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Abstract
The problem of identifying the plant type seems to be tough due to the altering leaf 
color, and the variations in leaf shape overage. The plant leaf classification is very 
challenging and important issue to solve. The main idea of this paper is to introduce a 
novel deep learning-based plant leaf classification model. Initially, the pre-processing is 
done by RGB to gray scale conversion, histogram equalization, and median filtering for 
improving the image quality necessary for additional processing. In CNN, the activation 
function is optimized by the hybrid Shark Smell-based Whale Optimization Algorithm 
(SS-WOA) in a manner that the classification accuracy is attained maximum. The clas-
sification of untrained images is very challenging task, so the optimized threshold-based 
CNN classification is introduced. From the analysis, the accuracy of the proposed SS-
WOA-CNN is 0.86%, 0.78%, 1.28%, and 1.53% advanced than PSO-CNN, GWO-CNN, 
WOA-CNN, and SSO-CNN, respectively. The accuracy of the proposed SS-WOA-CNN 
is 4.02%, 3.23%, 1.95%, 2.12%, and 0.57% progressed than NB, SVM, DNN, NN, and 
CNN. The hybrid SS-WOA optimizes the threshold value that can attain maximum clas-
sification accuracy for untrained data. The performance of the developed method is vali-
dated by differentiating the diverse traditional machine learning.

Keywords  Plant leaf classification · Trained and untrained data · Convolutional 
neural network · Optimized threshold · Shark smell-based whale optimization 
algorithm · Classification score
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SVM	� Support vector machine
WOA	� Whale optimization algorithm
NB	� Naïve bayes
FSST	� Feature based shape selection template
PCA	� Principal Component Analysis
SSO	� Shark smell optimization
HE	� Histogram equalization
DNN	� Deep neural network
NN	� Neural network
SSO	� Spatial structure optimizer
DT	� Decision tree
SSODP	� Semi-supervised orthogonal discriminant projection
RGB	� Red green blue
DBN	� Deep belief networks
PSO	� Particle swarm optimization
KNN	� K-nearest neighbors
GWO	� Grey wolf optimization
MCC	� Multi-scale convexity concavity
PBPSO	� Pbest-guide binary particle swarm optimization
DLNN	� Deep learning neural network

1  Introduction

Plants are the fundamental components of the earth liable for safeguarding the 
World’s environment (Narayan and Subbarayan 2014). They offer fuel, medicines, 
sustenance, and also maintain a good climate. Due to the never-ending de-forest-
ation (Kalyoncu and Toygar 2015; Horaisova and Kukal 2016), numerous plants 
are in the stage of extinction. Hence, a necessary pace is required to observe the 
plants by creating a database for efficient and quick classification as well as group-
ing (Kalyoncu and Toygar 2016). Among these, most of the systems are based on 
visual component extraction such as shape, texture, and hue along with their pic-
tures as information models for classification and correlations (Rhouma et al. 2017). 
Even though several plant portions such as root, seed, natural product, bud, blos-
som are used for comparison, leaf oriented classification is the major accepted and 
feasible technique. The plant leaves for identification consist of significant features 
like leaf edges, vein, texture, color, shape, and leaf type (compound or simple). The 
image processing algorithms using leaf images are used by the computer systems for 
recognizing the plant species. Rather than the roots and stalks, it is simple to scan 
the leaves of plants by scanners or take a snap using the digital cameras (Zhang et al. 
2013). Hence, the necessary part lies in the composition of the leaves database.

The primary task is to minimize the dimension of the unarranged data about 
the leaf images (Caoa et al. 2016). An efficient algorithm for reducing the dimen-
sion analyzes the data effectively and also makes the decisions. The problem of 
‘‘curse of dimensionality’’ should be avoided. Various dimensional reduction 
techniques have been presented in recent decades (Zhang et al. 2016; Tang et al. 
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2015). These techniques can be categorized as semi-supervised, supervised, and 
unsupervised on the basis of the input sample’s class information. Compared to 
the unsupervised techniques, supervised techniques are more applicable for the 
classification tasks. The label information provides the dimensionality reduction 
procedure (Du et al. 2007) for the classification problems. The significant charac-
teristic of an automated plant identification system is the suitable selection of leaf 
features. Various techniques involving CNN oriented method are available for the 
leaf identification and the major idea behind the proposed method is significant 
in the process of identification (Kadir et al. 2013; Mallah et al. 2013). During the 
training process, the CNN needs a vast quantity of manual data so it is mostly 
used in applications where the dataset is found to be less.

The techniques of multi-feature fusion are also used for the descriptions of 
leaves (Ye and Weng 2011). Various works learned the classifiers using the pat-
tern matching or machine learning methods. Some of the representative algo-
rithms are the DP, KNN, and SVM. Nowadays, deep learning methods classifies 
or signifies the leaf images. Yet, the drawbacks of deep learning exist (Hu et al. 
2018). The basis of high classification accuracy lies in network having adequate 
supervised learning samples, and it is normally too tough. The majority of the 
cases return only a limited count of learning samples, and in these cases, general 
deep learning neural networks return very poor results (Wu et  al. 2014). Thus, 
novel methods must be produced that accomplish the below objectives. The clas-
sification techniques are aimed to learn from less quantity of supervised samples 
(Singh et al. 2019). Using fewer samples, human beings can precisely and speed-
ily classify the techniques. The introduction of new samples can allow humans 
to conclude precise judgments through measurements (Longlong et  al. 2015). 
Through the training network, it is suggested to design a measurement tech-
nique to make them learn from little samples for applying it to the automatic leaf 
classification.

A pixel that denotes an area of an untrained class is able to portray only the 
classification label to the trained classes. The impact behind the accuracy of an 
untrained class for the plant leaf classification is based on the threshold compu-
tation. Here, the impact of the untrained classes on the plant leaf classification 
is done with the help of the algorithms that generate the absolute and the rela-
tive measures of threshold (Seeland et al. 2019). The availability of the untrained 
class can decrease the accuracy of the plant leaf classification. Hence, it is con-
sidered that even though the group of classes that are described in the training 
phase of the classification is comprehensive and includes all the classes, clas-
sifying the plant leaves for untrained data still remains as a challenging one. For 
improving the classification, the database was enlarged by applying the sample 
augment in the images (Liu 2018). The challenges of classifying the leaf images 
due to low inter-class variability are overcome by an automatic discriminative 
method on the basis of CNN (Tavakoli et al. 2021). Deep learning (Srinivas and 
Manivannan 2020) is the popular machine learning algorithm for the plant leaf 
classification. The shapes of leaves of the plants are very significant as they help 
the plant species and measure their health (Bhambere 2011).

The main contributions related to this paper are described below.



315

1 3

Journal of Combinatorial Optimization (2022) 43:312–349	

•	 A new deep learning-based plant leaf classification model is introduced for clas-
sifying the untrained images by observing the classification score and the clas-
sification label, thereby enhancing the classification rate for trained as well as 
untrained data.

•	 A new hybrid optimization algorithm known as the SS-WOA is introduced that 
provides higher efficiency and probability in finding the global optima, less 
computational time, fast convergence, and also solves problems for finding the 
accurate mathematical models, thus suitable for enhancing the CNN for handling 
untrained data in plant leaf classification.

•	 The proposed SS-WOA is validated over different machine learning and optimi-
zation algorithms to determine its superiority in achieving the high classification 
accuracy for the trained as well as the untrained data.

