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Abstract
Path cover is a well-known intractable problem that finds aminimum number of vertex
disjoint paths in a given graph to cover all the vertices.We show that a variant, in which
the objective is tominimize the number of length-0 paths, is polynomial-time solvable.
We further show that another variant, to minimize the total number of length-0 and
length-1 paths, is also polynomial-time solvable. Both variants find applications in
approximating the two-machine flow-shop scheduling problem in which job process-
ing has constraints that are formulated as a conflict graph. For the unit jobs, we present
a 4/3-approximation for the scheduling problemwith an arbitrary conflict graph, based
on the exact algorithm for the above second variant of the path cover problem. For
arbitrary jobs where the conflict graph is the union of two disjoint cliques, we present
a simple 3/2-approximation algorithm.

Keywords Path cover · Flow-shop scheduling · Conflict graph, b-matching ·
Approximation algorithm

1 Introduction

Scheduling is a well established research area that finds numerous applications in
modern manufacturing industry and in operations research at large. All scheduling
problems modeling real-life applications have at least two components, the machines
and the jobs. In one big category of problems that have received intensive studies,
scheduling constraints are imposed between amachine and a job, such as a time interval
during which the job is allowed to be processed nonpreemptively on the machine,
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while the machines are considered as independent from each other, so are the jobs.
For example, the parallel machine scheduling (themultiprocessor scheduling in Garey
and Johnson (1979)) is one of the first studied problems, denoted as Pm || Cmax in
the three-field notation (Graham et al. 1979), in which each job needs to be processed
by one of the m given identical machines, with the goal to minimize the maximum
job completion time (called the makespan); the m-machine flow-shop scheduling (the
flow-shop scheduling in Garey and Johnson (1979)) is another first-studied problem,
denoted as Fm || Cmax, in which each job needs to be processed by all the m given
machines in the same sequential order, with the goal to minimize the makespan.

In another category of scheduling problems, additional but limited resources are
required for themachines to process the jobs (Garey and Graham 1975). The resources
are renewable but normally non-sharable in practice; the jobs competing for the same
resource have to be processed at different time if their total demand for a certain
resource exceeds the supply. Scheduling with resource constraints (Garey and Gra-
ham 1975; Garey and Johnson 1975) or scheduling with conflicts (SwC) (Even et al.
2009) also finds numerous applications (Bodlaender and Jansen 1995; Baker and
Coffman 1996; Halldórsson et al. 2003) and has attracted as much attention as the
non-constrained counterpart. In this paper, we use SwC to refer to the nonpreemptive
scheduling problems with additional constraints or conflicting relationships among
the jobs to disallow them to be processed concurrently on different machines. We
remark that in the literature, SwC is also presented as the scheduling with agreements
(SwA), in which a subset of jobs can be processed concurrently on different machines
if and only if they are agreeing with each other (Bendraouche and Boudhar 2012,
2016). While in the most general scenario a conflict could involve multiple jobs, in
this paper we consider only those conflicts each involves two jobs and consequently
all the conflicts under consideration can be presented as a conflict graph G = (V , E),
where V is the set of jobs and an edge e = (J j1 , J j2) ∈ E represents a conflicting
pair such that the two jobs J j1 and J j2 cannot be processed concurrently on different
machines in any feasible schedule.

Extending the three-field notation (Graham et al. 1979), the parallel machine SwC
with a conflict graph G = (V , E) (also abbreviated as SCI in the literature) (Even
et al. 2009) is denoted as Pm | G = (V , E), p j | Cmax, where the first field Pm tells
that there are m parallel identical machines, the second field describes the conflict
graph G = (V , E) over the set V of all the jobs, where the job J j requires a non-
preemptive processing time of p j on any machine, and the last field specifies the
objective function to minimize the makespan Cmax. One clearly sees when E = ∅,
Pm | G = (V , E), p j | Cmax reduces to the classical multiprocessor scheduling
Pm || Cmax, which is already NP-hard for m ≥ 2 (Garey and Johnson 1979). Indeed,
with m either a given constant or part of input, Pm | G = (V , E), p j | Cmax is more
difficult to approximate, and there is a line of rich research to consider the unit jobs
(that is, p j = 1) and/or to consider certain special classes of conflict graphs. The
interested reader might refer to Even et al. (2009) and the references therein.

In this paper, we are interested in the two-machine flow-shop SwC. Note that in the
generalm-machine (also calledm-stage) flow-shop (Garey and Johnson 1979) denoted
as Fm || Cmax, there are m ≥ 2 machines M1, M2, . . . , Mm , a set V of jobs, each job
J j needs to be processed throughM1, M2, . . . , Mm sequentially with processing times
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p1 j , p2 j , . . . , pmj respectively. When m = 2, the two-machine flow-shop problem
is polynomial time solvable, by Johnson’s algorithm (Johnson 1954); the m-machine
flow-shop problem whenm ≥ 3 is stronglyNP-hard (Garey et al. 1976). After several
efforts (Johnson 1954; Garey et al. 1976; Gonzalez and Sahni 1978; Chen et al. 1996),
Hall presented a polynomial-time approximation scheme (PTAS) for the m-machine
flow-shop problem, for any fixed integer m ≥ 3 (Hall 1998). When m is part of input
(i.e. an arbitrary integer), there is no known constant ratio approximation algorithm,
and the problem cannot be approximated within 1.25 unless P = NP (Williamson
et al. 1997).

