 > \frac{k + 5}{3} - 6 > 0.$ $\begin{array}{l} -d_{H}^{3}(v) \geq 1 \text{ and } v \text{ is incident with a bad 3-cycle. (a): If } v \text{ is of Type I, then } v \text{ is not incident with any } (4, 5, 16^{+})\text{-face. By Lemma 1 and Claim 9, we have } n_{\Pi}(v) \leq \frac{d_{H}^{4}(v)}{2} + 1. \text{ (b): If } v \text{ is not of Type I. Noting that } v \text{ is incident with at most two } (4, 5, 16^{+})\text{-faces, we have } n_{\Pi}(v) \leq \frac{d_{H}^{4}(v)}{2} + 3. \text{ By Claim 10, } d_{H}^{3}(v) + d_{H}^{4}(v) \leq d_{G}^{4-}(v) \leq \frac{k-1}{3}. \text{ By } \mathbf{R1}\text{-}\mathbf{R5}, w'(v) \geq k - 4 - \max\{\frac{1}{2} + 1 \times (\frac{d_{H}^{4}(v)}{2} + 1) + \frac{1}{2} \times (k - \frac{d_{H}^{4}(v)}{2} - 1), 1 \times (\frac{d_{H}^{4}(v)}{2} + 3) + \frac{1}{2} \times (k - \frac{d_{H}^{4}(v)}{2} - 3)\} - \frac{1}{2}d_{H}^{3}(v) = \frac{k}{2} - \frac{d_{H}^{3}(v)}{2} - \frac{d_{H}^{4}(v)}{4} - \frac{11}{2} \geq \frac{k-11}{2} - \frac{d_{H}^{3}(v)+d_{H}^{4}(v)}{2} \geq \frac{k-11}{2} - \frac{k-16}{5} = \frac{k-16}{3} \geq 0. \\ -d_{H}^{3}(v) \geq 1 \text{ and } v \text{ is not incident with any bad 3-cycle.} \\ - n_{4} + (v) = 0. \text{ Then } 3n_{\Pi}(v) + 2d_{H}^{3}(v) - 4 \leq k. \text{ By Remark 3, } d_{H}^{3b}(v) \leq 1. \text{ By } \mathbf{R1}\text{-}\mathbf{R5}, w'(v) \geq k - 4 - \frac{1}{2} - 1 \times n_{\Pi}(v) - \frac{1}{2} \times (k - n_{\Pi}(v)) - (\frac{1}{2} + \frac{1}{3}(d_{H}^{3}(v) - 1)) = \frac{k}{2} - \frac{1}{6}(3n_{\Pi}(v) + 2d_{H}^{3}(v)) - \frac{14}{3} \geq \frac{k}{2} - \frac{k+4}{6} - \frac{14}{3} = \frac{k-16}{3} \geq 0. \\ - n_{4} + (v) \geq 1 \text{ and } 3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor \leq k + 4. \text{ Note that } v \text{ is not incident with any bad 3-cycle.} \\ - n_{4} + (v) \geq 1 \text{ and } 3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor \leq k + 4. \text{ Note that } v \text{ is not incident with any bad 3-cycle.} \\ + \frac{d_{H}^{3b}(v)}{2} - \frac{1}{2} \text{ and } 3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor \leq k + 4. \text{ Note that } v \text{ is not incident with any bad 3-cycle. If <math>v$ is of Type I, $n_{4} + (v) \geq \lceil \frac{d_{H}^{3b}(v)}{2} \rceil \in k + 4. \text{ Note that } v \text{ is not incident with any bad 3-cycle. If <math>v$ is of Type I, $n_{4} + (v) \geq \lceil \frac{d_{H}^{3b}(v)}{2} \rceil = 1. \text{ By } \mathbf{R1}$