The organization is enlisted in the below manner: Sect.  1 provides the intro-
duction of the plant leaf classification with consideration towards the challenge 
in untrained data. Section 2 offers various literature works in classifying the plant 
leaves. The proposed plant leaf classification model for challenging untrained data 
is explained in Sect. 3. The pre-processing and objective model for plant leaf clas-
sification is described in Sect. 4. Section 5 provides a description of the improved 
algorithm for optimized threshold-based CNN applicable for classifying the plant 
leaves. The results and discussions are discussed in Sect. 6. In the final step, Sect. 7 
finishes with conclusion.

2 � Literature survey

In Bin and Wang (2019) have addressed a few-shot learning technique on the basis 
of the Siamese network framework for handling a problem of leaf classification hav-
ing a less sample size. Initially, the features were extracted from two various images 
using a parallel two-way CNN having weight sharing. Next, a loss function was used 
by the network for the metric space learning, where identical leaf samples were near 
to each other and distant samples were apart from each other. Additionally, a SSO 
technique was developed to build the metric space that, in turn, enhanced the leaf 
accuracy classification. In the final step, the leaves present in the learned metric 
space were classified by a kNN classifier. The performance measure has used the 
average classification accuracy. The performance of the technique was estimated by 
the “Leafsnap, Swedish, and Flavia datasets”. The experimental outcomes revealed 
that with a less supervised sample size, the developed technique resulted in high 
classification accuracy.

In Mostajer and Asghari (2019), have examined a new technique for the plant 
species recognition by means of GIST texture features. Next, the PCA algorithm has 
chosen the necessary and the principal features. The extracted features have under-
gone the classification phase with three techniques like KNN, SVM, and Pattern-
net NN algorithms. The developed algorithm was applied to three popular datasets. 
The outcomes have exceeded various techniques with respect to accuracy and time. 
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The superior outcomes were attained by means of Cosine KNN classifier as well as 
applying the PCA to the GIST feature vector.

In Rhouma et al. (2017), have developed seven novel invariants for the different 
shapes, and these were tried on the problem of leaf classification. One among the 
novel invariants was described for the different shapes and it was an area oriented 
method of the existing boundary-oriented measure of anisotropy. The remaining six 
invariants were entirely a novelty one. They were based on the technique of the geo-
metric distribution of the initial two Hu moment invariant. All the proposed invari-
ants were measurable from the geometric relative to the shape parts. This resulted 
in a simpler computation of scaling, rotation, and translation invariants. The novel 
invariants were vigorous to mild as well as noise deformations. Various desirable 
properties were experimentally estimated on a vast count of artificial illustrations. 
The application of the novel different shape invariants was described on a familiar 
leaf data set.

In Parekh et al. (2018), have labeled another path for the plant species classifica-
tion using the digital leaf images. The leaves of plants were composed of a collec-
tion of unmistakable elements such as unique vein modelled surfaces, compound, 
and simple shape, and non-green and green hue. A private arrangement of elements 
could not be appropriate for a feasible heterogeneous plant sort classification. A 
hierarchical architectural model was developed by combining various components to 
retrieve a powerful visual data classification. The study combined the classifiers and 
the feature extraction modules that resulted in superior execution. The database was 
partitioned in obvious components using visual discriminators for improved profi-
ciency. Novel layers were included in the present system that provided the adapt-
ability. Several leaf sorts revealed their shape features with the help of FSST. The 
experiment was conducted on two publically available databases involving “non-
green, green, and compound and simple leaves” with the alterations in “design, size, 
and shape” that determined the superiority of the developed technique over various 
class procedures.

In Chen et al. (2019) have addressed a unified multi-scale technique for the leaf 
image retrieval and classification for capturing the geometric information of the 
leaves. An efficient three-step strategy was used by a unified multi-scale technique 
to position the respective neighbour points for every point present on the leaf con-
tour. The descriptor offered a fine depiction of contours of leaf. It was composed of 
natural distinct characteristics. Due to the absence of scale parameters, there was 
no need for optimisation procedures. The developed technique was given to three 
familiar contour features like triangle-area, arch-height, and angle representation for 
capturing the geometric information present in the leaves. The features available in 
the unified multi-scale method were applied with FFT for quick and suitable leaf 
matching. The image retrieval and classification experiments were investigated on 
four datasets with the help of three standard performance evaluation measures. The 
unified multi-scale technique revealed better results.

In Qureshi et al. (Saleem et al. 2019) have estimated various handcrafted vis-
ual leaf features, along with their classification techniques and extraction pro-
cesses. A novel algorithm was proposed for the recognising the type of plant via 
the images of leaf that consisted of “image pre-processing, segmentation, feature 
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extraction, dimensionality reduction, and classification steps”. The developed 
algorithm was examined on a ‘Flavia’ dataset and on a synthetic dataset. It was 
also tested with distinct classifiers like multi-SVM, NB, DT, and KNN. The KNN 
revealed the recall and precision values of 98.8% and 97.6% respectively with 
the ‘Flavia’ dataset. The synthetic dataset returned 97.3% and 96.1% recalls and 
precision measure outcomes. This technique was a precise plant type recognition 
approach in real time situations. The classification was also differentiated with 
AlexNet, a CNN oriented technique. It was confirmed that the handcrafted fea-
ture-oriented technique exceeded AlexNet with respect to robustness when using 
a small training dataset.

In Zhou et al. (2017) have developed an automatic classification method for the 
medicinal plant’s leaf images that labelled the shortcomings of manual classifica-
tion technique in recognizing the medicinal plants. Initially, the leaf images of the 
medicinal plants were pre processed by this technique. In the next step, five texture 
characteristics and ten shape feature were computed. In the final step, the leaves of 
the medicinal plants were classified by the SVM. It was subjected to 12 various leaf 
images and a better recognition rate was achieved. The results demonstrated that it 
was possible to categorize the medicinal plants in an automatic manner using the 
multi-feature extraction and SVM. It offered a superior framework for the develop-
ment and research of medicinal plant classification system.

In Yingke et al. (2015), have proposed a novel weight measure, and next a dimen-
sional reduction algorithm known as SSODP, was developed. SSODP used the 
unlabeled and labelled data that built the weight by combining “the class informa-
tion, the local neighborhood structure, and the reliability information of the data”. 
SSODP was more efficient with respect to the plant leaf classification rate.

In Guoqing Xu et al. (2020), developed a multi-granular angle feature descriptor 
on the basis of quotient space for the classification of plants and the retrieval tasks. 
The angle features are extracted by the descriptor from the contour points of the leaf 
under different granularities. This method can capture both global and local infor-
mation of the leaf contour. The pair of leaves is estimated for similarity by the multi-
granular angle feature. The retrieval performance of this method is very promising. 
The optimal parameter of MCC is difficult to determine.

Mohammad Keivani (Mohammad Keivani1, Jalil Mazloum, Ezatollah Sedaghat-
far 2020) proposed a method, called PBPSO for reducing the features. This research 
is mainly for plant identification in agriculture for the purpose of image process-
ing. This field got less attention than all the other application domains. This method 
is defined as the plant identification system. The specimens are identified quickly 
and categorize by the image processing technique. This method performs better only 
when the number of features reaches 300.