Them-machine flow-shop SwCwas first studied in 1980’s. Blazewicz et al. (1983)
considered multiple resource characteristics including the number of resource types,
resource availabilities and resource requirements; they expanded the middle field of
the three-field notation to express these resource characteristics, for which the conflict
relationships are modeled by complex structures such as hypergraphs. At the end, they
proved complexity results for several variants in which either the conflict relationships
are simple enough or only the unit jobs are considered. Further studies onmore variants
can be found in Röck (1983, 1984); Błażewicz et al. (1988); Süral et al. (1992). In
this paper, we consider those conflicts each involves only two jobs such that all the
conflicts under consideration can be presented as a conflict graph G = (V , E). The
m-machine flow-shop scheduling with a conflict graph G = (V , E) is denoted as
Fm | G = (V , E), pi j | Cmax. We remark that our notation is slightly different from
the one introduced by Blazewicz et al. (1983), which uses a prefix “res” in the middle
field for describing the resource characteristics.

Several applications of the m-machine flow-shop scheduling with a conflict graph
were mentioned in the literature. In a typical example of scheduling medical tests in
an outpatient health care facility where each patient (regarded as a job) needs to do a
sequence ofm tests (regarded as themachines), a patient must be accompanied by their
doctor during a test and thus two patients under the care of the same doctor cannot go
for tests simultaneously. That is, two patients of the same doctor are conflicting to each
other, and all the conflicts can be effectively described as a graph G = (V , E), where
V is the set of all the patients and an edge represents a conflicting pair of patients.

In two recent papers, Tellache and Boudhar (2017; 2018) studied the problem F2 |
G = (V , E), pi j | Cmax, which they denoted as FSC. In Tellache and Boudhar (2018),
the authors summarized and/or proved several complexity results; to name a few, F2 |
G = (V , E), pi j | Cmax is strongly NP-hard when G = (V , E) is the complement
of a complete split graph (Tellache and Boudhar 2018; Blazewicz et al. 1983) (that is,
G is the union of a clique and an independent set), F2 | G = (V , E), pi j | Cmax is
weakly NP-hard when G = (V , E) is the complement of a complete bipartite graph
(Tellache and Boudhar 2018) (that is, G is the union of two disjoint cliques), and
for an arbitrary conflict graph G = (V , E), F2 | G = (V , E), pi j = 1 | Cmax is
strongly NP-hard (Tellache and Boudhar 2018). In Tellache and Boudhar (2017), the
authors proposed three mixed-integer linear programming models and a branch and
bound algorithm to solve the last variant F2 | G = (V , E), pi j = 1 | Cmax exactly;
their empirical study showed that the branch and bound algorithm outperforms and
can solve instances of up to 20000 jobs.
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In this paper, we pursue approximation algorithms with provable performance for
theNP-hard variants of the two-machine flow-shop schedulingwith a conflict graph. In
Sect. 2, we present a 4/3-approximation for the strongly NP-hard scheduling problem
F2 | G = (V , E), pi j = 1 | Cmax for the unit jobs with an arbitrary conflict graph.
In Sect. 3, we present a simple 3/2-approximation for the weakly NP-hard scheduling
problem F2 | G = K� ∪ Kn−�, pi j | Cmax for arbitrary jobs with a conflict graph that
is the union of two disjoint cliques (that is, the complement of a complete bipartite
graph). Some concluding remarks are provided in Sect. 4.

2 Approximating F2 | G = (V, E),pij = 1 | Cmax

Tellache and Boudhar proved that F2 | G = (V , E), pi j = 1 | Cmax is strongly
NP-hard by a reduction from the well known Hamiltonian path problem, which is
strongly NP-complete (Garey and Johnson 1979). Furthermore, they remarked that
F2 | G = (V , E), pi j = 1 | Cmax has a feasible schedule of makespan Cmax = n+ k
if and only if the complement G of the conflict graph G, called the agreement graph,
has a path cover of size k (that is, a collection of k vertex-disjoint paths that covers all
the vertices of the graphG), where n is the number of jobs (or vertices) in the instance.
This way, F2 | G = (V , E), pi j = 1 | Cmax is polynomially equivalent to the Path
Cover problem, which is NP-hard even on some special classes of graphs including
planar graphs (Garey et al. 1976), bipartite graphs (Golumbic 2004), chordal graphs
(Golumbic 2004), chordal bipartite graphs (Müller 1996) and strongly chordal graphs
(Müller 1996).

In terms of approximability, to the best of our knowledge there is no o(n)-
approximation for the Path Cover problem. Nevertheless, since a minimum path cover
has size in between 1 and n, F2 | G = (V , E), pi j = 1 | Cmax admits a trivial 2-
approximation algorithm. Furthermore, if there is an α-approximation algorithm for
the Path Cover problem, where α ≥ 1, then it is also an (α + 1)/2-approximation
algorithm for F2 | G = (V , E), pi j = 1 | Cmax. However, one sees that our to-be
presented 4/3-approximation algorithm for F2 | G = (V , E), pi j = 1 | Cmax is only
an O(n)-approximation algorithm for the Path Cover problem.

We give some terminologies first. The conflict graphs considered in this paper are
all simple graphs. All paths and cycles in a graph are also simple. The number of edges
on a path/cycle defines the length of the path/cycle. A length-k path/cycle is also called
a k-path/cycle for short. Note that a single vertex is regarded as a 0-path, while a cycle
has length at least 3. For an integer b ≥ 1, a b-matching of a graph is a spanning
subgraph in which every vertex has degree no greater than b; a maximum b-matching
is a b-matching that contains the maximum number of edges. Amaximum b-matching
of a graph can be computed in O(m2 log n log b)-time (specifically, a maximum 2-
matching of a graph can be computed in O(mn log n)-time), where n and m are the
number of vertices and the number of edges in the graph, respectively (Gabow 1983).
Clearly, a graph could have multiple distinct maximum b-matchings.

