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Abstract
Exact query on big data is a challenging task due to the large numbers of autonomous
data sources. In this paper, an efficient method is proposed to select sources on big data
for approximate query. A gain model is presented for source selection by considering
information coverage and quality provided by sources. Under this model, the source
selection problem is formalized into two optimization problems. Because of the NP-
hardness of proposed problems, two approximate algorithms are devised to solve them
respectively, and their approximate ratios and complexities are analyzed. To further
improve efficiency, a randomizedmethod is developed for gain estimation. Based on it,
the time complexities of improved algorithms are sub-linear in the number of data item.
Experimental results show high efficiency and scalability of proposed algorithms.

Keywords Big data · Data quality · Source selection · Query approximation

1 Introduction

In the era of big data, with the rapid growth of useful information, data sets can be
collected from a variety of sources. In the application with a large number of heteroge-
neous and autonomous data sources, it is infeasible and unnecessary to provide exact
query answers on big data for the following reasons: (1).With the limited resources,
querying on big data cannot be answered within an acceptable time bound; (2).Due to
the autonomy of data sources, data sources are likely to contain overlap information,
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querying redundant sources may bring some gain, but it will bring high additional
costs; (3).Data sources are often of low quality, and querying low-quality data sources
will even deteriorate the quality of query results.

Data source selection has received much attention in the literature. Dong et al.
(2012) selects a subset of sources for data integration. This work formalizes several
optimization goals for source selection and efficiently estimates resulting accuracy.
A heuristic randomized approach is presented to approximate the optimal selection.
However, this paper does not take into account data self-conflicting and incomplete-
ness. Salloum et al. (2013) provides a method to determine the online query order on
data sources. This methods is based on estimating overlaps between sources accord-
ing to available statistics. It requires some prior statistics and overlooks data quality.
Rekatsinas et al. (2014) selects sources by using freshness as a quality measure, which
without comprehensively considering the quality of data sources, such as functional
dependency and completeness. Lin et al. (2019) incorporates truth discovery tech-
niques into source selection. It presents a probabilistic coverage model to measure the
quality of sources. Nevertheless, this work needs a prior statistics of each attribute
value. Li et al. (2018) attempts to find a subset of sources that maximizes the coverage
with a bounded number of sources. A randomized approach for intersection set size
estimation is leveraged to estimate the coverage without accessing the data sources.
This work does not take into consideration data quality and cost.

In summary, currently, there is no efficient method to select data sources by consid-
ering data coverage, overlap and quality. We dedicate this paper to the development of
an efficient approach that selects proper data sources before querying. Given an upper
bound on the amount of data sources or data items that can be used, efficient methods
are proposed for source selection. We present a gain model to evaluate sources by
considering their data coverage, overlap and quality. Based on presented gain and cost
models, the source selection problem is formulated into two optimization problems
according to different application scenarios. Because of the NP-hardness of problems,
two heuristic approximate algorithms is leveraged to solve them. These two approxi-
mate algorithms are proved can obtain the best possible approximate factor. To further
improve the efficiency, aMonte-Carlo sampling based algorithm is devised to estimate
the sources coverage, in this way, the time complexities of algorithms are sub-linear
in the number of data item.

In this paper, we make the following contributions.
First, a gain model is proposed for data source selection. This model take into

account data coverage, overlap and quality.
Second, two optimization problems for source selection, calledBNMGandBCMG,

are presented based on gain model. They all proved to be NP-hard.
Third, a simple greedy algorithm is used for BNMG. An enumerate embedded

greedy algorithm is devised for BCMG to achieve a bounded approximation factor.
Finally, a randomized approach is developed for coverage estimation. Such estima-

tion has a theoretical guarantee and without extra space cost.
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2 Problem definition

Section 2.1 defines the basic notions used in this paper and quality metric of data
source, Sect. 2.2 formulates the problems of source selection, Sect. 2.3 analyzes the
complexities of proposed problems.

2.1 Basic notions and quality metric

Definition 1 (Data source) A dataset consists of a set of data sources S = {Si |1 ≤ i ≤
m}. Each source Si contains a set of tuples. Each tuple consists of a set of attributes
value.

Definition 2 (Functional dependency(FD) (Codd et al. 1972)) An FD ϕ: [A1, · · · , Al ]
→ [B], where Ai and B are attributes in data source. The semantic of ϕ is that any
two tuples are equal on the left-hand side attribute of ϕ, they should also be equal on
the right-hand side, otherwise, we say such tuples violate the FD.

