
Vol.:(0123456789)

Journal of Combinatorial Optimization (2022) 43:79–97
https://doi.org/10.1007/s10878-021-00746-w

1 3

Minmax common flow‑allowance problems with convex
resource allocation and position‑dependent workloads

Baruch Mor1

Accepted: 10 April 2021 / Published online: 29 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
We study minmax due-date based on common flow-allowance assignment and
scheduling problems on a single machine, and extend known results in scheduling
theory by considering convex resource allocation. The total cost function of a given
job consists of its earliness, tardiness and flow-allowance cost components. Thus,
the common flow-allowance and the actual jobs’ processing times are decision var-
iables, implying that the due-dates and actual processing times can be controlled
by allocating additional resource to the job operations. Consequently, our goal is
to optimize a cost function by seeking the optimal job sequence, the optimal job-
dependent due-dates along with the actual processing times. In all addressed prob-
lems we aim to minimize the maximal cost among all the jobs subject to a constraint
on the resource consumption. We start by analyzing and solving the problem with
position-independent workloads and then proceed to position-dependent workloads.
Finally, the results are generalized to the method of common due-window. For all
studied problems closed form solutions are provided, leading to polynomial time
solutions.

Keywords Single machine scheduling · Minmax · Common flow-allowance ·
Convex resource allocation · Position-dependent workloads

1 Introduction

In this paper, we address and combine two popular topics in scheduling theory: due-
date assignment problems and controllable processing times. One influential effect
of the Just-In-Time (JIT) production methodology on scheduling theory was the vast
research on due-date assignment and scheduling problems. In this class of problems,
the due-dates are decision variables and we seek to balance the inherent trade-off

 * Baruch Mor
 baruchm@ariel.ac.il

1 Department of Economics and Business Administration, Ariel University, 40700 Ariel, Israel

http://orcid.org/0000-0002-6909-8160
http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00746-w&domain=pdf

80 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

between early competitive due-dates on the one hand and late and, consequently,
undemanding due-dates on the other. Three significant models were introduced: (i)
CON (Common)—where all the jobs share a common due-date (Panwalkar et al.
1982); (ii) DIF (Different)—the unrestricted due date assignment method, in which
each job can be assigned a different due date with no restrictions (Seidmann et al.
1981); and (iii) SLK (Slack)—where the job-dependent due-dates are often linear
functions of the job processing times (Adamopoulos and Pappis 1996).

The vast majority of studies addressed the minsum versions, i.e., minimizing the
total cost of earliness, tardiness and due-date of all jobs. These objective functions
were studied with various machine environments, position-independent/dependent
job processing times, constant/controllable job processing times, problems involving
optional job-rejection, and with single/multi-agent settings. Recent articles include,
among others, Wang et al. (2016), Yin et al. (2016), Gerstl et al. (2017), Mor (2017,
2019a), Mor and Mosheiov (2017), Cheng and Cheng (2018), Gao et al. (2018),
Xiong et al. (2018), Ji et al. (2019), Geng et al. (2019), Liu et al. (2020), Liu and
Jiang (2020) and Mor et al. (2020).

In this study, we combine very important classes of scheduling theory—due-date
assignment and scheduling problems and convex resource allocation, and provide
optimal algorithm solutions for very practical problems. We concentrate on the SLK
model, i.e., due-date assignments based on common flow-allowance. Unlike min-
sum, the minmax version has not received appropriate research attention. In minmax
problems, we aim to minimize the maximal cost among all jobs. The importance
of these problems is threefold: (i) realize a value that demonstrates the utilization
of the production system that can be compared to the competition; (ii) estimate
the worst case performance of the production system; and (iii) treat all clients in
an equal way. Typically, in minmax scheduling problems with common flow-allow-
ance there are three cost components: earliness, tardiness, and flow-allowance. The
first to consider single machine minmax scheduling and assignment problems with
due-date based on flow-allowance were Mor and Mosheiov (2012a). Later, Mor and
Mosheiov (2012b, 2016, 2017) extended the fundamental setting to identical parallel
machines, proportionate flow-shop, and two competing agents, respectively.