Given a graph, a path cover is a collection of vertex-disjoint paths in the graph that
covers all the vertices, and the size of the path cover is the number of paths therein. The
Path Cover problem is to find a path cover of a given graph of theminimum size, and
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thewell knownHamiltonian path problem is to decidewhether a given graph has a path
cover of size 1. Besides the Path Cover problem, many its variants have also been
studied in the literature (Asdre and Nikolopoulos 2007; Pao and Hong 2008; Asdre
and Nikolopoulos 2010; Rizzi et al. 2014). We mentioned earlier that Tellache and
Boudhar proved that F2 | G = (V , E), pi j = 1 | Cmax is polynomially equivalent to
the Path Cover problem, but to the best of our knowledge there is no approximation
algorithm designed for F2 | G = (V , E), pi j = 1 | Cmax. Nevertheless, one easily
sees that, since F2 | G = (V , E), pi j = 1 | Cmax has a feasible schedule of makespan
Cmax = n+k if and only if the complement G of the conflict graph G has a path cover
of size k, a trivial algorithm simply processing the jobs one by one (each on the first
machine M1 and then on the second machine M2) produces a schedule of makespan
Cmax = 2n, and thus is a 2-approximation algorithm.

In this section, we will design two approximation algorithms with improved per-
formance ratios for F2 | G = (V , E), pi j = 1 | Cmax. These two approximation
algorithms are based on our polynomial time exact algorithms for two variants of the
Path Cover problem, respectively. We start with the first variant called the Path
Cover with the minimum number of 0-paths, in which we are given a graph and we
aim to find a path cover that contains the minimum number of 0-paths. In the second
variant called the Path Cover with the minimum number of {0, 1}-paths, we aim to
find a path cover that contains the minimum total number of 0-paths and 1-paths. We
remark that in both variants, we do not care about the size of the path cover.

2.1 Path Cover with theminimum number of 0-paths

Recall that in this variant of the Path Cover problem, given a graph, we aim to
find a path cover that contains the minimum number of 0-paths. The given graph
is the complement G = (V , E) of the conflict graph G = (V , E) in F2 | G =
(V , E), pi j = 1 | Cmax. We next present a polynomial time algorithm that finds for
G a path cover that contains the minimum number of 0-paths.

In the first step, we apply the O(mn log n)-time algorithm (Gabow 1983) to find
a maximum 2-matching in G, denoted as M , where n = |V | and m = |E |. The 2-
matching M is a collection of vertex-disjoint paths and cycles; let P0 (P1, P2, P≥3,
C, respectively) denote the sub-collection of 0-paths (1-paths, 2-paths, paths of length
at least 3, cycles, respectively) in M . That is, M = P0 ∪ P1 ∪ P2 ∪ P≥3 ∪ C.

Clearly, if P0 = ∅, then we have a path cover containing no 0-paths after removing
one edge per cycle in C. In the following discussion we assume the existence of a
0-path, which is often called a singleton. We also call an ending vertex of a k-path
with k ≥ 1 as an endpoint for simplicity. The following lemma is trivial due to the
edge maximality of M .

Lemma 2.1 All the singletons and endpoints in the maximum 2-matching M are pair-
wise non-adjacent to each other in the underlying graph G.

Let v0 be a singleton. If v0 is adjacent to a vertex v1 on a cycle of C in the underlying
graph G, then we may delete a cycle-edge incident at v1 from M while adding the
edge (v0, v1) to M to achieve another maximum 2-matching with one less singleton.
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Fig. 1 An alternating path v0-v1-v2-. . .-v2i -v2i+1-v2i+2 that saves the singleton v0, where the last two
vertices are on a cycle of C or a path of P≥3. In the figure, solid edges are in the maximum 2-matching M
and dashed edges are outside of M

Similarly, if v0 is adjacent to a vertex v1 on a path of P≥3 (note that v1 has to be an
internal vertex on the path by Lemma 2.1) in the underlying graph G, then we may
delete a certain path-edge incident at v1 fromM while adding the edge (v0, v1) toM to
achieve another maximum 2-matching with one less singleton. In either of the above
two cases, assume the edge deleted from M is (v1, v2); then we say the alternating
path v0-v1-v2 saves the singleton v0.

In the general setting, in the underlying graph G, v0 is adjacent to the middle vertex
v1 of a 2-path P1, one endpoint v2 of P1 is adjacent to the middle vertex v3 of another
2-path P2, one endpoint v4 of P2 is adjacent to the middle vertex v5 of another 2-path
P3, and so on, one endpoint v2i−2 of Pi−1 is adjacent to the middle vertex v2i−1 of
another 2-path Pi , one endpoint v2i of Pi is adjacent to a vertex v2i+1 of a cycle of
C or a path of P≥3 (see an illustration in Fig. 1), on which the edge (v2i+1, v2i+2)

is to be deleted. Then we may delete the edges {(v2 j+1, v2 j+2) | j = 0, 1, . . . , i}
from M while add the edges {(v2 j , v2 j+1) | j = 0, 1, . . . , i} to M to achieve another
maximum 2-matching with one less singleton; and we say the alternating path v0-v1-
v2-. . .-v2i -v2i+1-v2i+2 saves the singleton v0.

Lemma 2.2 Given a maximum 2-matching M and a singleton v0 therein, finding a
simple alternating path to save v0, if exists, can be done in O(m) time, where m = |E |.
Proof Firstly, if an alternating path is not simple, then a cycle that forms a subpath is
also alternating and has an even length, and thus the cycle can be removed resulting in
a shorter alternating path. Repeating this process if necessary, at the end we achieve
a simple alternating path. Therefore, we can limit the search for a simple alternating
path.