Definition 3 (Data item) Consider a data item domainD. A data item D ∈ D denotes
a particular aspect of a real-world entity. DS denotes that a set of data items provided
by S.

Definition 4 (Claim (Sun et al. 2018)) Each claim is a triple < S, key, v >, meaning
that the source, S, claims a value, v, on a data item with key, key.

For example, in Table 1 there are two sources, S1 and S2. S1 provides 4 data
items: the name of book with ISBN=02010, the author of book with ISBN=02010,
the name of book with ISBN=02011, the author of book with ISBN=02011. Similarly,
S2 provides 6 data items. Note that a source can provide conflicting claims for a data
item, for instance, consider two claims: < S1, I SBN = 02010.Name, Java > and
< S1, I SBN = 02010.Name,C + + >, which means S1 claims that the name of
ISBN=02010 are Java and C++, respectively. However, only one of the conflicting
values is true. S2 also miss the value of the author of the book with ISBN=02010.

Next, we consider quality metrics. Three aspects should be considered when select-
ing sources. First, we prefer to select a source with high coverage and low overlap:
such a source would return more new answers. Second, the answers returned by a
high-quality source are of high reliability. Third, a source with high querying cost
will yield worse performance.

Definition 5 (Coverage) The coverage of source S is the number of its provided data
items, denoted by V (S). Formally,

V (S) = |DS| (1)

For source set S (a subset of S), we have

V (S) = | ∪S∈S DS| (2)
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Table 1 A running example of
bookstores dataset

(a) Source S1

Id ISBN Name Author

t1 02010 Java Robert

t2 02010 C++ Robert

t3 02011 Algorithms Thomas

t4 02011 Algorithms Thomas

t5 02011 Algorithms Thomas

(b) Source S2

Id ISBN Name Author

t1 02010 Java Robert

t2 02010 Java

t3 02011 Algorithms Thomas

t4 02012 Discrete mathematics Oscar Levin

Coverage of the source S represents the expected number of answers returned by S.
coverage of the source set S reflects the total distinct data items provided by sources,
which has already eliminated the overlap information.

As shown in in Table 1, a source may provide self-conflicting or incomplete data,
which means that the source has low reliability, querying low reliability may lead to a
bad result. Therefor, it is necessary to select data sources based on their reliability. In
this paper, we measure source reliability as the maximum correct number of claims
provided by source. The reliabili t y of source S is denoted by R(S).

In Table 1, S1 claims two different values for the name of book with ISBN=02010,
and only one of these can be true. The upper bound of correct claims number provided
by source S over key k is

uS,k = max
v

(NS,k,v) (3)

where NS,k,v is the number of claims provided by S for k with a value v.
InTable 1. NS1,I SBN=02010.Name,Java and NS1,I SBN=02010.Name,C++ are both equal

to 1, only one of the conflicting values is true. uS1,I SBN=02010.Name provided by Source
S1 over key I SBN = 02010.Name is 1.While the upper bound of correct claims num-
ber provided by Source S1 over key I SBN = 02010.Author : uS1,I SBN=02010.Author
is 2.

Definition 6 (Reliability) The reliabili t y of source S is the upper bound of correct
number of claims provided by S.

R(S) =
∑

k

uS,k (4)
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For source set S, we have

R(S) =
∑

S∈S,k

uS,k (5)

Now, we define the gain model of source selection. The gain model is a trade-off
between information coverage and reliability of selected sources.

Definition 7 (Gain).

G(S) = αV (S) + (1 − α)R(S) (6)

where α ∈ [0, 1] is a parameter to control how much coverage and reliabili t y to
take into consideration.

Since collecting and integrating data sources requires resources and time. There
comes a cost to collecting sources for querying.

Definition 8 (Cost) The cost of source S is the total number of its provided claims,
denoted by C(S).

C(S) =
∑

k,v

NS,k,v (7)

Similarly, for source set S, we have

C(S) =
∑

S∈S
C(S) (8)

In the running example shown of Table 1. The coverage of S1 and S2 is V (S1) = 4,
and V (S2) = 6. The reliabili t y of S1 and S2 is R(S1) = 9, and R(S2) = 7. The cost
of S1 and S2 is C(S1) = 10, and C(S2) = 8. Therefor, the answer returned by S1 is
more reliability than S2, while querying S2 brings more information with less cost.

