
Journal of Combinatorial Optimization (2022) 44:269–286
https://doi.org/10.1007/s10878-021-00767-5

A linear-time algorithm for weighted paired-domination on
block graphs

Ching-Chi Lin1 · Cheng-Yu Hsieh2 · Ta-Yu Mu2

Accepted: 2 June 2021 / Published online: 22 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In a graph G = (V , E), a set S ⊆ V (G) is said to be a dominating set of G if
every vertex not in S is adjacent to a vertex in S. Let G[S] denote the subgraph
of G induced by a subset S of V (G). A dominating set S of G is called a paired-
dominating set ofG if the induced subgraphG[S] contains a perfectmatching. Suppose
that, for each v ∈ V (G), we have a weight w(v) specifying the cost for adding v

to S. The weighted paired-domination problem is to find a paired-dominating set S
whose total weights w(S) = ∑

v∈S w(v) is minimized. In this paper, we propose an
O(n+m)-time algorithm for theweighted paired-domination problemon block graphs
using dynamic programming, which strengthens the results in [Theoret Comput Sci
410(47–49):5063–5071, 2009] and [J Comb Optim 19(4):457–470, 2010]. Moreover,
the algorithm can be completed in O(n) time if the block-cut-vertex structure of G is
given.

Keywords Weighted paired-domination · Perfect matching · Block graph · Dynamic
programming

This work is partially supported by the National Science Council under the Grant Nos.
MOST-106-2221-E-019-014, and MOST-107-2221-E-019-016.

B Ching-Chi Lin
lincc@mail.ntou.edu.tw

Cheng-Yu Hsieh
r01922114@ntu.edu.tw

Ta-Yu Mu
f08922132@ntu.edu.tw

1 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung
20224, Taiwan

2 Department of Computer Science and Information Engineering, National Taiwan University, Taipei
10617, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00767-5&domain=pdf

270 Journal of Combinatorial Optimization (2022) 44:269–286

1 Introduction

In a graph G = (V , E), a set S ⊆ V (G) is said to be a dominating set of G if every
vertex not in S is adjacent to a vertex in S. Let G[S] denote the subgraph of G induced
by a subset S of V (G). A dominating set S of G is called a paired-dominating set
if the induced subgraph G[S] contains a perfect matching. The paired-domination
problem involves finding a paired-dominating set S of G such that the cardinality of S
is minimized. Suppose that, for each v ∈ V (G), we have a weightw(v) specifying the
cost for adding v to S. The weighted paired-domination problem is to find a paired-
dominating set S whose total weights w(S) = ∑

v∈S w(v) is minimized. Throughout
this paper, we let n = |V (G)| and m = |E(G)|.

The domination problem has been extensively studied in the area of algorithmic
graph theory for several decades; see (Hedetniemi and Laskar 1990, 1991; Haynes
et al. 1998b, a; Goddard andHenning 2013; Henning 2009; Chang 2013) for books and
survey papers. It has many applications in the real world such as location problems,
communication networks, and kernels of games (Haynes et al. 1998b). Depending
on the requirements of different types of applications, there are several variants of
the domination problem, such as the independent domination, connected domina-
tion, total domination, and perfect domination problems (Chang 2013; Goddard and
Henning 2013; Henning 2009; Yen and Lee 1996). These problems are proved to be
NP-complete and have polynomial-time algorithms on some special classes of graphs.
In particular, Haynes and Slater (1998) introduced the concept of paired-domination
motivated by security concerns. In a museum protection program, besides the require-
ment that each region has a guard in it or is in the protection range of some guard,
the guards must be able to back each other up. Similarly, to ensure the stability of
the power supply, we require that each power station has another power station as a
backup.

The paired-domination number γp(G) is the number of vertices in a smallest
paired-dominating set for G. Haynes and Slater (1998) introduced the concept of
paired-domination problem and showed that the problem of determining whether
γp(G) ≤ c is NP-complete for general graph G with positive integer c. In addi-
tion, they presented bounds on γp(G) and results relating γp(G) to other domination
parameters, e.g., γ (G) ≤ γt (G) ≤ γp(G). Recently, many studies have been made
for this problem in proving NP-completeness, providing approximation algorithms,
and finding polynomial-time algorithms on some special classes of graphs. Here,
we only mention some related results. For more detailed information regarding this
problem, please refer to Kang (2013). Chen et al. (2010) demonstrated that the paired-
domination problem is also NP-complete on bipartite graphs, chordal graphs, and split
graphs. In Chen et al. (2009a), Chen et al. proposed an approximation algorithm with
ratio ln(2�(G))+1 for general graphs and showed that the problem is APX-complete,
i.e., has no PTAS. Panda and Pradhan (2013b) strengthened the results in Chen et al.
(2010) by showing that the problem is also NP-complete for perfect elimination bipar-
tite graphs. Further, Henning and Pradhan (2020) gave algorithmic results of upper
paired-domination problem. Lu et al. (2019) proved a sharp upper bound of 4n/7 for
claw-free graphs.

123

Journal of Combinatorial Optimization (2022) 44:269–286 271

Meanwhile, polynomial-time algorithms have been studied intensively on some
special classes of graphs such as tree graphs (Qiao et al. 2003), weighted tree graphs
(Chen et al. 2009a), inflated tree graphs (Kang et al. 2004), convex bipartite graphs
(Hung 2012; Panda and Pradhan 2013a), permutation graphs (Cheng et al. 2009;
Lappas et al. 2009, 2013), interval graphs (Chen et al. 2010), circular-arc graphs (Lin
and Tu 2015), strongly chordal graphs (Chen et al. 2009b), strongly orderable graphs
(Pradhan andPanda 2019), and distance-hereditary graphs (Lin et al. 2020). Especially,
Chen et al. (2010) presented an O(n + m)-time algorithm for block graphs, a proper
superfamily of tree graphs. In this paper, we propose an O(n + m)-time algorithm
for the weighted paired-domination problem on block graphs, which strengthens the
results in Chen et al. (2009a, 2010). Moreover, the algorithm can be completed in
O(n) time if the block-cut-vertex structure of G is given. Notice that the block-cut-
vertex structure of a block graph G can be constructed in O(n +m) time by the depth
first search algorithm (Aho et al. 1974).

Over the last few decades, several variants of the classic domination problem,
such as total domination, perfect domination, and power domination have studied
intensively in block graphs. These problems have been proved to have linear-time
algorithms in block graphs (Chang 1989; Yeh and Chang 1998; Xu et al. 2006).
Recently, some other important domination problems, such as double roman domi-
nation, perfect roman domination, semitotal domination, and secure domination also
have significant results in block graphs (Argiroffo et al. 2020; Pradhan and Jha 2018;
Banerjee et al. 2019, 2020; Henning et al. 2019). Hence, the results of this paper
complete the role of paired-domination problem on block graphs.