In this paper, we combine the setting of due-date based on common flow-
allowance and the very important and practical model of controllable processing
times. Scheduling models with controllable processing times are very widespread
and influential. Unlike most studies in scheduling theory that presume constant
job processing times, research with controllable processing times assumes that
the processing times may be controlled through allocating extended resources
to job operations. Thus, the updated approach aims to address various real-life
problems where the improved deployment of inputs in the production system is
achieved by allocating added resource to the job processing. There are two domi-
nant methodologies when addressing controllable processing times: (i) actual job
processing times as a linear function of the amount of resource allocated to the
processing of the job and (ii) actual job processing times as a convex decreasing
function of the amount of resource allocated to the processing of the job. In their
wide-ranging survey, Shabtay and Steiner (2007) state that “For many resource
allocation problems in physical or economic systems, however, they do not use a

81

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

linear resource consumption function, since it fails to reflect the law of diminish-
ing marginal returns. This law states that productivity increases at a decreasing
rate with the amount of resource employed.” Thus, in this paper, we assume that
the job processing time is a convex decreasing function of the amount of resource
allocated to the processing of the job. Recent articles with convex resource allo-
cation include Liu et al. (2016, 2017), Sun et al. (2016), Wang et al. (2017) and
Sun et al. (2019).

Many scheduling researchers have studied scheduling problems with variable
job processing times, i.e., starting-time-dependent and/or position-dependent.
The importance of this method is reflected in Gawiejnowicz (2008) with numer-
ous variable processing time problems, different objective functions, and diverse
machine settings. Other articles include Mor and Mosheiov (2011, 2012c, 2018),
Rudek (2012), Sun et al. (2013), Agnetis et al. (2014), Agnetis and Mosheiov
(2017), Gerstl et al. (2017), Pei et al. (2019) and Zhang et al. (2018). In gen-
eral, the extension to variable job processing times significantly increases the
computational complexity of the problems, whether the processing times are (i)
restricted to monotone functions of the job starting times; (ii) position-dependent,
i.e., representing aging or learning effects; and (iii) specific functions, e.g., linear
or exponential.

Oron (2016) was the first to introduce the realistic and challenging generali-
zation of position-independent workloads to position-dependent workloads. The
author restricted the functional form of the workloads to reflect learning effect
and studied minimizing makespan and total flowtime on a single machine, as well
as minimizing total flowtime on parallel machines. Lu and Liu (2018) analyzed
bi-criteria problems, where the first criterion is a scheduling measure and the
second criterion is the total resource consumption cost. Mor (2019b) considered
single machine minmax common due-window assignment and scheduling prob-
lems with convex resource allocation. Recently, Mor (2020) extended the results
of Oron (2016) by omitting the restriction on the functional form of the work-
loads, and provided a unified approach for single machine scheduling with posi-
tion-dependent workloads and positional penalties.

Following Mor and Mosheiov (2012a), we focus on the minmax problem with
due-date based on flow-allowance on a single machine, and extend their results
by considering controllable job processing times. Firstly, we study position-inde-
pendent workloads, and then proceed to the model of position-dependent work-
loads. Secondly, we generalize the due-date method to the due-window method.
For the problems with position-independent workloads, we provide O(n) proce-
dure solutions, whereas for the problems with position-dependent workloads,
we introduce solution procedures with computational effort of O(n3) . Thus, in
combining the minmax approach and controllable processing times, this study
addresses theoretical and practical aspects in scheduling theory.

In Sect. 2, we provide the formulation. Sections 3 and 4 are dedicated to the
setting of common due-date with position-independent and position-dependent
workloads, respectively. In Sects. 5 and 6, we generalize the results of Sects. 3
and 4 to the method of common due-window, respectively. In Sect. 7, we provide
conclusions and future research topics.

82 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

2 Formulation

A set of jobs J needs to be processed on a single machine. All the jobs are available
at time zero, and preemption is not allowed. The actual processing time of the job
allocated to position j, j ∈ J is defined as pj =

(
wj

uj

)k

 , where wj is a positive value
reflecting the workload of the processing operation, uj is a decision variable demon-
strating the amount of resource allocated to the processing operation, and k is a con-
stant positive parameter. We also denote by wmax the largest workload among all
jobs, wmax = maxj∈J

{
wj

}
.