2.2 Problems

In this subsection we formulate our problems.
For a data source S, it comes with a cost and owns a gain. It is impractical to

maximize the gain while minimizing the cost . Thus, we define the following two
optimization problems for source selection.

In some scenarios, query system gives an upper Bound on the Number of data
sources can be used, and wishes to Maximize the Gain. We define this problem as
BNMG. Formally, the problem is defined as follows.

Problem 1: (BNMG). Given a set of data sources S and a integer k, the BNMG
problem is to find a subset S of S, such that
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maxG(S)

Subject to : |S| ≤ k
(9)

In some situations, query systemgives an upperBound on theCost as the constraint,
and the optimization goal is to obtain the Maximum Gain. We call this problem as
BCMG.

Problem 2: (BCMG). Given a source set S and τc be a budget on cost, the BCMG
problem is to find a subset S of S, such that

maxG(S)

Subject to : C(S) ≤ τc
(10)

2.3 Complexity results

Lemma 1 The gain function (6) is non-negative, monotone and submodular.

Proof non-negative. Obviously.

monotone.
For x ∈ S − S, if G(S ∪ x) ≥ G(S), the gain model is monotone.

αV (S ∪ x) ≥ αV (S), obviously (11)

(1 − α)R(S ∪ x) = (1 − α)R(S) + (1 − α)R(x) ≥ (1 − α)R(S) (12)

Combining Eqs.(11) and (12), then

G(S ∪ x) = αV (S ∪ x) + (1 − α)R(S ∪ x) ≥ αV (S) + (1 − α)R(S) = G(S)(13)

submodular.
For R ⊂ S and x ∈ S − S, if G(S ∪ x) − G(S) ≤ G(R ∪ x) − G(R), the gain

model is submodular.

V (S ∪ x) − V (S) = V (S) + V (x) − V (S ∩ x) − V (S)

= V (x) − V (S ∩ x)
(14)

Similarly,

V (R ∪ x) − V (R) = V (x) − V (R ∩ x) (15)

AsR ⊂ S, V (S ∩ x) ≥ V (R ∩ x). Hence

αV (S ∪ x) − αV (S) ≤ αV (R ∪ x) − αV (R) (16)
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And

(1 − α)R(S ∪ x) − (1 − α)R(S) = (1 − α)R(S) + (1 − α)R(x) − (1 − α)R(S)

= (1 − α)R(x)
(17)

Similarly, (1 − α)R(R ∪ x) − (1 − α)R(R) = (1 − α)R(x), we have

(1 − α)R(S ∪ x) − (1 − α)R(S) = (1 − α)R(R ∪ x) − (1 − α)R(R) (18)

Combining Eqs.(16) and (18), we get

G(S ∪ x) − G(S) ≤ G(R ∪ x) − G(R) (19)

	


Lemma 2 For a function f , if f is submodular, non-negative, andmonotone. Selecting
a k-element set S to maximize f (S) is an NP-hard problem (Nemhauser et al. 1978).

Theorem 1 Both BNMG and BCMG are NP-hard problems.

Proof For BNMG problem, based on Lemma 1 and 2. BNMG is NP-hard.
We prove the NP-hardness of BCMG problem by reducing Budgeted Maximum

Coverage Problem (BMC) (Khuller et al. 1999) to it.
Given an instance of BMC Problem: A collection of sets Ω = {S1, S2, · · · , Sm}

with associated costs {Ci }mi=1 is defined over a domain of elementsU with associated
equivalent-weights. The goal is to find a collection of sets S ⊆ Ω , such that the
total cost of elements in S does not exceed a given budget L , and the total weight of
elements covered by S is maximized. BMC can be captured by the BCMG problem
in the following way:

(1) the sources in BCMG represent the sets in BMC;
(2) the data items in BCMG represent the elements in BMC;
(3) the costs of sources in BCMG represent the costs of sets in BMC;
(4) the parameter α of the gain model in BCMG is equal to 1.

BCMG is a generalization ofBMC.BMC isNP-hard, and thereforeBCMG isNP-hard.
	