The remainder of this paper is organized as follows. In Sect. 2, given the block-
cut-vertex structure of a block graph G, we employ dynamic programming to present
an O(n + m)-time algorithm for finding a minimum-weight paired-dominating set
of G. In Sect. 3, the correctness proof and complexity analysis of the algorithm are
provided. Section 4 contains some concluding remarks and future work.

2 The proposed algorithm for block graphs

In this section, given a weighted block graph G with the corresponding block-
cut-vertex structure G∗, we propose an O(n)-time algorithm that determines a
minimum-weight paired-dominating set of G using dynamic programming. Since a
graph G containing isolated vertices has no paired-dominating set, we suppose that
G is a connected graph with n ≥ 2 in the rest of this paper. First, we introduce some
preliminaries for block graphs.

For any connected graph G, a vertex v ∈ V (G) is called a cut-vertex of G, if
deleting v from G increases the number of connected components of G. A block is a
maximal connected subgraphwithout a cut-vertex.A graphG is called a block graph, if
every block in G is a complete graph. It is known (Chen et al. 2010) that block graphs
are a proper superfamily of tree graphs and a proper subfamily of chordal graphs.
Suppose G has blocks B1, B2, . . . , Bx and cut vertices c1, c2, . . . , cy . We define the

123

272 Journal of Combinatorial Optimization (2022) 44:269–286

c2

c5c6

c1

c4c3

v13

v6 v7 v8 v9

v3 v5

B1 B2

v15v14

v1

B6
v4

v11
B3

v2
B7

c1 c2

B3 B4 B6

B5

c5

B7

B8

B2B1

(b)

c6c4c3

(a)

B5

B4

B8

v10 v12

Fig. 1 a A block graph G. b The corresponding block-cut-vertex graph G∗ for the block graph G in (a). In
particular, Algorithm 1 considered the blocks of G in turn according to the ordering B1, B2, . . . , B8

block-cut-vertex graph G∗ = (V , E) of G, where

V (G∗) = {B1, B2, . . . , Bx , c1, c2, . . . , cy}; and

E(G∗) = {(Bi , c j) | c j ∈ Bj , 1 ≤ i ≤ x, 1 ≤ j ≤ y}.

Consequently, the graph G∗ is a tree and the leaves in G∗ are precisely the blocks
with exactly one cut-vertex in G. A block containing exactly one cut-vertex in G is
called a pendant block. It should be noted that, by using the depth first search algorithm,
one can recognize the block graphs and construct the block-cut-vertex graphsG∗, both
in O(n +m) time (Aho et al. 1974). Figure 1 shows an illustrative example, in which
Fig. 1b depicts the corresponding block-cut-vertex graph G∗ for the block graph G
in Fig. 1a. Clearly, G has 8 blocks B1, B2, . . . , B8 and 6 cut vertices c1, c2, . . . , c6.
Moreover, the pendant blocks of G are B1, B2, B4, B5, and B7.

2.1 The algorithm

Given aweighted block graphG with the corresponding block-cut-vertex structureG∗,
we propose an O(n)-time algorithm to finding a minimum-weight paired-dominating
set of G in this subsection. The neighborhood NG(v) of a vertex v is the set of all
vertices adjacent to v in G; and the closed neighborhood NG [v] = {v}∪ NG(v). For a
set S ⊆ V (G), we define NG [S] = {v | v ∈ NG [u] and u ∈ S}. Before describing the
approach in detail, four kinds of dominating sets D(H , u), P(H , u), P ′(H , u), and
P̄(H , u) are defined below, where H is a subgraph ofG and u ∈ V (H). The notations
are introduced for the purpose of describing the recursive formulations in developing
dynamic programming algorithms.

D(H , u) : Aminimum-weight dominating set of H , u ∈ D(H , u) and H [D(H , u)−
{u}] has a perfect matching.

P(H , u) : A minimum-weight paired-dominating set of H and u ∈ P(H , u).

123

Journal of Combinatorial Optimization (2022) 44:269–286 273

Fig. 2 A weighted block graph
H = B ∪ G1 ∪ G2 ∪ . . . ∪ Gk

. . .

. . .

B

G1
G2

Gk

u1
u2

uk

P ′(H , u) : A minimum-weight paired-dominating set of H and u /∈ P ′(H , u).
P̄(H , u) : Aminimum-weight paired-dominating set of H − {u}, and u is not dom-

inated by P̄(H , u).

Clearly, either P(G, u) or P ′(G, u) is a minimum-weight paired-dominating set of
G. For ease of subsequent discussion, D(H , u), P(H , u), P ′(H , u), and P̄(H , u) are
called a κ1-paired-dominating set, κ2-paired-dominating set, κ3-paired-dominating
set, and κ4-paired-dominating set of H with respect to u, respectively. Suppose that
B is a block of H with V (B) = {u1, u2, . . . , uk}. For 1 ≤ i ≤ k, we further suppose
that Gi is a maximal connected subgraph containing ui in G[(V (H) \ V (B)) ∪ {ui }].
If i 	= j , the following lemma shows that Gi and G j are two subgraphs of H with
disjoint vertex sets. Refer to Fig. 2 for an illustrative example.

Lemma 1 For 1 ≤ i 	= j ≤ k, Gi and G j are two subgraphs of H with disjoint vertex
sets.

Proof Suppose to the contrary that v ∈ V (Gi) ∩ V (G j). Then, there exist two paths
P1 = (v, . . . , ui) and P2 = (v, . . . , u j) in Gi and G j , respectively. Since B is a
block of H , G[B ∪ Pi ∪ Pj] is a connected subgraph of H without a cut-vertex.
This contradicts our assumption that B is a maximal connected subgraph without a
cut-vertex. ��

Based on the above observation, we designed a dynamic programming algorithm to
iteratively determine D(H , u1), P(H , u1), P ′(H , u1), and P̄(H , u1) in a bottom-up
manner. One block is considered in each iteration of the loop. Notice that, during the
determination, the block-cut-vertex structure G∗ can be exploited to get the corre-
sponding blocks and cut vertices.

The algorithm first sets the current graph G ′ = G and the set of processed blocks
W = ∅. Meanwhile, it initially assigns D(G[{v}], v) = {v}, P(G[{v}], v) = �,
P ′(G[{v}], v) = � and P̄(G[{v}], v) = ∅ for each vertex v ∈ V (G). Specially, we
use � to denote the empty set with a weight of infinity, i.e., � = ∅ and w(�) = ∞.
Then, the algorithm iteratively processes block B with V (B) = {u1, u2, . . . , uk} in
the repeat loop. Suppose the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and
P̄(Gi , ui) are given and are stored in arrays corresponding to ui for 1 ≤ i ≤ k.

123

274 Journal of Combinatorial Optimization (2022) 44:269–286

The algorithm determines the dominating sets D(H , u1), P(H , u1), P ′(H , u1), and
P̄(H , u1); and records the results in arrays corresponding to vertex u1. Moreover, the
two graphs G ′ and G∗ are modified to indicate that block B has been processed.