We assume a common flow-allowance denoted by q , which is a decision variable.
The due-date (DD) of job j is dj and defined as its processing time plus the job-
independent constant q:

For a given schedule, the completion time of job j, j ∈ J is denoted by Cj . We
denote the makespan, i.e., the completion time of the last job to leave the system by
Cmax . Jobs completed before/after the due-date are considered as early/tardy jobs and
incur penalties. The earliness of the job j is Ej = max

{
0, dj − Cj

}
 and the tardiness

of job j is defined as Tj = max
{
0,Cj − dj

}
, j ∈ J . There are three cost components:

for earliness, tardiness, and to motivate the scheduler to set competitive due-dates
there is an additional cost for the common flow-allowance. Let � denote the unit ear-
liness cost, � denote the unit tardiness cost, and � denote the cost of delaying the due-
dates by one time unit. We note that in a given schedule a specific job is either early
or tardy, implying that its cost is max

{
�Ej + �q, �Tj + �q

}
= max

{
�Ej, �Tj

}
+ �q.

We seek to find the optimal sequence and flow-allowance, such that the maximal
cost among all jobs is minimized. Formally, the scheduling measure in this case is
Z = maxj∈J

{
max

{
�Ej, �Tj

}
+ �q1 + �D

}
.

First, we focus on minimizing the scheduling measure, given that the total
resource consumption cannot exceed an upper bound denoted by U . We denote the
problem by P� and, utilizing the three-field notation introduced by Graham et al.
(1979), the first problem studied is,

Next, we extend the setting of common flow-allowance with position-independ-
ent workloads to the setting of position-dependent workloads, wjr , implying that the
workload of job j if assigned to position r is given by pjr =

(
wjr

uj

)k

, j, r = 1,… , n.
Thus, the second problem, denoted by P� , is:

Finally, we generalize the above results and address the method of due-window
(DW) based on common flow-allowance. Thus, jobs that are completed within a time
interval (a due-window) are not penalized, whereas jobs that are completed prior to or

dj = pj + q, j ∈ J.

P� ∶ 1
|||SLK DD, conv,wj,

∑
uj ≤ U

|||Z.

P� ∶ 1
|||SLK DD, conv,wjr,

∑
uj ≤ U

|||Z.

83

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

after the window, are penalized according to their earliness/tardiness. In due-window
assignment problems, we seek simultaneously the start time and the size of the win-
dow. We address job-dependent due-windows based on common flow-allowance. The
job-dependent due-window is denoted by Dj , such that the window of job j, j ∈ J is
given by Dj = [d1

j
, d2

j
] , where

Similar to the due-date method, the common flow-allowance constants q1 and q2
are decision variables, such that q2 ≥ q1 . Since
Dj = d2

j
− d1

j
= pj + q2 −

(
pj + q1

)
= q2 − q1 = D, j ∈ J , the size of the due-win-

dow is identical for all jobs. The earliness of j is Ej = max
{
0, d1

j
− Cj

}
 and the tar-

diness of job j is Tj = max
{
0,Cj − d2

j

}
, j ∈ J . To motivate the scheduler to set

reduced due-window size, there are four unit costs: for earliness, tardiness, the cost
of the first flow-allowance, and extending the size of the due-window. Let � denote
the unit earliness cost, � denote the unit tardiness cost, � denote the unit cost of the
flow-allowance (q1) , and � denote the unit cost of extending the size of the due-
window (D). Our aim is to find the optimal common constants and the optimal size
of the due-window, as well as the sequence, that minimize the maximal cost among
all jobs. Formally, the scheduling measure in this case is
Z = maxj∈J

{
max

{
�Ej + �q1 + �D, �Tj + �q1 + �D

}}
= maxj∈J

{
max

{
�Ej, �Tj

}
+ �q1 + �D

}
.

The third and fourth problems, denoted by P� and P� , respectively, are:

3 P1: 1���SLK DD, conv,wj,
∑

uj ≤ U
���Z

Mor and Mosheiov (2012a) proved that the same problem with constant job processing
time, 1|SLK DD|Z , can be formulated as the following Linear Program (LP), denoted
by LP3.1:

In this linear program, the subscript is the index of the job assigned to the
j th position in a given sequence. Analyzing LP3.1, the authors concluded that an

d1
j
= pj + q1, j ∈ J.

d2
j
= pj + q2, j ∈ J.