Note that the edges on all possible alternating paths that save v0 can be of the
following four kinds: 1) all those edges incident at v0, each oriented out of v0; 2)
all those edges of the 2-paths, each oriented from the middle vertex to the endpoint;
3) all those edges each connecting an endpoint of a 2-path to the middle vertex of
another 2-path, oriented from the endpoint to the middle vertex; 4) all those edges
each connecting an endpoint of a 2-path to a vertex on some path of P≥3 or on some
cycle of C, oriented out of the endpoint. If follows that by a BFS (breadth-first search)
traversal starting from v0 in the digraph formed by the above four kinds of oriented
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Fig. 2 A high-level description of Algorithm A for computing a path cover in the agreement graph
G = (V , E)

edges, if a vertex on some path of P≥3 or on some cycle of C can be reached then
we achieve a simple alternating path; otherwise, we conclude that no alternating path
saving the singleton v0 exists. Both construction of the digraph and the BFS traversal
take O(m) time. This proves the lemma.

The second step of the algorithm is to iteratively find a simple alternating path
to save a singleton; it terminates when no alternating path is found. The resulting
maximum 2-matching is still denoted as M .

In the last step, we break the cycles inM by deleting one edge per cycle to produce a
path cover. Denote our algorithm asAlgorithm A, of which a high-level description
is provided in Fig. 2. We will prove in the next theorem that the path cover produced
by Algorithm A contains the minimum number of 0-paths.

Theorem 2.3 Algorithm A is an O(mn log n)-time algorithm for computing a path
cover with the minimum number of 0-paths in the agreement graph G = (V , E).

Proof Recall that the last step of Algorithm A is to break cycles only. We thus
use the maximum 2-matching achieved at the end of the second step in the following
proof, denoted as M . We point out that in the second step, in each iteration where an
alternating path is found to save a singleton of the current maximum 2-matching, we
swap the edges on the alternating path inside the matching with the edges outside of
the matching to move from the current maximum 2-matching to another maximum
2-matching which contains one less singleton.

We prove the theorem by the minimal counterexample.
Recall thatP0 is the collection of all singletons (that is, 0-paths) in M . LetM∗ be an

optimal path cover that contains the minimum number of singletons, and letP∗
0 denote

this collection of singletons. Assume to the contrary that the path cover obtained from
M contains more than the minimum number of singletons, then we must have

|P0| > |P∗
0 | ≥ 0. (1)
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Assume that our agreement graph G = (V , E) is a minimal graph on which Eq. (1)
holds, then M and M∗ should not have any common singleton as otherwise it can be
deleted to obtain a smaller graph. That is,

P0 ∩ P∗
0 = ∅. (2)

It follows that a singleton v0 ∈ P0 is not a singleton in M∗. Suppose (v0, v1) ∈ M∗.
From the edge maximality of M and the non-existence of an alternating path, we
conclude that v1 has to be the middle vertex of some 2-path P1 ∈ P2.

Let u1 and v2 be the two endpoints of the 2-path P1. For the same reason as for the
singleton v0, from the edge maximality of M and the non-existence of an alternating
path, we conclude that in G each of u1 and v2 can be adjacent to only the middle
vertices of 2-paths, including v1. On the other hand, we conclude that none of u1 and
v2 can be a singleton in M∗. We prove this by contradiction to assume for instance v2
is a singleton in M∗; then the alternating path v0-v1-v2 would save v0 but leave v2 as
a new singleton, which subsequently gives rise to another maximum 2-matching M ′
with the same number of singletons but M ′ shares with M∗ a common singleton v2,
a contradiction to the minimality of G.

The last paragraph essentially implies that in M∗, each of u1 and v2 is adjacent
to the middle vertex of a certain 2-path of P2. Since the edges (u1, v1) and (v1, v2)

cannot both be in M∗ (otherwise v1 would have degree 3 in M∗), in M∗ one of u1 and
v2, and assume without loss of generality v2, is adjacent to the middle vertex v3 of a
2-path P2 ∈ P2 other than P1.

Let u2 and v4 be the two endpoints of the second 2-path P2. For the same reason
as for the singleton v0, from the edge maximality of M and the non-existence of an
alternating path, we conclude that each of u2 and v4 can be adjacent to only the middle
vertices of 2-paths, including v1 and v3. On the other hand, we conclude that none of
u2 and v4 can be a singleton in M∗, for the same reason as for v2 in the above. These
imply that in M∗, each of u2 and v4 is adjacent to the middle vertex of a certain 2-path
of P2. Since there are four endpoints {u1, v2, u2, v4} but only two middle vertices
{v1, v3} for P1 and P2, in M∗ one of the four endpoints {u1, v2, u2, v4}, and assume
without loss of generality v4, is adjacent to the middle vertex v5 of a 2-path P3 ∈ P2
other than P1 and P2.

Let u3 and v6 be the two endpoints of the third 2-path P3. Repeat the same argument
as before we have that v6 is adjacent to themiddle vertex v7 of a fourth 2-path P4 ∈ P2,
and so on. These contradict the fact that the graph G is finite, and therefore the
maximum 2-matching at the end of the second step of Algorithm A contains the
minimum number of singletons.

For the running time, since in each iteration of the second step we may “glue” all
singletons as one for finding an alternating path. If no alternating path is found, then
the second step terminates; otherwise one can easily check which singletons are the
root of the alternating path and pick to save one of them, and the iteration ends. It
follows that there could be O(n) iterations and each iteration needs O(m) time, and
thus the total running time for the second step is O(nm). Clearly the last step can be
done in O(n) time. Therefore the running time of Algorithm A is dominated by the
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first step of finding a maximum 2-matching, which is done in O(mn log n) time. This
finishes the proof of the theorem. 	


We remark that Gómez and Wakabayashi (2020) independently presented a poly-
nomial time algorithm for computing a path cover without any 0-path, using a similar
approach as in our Algorithm A.