After the execution of the repeat loop, we have only one block left, i.e., the current
graph G ′ is a block and the corresponding block-cut-vertex structure G∗ is a vertex.
With the information determined in the repeat loop, we now can find the two paired-
dominating sets P(G, u) and P ′(G, u), where u is an arbitrary vertex in G ′. Finally,
the output S is selected from P(G, u) and P ′(G, u) based on the weights of the sets.
The steps of the algorithm are detailed below.

Algorithm 1 Finding paired-dominating sets in weighted block graphs

Input: A weighted block graph G with corresponding block-cut-vertex structure G∗.
Output: A minimum-weight paired-dominating set S of G.

1: let G′ ← G and W ← ∅;
2: for each v ∈ V (G) do

3: let D(G[{v}], v) ← {v} and P(G[{v}], v) ← �;

4: let P ′(G[{v}], v) ← � and P̄(G[{v}], v) ← ∅;
5: end for

6: repeat

7: arbitrarily choose a leaf vB in G∗;
8: let B be the block corresponding to vB in G′ with V (B) = {u1, u2, . . . , uk };

suppose that u1 is the cut vertex and Gi is the maximal connected subgraph containing ui in G[W ∪
{ui }] for 1 ≤ i ≤ k;

9: let H ← B ∪ G1 ∪ G2 ∪ . . . ∪ Gk ;

10: compute D(H , u1), P(H , u1), P ′(H , u1), P̄(H , u1) by using the dominating sets D(Gi , ui),

P(Gi , ui), P
′(Gi , ui), and P̄(Gi , ui) with 1 ≤ i ≤ k, which are determined in the previous

iterations ;

11: record the results D(H , u1), P(H , u1), P
′(H , u1), P̄(H , u1) in arrays corresponding to vertex

u1;

12: let G′ ← G′ − {u2, . . . , uk } and W ← W ∪ B;

13: suppose that vc is the neighbor of vB in G∗;
let G∗ ← G∗ − {vB , vc} if vc is a leaf in G∗ − {vB }, and let G∗ ← G∗ − {vB } otherwise;

14: until G∗ itself is a vertex

15: compute P(G, u) and P ′(G, u), where u is an arbitrary vertex in G′;
16: let S ← P(G, u) if w(P(G, u)) < w(P ′(G, u)), and let S ← P ′(G, u) otherwise;

17: return S.

123

Journal of Combinatorial Optimization (2022) 44:269–286 275

2.2 An example

Consider the block graph G in Fig. 3 for an illustrative example. In the beginning,
the algorithm sets the default values to each vertex v in G. Then, by the rules of
removing blocks, one block is removed from G ′ for each iteration of the repeat
loop. The blocks in G are removed with respect to the ordering B1, B2, . . . , B8. Fig-
ure 3a depicts the case that block B1 = G[{v10, v14}] is selected in the first iteration.
One can see that H = G[{v10, v14}] ∪ G[{v10}] ∪ G[{v14}]. Four dominating sets
D(H , v10), P(H , v10), P ′(H , v10), P̄(H , v10) are recorded in vertex v10 by the rules
of determining and recording results in Steps (10) and (11), respectively. Please refer
to Fig. 3b for the result of removing v14 from G ′.

Similarly, Fig. 3c depicts the case that block B3 = G[{v6, v10, v11}] is selected in
the third iterationwith H = G[{v6, v10, v11}]∪G[{v6}]∪G[{v10, v14}]∪G[{v11, v15}].
Again, by the rules of determining and recording results, vertices v10 and v11 were
removed from G ′ and the corresponding results are recorded in vertex v6. One can
see Fig. 3d for an illustrative example. After removing blocks B1, B2, . . . , B7, we
have exactly one block B8 left in G ′, i.e., G∗ now is a vertex, then the algorithm
exits the repeat loop. In Step (15), the two dominating sets P(G, v1) and P ′(G, v1)

are determined by using a similar method of the arguments in Steps (10) and (11).
Figure 3e illustrates the execution status of Step (15). Clearly, either P(G, v1) or
P ′(G, v1) is a minimum-weight paired-dominating set of G depending on which has
the smaller total weight.

2.3 Correctness and complexity analysis

Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui) for
1 ≤ i ≤ k, four dynamic programming procedures are proposed in Sects. 3.1–3.4,
which can determine D(H , u1), P(H , u1), P ′(H , u1), and P̄(H , u1) in O(k) time,
respectively. Clearly, the proposed procedures ensure the correctness of the algorithm.
For the complexity analysis, suppose that G has blocks B1, B2, . . . , Bx . Since the
dynamic programming procedures can be completed in O(k) time, Steps (10) and
(15) can be implemented in O(|V (B1)| + |V (B2)| + . . . + |V (Bx)|) time. Recall that
all the vertices in Bi are deleted from G ′ except the cut vertex in each iteration of the
repeat loop. This implies that |V (B1)| + |V (B2)| + . . . + |V (Bx)| = n + (x − 1).

Meanwhile, by using the depth-first search algorithm, one can determine a vertex
ordering u1, u2, . . . , uh of a h-vertices tree graph T in O(h) time such that ui is a leaf
in T [{u1, u2, . . . , ui }] for 1 ≤ i ≤ h. Therefore, with an O(x)-time preprocessing
for G∗, it takes O(1) time to implement Step (7), for each iteration of the repeat loop.
Since G has at most n− 1 blocks, we have x ≤ n− 1. So, the repeat loop can be done
in O(n) time. Further, the other steps can be done in O(n) time as well. Consequently,
we obtain the main result of this paper.

Theorem 2 Given a weighted block graph G with corresponding block-cut-vertex
structure G∗, a minimum-weight paired-dominating set of G can be determined by
Algorithm 1 in O(n) time.