In Amgad et  al. (Fati 2020), developed an efficient and automatic classifica-
tion system for observing Malaysian herbs which is useful for medical and cook-
ing areas. This system consists of two classifiers called SVM and DLNN. Both the 
algorithms were tested with the same dataset and the DLNN algorithm was more 
appropriate. The mobile app was not totally improved. It works perfectly in windows 
platform, for the Android mobile app the packing was unsuccessful. This method is 
used to detect the herb leaves even when they are wet, dried and deformed (Table 1).
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3 � Proposed plant leaf classification model for challenging untrained 
data

3.1 � Proposed architectural model

The plant leaf classification is an approach, in which the leaf is classified on the 
basis of various morphological features. The classification of plant leaves is a 
complex task in botany, cotton, tea, and various industries. In general, the extrac-
tion of leaf features like color feature, texture feature, and the shape feature is sig-
nificant for classifying the leaf images. On the basis of the extracted features, the 
pattern matching or machine learning is utilized for classifying the leaves. These 
techniques use the manual feature extraction for the leaf representation and then 
several machine learning techniques are utilized for the classification. Nowadays, 
deep learning techniques like DBN and CNN reveal better results in classifying 
the leaves. But, there occurs a major challenge during the classification of the 
untrained images. The untrained classification is distinct from the trained clas-
sification, in which it needs only the input data. The majority of the untrained 
classification represents the cluster analysis where a group of data is clustered in 
a form such that the items in every cluster are identical to each other than with 
the remaining clusters. There are no required outcomes with the untrained classi-
fication. The machine permits to input the data into a machine learning algorithm 
that describes the normality of a specific group of data. In the untrained classifi-
cation, the outputs are not chosen manually. These challenges can be overcome 
by observing the classification score rather than the classification label in the pro-
posed plant leaf classification model. The proposed architectural representation 
of leaf classification for untrained data is displayed in Fig. 1.

The proposed method of plant leaf classification for untrained data mainly con-
sists of phases like, “Data acquisition, pre-processing, and classification”. In the 
initial phase, the data regarding the plant leaves are collected from the Swedish 
leaf dataset and the Mendeley dataset, which are the standard benchmark data-
sets. The Swedish leaf dataset performs the training the data and the Mendeley 
dataset performs the testing the data, which is also referred to here as the 
untrained data. Once the data are collected, the next phase of pre-processing 
begins. It is done to improve the image quality such that the image should be 
applicable for next processing. Here, the pre-processing is accomplished by 
means of three techniques such as RGB to Gray conversion, histogram equaliza-
tion, and median filtering. In RGB to gray conversion, the RGB values for every 
pixel are taken as the input and the output is provided as a single value that 
reflects the brightness of that corresponding pixel. Histogram equalization is used 
to process the images for adjusting its contrast by altering the intensity distribu-
tion of the histogram, thereby providing a linear trend to the cumulative probabil-
ity function that is being linked to the image. The median filtering is considered 
as a non-linear digital filtering method that is used for removing the noise present 
in the image. Once the pre-processed image is obtained, it is subjected to the final 
classification phase. The classification is done by the deep learning model called 
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CNN, in which an improvement is made by optimizing the activation function 
and the hidden neurons with the help of the proposed SS-WOA. Since the classifi-
cation of the untrained images is taken as a challenging task, the optimized 
threshold-based CNN is introduced for performing the leaf classification of the 
untrained data. Here, the optimization is performed by the same proposed SS-
WOA for attaining maximum classification accuracy for the untrained data. 
Rather than the classification label, the major intention is to observe the classifi-
cation score. The classification of the untrained images is done not only on the 
basis of the high classification score but also on the basis of the range greater 

Dataset

Pre processing

RGB to Gray

Histogram equalization

Median filtering

Classification

CNN

Activation 
function

Hidden 
neurons

Threshold

SS-WOA

Classification score

if 
classification 

score > 
threshold

Corresponding 
leaf type

Optimized 
threshold

Yes

NoUnknown leaf 
type

Fig. 1   Proposed architecture of leaf classification for untrained data
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than the threshold value. If the classification score is greater than the value of 
threshold, then the corresponding leaf type is predicted as output. Otherwise, the 
output is predicted as unknown leaf type. Consider the image database as 
DA =

{
Yin
mq

}
 , where mq = 1, 2,⋯MQ and MQ denotes the total images in the 

database.

3.2 � Optimized CNN model for untrained data

The deep learning model called CNN is used to classify the plant leaves for the 
untrained data. The major advantage of the CNN is that it detects the significant fea-
tures in an automatic manner without the support of any human. It reduces the com-
putational complexity without the data essence loss. It is very effective in classify-
ing the images with the same knowledge across various locations of image. It is very 
fast in training a model. Moreover, CNNs act as the powerful tools for extracting the 
general purpose features that can work well for the unknown classes. The nonlinear-
ities are introduced to the CNN by the activation function and it is applicable for the 
multi-layer networks for detecting the nonlinear features. The spatial hierarchies of 
the features are adaptively and automatically learned by the CNN via the back prop-
agation with the help of multiple building blocks like fully connected layers, pooling 
layers, and convolution layers. Since the classification of the untrained images is 
considered as a challenging task here, the optimized threshold-based CNN is devel-
oped. Instead of the classification label, it observes the classification score. The pro-
posed SS-WOA optimizes the threshold value for achieving the maximum classi-
fication accuracy of the untrained data. The classification of the untrained images 
is done on the basis of a high classification score and the range greater than the 
threshold value. The CNNs (Rawat and Wang June 2017) are feed forward networks. 
The flow of information happens in one direction. Similar to the ANN, CNNs are 
also motivated in a biological manner. The architecture of CNN arises in different 
variations. They are composed of convolutional and subsampling or pooling layers 
that are grouped to form modules that are followed by one or multiple layers. Mod-
ules lead to a deep model by piling on top of every other. Figure 2 depicts the typical 
CNN architecture for a leaf classification task. An image is directly given as input 
to the network and it is followed by various pooling and convolution stages. One or 
multiple fully connected layers are fed by these representations from the operations. 
In the last step, the class label is set as an output by the final fully connected layer. 
Recently, numerous architecture variations are developed with the aim of minimiz-
ing the computation costs or enhancing image classification accuracy.

3.2.1 � Convolutional layers

The convolutional layers are the feature extractors. The feature representations of 
their related input images are learnt by them. In convolutional layers, the neurons are 
sorted into feature maps. The neurons present in the feature map contain a receptive 
field. It is joined to the neuron’s neighbourhood of earlier layer through a group of 
trainable weights called filter bank. A novel feature map is computed by convolving 
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the inputs with the learned weights. The convolved outcomes are passed via the 
neurons within a feature map that consists of weights nonlinear activation function. 
The neurons consist of weights with equal conditions. Inside the same convolutional 
layer, several feature maps are composed of distinct weights to be extracted at every 
location. In general, the kf th output feature map Yqkf  is computed as in Eq. (1).

Here, the nonlinear activation function is denoted by f (⋅) , the 2D convolutional 
operator is described by the multiplication sign, Wbkf  describes the convolutional fil-
ter linked to the kf th feature map, and Ymed

mq
 describes the input pre-processed image.

(1)Yqkf = f
(
Wbkf ∗ Ymed

mq

)

Input imagePre processed image

Output 
predictions

Input 
image

Convolution Pooling Convolution Pooling
Fully 

Connected
Fully 

Connected

Classified 
score

Classified 
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if 
score>thr

eshold

Activation 
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Hidden 
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SS-WOA

Threshold

Optimized CNN

Unknown 
type

Yes
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Fig. 2   Optimized CNN model for the untrained data
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3.2.2 � Pooling Layers

The spatial resolution present in the feature maps are minimized by the pooling 
layers. The spatial invariance is achieved to the translations and input distortions. 
The average of the entire input values are propagated by the pooling aggregation 
layers. Every output map joins the multiple input maps with the convolution as in 
Eq. (2).