3 Algorithms for source selection

Since both BNMG and BCMG are NP-hard. In this section, we first present a greedy
approximation algorithm for BNMG. Then, we prove that a simple greedy algorithm
is insufficient for solving the BCMG problem. Therefore, we propose a enumerate
embedded greedy algorithm for BCMG.
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3.1 Algorithm for BNMG

For a submodular and non-decreasing function f , f satisfies a property: The marginal
gain of adding a source to a set of sources S is at least as high as the marginal gain of
adding the same source to a superset of S. Here, the marginal gain (G(S ∪ Si )−G(S)

in this algorithm) is the difference between the gain after and before selecting the new
source. Such problem can be solved well by a simple greedy algorithm, denoted by
Greedy (shown in Algorithm 1), which selects k sources by iteratively choosing the
source that provides the largest marginal gain (line 6).

Algorithm 1 Greedy
Require: S, k
Ensure: a subset S of S with |S| ≤ k
1: Initialize S ← ∅
2: while |S| < k do
3: for all Si ∈ S do
4: G(S ∪ Si ) ← CompGain(S ∪ Si );
5: end for
6: Sopt ← argmaxSi∈S G(S ∪ Si ) − G(S);
7: S ← S ∪ Sopt ;
8: S ← S\Sopt ;
9: end while

Time Complexity Analysis. The time complexity of Algorithm 1 depends on the com-
plexity to compute the gain of (S ∪ Si ), this complexity is O(n), where n represents
the maximal number of data items in Si . Clearly, the complexity of Algorithm 1 is
O(k ∗ n ∗ m), where k denotes the number of selected sources, and m denotes the
number of sources in S.

Theorem 2 Algorithm 1 is a (1 − 1/e) − approximation algorithm.

Proof The greedy algorithm get (1 − 1/e) approximation ratio for a submodular and
monotone function with a cardinality constraint (Nemhauser et al. 1978). 	


3.2 Algorithm for BCMG

The greedy algorithm that selects at each step a source maximizing the ratio
G(S∪Si )−G(S)

C(Si )
has an unbounded approximation factor. That is, the behavior of the

worst case might be very far from that of the optimal solution. In Table 2 for example,
two sources S1 and S2 are subjected to an FD: key → value. According to our problem
definition, S1 has V (S1) = 1, R(S1) = 1, C(S1) = 1; S2 has V (S2) = p, R(S2) = p,
C(S2) = p + 1. Let S = {S1, S2}, α = 0.5, and the budget of cost τc = p + 1. The
optimal solution is the source S2 and has gain = p, while the result selected by the
greedy algorithm contains the source S1 and has gain = 1. The approximation factor
of this instance is p, and is therefore unbounded (p is not a constant).
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Table 2 Two sources for an
example

Source (a) S1

id key value

t1 1 1

Source (b) S2

id key value

t1 1 1

· · · · · · · · ·
tp p p

tp+1 p m

We improve the heuristic algorithm by leveraging the enumeration technique to
achieve a constant approximation factor. The main idea is to utilize the partial enu-
meration technique (Shachnai and Tamir 2005) before calling greedy algorithm. The
improved algorithm is denoted by EnumGreedy (shown in Algorithm 2). Let l be a
fixed integer. Firstly, we enumerate all subsets of S that their cardinality are less than
l and have cost at most τc, and select the subset that has the maximal gain as the
candidate solution (line 2). Then, we consider all subsets of S that their cardinality are
l and have cost at most τc, and we complete each subset to a candidate solution using
the greedy algorithm (line3-17). The algorithm outputs the candidate solution having
the greatest gain (line18-22).

TimeComplexity Analysis. The running time ofAlgorithm2 is O(n ·m(l−1)) executions
of enumeration andO(n·ml+2) executions of greedy,wherem is the number of sources,
n is the maximal number of data items in Si . Therefore, for every fixed l, the running
time is polynomial in n · m.

Theorem 3 For l = 2, Algorithm 2 achieves an approximation factor of 1
2 (1− 1

e ) for
the BCMG problem. For l ≥ 3, Algorithm 2 achieves a (1 − 1

e ) approximation ratio
for the BCMG, and this approximation factor is the best possible.

Proof The proof is by generalized the proof of approximation factor for the BMC
problem, presented in (Khuller et al. 1999). The detail is omitted here. 	