123

276 Journal of Combinatorial Optimization (2022) 44:269–286

(b)

B1

(a)

v14

(d)(c)

B3

v6 v11

v14

v10

G[{v6}]
G[{v10, v14}]

G[{v11, v15}]

(e)

G[{v14}]

v15

B5

B4

B8

v10 v12 v13

v6 v7 v8 v9

v3 v5

B1 B2

v15v14

v1

B6

B7

v4

v11
B3

v2

v10

G[{v10}]

B5

B4

B8

v10 v12 v13

v6 v7 v8 v9

v3 v5

B1 B2

v15v14

v1

B6

B7

v4

v11
B3

v2

B5

B4

B8

v10 v12 v13

v6 v7 v8 v9

v3 v5

B1 B2

v15v14

v1

B6

B7

v4

v11
B3

v2

Fig. 3 The intermediate execution steps of Algorithm 1. The blocks in G are removed with respect to the
ordering B1, B2, . . . , B8

123

Journal of Combinatorial Optimization (2022) 44:269–286 277

3 FindingD(H,u1), P(H,u1), P′(H,u1), and P̄(H,u1)

In this section, given dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
with 1 ≤ i ≤ k, we propose O(k)-time dynamic programming procedures to deter-
mine D(H , u1), P(H , u1), P ′(H , u1), and P̄(H , u1), respectively, in Sects. 3.1–3.4.
Before describing the procedures, some notations are introduced below. For a set S
of sets of vertices, let F(S) denote the set with minimum weight in S. Let S∗

i be the
set of vertices such that S∗

i = F({D(Gi , ui), P(Gi , ui), P ′(Gi , ui), P̄(Gi , ui)}) for
2 ≤ i ≤ k. Further, three variables α, β, and γ are introduced. We use α to denote
the index in {2, 3, . . . , k} such that S∗

α 	= D(Gα, uα) and w(D(Gα, uα)) − w(S∗
α) is

minimized, and β to denote the index in {2, 3, . . . , k} such that S∗
β = D(Gβ, uβ)

and w(F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)})) − w(S∗
β) is minimized. More-

over, let γ denote the number of S∗
i such that S∗

i = D(Gi , ui), i.e., γ =
|{S∗

i | S∗
i = D(Gi , ui) and 2 ≤ i ≤ k}|.

3.1 Determination of D(H, u1)

Notice that D(H , u1) is a minimum-weight dominating set of H over all sets S satis-
fying u1 ∈ S, and H [S − {u1}] has a perfect matching. Hence, we have D(G1, u1) ⊆
D(H , u1). In order to obtain the other parts of D(H , u1), the procedure first constructs
a dominating set X = D(G1, u1)∪ S∗

2 ∪ S∗
3 ∪ . . .∪ S∗

k . In Lemma 3, we will show that
if γ is even, then S = X is a κ1-dominating set of H with respect to u1. Otherwise, in
order to satisfy the constraint that H [S − {u1}] contains a perfect matching, we can
either replace one S∗

i 	= D(Gi , ui) with D(Gi , ui) or replace one S∗
j = D(G j , u j)

with F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}), where 2 ≤ i, j ≤ k. For the former
case, a dominating set X+ = (X − S∗

α) ∪ D(Gα, uα) is created. On the other hand, a
dominating set X− = (X − S∗

β) ∪ F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}) is built
for the latter case. The output S = F({X+, X−}) is selected from X+ and X− based
on the weights of the sets. Similarly, we will show that S is a κ1-dominating set of
H with respect to u1 in this situation. The procedure is described in detail in the next
page.

Lemma 3 Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
with 1 ≤ i ≤ k, Procedure 2 outputs a κ1-paired-dominating set D(H , u1) in O(k)
time.

Proof It suffices to show that the output S is a minimum-weight dominating set of
H subject to the constraint that u1 ∈ S and H [S − {u1}] has a perfect matching. By
the definition of D(H , u1), we have D(G1, u1) ⊆ D(H , u1). Since u1 ∈ D(G1, u1)
and B is a clique, all the three sets X , X+ and X− are dominating sets of H . Thus, it
remains to show that the weight w(S) of S is minimized subject to the constraint that
H [S − {u1}] contains a perfect matching.

For 2 ≤ i ≤ k, Gi [D(Gi , ui) − {ui }], Gi [P(Gi , ui)], G[P ′(Gi , ui)] and
G[P̄(Gi , ui)] all contain perfect matchings. Hence, if γ is even, then H [X − {u1}]
contains a perfect matching and the weight w(X) of X is minimized, as a conse-
quence of the selections of S∗

i . Now we suppose that γ is odd. To satisfy the constraint

123

278 Journal of Combinatorial Optimization (2022) 44:269–286

Procedure 2 Finding D(H , u1)

Input: A weighted block graph H and a block B of H with V (B) = {u1, u2, . . . , uk }.

Dominating sets D(Gi , ui), P(Gi , ui), P
′(Gi , ui), and P̄(Gi , ui) with 1 ≤ i ≤ k.

Output: A κ1-paired-dominating set D(H , u1).

1: determine S∗
i for 2 ≤ i ≤ k;

2: determine α, β, and γ ;

3: let X ← D(G1, u1) ∪ S∗
2 ∪ S∗

3 ∪ . . . ∪ S∗
k ;

4: let X+ ← (X − S∗
α) ∪ D(Gα, uα);

5: let X− ← (X − S∗
β) ∪ F({P(Gβ, uβ), P ′(Gβ , uβ), P̄(Gβ , uβ)});

6: if γ is even, then let S ← X ; otherwise, let S ← F({X+, X−});

7: return S.

that H [S − {u1}] contains a perfect matching, we can replace one S∗
i 	= D(Gi , ui)

with D(Gi , ui) or replace one S∗
j = D(G j , u j) with P(G j , u j), P ′(G j , u j), or

P̄(G j , u j), where 2 ≤ i, j ≤ k. For the former case, a dominating set X+ =
(X − S∗

α) ∪ D(Gα, uα) is created. On the other hand, a dominating set X− =
(X − S∗

β) ∪ F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}) is built for the latter case. One
can verify that S = F({X+, X−}) is a minimum-weight dominating set of H such
that H [S − {u1}] contains a perfect matching in this situation.

Belowwe provide the analysis of running time. Let A be an array corresponding u1.
For 2 ≤ i ≤ k, we use A[i] to denote the choice of vertices set for S∗

i , i.e., A[i] = 1
if S∗

i = D(Gi , ui), . . . , and A[i] = 4 if S∗
i = P̄(Gi , ui). Meanwhile, variable c is

used to denote the choice of vertices set for S, i.e., c = 1 if S = X , . . . , and c = 3 if
S = X−. Further, we use variable w to denote the weight of S, i.e., w = w(S). With
the aid of above data structures and variables α, β, and γ , one can verify that the the
procedure can be done in O(k) time. ��

3.2 Determination of P(H, u1)

Notice that P(H , u1) is a minimum-weight paired-dominating set of H over all sets
S satisfying u1 ∈ S. Therefore, either D(G1, u1) ⊆ P(H , u1) or P(G1, u1) ⊆
P(H , u1) is a dominating set of G1. In order to obtain P(H , u1), we construct six
dominating sets X , X+, X−, Y ,Y+, and Y− of H . The dominating sets X , X+
and X−, which are the same as those described in Sect. 3.1, are created for the
situation when D(G1, u1) ⊆ P(H , u1). Meanwhile, the dominating sets Y ,Y+
and Y− are built for the situation when P(G1, u1) ⊆ P(H , u1), where Y =
P(G1, u1) ∪ S∗

2 ∪ S∗
3 ∪ · · · ∪ S∗

k , Y
+ = (Y − S∗

α) ∪ D(Gα, uα), and Y− =
(Y − S∗

β) ∪ F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}).