In the above equation, a selection of input maps is described by MIjf  , CL repre-
sents the convolutional layer with iqth input and jf th output, the additive bias of CL 
convolutional layer is described by abCL , kernel maps of CL convolutional layer is 
described by KMiqjf  , the downsampling layer is described by CL − 1 , and the input 
features of the CL − 1 convolutional layer is described by YCL.

3.2.3 � Fully Connected Layers

Many abstract feature representations are extracted by grouping the various pool-
ing and the convolutional layers. These feature representations are interpreted by the 
fully connected layers and the high-level reasoning function is performed.

3.2.4 � Training

The free parameters are adjusted using the learning algorithms for obtaining the 
desired network output. Back propagation is the familiar algorithm used for this pur-
pose. In order to improve the existing CNN architecture, the activation function, hid-
den neurons, and threshold of the CNN are optimized by the proposed SS-WOA to 
attain maximum accuracy.

4 � Pre‑processing and objective model for plant leaf classification

4.1 � Dataset description

There are a total of two datasets being gathered for this leaf classification of 
untrained data.

Dataset 1: The first dataset is known as the Swedish Leaf Dataset. This dataset is 
used for the purpose of training. This dataset is collected from the link “http://​www.​
cvl.​isy.​liu.​se/​en/​resea​rch/​datas​ets/​swedi​sh-​leaf/”. It is composed of 15 leaf species 
having 75 images per species. This dataset is commonly employed to estimate the 
shape matching methods. There are various clear characteristics available on this 
dataset. Here, the leaves are aligned manually with small rotation. Some of the 

(2)YCL
jf

= f

(∑
iqMIjf

YCL−1
jf

∗ KMCL
iqjf

+ abCL
jf

)

http://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
http://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
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Table 2   Sample leaf images 
from Dataset 1

Sl. No Tree class Sample Image

1 Acer

 
2 Quercus

 
3 Betula pubescens

 
4 Populus tremula

 
5 Sorbus aucuparia

 
6 Populus

 
7 Sorbus intermedia

 
8 Ulmus carpinifolia

 
9 Salix aurita
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sample images containing leaves from 15 tree classes from dataset 1are displayed in 
Table 2.

Dataset 2: The second dataset is called the Mendeley Data. This second dataset 
is used during the process of testing. It is gathered from the link “https://​data.​mende​
ley.​com/​datas​ets/​hb74y​nkjcn/1”. Here, twelve environmentally and economically 
beneficial plants are considered for the testing process. Some of the sample images 
related to the dataset 2 is listed in Table 3.

4.2 � Pre‑processing

The pre-processing is performed at the lowest level of abstraction for enhancing the 
image data that restrain the undesired distortions. It improves some features of the 
image that is necessary for further processing. The pre-processed image does not 

Table 2   (continued) Sl. No Tree class Sample Image

10 Alnus incana

 
11 Salix alba ‘Sericea’

 
12 Ulmus glabra

 
13 Salix sinerea

 
14 Fagus silvatica

 
15 Tilia

 

https://data.mendeley.com/datasets/hb74ynkjcn/1
https://data.mendeley.com/datasets/hb74ynkjcn/1
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Table 3   Sample leaf images 
from Dataset 2

Sl. No Tree class Sample Image

1 Alstonia Scholaris

 
2 Arjun

 
3 Bael

 
4 Basil

 
5 Chinar

 
6 Gauva

 
7 Jamun

 
8 Jatropha

 
9 Lemon

 
10 Mango

 
11 Pomegranate
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contain any impurities, and so it becomes better to be applied for the upcoming clas-
sification phase. Here, the pre-processing is performed using RGB to Gray conver-
sion, histogram equalization, and median filtering.

4.2.1 � RGB to Gray Conversion

The gray scale image is observed to be in black and white that is composed of gray 
shades. The intensity of the light is described with the help of the value of every 
pixel. The RGB to gray conversion is done by averaging the sum of three colors 
called R, G, and B and then dividing it by 3. The final gray scale image is repre-
sented by Ygray

mq .

4.2.2 � Histogram Equalization

Histogram oriented methods for the image enhancement is dependent on equaliz-
ing the image histogram and enhancing the dynamic range related to the image. HE 
(Yeganeh et  al. 2008) accomplishes the contrast enhancement owing to its effec-
tiveness and simplicity. HE uniformly distributes the pixel values and an enhanced 
image is produced that contains the linear cumulative histogram. Various applica-
tions of HE enhancement involve texture synthesis, speech recognition, and medi-
cal image processing that are being used with the histogram modification. Histo-
gram oriented methods for the image enhancement is dependent on enhancing the 
dynamic range that is being related to the image and equalizing the histogram of 
the image. A digital image is considered that contains gray levels in the range of 
[0, LR − 1] . Equation  (3) calculates the probability distribution function of the 
image.

Here, the kath gray level is represented by rgka , the count of pixels is denoted by 
npka and it is present in the image with gray level rgka . Equation (4) describes the 
Cumulative Distribution Function.

(3)Pd
(
rgka

)
=

npka

NP
ka = 0,⋯ , LR − 1

(4)
CDF

(
rgka

)
=

ia=ka∑

ia=0

Pd
(
rgia

)

ka = 0,⋯ , LR − 1, 0 ≤ CDF
(
rgka

)
≤ 1

Table 3   (continued) Sl. No Tree class Sample Image

12 Pongamia pinnata
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The gray level SGka is appropriated to the gray level rgka of the input image with 
the help of Eq. (4). Hence, Eq. (5) formulates as below.

The variation of gray level SGka is calculated using the usual histogram equaliza-
tion technique as in Eq. (6).

In the above equation, the distance among the terms SGka and SGka + 1 has direct 
contact with probability distribution function of the input image at the gray level 
rgka . The histogram equalized image is represented as Yhis

mq
.

4.2.3 � Median filtering

The median filter (Failed 2011) represents a nonlinear signal processing technology 
on the basis of statistics. The noisy value of a sequence is substituted using the filter 
mask’s median. The pixels are ranked in the range of their corresponding gray lev-
els. The mask’s median is used to substitute the noisy value. The output is repre-
sented by Ymed

mq
(xz, yz) = med

{
Yhis
mq
(xz − iz, yz − jz) , iz, jz ∈ DM

}
 , in which the 

output and the original image are represented by Ymed
mq

(xz, yz) and Yhis
mq
(xz, yz) respec-

tively; a two-dimensional mask is denoted by DM ; the size of the mask is denoted 
by sn × sn , in which sn is mostly odd like 7 × 7, 9 × 9, etc.; the shape of the mask is 
either cross, circular, square, linear, etc.

4.3 � Objective model

The main aim of the developed leaf classification for the untrained data is to maxi-
mize the accuracy. Here, the activation function, hidden neurons and the threshold 
of the CNN is optimized by the proposed SS-WOA. Apart from the classification 
label, the classification score is mainly considered here. The final classification per-
tain to the untrained data fully depends on the classification score and the optimized 
threshold value. The objective function of the proposed SS-WOA-based leaf classifi-
cation for the untrained data is described in Eq. (7).

Here, in Eq. (7), AF denotes the activation function, HN denotes the hidden neu-
rons, and TH denotes the threshold of the CNN that are to be optimized by the pre-
sented SS-WOA. The accuracy is shown in Eq. (8).