2.2 Path cover with theminimum number of {0, 1}-paths

In this variant of the Path Cover problem, given a graph, we aim to find a path
cover that contains the minimum total number of 0-paths and 1-paths. Again, the
given graph is the complement G = (V , E) of the conflict graph G = (V , E) in
F2 | G = (V , E), pi j = 1 | Cmax. We next present a polynomial time algorithm
called Algorithm B that finds for G such a path cover.

Recall that inAlgorithm A for computing a path cover that contains theminimum
number of 0-paths, an alternating path saving a singleton v0 starts from the singleton
v0 and reaches a vertex v2i+1 on a path of P≥3 or on a cycle of C (see Fig. 1). If
v2i+1 is on a cycle, then the last vertex v2i+2 can be any one of the two neighbors of
v2i+1 on the cycle. If v2i+1 is on a k-path, then the last vertex v2i+2 is a non-endpoint
neighbor of v2i+1 on the path (the existence is guaranteed by k ≥ 3); and the reason
why v2i+2 cannot be an endpoint is obvious since otherwise v2i+2 would be left as a
new singleton after the edge swapping. In the current variant we want to minimize the
total number of 0-paths and 1-paths; clearly v2i+2 cannot be an endpoint either and
cannot even be the vertex adjacent to an endpoint, for the latter case because the edge
swapping saves v0 but leaves a new 1-path. To guarantee the existence of such vertex
v2i+2, the k-path must have k ≥ 4, and if k = 4 then v2i+1 cannot be the middle vertex
of the 4-path.

Algorithm B is in spirit similar to but in practice slightly more complex than
Algorithm A, mostly because the definition of an alternating path saving a singleton
or a 1-path is different, and slightly more complex.

In the first step of Algorithm B, we apply the O(mn log n)-time algorithm
(Gabow 1983) to find amaximum 2-matchingM inG. LetP0 (P1,P2,P3,P4,P≥5, C,
respectively) denote the sub-collection of 0-paths (1-paths, 2-paths, 3-paths, 4-paths,
paths of length at least 5, cycles, respectively) in M . Also denote P0,1 = P0 ∪ P1,
P2,3 = P2 ∪ P3, and P2,3,4 = P2 ∪ P3 ∪ P4, respectively.

Let e0 = (v0, u0) be an edge in M . In the sequel when we say e0 is adjacent
to a vertex v1 in the graph G, we mean v1 is a different vertex (from v0 and u0)
and at least one of v0 and u0 is adjacent to v1; if both v0 and u0 are adjacent to v1,
then pick one (often arbitrarily) for the subsequent purposes. This way, we unify our
treatment on singletons and 1-paths, for the reasons to be seen in the following. For
ease of presentation, we use an object to refer to a vertex or an edge. Like in the last
subsection, an ending vertex of a k-path with k ≥ 1 or an ending edge of a k-path with
k ≥ 2 is called an end-object for simplicity.

Let v0 be a singleton or e0 = (v0, u0) be a 1-path in M . In the underlying graph
G, if v0 is adjacent to a vertex v1 on a cycle of C, or on a path of P≥5, or on a 4-path
such that v1 is not the middle vertex, then we may delete a certain edge incident at v1
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Fig. 3 An alternating path v0-v1-v2-. . .-v2i -v2i+1-v2i+2 that saves the singleton v0 or the 1-path e0 =
(v0, u0), where the last two vertices are on a cycle of C, or on a path ofP≥5, or on a 4-path such that v2i+1
is not the middle vertex. In the figure, solid edges are in the maximum 2-matching M , dashed edges are
outside of M , and a dotted circle contains an object which is either a vertex or an edge.

from M while add the edge (v0, v1) to M to achieve another maximum 2-matching
with one less singleton if v0 is a singleton or with one less 1-path. In either of the three
cases, assume the edge deleted from M is (v1, v2); then we say the alternating path
v0-v1-v2 saves the singleton v0 or the 1-path e0 = (v0, u0).

Analogously as in the last subsection, in the general setting, in the underlying graph
G, v0 is adjacent to a vertex v1 of a path P1 ∈ P2,3,4 (if P1 is a 4-path then v1 has to be
the middle vertex). Note that this vertex v1 basically separates the two end-objects of
the path P1 — an analogue to the role of the middle vertex of a 2-path that separates
the two endpoints of the 2-path. We say “an end-object of P1 is adjacent to v1 via v2”,
to mean that if the end-object is a vertex then it is v2, or if the end-object is an edge,
then it is (v2, u2), with the edge (v1, v2) on the path P1 (see an illustration in Fig. 3).

Suppose one end-object of P1, which is adjacent to v1 via v2, is adjacent to a vertex
v3 of another P2 ∈ P2,3,4 (the same, if P2 is a 4-path then v3 has to be the middle
vertex); one end-object of P2, which is adjacent to v3 via v4, is adjacent to a vertex v5
of another P3 ∈ P2,3,4 (the same, if P3 is a 4-path then v5 has to be the middle vertex);
and so on; one end-object of Pi−1, which is adjacent to v2i−3 via v2i−2, is adjacent to a
vertex v2i−1 of another Pi ∈ P2,3,4 (the same, if Pi is a 4-path then v2i−1 has to be the
middle vertex); one end-object of Pi , which is adjacent to v2i−1 via v2i , is adjacent to
a vertex v2i+1 of a cycle of C, or of a path of P≥5, or of a 4-path such that v2i+1 is not
the middle vertex (see an illustration in Fig. 3), on which a certain edge (v2i+1, v2i+2)

is to be deleted. Then we may delete the edges {(v2 j+1, v2 j+2) | j = 0, 1, . . . , i}
from M while add the edges {(v2 j , v2 j+1) | j = 0, 1, . . . , i} to M to achieve another
maximum 2-matching with one less singleton if v0 is a singleton or with one less
1-path. We say the alternating path v0-v1-v2-. . .-v2i -v2i+1-v2i+2 saves the singleton
v0 or the 1-path e0 = (v0, u0). It is important to note that in this alternating path, the
vertex v2 “represents” the end-object of P1, meaning that when the end-object is an
edge, it is treated very the same as the vertex v2.