123

Journal of Combinatorial Optimization (2022) 44:269–286 279

If γ is even, then the induced subgraphs H [X+], H [X−] and H [Y] all contain
perfect matchings. The output S = F({X+, X−,Y }) is selected from X+, X− and
Y based on the weights of the sets. We will show that S is a κ2-dominating set
of H with respect to u1. Similarly, if γ is odd, then all the induced subgraphs
H [X], H [Y+] and H [Y−] contain perfect matchings. And, we will show that the
output S = F({X ,Y+,Y−}) is a κ2-dominating set of H with respect to u1 in this
situation. The procedure is detailed below.

Procedure 3 Finding P(H , u1)

Input: A weighted block graph H and a block B of H with V (B) = {u1, u2, . . . , uk }.

Dominating sets D(Gi , ui), P(Gi , ui), P
′(Gi , ui), and P̄(Gi , ui) with 1 ≤ i ≤ k.

Output: A κ2-paired-dominating set S of H with respect to u1.

1: determine S∗
i for 2 ≤ i ≤ k;

2: determine α, β, and γ ;

3: find the dominating sets X , X+ and X− as described in Procedure 2;

4: let Y ← P(G1, u1) ∪ S∗
2 ∪ S∗

3 ∪ · · · ∪ S∗
k ;

5: let Y+ ← (Y − S∗
α) ∪ D(Gα, uα);

6: let Y− ← (Y − S∗
β) ∪ F({P(Gβ, uβ), P ′(Gβ , uβ), P̄(Gβ, uβ)});

7: if γ is even, then let S ← F({X+, X−, Y }); otherwise, let S ← F({X , Y+, Y−});

8: return S.

Lemma 4 Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
with 1 ≤ i ≤ k, Procedure 3 outputs a κ2-paired-dominating set S of H with respect
to u1 in O(k) time.

Proof By using a similar method of the arguments in Lemma 3, one can show that the
procedure can be completed in O(k) time. To prove the correctness of the procedure,
it suffices to show that the output S is a minimum-weight dominating set of H such
that u1 ∈ S and H [S] contains a perfect matching. Further, since v1 ∈ D(G1, u1) ∩
P(G1, u1) and B is a clique, X , X+, X−,Y ,Y+, and Y− are all dominating sets of
H . Thus, it remains to show that the weight w(S) of S is minimized subject to the
constraint that H [S] contains a perfect matching.

Notice that, for 2 ≤ i ≤ k, both Gi [D(Gi , ui) − {ui }] and Gi [P(Gi , ui)]
contain perfect matchings and ui /∈ P ′(Gi , ui) ∪ P̄(Gi , ui). We first consider
the situation when γ is even. For the case when D(G1, u1) is a dominating set
of G1, in order to satisfy the constraint that H [X] contains a perfect matching
with minimum cost, we can either replace S∗

α with D(Gα, uα) or replace S∗
β with

F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}). Thus, X+ and X− are the two potential

123

280 Journal of Combinatorial Optimization (2022) 44:269–286

candidates for Swhen D(G1, u1) ⊆ P(H , u1). For the casewhen P(G1, u1) is a dom-
inating set of G1, H [Y] contains a perfect matching. We select S = F({X+, X−,Y })
from X+, X− and Y based on the weights of the sets. As a consequence of selections
of S∗

α , S
∗
β , and S∗

i for 2 ≤ i ≤ k, one can verify that the output S is a minimum-weight
dominating set of H such that H [S] contains a perfect matching. Further, using a
similar method of the above arguments, one can show that the correctness also holds
for the situation when γ is odd. ��

3.3 Determination of P′(H, u1)

Recall that P ′(H , u1) is a minimum-weight paired-dominating set of H over all sets
S satisfying u1 /∈ S. Therefore, either P ′(G1, u1) ⊆ P ′(H , u1) or P̄(G1, u1) ⊆
P ′(H , u1) is a dominating set of G1. For ease of subsequent discussion, we consider
the two cases P ′(G1, u1) ⊆ P ′(H , u1) and P̄(G1, u1) ⊆ P ′(H , u1), respectively,
in Sects. 3.3.1 and 3.3.2. More concretely, a paired-dominating set Q1 is created for
the former situation. Meanwhile, a paired-dominating set Q2 is built for the latter
situation. Clearly, P ′(H , u1) can be selected from Q1 and Q2 based on the weights
of the sets.

3.3.1 Finding Q1

Below we present an O(k)-time procedure for finding Q1. The procedure solves the
problem by considering eight cases C1,C2, . . . ,C8, all of which are dependent on the
values of S∗

i and γ . For 1 ≤ i ≤ 8, the case Ci = (c1, c2, c3, c4, c5) is an ordered
5-tuple. If condition Dj holds, then c j = 1; and c j = 0 otherwise, where 1 ≤ j ≤ 5.
Further, c j = “∗” means “do not care”, i.e., condition Dj is not a factor in this case.
The five conditions D1, D2, . . . , D5 are defined as follows:

D1: S∗
i = P(Gi , ui) for some 2 ≤ i ≤ k.

D2: γ is odd.
D3: γ is equal to 1.
D4: γ is equal to 0.
D5: S∗

i = P̄(Gi , ui) for some 2 ≤ i ≤ k.

Then, we define the cases C1 = (1, 1, ∗, ∗, ∗), C2 = (1, 0, ∗, ∗, ∗), C3 =
(0, 1, 1, ∗, 1), C4 = (0, 1, 1, ∗, 0), C5 = (0, 1, 0, ∗, ∗), C6 = (0, 0, ∗, 1, 1),
C7 = (0, 0, ∗, 1, 0), and C8 = (0, 0, ∗, 0, ∗). For example, case C1 represents the
situation when there exists an index � such that S∗

� = P(G�, u�) with 2 ≤ � ≤ k and
γ is an odd number. Further, caseC7 represents the situationwhen there exists no index
� such that S∗

� = P(G�, u�), or S∗
� = P̄(G�, u�) and r = 0, i.e., S∗

i = P ′(Gi , ui)
for 2 ≤ i ≤ k. Moreover, one can verify that all the possible combinations of the five
conditions have been considered.

Next, some notations and paired-dominating sets are introduced. Let α′ be the index
in {2, 3, . . . , k} − {α} such that S∗

α′ 	= D(Gα′ , uα′) and w(D(Gα′ , uα′)) − w(S∗
α′)

is minimized. Let δ be the index in {2, 3, . . . , k} such that S∗
δ 	= P(Gδ, uδ) and

w(P(Gδ, uδ)) − w(S∗
δ) is minimized. Let I = {i | S∗

i = P̄(Gi , ui) and 2 ≤ i ≤ k}.

123

Journal of Combinatorial Optimization (2022) 44:269–286 281

We define the following paired-dominating sets of H , which are the potential candi-
dates for Q1.

Z1 = P ′(G1, u1) ∪ S∗
2 ∪ S∗

3 ∪ . . . ∪ S∗
k .