P� ∶ 1
|||SLK DW, conv,wj,

∑
uj ≤ U

|||Z,
P� ∶ 1

|||SLK DW, conv,wjr,
∑

uj ≤ U
|||Z.

LP3.1

minZ

s.t.

Z ≥ aE1 + �q = q(� + �),

Z ≥ �Tn + �q = q(� − �) + �
(
Cmax − pn

)
,

Z, q ≥ 0.

84 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

optimal schedule exists in which the job with the largest processing time is sched-
uled last and the sequence of the remaining n − 1 jobs is immaterial.

Based on the above, the authors provided a closed form solution, where there are
only two possible cases, and the optimal flow-allowance and cost function are given by:

Case 1: 𝛾 > 𝛽

Case 2: � ≤ �

In the context of this study, the actual processing time of each job is a function
of the amount of resource allocated to it, i.e., pj =

(
wj

uj

)k

 . Therefore, and follow-
ing the analysis of Cases 1–2 above, we conclude that the job with the largest
workload should be scheduled last and, consequently, does not contribute to the
cost function. Moreover, since the coefficients in both cases are constants, it suf-
fices to minimize the term

∑n−1

j=1
pj =

∑n−1

j=1

�
wj

uj

�k

.
We conclude that the following observations are adequate:

Observation 3.1 An optimal schedule exists in which the job with the largest work-
load is scheduled last and the sequence of the remaining n − 1 jobs is immaterial.

Observation 3.2 An optimal schedule exists in which no resource is allocated to the
job scheduled last.

From Observations 3.1–3.2, we conclude that pn = wmax.
Kaspi and Shabtay (2004) proved the following properties for an optimal solu-

tion of the problem 1∕wj,
∑

uj ≤ U∕Cmax:

• The entire available resource is exploited.

• The optimal resource allocated to job j, j ∈ J is given by uj = U
w

k
k+1
j

∑
j∈J w

k
k+1
j

.

• The actual processing time of job j, j ∈ J is given by pj =

�∑n

j=1
w

k
k+1
j

U

�k

w
k

k+1

j
.

Combining Observation 3.1–3.2 and the results of Kaspi and Shabtay (2004), we
can summarize the properties of an optimal solution for P�:

q∗ = 0 and Z∗ = �
(
Cmax − pn

)
= �

n−1∑
j=1

pj.

q∗ =
�

� + �

(
Cmax − pn

)
=

�

� + �

n−1∑
j=1

pj and Z∗ = (� + �)q∗ =
�(� + �)

� + �

n−1∑
j=1

pj.

85

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

Property 3.1 The entire available resource is consumed to reduce the processing
time of jobs j = 1,… , n − 1.

For ease of reading, we define a constant W , such that W =
∑n−1

j=1
w

k

k+1

j
.

Property 3.2 The optimal resource allocated to job j, j = 1,… , n − 1 is given by
uj =

U

W
w

k

k+1

j
.

Property 3.3 The actual processing time of job j, j = 1,… , n − 1 is given by
pj =

(
W

U

)k

w
k

k+1

j
.

Property 3.4 The optimal flow-allowance and cost function for P� are given by
Case 1: 𝛾 > 𝛽

Case 2: � ≤ �

Next, we present the formal solution procedure:
Solution procedure to problem P�
Step 1 Find the job with the largest workload and assign it to the last position.
Step 2 Use Property 3.2 to calculate the amount of resource allocated to jobs

1,… , n − 1.
Step 3 Use Property 3.3 to calculate the actual processing times to jobs

1,… , n − 1.
Step 4 Use Property 3.4 to determine the relevant case and calculate the optimal

common flow-allowance and cost.

Theorem 3.1 The computational complexity of the proposed solution is O(n) time.