4 Coverage estimation

The time complexities of proposed algorithms are determined by computing gain.
In fact, the time complexities are dominated by the computing of coverage since
reliabili t y and cost can be computed in constant time. To reduce the computation
time,we introduce amethod for coverage estimation based on aMonte-Carlo algorithm
proposed in (Karp et al. 1989). The coverage estimation method is a sampling based
randomized algorithm which returns the approximate coverage result with a failure
probability (Sun et al. 2000). Given the error bound 0 < ε < 1, and the failure
probability 0 < δ < 1, the probability of the relative error of the result being less than

123



2452 Journal of Combinatorial Optimization (2022) 44:2443–2459

Algorithm 2 EnumGreedy
Input: S, τc , l
Output: a subset S of S with C(S) ≤ τc
1: Initialize S ← ∅, S ′ ← ∅, S ′′ ← ∅
2: S ′ ← argmaxS ′⊆S

{G(S ′)| C(S ′) ≤ τc , |S ′| < l}

3: for all S ′′ ⊆ S, |S ′′| = l, C(S ′′) ≤ τc do
4: S ← S\S ′′
5: for all Si ∈ S do
6: G(S ′′ ∪ Si ) ← CompGain(S ′′ ∪ Si );
7: C(Si ) ← CompCost(Si );
8: end for
9: Sopt ← argmaxSi

G(S ′′∪Si )−G(S ′′)
C(Si )

;

10: if C(S ′′) + C(Si ) ≤ τc then
11: S ′′ ← S ′′ ∪ Sopt ;
12: S ← S\Sopt ;
13: end if
14: if G(S ′′) > G(S ′′) then
15: S ′′ ← S ′′;
16: end if
17: end for
18: if G(S ′) > G(S ′′) then
19: S ← S ′;
20: else
21: S ← S ′′;
22: end if

ε is large than 1− δ. The framework for coverage estimation is shown in Algorithm 3.
Note that, this algorithm is embedded into our source selection algorithms (Algorithm1
and 2).We call the source selection with Algorithm 3 embedded SB-Greedy algorithm
and SB-EnumGreedy algorithm, respectively.

Algorithm 3 CompCoverage
Require: S = {S1, · · · , St }, ε, δ,
Ensure: V̂ (S)

1: Initialize r = 0;
2: while r < 4t ln(2/δ)/ε2 do
3: Randomly choose a source Si with probability |DSi |/

∑t
j=1 |DS j |;

4: Uniformly and randomly drawn a data item D ∈ DSi ;
5: cov(D) = 0;
6: for all S j ∈ S do
7: if D ∈ DS j then
8: cov(D) ← cov(D) + 1;
9: end if
10: end for
11: Xr ← ∑t

j=1 |DS j |/cov(D);
r ← r + 1;

12: end while

13: V̂ (S) =
∑r

i=0 Xi
r ;

Lemma 3 The expected time of Algorithm 3 is O(t2 log n ln(1/δ)(1/ε2)).
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Proof In each round, the time complexity to test whether a data item lies in DS j is
O(log |DS j |). So the time bound of algorithm 3 is O(t2 log n ln(1/δ)(1/ε2)), where
n is the maximal number of data item in S j . 	


For problem BNMG, |S| ≤ k, we can deduce theorem 4.

Theorem 4 The expected timeof SB-Greedy forBNMGis O(k3m log n ln(1/δ)(1/ε2)).

Definition 9 ((ε,δ)-approximation algorithm) Given 0 < ε < 1, 0 < δ < 1, an algo-
rithm A for coverage estimation problem is called an (ε,δ)-approximation algorithm
if for every instance with the correct solution V (S), the algorithm returns a solution
V̂ (S) such that

Pr [|V (S) − V̂ (S)

V (S)
| ≤ ε] ≥ 1 − δ (20)

Lemma 4 ∀S ⊆ S, Algorithm 3 is a (ε,δ)-approximation algorithm.

We first state some lemmas needs for the proof of Lemma 4.

Lemma 5 For Xr , the random variable obtained by Algorithm 3 (line 11). E[Xr ]
and σ [Xr ] represent the expectation and variance of Xr , respectively. Then E[Xr ] =
V (S).

Proof Suppose ∪Si∈SDSi has n distinct data items D1, D2 · · · , Dn . Then

E[Xr ] =
n∑

i=1

Pr [Di is chosen](
t∑

j=1

|DS j |/cov(Di )) (21)

Since Pr [Di is chosen] is
cov(Di )∑

l=1

(|DSil
|/

t∑

j=1

|DS j |)
1

|DSil
| = cov(Di )/

t∑

j=1

|DS j | (22)

where Sil (l = 1, 2, · · · , cov(Di )) are the sources which contain Di , we obtain
E[Xr ] = n = | ∪Si∈S DSi | = V (S). 	