Z+
1 = (Z1 − S∗

α) ∪ D(Gα, uα).

Z−
1 = (Z1 − S∗

β) ∪ F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}).
T1 = (Z1 − S∗

δ) ∪ P(Gδ, uδ).

T2 = (Z1 − S∗
α − S∗

α′) ∪ D(Gα, uα) ∪ D(Gα′ , uα′).

T3 = (Z1 − ∪i∈I S∗
i) ∪ (∪i∈I P ′(Gi , ui)).

T4 = (Z1 − S∗
β) ∪ P(Gβ, uβ).

T5 = (Z1 − S∗
β) ∪ F({P(Gβ, uβ), P ′(Gβ, uβ)}).

T6 = (Z1 − S∗
β − S∗

δ) ∪ F({P ′(Gβ, uβ), P̄(Gβ, uβ)}) ∪ P(Gδ, uδ).

T7 = (Z1 − S∗
β − S∗

δ) ∪ P̄(Gβ, uβ) ∪ P(Gδ, uδ).

T8 = (Z1 − S∗
β − ∪i∈I S∗

i) ∪ P ′(Gβ, uβ) ∪ (∪i∈I P ′(Gi , ui)).

As mentioned earlier, we solve the problem by considering the eight cases
C1,C2, . . . ,C8. The relations between the cases C1,C2, . . . ,C8 and the dominating
sets Z1, Z

+
1 , Z

−
1 , T1, . . . , T8 are detailed in Procedure 4. We will prove its correctness

and analyze its running time in Lemma 5.

Procedure 4 Finding Q1

Input: A weighted block graph H and a block B of H with V (B) = {u1, u2, . . . , uk }.

Dominating sets D(Gi , ui), P(Gi , ui), P
′(Gi , ui), and P̄(Gi , ui) with 1 ≤ i ≤ k.

Output: A minimum-weight dominating set S of H such that u1 /∈ S, H [S] has a perfect

matching, and P ′(G1, u1) ⊆ S.

1: determine the paired-dominating sets Z1, Z
+
1 , Z−

1 , T1, . . . , T8;

2: if C1 or C5 holds, then let S ← F({Z+
1 , Z−

1 });

3: if C2 or C7 or C8 holds, then let S ← Z1;

4: if C3 holds, then let S ← F({Z+
1 , T4, T6, T8});

5: if C4 holds, then let S ← F({Z+
1 , T5, T7});

6: if C6 holds, then let S ← F({T1, T2, T3});

7: return S.

Lemma 5 Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
with 1 ≤ i ≤ k, Procedure 4 outputs a minimum-weight dominating set S of H such

123

282 Journal of Combinatorial Optimization (2022) 44:269–286

that u1 /∈ S, H [S] has a perfect matching, and P ′(G1, u1) ⊆ S. Moreover, the
procedure can be completed in O(k) time.

Proof By using a similar method of the arguments in Lemma 3, one can show that all
the paired-dominating sets Z1, Z

+
1 , Z

−
1 , T1, . . . , T8 can be constructed in O(k) time.

Hence, the procedure certainly runs in O(k) time. Further, one can verify that all the
possible combinations of conditions D1, D2, . . . , D5 have been considered in cases
C1,C2, . . . ,C8. Hence, to prove the correctness of the procedure, it suffices to show
that each step of the procedure is correct.

First,we consider casesC1 andC2. In both of these cases, there exists an index � such
that S∗

� = P(G�, u�). Therefore, Z1, Z
+
1 , and Z−

1 are dominating sets of H . It follows
that, if γ is even, then Z1 is a minimum-weight dominating set of H such that u1 /∈ Z1
and H [Z1] has a perfectmatching due to the selections of S∗

i for 2 ≤ i ≤ k. So,we have
S = Z1 for caseC2. On the other hand, if γ is odd, then in order to satisfy the constraint
that H [Q1] contains a perfect matching with minimum cost, we can either replace S∗

α

with D(Gα, uα), or replace S∗
β with F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}). This

implies that we have S = F({Z+
1 , Z−

1 }) for case C1.
Next, we consider cases C3,C4, and C5. Notice that in all three cases, there exists

no index � such that S∗
� = P(G�, u�) and γ is an odd number. Moreover, for any

paired-dominating set Q1 of H , we have either S∗
i = P ′(Gi , ui) for 2 ≤ i ≤ k

or V (B) ∩ V (Q1) 	= ∅, where B = H [{u1, u2, . . . , uk}]. In case C3, a paired-
dominating set T8 is created for the former. Meanwhile, paired-dominating sets Z+

1 ,
T4, and T6 are built for the latter. As a consequence of γ = 1, in order to ensure
H [Q1] contains a perfect matching when V (B) ∩ V (Q1) 	= ∅, we replace S∗

α with
D(Gα, uα) in Z+

1 , replace S∗
β with P(Gβ, uβ) in T4, and replace S∗

δ and S∗
β with

P(Gδ, uδ) and F({P ′(Gβ, uβ), P̄(Gβ, uβ)}) in T6, respectively. Under the premise
of minimizing weight, one can verify that Z+

1 , T4, and T6 are exactly the three potential
candidates for Q1. In case C4, we have S∗

β = D(Gβ, uβ) and S∗
i = P ′(Gi , ui) for

2 ≤ i ≤ k and i 	= β. Using a similar method of the above arguments, one can show
that S = F({Z+

1 , T5, T7}) is true for case C4. In case C5, we have γ ≥ 3. Therefore,
for the same reasons as case C1, we have S = F({Z+

1 , Z−
1 }) for case C5.

Finally, we consider casesC6,C7, andC8. Notice that in all three cases, there exists
no index � such that S∗

� = P(G�, u�) and γ is an even number. In case C6, we have
either S∗

i = P ′(Gi , ui) or S∗
i = P̄(Gi , ui), where 1 ≤ i ≤ k. To ensure H [Q1]

contains a perfect matching, we replace S∗
δ with P(Gδ, uδ) in T1, replace S∗

α and S∗
α′

with D(Gα, uα) and D(Gα′ , uα′) in T2, and replace S∗
i with P ′(Gi , ui)) for all i ∈ I

in T3, respectively. Under the premise of minimizing the weight w(S), one can verify
that T1, T2, and T3 are exactly the three potential candidates for Q1. Notice that, in
case C7, S∗

i = P ′(Gi , ui) for 2 ≤ i ≤ k. Further, γ ≥ 2 is an even number in case
C8. Thus, in both of these cases, we have S = Z1 for the same reasons as case C2. ��

3.3.2 Finding Q2

In the following, we present a procedure to finding the paired-dominating set Q2.
Similar to Procedure 4, the procedure solves the problem by considering six cases

123

Journal of Combinatorial Optimization (2022) 44:269–286 283

C9,C10, . . . ,C14. For 9 ≤ i ≤ 14, the case Ci = (c1, c2, c3, c4) is an ordered 4-
tuple. Further, the value of c j has the same definition as described in Sect. 3.3.1 for
1 ≤ j ≤ 4. Then, we define C9 = (1, 1, ∗, ∗), C10 = (1, 0, ∗, ∗), C11 = (0, 1, 1, ∗),
C12 = (0, 1, 0, ∗), C13 = (0, 0, ∗, 1), and C14 = (0, 0, ∗, 0). Again, one can verify
that all the possible combinations of the four conditions have been considered in
cases C9,C10, . . . ,C14. The paired-dominating sets Z2, Z

+
2 , Z

−
2 , T9, . . . , T12 of H

are defined below, which are the potential candidates for Q2.