Here, Acy denotes the accuracy, “ trp , trn , fap , and fan”represent the “true posi-
tive, true negative, false positive, and false negative” respectively.

(5)SGka = (LR − 1) × CDF
(
rgka

)

(6)ΔSGka = (LR − 1) × Pd
(
rgka

)

(7)Ob fun = argmax
{AF,HN,TH}

(Acy)

(8)Acy =
trp + trn

trp + trn + fap + fan
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5 � Improved algorithm for optimized threshold‑based CNN 
applicable for plant leaf classification

5.1 � Proposed SS‑WOA

The proposed SS-WOA is used for performing the plant leaf classification for the 
untrained data. The optimization algorithm is used to find the unconstrained minima 
or maxima or optimum solution of the differentiable and the continuous functions. 
CNNs are broadly used in the image classification tasks. It is composed of numerous 
parameters for generating better classification accuracy for a certain task on the basis of 
distinct parameters such as neuron count, layer count, size of the filter, and input win-
dow size etc. Here, the proposed SS-WOA optimizes the activation function, hidden 
neurons, and the threshold of the CNN for classifying the plant leaves of the untrained 
data. WOA (Mirjalili and Lewis 2016) criticizes the social characteristics of the hump-
back whales. It is motivated by the bubble-net hunting method.

5.1.1 � Encircling the prey

The best position present in the search space is unknown earlier, and hence the present 
best candidate solution is near to the optimum or it is the target prey. Once the best 
search agent is described, the remaining search agents update their locations in the path 
of the best search agent. This characteristic is mathematically modelled in Eqs. (9) and 
(10).

Here, the element-by-element multiplication is described by ‘ ⋅ ’, the absolute value is 
described by | |, the position vector is described by Xa⃗ , the position vector of the opti-
mal solution attained is described by Xa ∗ , the coefficient vectors are described by CV⃗  
and AV⃗ , and the present iteration is described by kp . Equations (11) and (12) describes 
the computation of the vectors AV⃗ and CV⃗.

In the above equations, the random vector is described by RN1⃗ , and for both exploi-
tation as well as the exploration phases, ar⃗ is linearly minimized from 2 to 0 over the 
iterations.

(9)DQ⃗ =
|||CV⃗ ⋅ Xa⃗ ∗ (kp) − Xa⃗(kp)

|||

(10)Xa⃗(kp + 1) = Xa⃗ ∗ (kp) − AV⃗ ⋅ DQ⃗

(11)AV⃗ = 2ar⃗ ⋅ RN1⃗ ⋅ ar⃗

(12)CV⃗ = 2 ⋅ RN1⃗
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5.1.2 � Bubble‑net attacking technique (exploitation phase)

Two techniques are used to describe the bubble-net characteristics of the humpback 
whales.

5.1.3 � Shrinking encircling mechanism

This characteristic arises by minimizing the ar⃗ in Eq. (3). The range of AV⃗ is also mini-
mized by the ar⃗ . Placing the random values for AV⃗ in the interval range of [-1,1] leads 
to describe the novel search agent position among the original agent position and the 
present optimal position.

5.2 � Spiral updating position

Initially this technique computes the distance among the whale positioned at (Xa, Ya) 
as well as prey positioned at (Xa ∗,Ya ∗) . The helix-shaped movement present in the 
humpback whales is criticised by generating the spiral equation among the position of 
prey and the whale as in Eq. (13).

Here, the element-by-element multiplication is described by ‘ ⋅ ’, a random number is 
described by RN2 , a constant is denoted by bc , the distance of the isth whale to the prey 
called as the best solution is described by DQ⃗� = ||Xa⃗ ∗ (kp) − Xa⃗(kp)||.

This simultaneous characteristic is designed by assuming a probability to select 
among either the spiral model or the shrinking encircling mechanism to modify the 
whales position in the optimization process. The mathematical model is displayed in 
Eq. (14).

In the above equation, a random number is denoted by RN3.

5.2.1 � Prey search (exploration phase)

On the basis of the variation of the AV⃗ vector, the similar technique can be employed 
for the prey searching (exploration). Rather than the best search agent, the search agent 
position is modified in the exploration phase on the basis of the randomly selected 
search agent. This mechanism and |||AV⃗

||| > 1 utilizes the exploration and permits the 
WOA algorithm to undergo a global search. It is shown in Eqs. (15) and (16).

(13)Xa⃗(kp + 1) = DQ⃗�
⋅ ebcRN2 ⋅ cos (2𝜋RN2) + Xa⃗ ∗ (kp)

(14)Xa⃗(kp + 1) =

{
Xa⃗ ∗ (kp) − AV⃗ ⋅ DQ⃗ if RN3 < 0.5

DQ⃗�
⋅ ebcRN2 ⋅ cos (2𝜋RN2) + Xa⃗ ∗ (kp) if RN3 ≥ 0.5

(15)DQ⃗ =
|||CV⃗ ⋅ Xa⃗rnd − Xa⃗

|||
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Here, a random position vector is described by Xa⃗rnd . WOA has numerous advan-
tages like less parameter count, handling optimization problems very effectively, etc. 
Amidst various advantages, it suffers from some limitations such as slow conver-
gence speed, bad search space exploration capability, etc. Hence, to overcome these 
limitations, SSO is combined into it and the so form hybrid meta-heuristic algorithm 
is called as SS-WOA. SSO has various advantages like better convergence behav-
iour, handling real-world engineering problems, etc. SSO (Failed 2014) is based on 
the smelling behaviour of the shark. One of the major efficient senses of the shark is 
the nose. The concentration is a major factor for the movement of the shark towards 
its prey. This behaviour is used to find the optimization problem solution.

In the proposed SS-WOA, if a random number (RN3 < 0.5) it checks the con-
dition whether (|AV| < 1) . If this condition is satisfied, then forward movement of 
SSO takes place using Eq. (17).

In the above equation, the time interval of the stage kp is represented by Δtikp . 
It can be revealed for all stages that Δtikp = 1 . Here, the terms Xakp

is
 and VVkp

is
 are 

described as in Eqs. (18) and (19).

In the above equation, the count of decision variables of the problem of optimiza-
tion is denoted by DV  , and the jsth decision variable of the is th individual Xa1

is
 or 

the jsth dimension of the is th position of the shark is denoted by xa1
is,js

 . Here, the 
gradient is denoted by ∇(OB) , and the objective function is denoted by OB . The term 
VV

kp

is
 represents the velocity of the shark in every stage, and kpmax represents the 

count of stages. The stage number is denoted by the superscript kp . The random 
number is denoted by RN1 . If (|AV| ≥ 1) , the solution is updated by WOA using 
Eq. (16).

It again checks the condition whether (RN3 ≥ 0.5) . In this case, if (|AV| ≥ 1) , 
then the update takes place using the rotation movement of SSO as in Eq. (20).

Here, a random number is represented by RN3 , and the count of points present 
in the local search of each stage is denoted by Ms . Or else, if (|AV| < 1) , then the 
current search agent position of WOA is updated using Eq. (13). The pseudo code 
of the presented SS-WOA is displayed in Algorithm 1 and the flowchart of the pre-
sented SS-WOA is listed in Fig. 3.