Lemma 6 Let Y1,Y2, · · · ,Yr be independent random variables over interval [0, 1],
such that, for 1 ≤ i ≤ r , E[Yi ] = pi , where 0 < pi < 1. Then for Y = ∑r

i=1 Yi ,
μ = E[Y ] = ∑r

i=1 pi , and any δ > 0,

Pr [Y > (1 + δ)μ] < [ eδ

(1 + δ)(1+δ)
]μ (23)

and

Pr [Y < (1 − δ)μ] < exp(
−μδ2

2
) (24)
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Proof Lemma 6 is a generalization of the Chernoff bound, refer to (Motwani and
Raghavan 1995). 	

Proof of Lemma 4 We now apply the above lemmas to our problem. Let X

′
i =

Xi/
∑t

j=1 |DS j |. It is obvious that X ′
i s are independent random variables over [0, 1]

and for all 1 ≤ i ≤ r , μ = E[X ′
i ] = V (S)/

∑t
j=1 |DS j | ∈ [1/t, 1]. Without loss of

generality, suppose ε < 1, then by Lemma 6

Pr [|V̂ (S) − V (S)| > εV (S)] = Pr [|
r∑

i=1

X
′
i − rμ| > εrμ]

≤ [ eε

(1+ε)(1+ε)
]rμ+exp(

−rμε2

2
)<2 exp(

−rμε2

4
)

≤ 2 exp(
−rε2

4t
)

(25)

Since r=4t ln(2/δ)/ε2 is sufficient to guarantee 2 exp(−rε2
4t ) < δ, the proof is com-

plete. 	

Theorem 5 SB-Greedy algorithm achieves a (1−ε)(1−1/e)

1+ε
-approximation ratio for the

BNMG problem with a probability larger than 1 − δ.

Proof Wedenote the optimal solution ofBNMGunder the true values of coverage asβ,
the optimal solution under the estimated values of coverage based on algorithm 3 as γ ,
our solution is θ . Let G (Ĝ) denote the gain of solution under true coverage (estimated
coverage based on algorithm 3). Based on Lemma 4, for any solution x ⊆ S, we have

Pr [|V (x) − V̂ (x)

V (x)
| ≤ ε] ≥ 1 − δ (26)

We assume that

|V (x) − V̂ (x)

V (x)
| ≤ ε (27)

Due to G(x) = αV (x) + (1 − α)R(x), Ĝ(x) = αV̂ (x) + (1 − α)R(x), then

|G(x) − Ĝ(x)

G(x)
| = | α(V (x) − V̂ (x))

αV (x) + (1 − α)R(x)
| ≤ ε (28)

Then we get

(1 − ε)G(β) ≤ Ĝ(β) ≤ (1 + ε)G(β) (29)

(1 − ε)G(θ) ≤ Ĝ(θ) ≤ (1 + ε)G(θ) (30)
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According to Theorem 2, θ achieves a (1−1/e)-ratio under the estimated coverage,
then

Ĝ(θ) ≥ (1 − 1/e)Ĝ(γ ) (31)

Since γ is the optimal solution under the estimated coverage, we have

Ĝ(γ ) ≥ Ĝ(β) (32)

Combining (15)-(18), we then give

G(θ) ≥ Ĝ(θ)

1 + ε
≥ (1 − 1/e)

1 + ε
Ĝ(γ ) ≥ (1 − 1/e)

1 + ε
Ĝ(β) ≥ (1 − ε)(1 − 1/e)

1 + ε
G(β)

(33)

According to Eqs.(12) and (19), we get Pr [ G(θ)
G(β)

≥ (1−ε)(1−1/e)
1+ε

] ≥ 1 − δ.
	


According to Theorem 3, 4 and 5, we can easily deduce the following theorems.

Theorem 6 For l ≥ 3, SB-EnumGreedy algorithm achieves a (1−ε)(1−1/e)
1+ε

-approxi-
mation ratio for the BCMG problem with a probability larger than 1 − δ.

Theorem 7 The expected time of SB-EnumGreedy is O(ml+3 log n ln(1/δ)(1/ε2)).