Z2 = P̄(G1, u1) ∪ S∗
2 ∪ S∗

3 ∪ . . . ∪ S∗
k .

Z+
2 = (Z1 − S∗

α) ∪ D(Gα, uα).

Z−
2 = (Z1 − S∗

β) ∪ F({P(Gβ, uβ), P ′(Gβ, uβ), P̄(Gβ, uβ)}).
T9 = (Z2 − S∗

δ) ∪ P(Gδ, uδ).

T10 = (Z2 − S∗
α − S∗

α′) ∪ D(Gα, uα) ∪ D(Gα′ , uα′).

T11 = (Z2 − S∗
β) ∪ P(Gβ, uβ).

T12 = (Z2 − S∗
β − S∗

δ) ∪ F({P ′(Gβ, uβ), P̄(Gβ, uβ)}) ∪ P(Gδ, uδ).

Moreover, the relations between the casesC9,C10, . . . ,C14 and the paired-dominating
sets Z2, Z

+
2 , Z

−
2 , T9, . . . , T12 are detailed in Procedure 5.

Procedure 5 Finding Q2

Input: A weighted block graph H and a block B of H with V (B) = {u1, u2, . . . , uk }.

Dominating sets D(Gi , ui), P(Gi , ui), P
′(Gi , ui), and P̄(Gi , ui) with 1 ≤ i ≤ k.

Output: A minimum-weight dominating set S of H such that u1 /∈ S, H [S] has a perfect

matching, and P̄(G1, u1) ⊆ S.

1: determine the paired-dominating sets Z2, Z
+
2 , Z−

2 , T9, . . . , T12;

2: if C9 or C12 holds, then let S ← F({Z+
2 , Z−

2 });

3: if C10 or C14 holds, then let S ← Z2;

4: if C11 holds, then let S ← F({Z+
2 , T11, T12});

5: if C13 holds, then let S ← F({T9, T10});

6: return S.

Lemma 6 Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
with 1 ≤ i ≤ k, Procedure 5 outputs a minimum-weight dominating set S of H
such that u1 /∈ S, H [S] has a perfect matching, and P̄(G1, u1) ⊆ S. Moreover, the
procedure can be completed in O(k) time.

123

284 Journal of Combinatorial Optimization (2022) 44:269–286

Proof By using a similar method of the arguments in Lemma 3, one can show that each
step of the procedure can be completed in O(k) time. Therefore, the procedure runs
in O(k) time. Further, one can verify that all the possible combinations of conditions
D1, D2, D3, and D4 have been considered in cases C9,C10, . . . ,C14. Hence, to prove
the correctness of the procedure, it suffices to show that each step of the procedure is
correct.

First, we consider cases C9 and C10. In both of these cases, there exists an index
� such that S∗

� = P(G�, u�). Therefore, for the same reasons as cases C1 and C2

in Procedure 4, we have S = F({Z+
2 , Z−

2 }) for case C9 and S = Z2 for case C10,
respectively. Next, we consider cases C11, and C12. Notice that in both cases, there
exists no index � such that S∗

� = P(G�, u�) and γ is an odd number. Since we have r =
1 in caseC11, in order to satisfy the constraint that H [Q2] contains a perfect matching
with minimum cost, we replace S∗

α with D(Gα, uα) in Z+
2 , replace S

∗
β with P(Gβ, uβ)

in T11, and replace S∗
δ and S∗

β with P(Gδ, uδ) and F({P ′(Gβ, uβ), P̄(Gβ, uβ)}) in
T12, respectively. Under the premise of minimizing weight, one can verify that Z+

2 ,
T11, and T12 are exactly the three potential candidates for Q2. In case C12, we have
r ≥ 3. Therefore, for the same reasons as case C1, we have S = F({Z+

2 , Z−
2 }) for

case C12.
Finally, we consider cases C13, and C14. Notice that in both cases, there exists

no index � such that S∗
� = P(G�, u�) and γ is an even number. In case C13, either

S∗
i = P ′(Gi , ui) or S∗

i = P̄(Gi , ui) for 1 ≤ i ≤ k. Therefore, to satisfy the constraint
that H [Q2] contains a perfect matching, we replace S∗

δ with P(Gδ, uδ) in T9, and
replace S∗

α and S∗
α′ with D(Gα, uα) and D(Gα′ , uα′) in T10, respectively. Again, under

the premise of minimizing the weight, one can verify that T9 and T10 are exactly the
two potential candidates for Q2. Notice that, in case C14, r ≥ 2 is an even number.
Thus, we have S = Z2 for the same reasons as case C2 in Procedure 4. ��

Combining Lemmas 5 and 6, we obtain the following result.

Lemma 7 Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
for 1 ≤ i ≤ k, a κ3-paired-dominating set P ′(H , u1) can be determined in O(k) time.

3.4 Determination of P̄(H, u1)

Remember that P̄(H , u1) is a minimum-weight paired-dominating set of H − {u1}
over all sets S satisfying u1 /∈ N [S]. Hence, by the definition of P̄(H , u1), the only
composition is P̄(H , u1) = P̄(G1, u1)∪ P ′(G2, u2)∪ . . .∪ P ′(Gk, uk). This implies
that, given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui) with
1 ≤ i ≤ k, a κ4-paired-dominating set P̄(H , u1) can be determined in O(k) time.
Thus, we have the following result.

Lemma 8 Given the dominating sets D(Gi , ui), P(Gi , ui), P ′(Gi , ui), and P̄(Gi , ui)
with 1 ≤ i ≤ k, a κ4-paired-dominating set P̄(H , u1) can be determined in O(k) time.

123

Journal of Combinatorial Optimization (2022) 44:269–286 285

4 Conclusion and future work

In this paper, we have presented an optimal algorithm for finding a paired-dominating
set of a weighted block graph G. The algorithm uses dynamic programming to itera-
tively determine D(H , u), P(H , u), P ′(H , u), and P̄(H , u) in a bottom-up manner,
where H is a subgraph of G and u ∈ V (H) is a cut vertex of G. When the graph is
given in an adjacency list representation, our algorithm runs in O(n+m) time. More-
over, the algorithm can be completed in O(n) time if the block-cut-vertex structure of
G is given.