(16)Xa⃗(kp + 1) = Xa⃗rnd ⋅ AV⃗ ⋅ DQ⃗

(17)Ya
kp+1

is
= Xa

kp

is
+ VV

kp

is
⋅ Δtikp is = 1,⋯ ,PS kp = 1,⋯ kpmax

(18)Xa1
is
=

[
xa1

is,1
, xa1

is,2
,⋯ , xa

is,DV
1
]
, is = 1,⋯ ,PS

(19)VV
kp

is
= �kp ⋅ RN1 ⋅ ∇(OB)|xa

kp

is
, is = 1,⋯ ,PS, kp = 1,⋯ , kpmax

(20)
Za

kp+1,ms

is
= Ya

kp+1

is
+ RN3 ⋅ Ya

kp+1

is

ms = 1,⋯ ,Ms is = 1,⋯ ,PS kp = 1,⋯ , kpmax
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Fig. 3   Flowchart of the proposed SS-WOA
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Optimization algorithms handle complex problems via different alterations and 
improvements (Swamy et  al. 2013). A hybrid optimization algorithm (Marsaline 
Beno et  al. 2014) is formed by combining multiple optimization mechanisms or 
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principles. Hybrid optimization algorithms can solve specific search problems. It 
also returns fast convergence.

5.3 � Solution encoding

The solution encoding of the proposed SS-WOA-based leaf classification for the 
untrained data is displayed in Fig. 4. The activation function, hidden neurons, and 
threshold of the CNN are optimized by the proposed SS-WOA. The bounding limit 
of the activation function lies in between the range of (1–4), for hidden neurons, the 
bounding limit lies in between the range of (5–255), and the bounding limit of the 
threshold lies in between the range of (0.25–0.75). As per Fig. 2, the threshold value 
is fixed for classifying the untrained data using CNN-based classification. The CNN 
usually provides the classification score and label. In the proposed model, for impro-
vising the classification accuracy of untrained data, the classification score is con-
sidered for fixing the label if it handles the untrained data. Since, the deep learning 
models are supervised learning, it depends on the target, and it will be more close 
to the training data. Thus, while handling the untrained data, the misclassification 
problem occurs as it selects the classification label from the trained data. In order to 
solve this challenge, a threshold is fixed to decide the optimal classification label. If 
the classification score is greater than threshold, the classification label is correct, or 
else it belongs to untrained data. Since the classification of untrained data depends 
on the threshold value, selecting the optimal threshold is considered as the chal-
lenging task here. Hence, by fixing the objective function as accuracy, the proposed 
SS-WOA tunes the threshold value, thus attaining the faster convergence rate with 
correct label classification.

In Fig.  3, the terms AF, HN and TH represent the activation function, hidden 
neurons, and threshold of the CNN that are to be optimized by the proposed SS-
WOA. The four activation functions used are logistic, Tanh, ReLU, and Leaky 
ReLU functions. A logistic function represents a common sigmoid curve that mod-
els the real-life quantities, in which the growth levels off due o the growth variation 
rate from an increasing to a decreasing growth rate. The tanh function is similar to 
the logistic sigmoid, in which the range varies from (-1 to 1). Here, “the negative 
inputs are mapped strongly negative and the zero inputs are mapped near zero”. The 
rectified linear activation function, otherwise known as ReLU represents a piecewise 
linear function that outputs the input in a direct manner if it is positive, or else it 

Fig. 4   Solution encoding of 
SS-WOA-based untrained leaf 
classification

AF HN TH

Activation function, hidden 
neurons, and threshold of 

CNN
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outputs zero. Leaky ReLU is used to fix the “dying ReLU” problem since it does not 
contain zero slope parts. It also makes the process of training faster.

6 � Results and discussions

6.1 � Experimental setup

The proposed SS-WOA-CNN-based plant leaf classification for the trained as well 
as the untrained data was implemented in Python with Google Colab and the results 
were carried out. The population size was considered as 10 and the maximum itera-
tion count was 25. The training percentage was varied from 40 to 80% for analy-
sis in results section. If 70% of data was used for training, and 30% of data was 
used for testing. As mentioned earlier, the Dataset 1 is used for training and test-
ing, and Dataset 2 is used for only testing as the untrained data classification is the 
challenge here. Hence, the Dataset 1 performs well as it is taken for both training 
and testing. The proposed SS-WOA-CNN was differentiated with several machine 
learning algorithms like NB (Fang Oct. 2013), SVM (ShuangYu October 2015), NN 
(Fernández-Navarro et al. 2017), DNN (Jen-Tzung 2019), CNN (Rawat and Wang 
June 2017), and optimization algorithms like PSO-CNN (Pedersen and Chipperfield 
2010), GWO-CNN (Seyedali  et al. 2014), WOA-CNN (Mirjalili and Lewis 2016), 
and SSO-CNN (Failed 2014) in terms of Type I or positive measures like, “accu-
racy, sensitivity, specificity, precision, NPV, F1 Score, and MCC”, and Type II or 
negative measures such as, “FPR, FNR, and FDR” to determine its superiority in 
classifying the plant leaves for the trained as well as the untrained data.

6.2 � Performance metrics

The various performance measures for classifying the plant leaves for the trained as 
well as the untrained data is listed below.

a.	 Accuracy: It is described in Eq. (8).
b.	 Specificity: “the number of true negatives, which are determined precisely”.

c.	 FPR: “the ratio of count of false positive predictions to the entire count of negative 
predictions”.

d.	 NPV: “probability that subjects with a negative screening test truly don’t have the 
disease”.

(21)Spe =
trn

fap

(22)FPR =
fap

fap + trn
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e.	 F1 score: “harmonic mean between precision and recall. It is used as a statistical 
measure to rate performance”.

f.	 Sensitivity: “the number of true positives, which are recognized exactly”.

g.	 Precision: “the ratio of positive observations that are predicted exactly to the total 
number of observations that are positively predicted”.

h.	 FNR: “the proportion of positives which yield negative test outcomes with the 
test”.

i.	 MCC: “correlation coefficient computed by four values”.

j.	 FDR: “the number of false positives in all of the rejected hypotheses”.

6.3 � Trained and untrained classification

The effect of classifying the plant leaves by the developed and existing machine learn-
ing models as well as the heuristic-based CNN for the trained and the untrained data is 
described in Figs. 5 and 6. Here, for trained 15 class labels, the accuracy is more as in 
Figs. 5 and 6. But for the untrained data (others), the accuracy seems to be less when 
compared with the trained data that is considered as a challenging task. From Fig. 5a, at 
6th class label, the accuracy of the developed SS-WOA-CNN is 6.67% advanced than 
NB, 9.09% higher than SVM, 5.49% higher than NN, 6.67% higher than DNN, and 

(23)NPV =
fan

fan + trn

(24)F1score =
Sen ∙ Pr e

Pr e + Sen

(25)Sen =
trp

trp + fan

(26)Pr e =
trp

trp + fap

(27)FNR =
fan

trn + trp

(28)MCC =
trp × trn − fap × fan

√
(trp + fap)(trp + fan)(trn + fap)(trn + fan)

(29)FDR =
fap

fap + trp
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4.35% higher than CNN. Moreover, for the 14th class label from Fig. 5b, the accuracy 
of the presented SS-WOA-CNN is 6.52% surpassed than NB, 5.38% surpassed than 
SVM, 4.26% surpassed than NN, 6.52% surpassed than DNN, and 5.38% surpassed 
than CNN. Further, while considering the untrained data (others), the accuracy of the 
presented SS-WOA-CNN is 7.14% improved than NB, 5.63% progressed than SVM, 
4.17% progressed than NN, 4.17% progressed than DNN, and 1.35% progressed than 
CNN. While see Fig. 6a, for the 8th class label, the accuracy of the developed SS-WOA-
CNN is 2.08% progressed than PSO-CNN, 2.08% progressed than GWO-CNN, 3.16% 
advanced than WOA-CNN, and 1.03% advanced than SSO-CNN. Similarly, in Fig. 6b, 
for the untrained label (others), the accuracy of the proposed SS-WOA-CNN is 1.45% 
superior to PSO-CNN, 1.45% better than GWO-CNN, 2.94% better than WOA-CNN, 
and 4.48% better than SSO-CNN. Hence, better classification of plant leaves is pro-
vided by the proposed SS-WOA-CNN against various conventional machine learning 
models and heuristic-based CNN in terms of both the trained and the untrained data.