Proof Step 1: Determining the job with the largest workload requires O(n) time.
Steps 2–3: Computing the amount of resource allocated to each job and the actual
processing time of each job, respectively, is done in O(n) . Step 4: Calculating the
optimal common flow-allowance and cost is done in O(n) . Hence we conclude that
the computational complexity is O(n). □

Numerical example 3.1 We solve the following 8-job problem:
The jobs workloads are: wj = (22, 24, 49, 50, 21, 14, 14, 6).
The cost parameters are: � = 8 , � = 10 and � = 5.
The available total resource is, U = 12 and k = 0.5.

q∗ = 0 and Z∗ = �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

q∗ =
�

� + �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z∗ =

�(� + �)

� + �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

86 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

Since wmax = 50 , switching the positions of jobs 4 and 8, we obtain one optimal
sequence (1, 2, 3, 8, 5, 6, 7, 4).

Solution:
Since � ≤ �, the relevant case is Case 2.
The amount of resource allocated to each job is:

The actual processing times are:

The optimal common flow-allowance is q∗ = 13.013 , implying that the due-dates
are:

The optimal cost is: Z∗ = 169.165.

4 P2: 1���SLK DD, conv,wjr ,
∑

uj ≤ U
���Z

In this section, we extend the due-date setting by considering position-dependent
workloads. The solution of Problem P� requires us to establish the optimal job
sequence and then to evaluate the effect of allocating resource to each job on the
optimal due-date and cost function. Let wjr denote the workload of job j if pro-
cessed in position r , j, r = 1,… n . Thus, the input for the problem contains three
cost parameters, a matrix of n × n job-position workloads, the upper bound on the
total amount of resource consumption and the constant parameter. Consequently, the
flow allowance and the derived due-dates are defined for any given realization of a
job sequence, and we have to simultaneously seek the optimal job sequence and the
optimal flow allowance. We conclude that for any given job sequence, Observations
3.1–3.2 and Properties 3.1–3.4 are still valid.

Oron (2016) solved the problem, 1∕wjr, conv,
∑

j∈J uj ≤ U∕Cmax and proved that
the objective function can be rewritten as:

Since U, k > 0 , the author proved that minimizing f is equal to minimizing �∑n

r=1
wk
jr
Xjr

� 1

1+k.
Subsequently, the author proved that obtaining the optimal job sequence is

reduced to solving the following linear Assignment Problem (AP):

uj = (1.794, 1.847, 2.343, 1.163, 1.766, 1.543, 1.543, 0).

pj = (3.502, 3.605, 4.573, 2.271, 3.448, 3.012, 3.012, 50).

dj = (16.515, 16.618, 17.586, 15.284, 16.461, 16.025, 16.025, 63.013).

f =

n�
j=1

n�
r=1

�
wjr

uj

�k

Xjr =
1

Uk

⎛⎜⎜⎝

n�
j=1

�
n�

r=1

wk
jr
Xjr

� 1

1+k ⎞⎟⎟⎠

1+k

.

87

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

where

After the optimal sequence is realized, the makespan can be calculated based on
the effect of the additional resource allocation on the actual processing times.

From Property 3.4, the coefficient in the cost function is given by

� =

{
�, Case 1
�(�+�)

�+�
, Case 2

.

Since, � is a job-independent and position-independent constant, then the cost
function can be formulated as follows,

Thus, to minimize the cost function it suffices to minimize the term ∑n

j=1

∑n−1

r=1

�
wjr

uj

�k

Xjr.
Moreover, the latter implies that to solve Problem P2 , we can use the assignment

problem provided by Oron (2016) with a minor modification. Specifically, to obtain
the optimal job sequence we need to solve the following special form n × (n − 1) AP
(denoted AP4.1):

min

n�
j=1

n�
r=1

w
k

1+k

jr
Xjr

s.t.

n∑
j=1

Xjr = 1, r = 1,… , n,

n∑
r=1

Xjr = 1, j = 1,… , n,

Xjr, binary, j = 1,… , n, r = 1,… , n.

Xjr =

{
1, if job j is assigned to position r

0, otherwise
.

Z = �

n∑
j=1

n−1∑
r=1

(
wjr

uj

)k

Xjr.

AP4.1

min

n�
j=1

n−1�
r=1

�
wjr

uj

�k

Xjr

s.t.

n∑
j=1

Xjr = 1, r = 1,… , n − 1,

n−1∑
r=1

Xjr ≤ 1, j = 1,… , n,

Xjr, binary, j = 1,… , n, r = 1,… , n − 1.