$$\lceil \frac{d_{H}^{3b}(v)}{2} \rceil \rangle, 1 \times n_{\Pi}(v) + \frac{1}{2} \times (k - n_{\Pi}(v) - (\lceil \frac{d_{H}^{3b}(v)}{2} \rceil - 1)) \rbrace - (\frac{1}{3} \times d_{H}^{3g}(v) + \frac{1}{2} \times d_{H}^{3b}(v)) = \frac{k - 9}{2} - \frac{n_{\Pi}(v)}{2} - \frac{d_{H}^{3b}(v)}{3} - \frac{d_{H}^{3b}(v)}{2} + \frac{1}{2} \lceil \frac{d_{H}^{3b}(v)}{2} \rceil = \frac{k - 9}{2} - \frac{1}{6} (3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor) \ge \frac{k - 9}{2} - \frac{k + 4}{6} = \frac{2k - 31}{6} > 0.$$

 $\begin{aligned} & --n_{4}+(v) \geq 1 \text{ and } 3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor \geq k+5. \text{ Note that } v \text{ is not incident} \\ & \text{with any bad 3-cycle. If } v \text{ is of Type I, } n_{4}+(v) \geq 3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor - (k+5) + \lceil \frac{d_{H}^{3b}(v)}{2} \rceil^{-1} \text{; otherwise we have } n_{4}+(v) \geq 3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor - (k+5) + (\lceil \frac{d_{H}^{3b}(v)}{2} \rceil^{-1}). \text{ By R1-R5, } w'(v) \geq k-4 - \max\{\frac{1}{2}+1 \times n_{\Pi}(v)+\frac{1}{2} \times (k-n_{\Pi}(v) - (3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor - (k+5) + \lceil \frac{d_{H}^{3b}(v)}{2} \rceil)), 1 \times n_{\Pi}(v) + \frac{1}{2} \times (k-n_{\Pi}(v) - (3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor - (k+5) + \lceil \frac{d_{H}^{3b}(v)}{2} \rceil - 1))\} - (\frac{1}{3} \times d_{H}^{3g}(v) + \frac{1}{2} \times d_{H}^{3g}(v)) = n_{\Pi}(v) + \frac{2}{3}d_{H}^{3g}(v) + \frac{1}{2} \lceil \frac{d_{H}^{3b}(v)}{2} \rceil \rceil + \frac{3}{2} \lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor - \frac{d_{H}^{3b}(v)}{2} - 7 = \frac{1}{3}(3n_{\Pi}(v) + 2d_{H}^{3g}(v) + 3\lfloor \frac{d_{H}^{3b}(v)}{2} \rfloor) - 7 \geq \frac{k+5}{3} - 7 \geq 0. \end{aligned}$

In conclusion, the new charge of $x \in V(H^{\times}) \cup F(H^{\times})$ is nonnegative, a contradiction. The proof of Theorem 1 is done.

Acknowledgements This work was supported by the National Natural Science Foundation of China (12071260, 12001154), and the Natural Science Foundation of Hebei Province(A2021202025).

References

- Albertson MO (2008) Chromatic number, independence ratio, and crossing number. ARS Math Contemp 1:1–6
- Bonamy M, Bousquet N, Hocquard H (2013) Adjacent vertex-distinguishing edge colorings of graphs. EuroComb 16:313–318

Balister PN, Györi E, Lehel J, Schelp RH (2007) Adjacent vertex distinguishing edge-colorings. SIAM J Discrete Math 21(1):237–250

Bondy JA, Murty USR (1976) Graph theory with applications. North-Holland, New York

- Horňák M, Huang DJ, Wang WF (2014) On neighbor-distinguishing index of planar graphs. J Graph Theory 76(4):262–278
- Wang WF, Huang DJ (2015) A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree. SIAM J Discrete Math 29(4):2412–2431

Yan CC, Huang DJ, Wang WF (2012) Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least four. J Math Study 45(4):331–341

Zhang ZF, Liu LZ, Wang JF (2002) Adjacent strong edge coloring of graphs. Appl Math Lett 15:623–626 Zhang X, Wu JL (2011) On edge colorings of 1-planar graphs. Inf Process Lett 111:124–128

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.