Fig. 5   Effect of proposed and conventional machine learning models for plant leaf classification on 
trained and untrained data a Class 1 to Class 8, and b Class 9 to Class 15 with untrained data (others)

Fig. 6   Effect of proposed and conventional heuristic-based CNN for plant leaf classification on trained 
and untrained data a Class 1 to Class 8, and b Class 9 to Class 15 with untrained data (others)
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6.4 � Performance analysis of heuristic‑based CNN

The performance analysis of the presented and traditional heuristic-oriented CNN 
for the plant leaf classification on trained and untrained data with respect to vari-
ous measures for various learning percentages is depicted in Fig. 7. It can be seen 
that the positive measures return an increased outcome and negative measures return 
a less outcome, which determines the superiority of the proposed SS-WOA-CNN 
in classifying the plant leaves for the trained as well as the untrained data. From 
Fig. 7a, the accuracy of the presented SS-WOA-CNN at 85% learning percentage is 
0.83% upgraded than PSO-CNN, 0.81% upgraded than GWO-CNN, 1.33% upgraded 
than WOA-CNN, and 1.60% upgraded than SSO-CNN. In Fig. 7b, at a learning per-
centage of 65%, the sensitivity of the developed SS-WOA-CNN is 8.94% surpassed 
than PSO-CNN, 10.74% surpassed than GWO-CNN, 5.51% surpassed than WOA-
CNN, and 14.20% surpassed than SSO-CNN. On considering Fig. 7c, at a learning 
percentage of 75%, the specificity of the proposed SS-WOA-CNN is 0.63% higher 
than PSO-CNN, 0.80% higher than GWO-CNN, 0.62% higher than WOA-CNN, and 
0.59% higher than SSO-CNN. While seeing Fig. 7d, the precision of the proposed 
SS-WOA-CNN at 85% learning percentage is 7.88% advanced than PSO-CNN, 
7.73% advanced than GWO-CNN, 11.915 advanced than WOA-CNN, and 15.43% 
advanced than SSO-CNN. In Fig. 7e, the FPR of the proposed SS-WOA-CNN for 
75% learning percentage is 31.63% upgraded than PSO-CNN, 35.58% upgraded 
than GWO-CNN, 31.28% upgraded than WOA-CNN, and 28.72% upgraded than 
SSO-CNN. On seeing Fig. 7f, at 65% learning percentage, the FNR of the proposed 
SS-WOA-CNN is 25.76% improved than PSO-CNN, 27.41% improved than GWO-
CNN, 17.65% improved than WOA-CNN, and 34.23% improved than SSO-CNN. At 
a learning percentage of 75% from Fig. 7g, the NPV of the proposed SS-WOA-CNN 
is 0.60% progressed than PSO-CNN, 0.78% progressed than GWO-CNN, 0.59% 
upgraded than WOA-CNN, and 0.57% upgraded than SSO-CNN. In Fig. 7h, at 85% 
learning percentage, the FDR of the proposed SS-WOA-CNN is 24% higher than 
PSO-CNN, 20.83% higher than GWO-CNN, 32.14% higher than WOA-CNN, and 
36.67% higher than SSO-CNN. On considering Fig. 7i, at 65% learning percentage, 
the F1 Score of the developed SS-WOA-CNN is 8.94% upgraded than PSO-CNN, 
11.36% upgraded than GWO-CNN, 7.49% upgraded than WOA-CNN, and 11.98% 
upgraded than SSO-CNN. Moreover, on considering Fig. 7j, at 85% learning per-
centage, the MCC of the proposed SS-WOA-CNN is 8.67% surpassed than PSO-
CNN, 8.09% surpassed than GWO-CNN, 13.92% surpassed than WOA-CNN, and 
17.60% surpassed than SSO-CNN. Thus, it is clear that the proposed SS-WOA-CNN 
does better performance analysis than the existing heuristic-based CNN in classify-
ing the plant leaves for both the trained as well as the untrained data.

Fig. 7   Performance analysis of proposed and conventional heuristic-based CNN for plant leaf classifica-
tion on trained and untrained data concerning metrics a accuracy, b sensitivity, c specificity, d precision, 
e FPR, f FNR, g NPV, h FDR, i F1 score, j MCC

▸
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6.5 � Performance analysis of machine learning

The proposed and conventional machine learning models for classifying the plant 
leaves on trained as well as untrained data by concerning the various measures 
are portrayed in Fig. 8. The outcomes revealed the betterment of the proposed SS-
WOA-CNN. From Fig.  8a, at a learning percentage of 75%, the accuracy of the 
proposed SS-WOA-CNN is 4.40% surpassed than NB, 3.26% surpassed than SVM, 
1.06% surpassed than NN, 2.15% surpassed than DNN, and 1.06% surpassed than 
CNN. On considering Fig. 8b at 85% learning percentage, the sensitivity of the pro-
posed SS-WOA-CNN is 59.62% advanced than NB, 50.91% advanced than SVM, 
27.69% progressed than NN, 18.57% progressed than DNN, and 10.67% progressed 
than CNN. At a learning percentage of 65% in Fig. 8c, the specificity of the pro-
posed SS-WOA-CNN is 5.43% upgraded than NB, 4.30% upgraded than SVM, 
2.11% upgraded than NN, 3.19% upgraded than DNN, and 2.11% upgraded than 
CNN. From Fig. 8d, at 85% learning percentage, the precision of the proposed SS-
WOA-CNN is 48.15% improved than NB, 37.93% improved than SVM, 21.21% 
improved than NN, 26.98% progressed than DNN, and 2.56% progressed than CNN. 
In Fig. 8e, at 75% learning percentage, the FPR of the proposed SS-WOA-CNN is 
57.58% progressed than NB, 56.25% improved than SVM, 36.36% improved than 
NN, 48.15% improved than DNN, and 30% progressed than CNN. At 65% learning 
percentage in Fig. 8f, the FNR of the developed SS-WOA-CNN is 60% superior to 
NB, 61.70% higher than SVM, 45.45% higher than NN, 43.75% higher than DNN, 

Fig. 7   (continued)
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and 28% higher than CNN. From Fig. 8g at 75% learning percentage, the NPV of the 
presented SS-WOA-CNN is 2.13% upgraded than NB, 2.13% upgraded than SVM, 
and DNN, and 1.05% upgraded than NN and CNN. In Fig. 8h, at a learning percent-
age of 85%, the FDR of the proposed SS-WOA-CNN is 60% surpassed than NB, 
55% surpassed than SVM, 40% surpassed than NN, 47.06% surpassed than DNN, 
and 5.26% surpassed than CNN. In Fig. 8i, at 75% learning percentage, the F1 Score 
of the proposed SS-WOA-CNN is 66.67% higher than NB, 42.86% higher than 
SVM, 14.29% advanced than NN, 25% advanced than DNN, and 8.11% advanced 
than CNN. Further, from Fig. 8j, at 65% learning percentage, the MCC of the pro-
posed SS-WOA-CNN is 62.5% advanced than NB, 59.18% advanced than SVM, 
23.81% upgraded than NN, 25.81% upgraded than DNN, and 11.43% upgraded than 
CNN. Therefore, the proposed SS-WOA-CNN performs better performance analysis 
than the traditional machine learning models in classifying the plant leaves for the 
trained as well as the untrained data.