Lemma 2.4 Given a maximum 2-matching M and an object in P0,1, finding a simple
alternating path to save the object, if exists, can be done in O(m) time, wherem = |E |.
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Proof The lemma is a generalization of Lemma 2.2.
Firstly, if an alternating path is not simple, then a cycle that forms a subpath is

also alternating and has an even length, and thus the cycle can be removed resulting
a shorter alternating path. Repeating this process if necessary, at the end we achieve
a simple alternating path. Therefore, we can limit the search for a simple alternating
path.

Note that the edges on all possible alternating paths that save an object in P0,1 can
be of the following four kinds: 1) all those edges incident at a vertex of the object,
each oriented out of the vertex; 2) all those edges of the paths of P2,3,4, each oriented
towards an endpoint and each internal edge is bidirected; 3) all those edges each
connecting a vertex of an end-object of a path ofP2,3,4 to an internal vertex of another
such path, oriented from the vertex of the end-object; note that if the second path is a
4-path, then the internal vertex of this 4-path has to be the middle vertex; 4) all those
edges each connecting a vertex of an end-object of a path ofP2,3,4 to a vertex on some
path of P≥5, or on some cycle of C, or on some 4-path such that the vertex is not the
middle vertex, oriented out of the vertex of the end-object.

If follows that by a BFS traversal starting from the vertices of an object of P0,1
in the digraph formed by the above four kinds of oriented edges, if a vertex on some
path of P≥5, or on some cycle of C, or on some 4-path such that the vertex is not the
middle vertex, can be reached then we achieve a simple alternating path; otherwise,
we conclude that no alternating path saving the object exists. Both construction of the
digraph and the BFS traversal take O(m) time. This proves the lemma. 	


The second step of the algorithm is to iteratively find a simple alternating path to
save an object of P0,1; it terminates when no alternating path is found. The resulting
maximum 2-matching is still denoted as M .

In the last step, we break the cycles in M by deleting one edge per cycle to produce
a path cover. A high-level description of Algorithm B is similar to the one for
Algorithm A shown in Fig. 2, replacing a singleton by an object of P0,1. We will
prove in Theorem 2.5 that the path cover produced by Algorithm B contains the
minimum total number of 0-paths and 1-paths.

Theorem 2.5 Algorithm B is an O(mn log n)-time algorithm for computing a path
cover with the minimum total number of 0-paths and 1-paths in the agreement graph
G = (V , E).

Proof The proof is similar to the proof of Theorem 2.3.
Recall that the last step of Algorithm B is to break cycles only. We thus use

the maximum 2-matching achieved at the end of the second step in the following
proof, denoted as M . We point out that in the second step, in each iteration where an
alternating path is found to save an object ofP0,1 of the current maximum 2-matching,
we swap the edges on the alternating path inside in thematchingwith the edges outside
of the matching to move from the current maximum 2-matching to another maximum
2-matching (which contains one less object of P0,1).
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We prove the theorem by the minimal counterexample.
LetM∗ be an optimal path cover that contains the minimum total number of 0-paths

and 1-paths, and similarly let P∗
i denote the sub-collection of the i-paths in M∗, for

i = 0, 1, 2, . . .. Assume to the contrary that

|P0,1| > |P∗
0,1| ≥ 0, (3)

and assume that our agreement graphG = (V , E) is a minimal graph on which Eq. (3)
holds, then M and M∗ should not have any common singleton or any common 1-path
as otherwise it can be deleted to obtain a smaller graph. That is,

P0 ∩ P∗
0 = ∅, and P1 ∩ P∗

1 = ∅. (4)

It follows that an object ofP0,1 is not an object ofP∗
0,1. In the sequelwe assume there

is a singleton v0 ∈ P0 and show that it leads to a contradiction. A similar contradiction
can be constructed if there is a 1-path in P1. Since v0 is not a singleton in M∗, we
may suppose (v0, v1) ∈ M∗. From the edge maximality of M and the non-existence
of an alternating path to save v0, we conclude that v1 has to be a vertex of some path
P1 ∈ P2,3 or the middle vertex of some 4-path P1, such that v1 separates the two
end-objects of P1.

If an end-object is a vertex, denoted as v2, then the same from the edge maximality
of M and the non-existence of an alternating path to save v0, we conclude that v2
behaves the same as v0, that it can be adjacent to only the vertices of paths in P2,3
or the middle vertices of 4-paths, including v1. On the other hand, v2 cannot be a
singleton in M∗, since otherwise the alternating path v0-v1-v2 would save v0 but leave
v2 as a new singleton, which subsequently gives rise to another maximum 2-matching
M ′ with the same number of singletons but M ′ shares with M∗ a common singleton,
a contradiction to the minimality of G.

If an end-object is an edge, denoted as (v2, u2), adjacent to v1 via v2, then the same
from the edge maximality of M and the non-existence of an alternating path to save
v0, we conclude that both v2 and u2 behave the same as v0, that each can be adjacent to
only the vertices of paths inP2,3 or the middle vertices of 4-paths, including v1. On the
other hand, at least one of v2 and u2 should be adjacent to a third vertex inM∗. Assume
this is not the case, then (v2, u2) has to be a 1-path in M∗ (v2 and u2 cannot both be
singletons due to the existence of the edge (v2, u2)). It follows that the alternating path
v0-v1-v2 would save v0 but leave (v2, u2) as a new 1-path, which subsequently gives
rise to another maximum 2-matching M ′ with the same total number of singletons and
1-paths but M ′ shares with M∗ a common 1-path, a contradiction to the minimality
of G.