5 Experimental results

This section conducts some experiments to evaluate the proposed algorithms. We
focus on two aspects: (1) the comparison between Greedy and SB-Greedy for BNMG
problem, as well as EnumGreedy and SB-EnumGreedy for BCMG problem, and (2)
how SB-Greedy and SB-EnumGreedy perform in terms of efficiency and scalability.

5.1 Experiment setup

5.1.1 Dataset

We conducted our comparison experiments on a synthetic dataset. The Syn. Data is
a synthetic dataset with various data sources number(m) and data items number(n).
We used 10 attributes A1 − A10 and 8 FDs: A1 → A8, A1 → A9, A1 → A10,
A2 → A6, A2 → A7, A3 → A6, A3 → A7, [A4, A5] → A8. Each data source
randomly chose an attribute with 20% probability, and each source contains at least
one of the FDs. The size of each data source is a random number in the range of
[200000, 1000000].
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Fig. 1 Experimental results

5.1.2 Parameters

In this paper, we focus more on selecting data sources with high coverage, hence,
we set α = 0.9. Users can set different values for α according to their preferences.
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Parameter l in Algorithm 2 is set to 2. The error bound ε and the failure probability
bound δ are both set to 0.1.

5.1.3 Platforms

All experiments are implemented in Java and executed on a PC with Windows 7, a
16GB of RAM and a 3.6 GHz Intel i7-7700U CPU.

5.2 Comparison

For BNMG problem, we firstly compare the effectiveness of Greedy and SB-Greedy
with k varying from 1 to 16 (m = 100, n = 2000), shown in Fig. 1a and b.

For BCMG problem, we compare EnumGreedy and SB-EnumGreedy with
Bounded cost varying from 1 to 9 M (m = 10, n = 1000). The results are shown in
Fig. 1c, d.

We have the following observations. (1) For BNMG problem, as the value of k
increases, the runtimes of Greedy and SB-Greedy also increase, among which the
running time of algorithm SB-Greedy changes more obviously. SB-Greedy achieves a
significant runtime saving at the expense of very small gain. (2) BCMG problem gets
a similar result. With the value of m increases, the runtimes of EunmGreedy and SB-
EunmGreedy both increase, and SB-EunmGreedy is more sensitive to m. In this set
of experiments, SB-EunmGreedy has a significantly lower running time with almost
no gain sacrifice.

5.3 Efficiency and scalability

To further test how the data items and number of sources affect efficiency and scala-
bility, we conduct more experiments on synthetic datasets. (1) Fig. 1(e, g) report the
runtimes of both algorithms with varying the data items from 1000 to 5000 (k = 8 for
BNMG, Cost = 10M for BCMG). We observe that the runtimes of SB-Greedy and
SB-EnumGreedy are grow sub-linear in data items. Meanwhile, the time complex-
ity is independent to the data size, which demonstrates that the high efficiency and
scalability of our algorithms to the data items and data size. Fig. 1f plots the running
time of SB-Greedy, as we vary the number of data sources from 100 to 500 (k = 8
and n = 500). The runtime of SB-Greedy increases nearly linearly with data sources,
which also indicates SB-Greedy has good scalability to the number of data sources.
Fig. 1h manifests the runtimes of SB-EunmGreedy when the data sources varies from
10 to 50 (n = 1000 andCost = 10M). Aswe can see, the runtime of SB-EunmGreedy
is grows exponentially in data source. This illustrates that SB-EunmGreedy has poor
scalability towards the number of data sources.

5.4 Summary

(1) The gain of SB-Greedy and SB-EnumGreedy are very close to the gain of Greedy
and EnumGreedy. (2) The algorithms, which embedded a Monte-Carlo algorithm
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to estimate coverage, outperform original methods both on efficiency and scalability
significantly. (3) Our algorithms scale well on both the data size and the data items. (4)
SB-Greedy has good scalability to the number of data sources while SB-EnumGreedy
does not.

6 Conclusion

This paper studies source selection problem for query approximation. We first pro-
pose a gain model to evaluate the coverage and quality of data source. Based on the
proposed model, we formulate source selection problem into two optimization prob-
lems, which are both proven to be NP-hard. Then we develop a greedy algorithm for
bounded source number problem and an enumerate embedded greedy algorithm for
bounded cost problem, both algorithms come with rigorous theoretical guarantees on
their performance. Finally, we devise a randomized method to estimate coverage to
further improve efficiency. Under this method, our propose algorithms get sub-linear
complexities in the number of data item. Experimental results show our algorithms
can select sources efficiently.
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