6.6 � Overall analysis

The overall analysis of the proposed and conventional heuristic-based CNN and the 
machine learning models in classifying the plant leave on the trained and untrained 
data is listed in Tables 4 and 5. The SS-WOA-CNN has the capability for avoiding 
the local optima and for getting the global optimal solution. It has the efficiency to 
solve the constrained or unconstrained issues for the real applications. Due to these 
advantages the SS-WOA-CNN performs better than the other existing methods. 
The positives measures show an enhanced result and the negative measures show 
a decreased result, thereby proving the superiority of the proposed SS-WOA-CNN. 
From Table 4, the accuracy of the proposed SS-WOA-CNN is 0.86%, 0.78%, 1.28%, 
and 1.53% advanced than PSO-CNN, GWO-CNN, WOA-CNN, and SSO-CNN. The 
sensitivity of the proposed SS-WOA-CNN is 8.59%, 6.92%, 13.93%, and 15.83% 
upgraded than PSO-CNN, GWO-CNN, WOA-CNN, and SSO-CNN. The specificity 
of the proposed SS-WOA-CNN is 0.43%, 0.43%, 0.61%, and 0.78% improved than 
PSO-CNN, GWO-CNN, WOA-CNN, and SSO-CNN. The precision of the proposed 
SR-SSO-WOA is 7.96%, 7.54%, 11.95%, and 15.16% progressed than PSO-CNN, 
GWO-CNN, WOA-CNN, and SSO-CNN. The FPR of the developed SS-WOA-
CNN is 23.25%, 23.25%, 29.79%, and 35.29% superior to PSO-CNN, GWO-CNN, 
WOA-CNN, and SSO-CNN. The FNR of the developed SS-WOA-CNN is 27.50%, 
23.68%, 36.96%, and 39.58% upgraded than PSO-CNN, GWO-CNN, WOA-CNN, 
and SSO-CNN. The NPV of the proposed SS-WOA-CNN is 0.43%, 0.43%, 0.61%, 
and 0.78% surpassed than PSO-CNN, GWO-CNN, WOA-CNN, and SSO-CNN. 
The FDR of the presented SS-WOA-CNN is 23.70%, 22.81%, 31.01%, and 35.67% 
higher than PSO-CNN, GWO-CNN, WOA-CNN, and SSO-CNN. The F1 Score of 
the proposed SS-WOA-CNN is 8.27%, 7.24%, 12.93%, and 15.49% advanced than 
PSO-CNN, GWO-CNN, WOA-CNN, and SSO-CNN. The MCC of the proposed 
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SS-WOA-CNN is 9.08%, 7.94%, 14.24%, and 17.12% better than PSO-CNN, GWO-
CNN, WOA-CNN, and SSO-CNN. On considering Table 5, the accuracy of the pro-
posed SS-WOA-CNN is 4.02%, 3.23%, 1.95%, 2.12%, and 0.57% progressed than 
NB, SVM, DNN, NN, and CNN. The sensitivity of the proposed SS-WOA-CNN is 
59.77%, 0.87%, 28.70%, 19.83%, and 13.01% progressed than NB, SVM, DNN, NN, 
and CNN. The specificity of the developed SS-WOA-CNN is 1.89%, 1.40%, 0.69%, 
1.22%, and 0.09% superior to NB, KNN, DNN, NN, and CNN. The precision of the 
presented SS-WOA-CNN is 51.41%, 36.70%, 17.48%, 23.31%, and 1.18% upgraded 
than NB, SVM, DNN, NN, and CNN. The FPR of the proposed SS-WOA-CNN is 
56.58%, 49.23%, 32.65%, 45.90%, and 6.46% surpassed than NB, SVM, DNN, NN, 
and CNN. The FNR of the developed SS-WOA-CNN is 64.20%, 60.81%, 51.67%, 
44.23%, and 35.56% higher than NB, SVM, DNN, NN, and CNN. The NPV of the 
developed SS-WOA-CNN is 1.89%, 1.40%, 0.69%, 1.22%, and 0.09% advanced 
than NB, SVM, DNN, NN, and CNN. The FDR of the developed SS-WOA-CNN is 
58.85%, 53.07%, 38.53%, 44.33%, and 4.69% better than NB, SVM, DNN, NN, and 
CNN. The F1 Score of the presented SS-WOA-CNN is 55.54%, 42.22%, 23.03%, 
21.59%, and 7.03% improved than NB, SVM, DNN, NN, and CNN. Moreover, the 
MCC of the proposed SS-WOA-CNN is 63.38%, 47.43%, 25.33%, 24.03%, and 
7.45% progressed than NB, SVM, DNN, NN, and CNN respectively. Hence, it could 
be confirmed that the proposed SS-WOA-CNN returns better analysis in classifying 
the plant leaves for the trained as well as the untrained data when it is differentiated 
with the existing machine learning and heuristic-based CNN methods.

7 � Conclusion

This paper has introduced a new deep learning-based plant leaf classification model. 
The experiment was done by collecting the publicly available standard datasets 
called the “Swedish leaf dataset” and the “Mendeley data”. The RGB to gray scale 
conversion, histogram equalization, and median filtering were increases the image 
quality. Moreover, the leaf classification was done by the optimized CNN by opti-
mizing its hidden neurons and activation function by the proposed SS-WOA that 

Fig. 8   Performance analysis of proposed and conventional machine learning models for plant leaf classi-
fication on trained and untrained data concerning metrics a Accuracy, b sensitivity, c specificity, d preci-
sion, e FPR, f FNR, g NPV, h FDR, i F1 score, j MCC

▸
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attained the maximum classification accuracy. The optimized threshold-based CNN 
classification was performed for handling the untrained images. This method has 
observed the classification score instead of the classification label. The threshold 
was fixed on the basis of trial and error pattern concerning the optimization. The 
hybrid SS-WOA optimized the threshold value that obtained the maximum classifi-
cation accuracy for the untrained data. The classification of the images was done on 
the basis of the high classification score and the range greater than threshold value, 
thus enhances the performance in handling both trained and untrained data. The 
proposed model was compared to the diverse traditional machine learning models, 
which has proved the efficiency of the proposed model. From the analysis, the accu-
racy of the developed SS-WOA-CNN was 0.86%, 0.78%, 1.28%, and 1.53% better 
than PSO-CNN, GWO-CNN, WOA-CNN, SSO-CNN, and 4.02%, 3.23%, 1.95%, 
2.12%, and 0.57% better than NB, SVM, DNN, NN, and CNN, respectively. Thus, it 
could be demonstrated that the proposed SS-WOA-CNN performed better outcomes 
in the plant leaf classification for the trained as well as the untrained data. Anyhow, 
the limitation of the proposed system is that the CNN need to be trained if the avail-
able images are lower than the required images.

Fig. 8   (continued)
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