Since the two path-edges that v1 is incident to in P1 cannot both be inM∗ (otherwise
v1 would have degree 3 in M∗), in M∗ one end-object of the path P1 is adjacent to a
vertex of some path in P2,3 or the middle vertex of some 4-path denoted as P2. Let v2
denote the vertex through which this end-object of the path P1 connects to v1, and v3
denote the vertex on the path P2.

Similarly as in the proof of Theorem 2.3, we may repeat the above argument on
the path P1 for the new path P2, to either contradict the minimality of the graph G or
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introduce another new path P3; and so on. The latter cases together contradict the fact
that the graph G is finite, and therefore the maximum 2-matching at the end of the
second step of Algorithm B contains the minimum total number of singletons and
1-paths.

For the running time, since in each iteration of the second step again wemay “glue”
all singletons and the endpoints of all the 1-paths as one for finding an alternating path.
If no alternating path is found, then the second step terminates; otherwise one can easily
check which singletons and/or 1-paths are the root of the alternating path and pick to
save one of them, and the iteration ends. It follows that there could be O(n) iterations
and each iteration needs O(m) time, and thus the total running time for the second step
is O(nm). Clearly the last step can be done in O(n) time. Therefore the running time
of Algorithm B is dominated by the first step of finding a maximum 2-matching,
which is done in O(mn log n) time. This finishes the proof of the theorem.

Remark 2.6 Thepath cover produced byAlgorithm Bhas theminimum total number
of 0-paths and 1-paths in the agreement graph G = (V , E). One may runAlgorithm
A at the end of the second step of Algorithm B to achieve a path cover with the
minimum total number of 0-paths and 1-paths, and with the minimum number of
0-paths. During the execution of Algorithm A, a singleton trades for a 1-path.

2.3 Approximation algorithms for F2 | G = (V, E), pij = 1 | Cmax

Given an instance of the problem F2 | G = (V , E), pi j = 1 | Cmax, where there
are n unit jobs V = {J1, J2, . . . , Jn} to be processed on the two-machine flow-shop,
with their conflict graph G = (V , E), we want to find a schedule with a provable
makespan.

For a k-path in the agreement graph G = (V , E), where k ≥ 0, for example
P = J1-J2-. . .-Jk-Jk+1, we compose a sub-schedule πP in which the machine M1
continuously processes the jobs J1, J2, . . . , Jk+1 in order, and the machine M2 in one
unit of time after M1 continuously processes these jobs in the same order. The sub-
makespan for the flow-shop to complete these k + 1 jobs is thus k + 2 (units of time).
Let M = {P1, P2, . . . , P�} be a path cover of size � in the agreement graph G. For
each path Pi we use |Pi | to denote its length and construct the sub-schedule πPi as
above that has a sub-makespan of |Pi |+2. We then concatenate these � sub-schedules
(in an arbitrary order) into a full schedule π , which clearly has a makespan

Cπ
max =

�∑

i=1

(|Pi | + 2) = n + �. (5)

On the other hand, given a schedule π , if two jobs J j1 and J j2 are processed
concurrently on the two machines, then they have to be agreeing to each other and
thus adjacent in the agreement graph G; we select this edge (J j1 , J j2). Note that one
job can be processed concurrently with at most two other jobs as there are only two
machines. Therefore, all the selected edges form into a number of vertex-disjoint paths
in G (due to the flow-shop, no cycle is formed); these paths together with the vertices
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outside of the paths, which are the 0-paths, form a path cover forG. Assuming without
loss of generality that two machines cannot both idle at any time point, the makespan
of the schedule is exactly calculated as in Eq. (5).

We state this relationship between a feasible schedule and a path cover in the
agreement graph G into the following lemma.

Lemma 2.7 Tellache and Boudhar (2018) A feasible schedule π for the problem
F2 | G = (V , E), pi j = 1 | Cmax one-to-one corresponds to a path cover M in
the agreement graph G, and Cπ

max = n + |M |, where n is the number of jobs in the
instance.

Theorem 2.8 The problem F2 | G = (V , E), pi j = 1 | Cmax admits an O(mn log n)-
time 4/3-approximation algorithm, where n = |V | and m = |E |.
Proof Let π∗ denote an optimal schedule for the problem F2 | G = (V , E), pi j = 1 |
Cmax with amakespanC∗

max, andM
∗ be the corresponding path cover in the agreement

graph G. The sub-collection of 0-paths and 1-paths in M∗ is denoted as P∗
0,1.

Let M be the path cover computed by Algorithm B for the agreement graph G
that achieves the minimum total number of 0-paths and 1-paths. The sub-collections
of 0-paths and 1-paths in M are denoted as P0 and P1, respectively, and P0,1 denotes
their union. Then we have

|P∗
0,1| ≥ |P0,1|.

From Lemma 2.7, we have

C∗
max = n + |M∗| ≥ n + |P∗

0,1| ≥ n + |P0,1|.

It follows also from Lemma 2.7 that the schedule constructed using the path cover M
has a makespan

Cmax = n + |M | ≤ n + |P0,1| + 1

3
(n − |P0| − 2|P1|) ≤ 4

3
C∗
max,

since every path of length 2 or above contains at least three vertices.
Note that the running time of the approximation algorithm is obvious, which calls

Algorithm B and then constructs the schedule in O(n) time using the computed
path cover.

Remark 2.9 If Algorithm A is used in the proof of Theorem 2.8 to compute a
path cover with the minimum number of 0-paths and subsequently to construct a
schedule π , then we have Cπ

max ≤ 3
2C

∗
max. That is, we have an O(mn log n)-time

3/2-approximation algorithm based on Algorithm A.