Below we present some open problems related to the paired-domination problem.
Recently, Lin et al. (2020) presented an O(n2)-time algorithm for distance-hereditary
graphs. Meanwhile, the complexity for circle graphs is still open. It is well known
that the family of distance-hereditary graphs is a proper superfamily of the family of
block graphs, and is a proper subfamily of the family of circle graphs. In addition,
the problems of finding minimum independent, connected, and total dominating sets
all have O(n + m)-time algorithms in distance-hereditary graphs and are proved to
be NP-complete in circle graphs. Therefore, it is interesting to improve the results
in Lin et al. (2020) to show that the paired-domination problem is also O(n + m)-
time solvable in distance-hereditary graphs and remains NP-complete in circle graphs.
Furthermore, many real-life problems can be represented by planar graphs, e.g., the
museum protection problem. To transforming theory into reality, it would be desirable
to show that the problem is NP-complete in planar graphs and design an approximation
algorithm.

References

Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-Wesley
Publishing Co., Reading, Mass.-London-Amsterdam

Argiroffo GR, Bianchi SM, Lucarini Y, Wagler AK (2020) Linear-time algorithms for three domination-
based separation problems in block graphs. Discrete Appl Math 281:6–41

Banerjee S, Henning MA, Pradhan D (2020) Algorithmic results on double Roman domination in graphs.
J Comb Optim 39(1):90–114

Banerjee S, Keil JM, Pradhan D (2019) Perfect Roman domination in graphs. Theoret Comput Sci 796:1–21
Chang GJ (1989) Total domination in block graphs. Oper Res Lett 8(1):53–57
Chang GJ (2013) Algorithmic aspects of domination in graphs. In: Handbook of Combinatorial Optimiza-

tion, pp 339–405. Springer-Verlag, New York, second edition
Chen L, Lu C, Zeng Z (2009) Hardness results and approximation algorithms for (weighted) paired-

domination graphs. Theoret Comput Sci 410(47–49):5063–5071
Chen L, Lu C, Zeng Z (2009) A linear-time algorithm for paired-domination problem in strongly chordal

graphs. Inform Process Lett 110(1):20–23
Chen L, Lu C, Zeng Z (2010) Labelling algorithms for paired-domination problems in block and interval

graphs. J Comb Optim 19(4):457–470
Cheng TCE, Kang L, Shan E (2009) A polynomial-time algorithm for the paired-domination problem on

permutation graphs. Discrete Appl Math 157(2):262–271
Goddard W, Henning MA (2013) Independent domination in graphs: a survey and recent results. Discrete

Math 313(7):839–854
Haynes T, Slater P (1998) Paired-domination in graphs. Networks 32:199–206
Haynes TW, Hedetniemi ST, Slater PJ (1998) Domination in graphs: advanced topics. Marcel Dekker Inc.,

New York

123

286 Journal of Combinatorial Optimization (2022) 44:269–286

Haynes TW, Hedetniemi ST, Slater PJ (1998) Fundamentals of domination in graphs. Marcel Dekker Inc.,
New York

Hedetniemi ST, Laskar RC (1990) Bibliography on domination in graphs and some basic definitions of
domination parameters. Discrete Math 86(1–3):257–277

Hedetniemi ST, Laskar RC (eds) (1991) Topics on domination. Annals of Discrete Mathematics. North-
Holland Publishing Co., Amsterdam

Henning MA (2009) A survey of selected recent results on total domination in graphs. Discrete Math
309(1):32–63

Henning MA, Pal S, Pradhan D (2019) The semitotal domination problem in block graphs. Discuss Math
Graph Theory, 1–18

HenningMA, PradhanD (2020)Algorithmic aspects of upper paired-domination in graphs. Theoret Comput
Sci 804:98–114

Hung R-W (2012) Linear-time algorithm for the paired-domination problem in convex bipartite graphs.
Theory Comput Syst 50(4):721–738

Kang L (2013) Variations of dominating set problem, 2nd edn. Handbook of Combinatorial Optimization.
Springer-Verlag, New York, pp 3363–3394

Kang L, Sohn MY, Cheng TCE (2004) Paired-domination in inflated graphs. Theor Comput Sci 320(2–
3):485–494

Lappas E, Nikolopoulos SD, Palios L (2009) An O(n)-time algorithm for the paired-domination problem
on permutation graphs. In: Combinatorial algorithms, volume 5874 of Lecture Notes in Comput. Sci.,
pp 368–379. Springer, Berlin

Lappas E, Nikolopoulos SD, Palios L (2013) An O(n)-time algorithm for the paired domination problem
on permutation graphs. European J Combin 34(3):593–608

Lin C-C, KuK-C, Hsu C-H (2020) Paired-domination problem on distance-hereditary graphs. Algorithmica
82(10):2809–2840

Lin C-C, Tu H-L (2015) A linear-time algorithm for paired-domination on circular-arc graphs. Theoret
Comput Sci 591:99–105

Lu C, Wang B, Wang K, Wu Y (2019) Paired-domination in claw-free graphs with minimum degree at least
three. Discrete Appl Math 257:250–259

Panda BS, Pradhan D (2013) A linear time algorithm for computing a minimum paired-dominating set of
a convex bipartite graph. Discrete Appl Math 161(12):1776–1783

Panda BS, Pradhan D (2013) Minimum paired-dominating set in chordal bipartite graphs and perfect
elimination bipartite graphs. J Comb Optim 26(4):770–785

Pradhan D, Jha A (2018) On computing a minimum secure dominating set in block graphs. J Comb Optim
35(2):613–631

Pradhan D, Panda BS (2019) Computing a minimum paired-dominating set in strongly orderable graphs.
Discrete Appl Math 253:37–50

Qiao H, Kang L, Cardei M, Du D-Z (2003) Paired-domination of trees. J Global Optim 25(1):43–54
Xu G, Kang L, Shan E, Zhao M (2006) Power domination in block graphs. Theoret Comput Sci 359(1–

3):299–305
Yeh H-G, Chang GJ (1998)Weighted connected domination and Steiner trees in distance-hereditary graphs.

Discrete Appl Math 87(1–3):245–253
Yen C-C, Lee RCT (1996) The weighted perfect domination problem and its variants. Discrete Appl Math

66(2):147–160

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A linear-time algorithm for weighted paired-domination on block graphs
	Abstract
	1 Introduction
	2 The proposed algorithm for block graphs
	2.1 The algorithm
	2.2 An example
	2.3 Correctness and complexity analysis

	3 Finding D(H, u1), P(H, u1), P'(H, u1), and barP(H, u1)
	3.1 Determination of D(H, u1)
	3.2 Determination of P(H, u1)
	3.3 Determination of P'(H, u1)
	3.3.1 Finding Q1
	3.3.2 Finding Q2

	3.4 Determination of barP(H, u1)

	4 Conclusion and future work
	References