When the agreement graphG consists of k vertex-disjoint triangles such that a vertex
of the i-th triangle is adjacent to a vertex of the (i+1)-st triangle, for i = 1, 2, . . . , k−1,
and the maximum degree is 3, Algorithm B could produce a path cover containing
k 2-paths, while there is a Hamiltonian path in the graph. This suggests that the
approximation ratio 4/3 is asymptotically tight.
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3 Approximating F2 | G = K� ∪ Kn−�,pij | Cmax

In this section, we present a 3/2-approximation algorithm for the weakly NP-hard
problem F2 | G = K� ∪ Kn−�, pi j | Cmax for arbitrary jobs with a conflict graph
that is the union of two disjoint cliques. Clearly, the agreement graph G = K�,n−�

is a complete bipartite graph. Without loss of generality, let the job set of K� be
A = {J1, J2, . . . , J�} and the job set of Kn−� be B = {J�+1, J�+2, . . . , Jn}.

For the job set A, we merge all its jobs (in the sequential order with increasing
indices) to become a single “aggregated” job denoted as JA, with its processing
time on the machine M1 being P1

A = ∑�
j=1 p1 j and its processing time on the

machine M2 being P2
A = ∑�

j=1 p2 j . Likewise, for the job set B, we merge all
its jobs (in the sequential order with increasing indices) to become a single aggre-
gated job denoted as JB , with its two processing times being P1

B = ∑n
j=�+1 p1 j

and P2
B = ∑n

j=�+1 p2 j , respectively. We now have an instance of the classical two-
machine flow-shop scheduling problem consisting of only two aggregated jobs JA and
JB , and we may apply Johnson’s algorithm (Johnson 1954) to determine the process-
ing order for JA and JB — a schedule denoted as π . From π we obtain a schedule
for the original instance, by expanding the aggregated jobs JA and JB back, of the
problem F2 | G = K� ∪ Kn−�, pi j | Cmax, which is also denoted as π since there is
no major difference. We call this algorithm as Algorithm C.

Theorem 3.1 Algorithm C is an O(m)-time 3/2-approximation algorithm for the
problem F2 | G = K� ∪ Kn−�, pi j | Cmax, where m is the number of edges in the
conflict graph G.

Proof Firstly, we note that Algorithm C needs to spend O(m) time to recognize
that the conflict graph is indeed the union of two disjoint cliques, and subsequently
composes the two aggregated jobs. If the two job subsets A and B are given without
the need of recognition, then composing the two aggregated jobs can be done in O(n)

time, where n is the number of given jobs. Scheduling two jobs on the two-machine
flow-shop, that is, by Johnson’s algorithm, is done in constant time, afterwards the
schedule π for the original n jobs can be constructed in O(n) time.

Let C∗
max and C

π
max denote the optimal makespan and the makespan of the schedule

π produced by Algorithm C, respectively. One clearly sees that

C∗
max ≥ max{P1

A + P2
A, P1

A + P1
B, P1

B + P2
B, P2

A + P2
B}, (6)

in which the four sums represent the total processing time of jobs in A, the total
processing time of jobs on the machine M1, the total processing time of jobs in B, and
the total processing time of jobs on the machine M2, respectively.

Assume without loss of generality that P1
A ≤ P1

B :

• If P1
A ≤ P2

A, then C
π
max = P1

A + max{P2
A, P1

B} + P2
B ≤ P1

A + C∗
max ≤ 3

2C
∗
max;

• if P1
A > P2

A > P2
B , thenC

π
max = P1

A+max{P2
A, P1

B}+P2
B ≤ C∗

max+P2
B ≤ 3

2C
∗
max;

• if P1
A > P2

A and P2
A ≤ P2

B , thenC
π
max = P1

B +max{P2
B, P1

A}+P2
A ≤ C∗

max+P2
A ≤

3
2C

∗
max.
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This proves the theorem. 	


In the schedule produced by Algorithm C, one sees that when the jobs of A
are processed on the machine M1, the other machine M2 is left idle. This is certainly
disadvantageous. For instance, when the jobs are all unit jobs and |A| = |B| = 1

2n, the
makespan of the produced schedule is 3

2n, while the agreement graph is Hamiltonian
and thus by Eq. (5) the optimal makespan is only n + 1. This huge gap suggests that
one could probably design a better approximation algorithm and we leave it as an open
question.

4 Concluding remarks

In this paper, we investigated the approximation algorithms for the two-machine flow-
shop scheduling problem with a conflict graph, in particular a special case of all unit
jobs and another special case where the conflict graph is the union of two disjoint
cliques, that is, F2 | G = (V , E), pi j = 1 | Cmax and F2 | G = K� ∪ Kn−�, pi j |
Cmax, respectively. For the first problem we studied the graph theoretical problem
of finding a path cover with the minimum total number of 0-paths and 1-paths, and
presented a polynomial time exact algorithm. This exact algorithm leads to a 4/3-
approximation algorithm for the problem F2 | G = (V , E), pi j = 1 | Cmax. We also
showed that the performance ratio 4/3 is asymptotically tight. For the second problem
F2 | G = K� ∪ Kn−�, pi j | Cmax, we presented a 3/2-approximation algorithm.

Weconjecture that designing approximation algorithms for F2 | G = (V , E), pi j =
1 | Cmax with a performance ratio better than 4/3 is challenging, since one way or the
other one has to deal with long paths in a path cover or has to deal with the original
Path Cover problem. We in fact strongly suspect that the problem is APX-hard.
Nevertheless, better approximation algorithms for F2 | G = K� ∪ Kn−�, pi j | Cmax
can be expected.
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