88 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

where

Now, we are ready to present the formal solution procedure.
Solution procedure to problem P�:
Step 1 Apply AP4.1 to obtain the optimal sequence of the jobs assigned to posi-

tions 1,… , n − 1.
Step 2 Schedule the unassigned job to position n.
Step 3 Use Property 3.2 to calculate the amount of resource allocated to jobs

1,… , n − 1.
Step 4 Use Property 3.3 to calculate the actual processing times to jobs

1,… , n − 1.
Step 5 Use Property 3.4 to determine the relevant case and calculate the optimal

common flow-allowance and cost.

Theorem 4.1 The proposed solution solves P� in O(n3) time.

Proof Step 1: The computational complexity required for solving the assignment
problem is known to be O(n3) . Step 2: Scheduling the unassigned job to position
n is done in constant time. Steps 3–4: Computing the amount of resource allocated
to each job and the actual processing time of each job, respectively, is done in O(n) .
Step 5: The calculation of the optimal cost and due-dates is done in O(n) . Thus, the
total complexity of the solution procedure is dominated by Step 1, and is O(n3). □

Numerical example 4.1 We solve the 8 × 8 job-position workloads problem given in
Table 1, where the cost parameters are: � = 2 , � = 10 , and � = 15.

The available total resource is U = 14 and k = 1.

Solution:
Applying AP4.1, we obtain an optimal sequence (6, 2, 7, 3, 5, 8, 4, 1).
Since 𝛾 > 𝛽 the relevant case is Case 1.
The amount of resource allocated to each job is:

The actual processing times are:

The optimal common flow-allowance is q∗ = 0 , implying that dj = pj, j = 1,… , n

.
The optimal cost is: Z∗ = 201.248.

Xjr =

{
1, if job j is assigned to position r

0, otherwise
.

uj = (1.865, 1.865, 1.668, 0.834, 4.086, 1.180, 2.502, 0).

pj = (2.681, 2.681, 2.398, 1.199, 5.874, 1.696, 3.597, 47.000).

89

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

5 P3: 1���SLKDW , conv,wj,
∑

uj ≤ U
���Z

In this section, we generalize the results of the due-date method (Sect. 3) to the
method of due-window. Mor and Mosheiov (2012a) proved that the problem with
constant processing times can be formulated by the following LP, denoted LP5.1:

Examining LP5.1, the authors observed that similar to the due-date case, the job
sequence is immaterial, except for the last job, which must have the largest process-
ing time. Furthermore they proved several properties of an optimal solution and con-
cluded that there are exactly four candidates for the optimal values of q1 and q2:

Case 1: The window has the maximum possible size.

Case 2: The window is reduced to a due-date.
In this case, q1 = q2 = q, and three sub-cases must be solved and compared.

Sub-Case 2.1:

LP5.1

minZ

s.t.

Z ≥ �E1 + �q1 + �
(
q2 − q1

)
= q1(� + � − �) + q2�,

Z ≥ �Tn + �q1 + �
(
q2 − q1

)
= q1(� − �) + q2(� − �) + �

(
Cmax − pn

)
,

q2 ≥ q1,

Z, q1, q2 ≥ 0.

q1 = 0, q2 = Cmax − pn and Z = �q2.

Table 1 Example 2—job-
position workloads

Job Position

1 2 3 4 5 6 7 8

1 28 10 14 44 42 13 35 47
2 30 5 36 19 43 35 25 36
3 29 17 17 1 21 6 31 20
4 44 21 38 18 34 38 9 22
5 39 50 47 14 24 38 29 39
6 5 36 15 29 49 47 35 20
7 19 44 4 8 44 35 17 50
8 3 16 32 18 46 2 47 9

90 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

Sub-Case 2.2:

Sub-Case 2.3:

Property 5.1 The optimal cost function is given by
Z = min

{
�, �, �

�+�

�+�
, � + �

}
(Cmax − Pmax).

Based on the above, we conclude that Observations 3.1–3.2 and Properties
3.1–3.3 and 5.1, still hold for Problem P3 , and update the above results accordingly:

Property 5.2 The optional values of q1 and q2 and cost function for P� are given
by,

Case 1: The window has the maximum possible size.

Case 2: The window is reduced to a due-date.
In this case, q1 = q2 = q , and we have to solve and compare three sub-cases.

Sub-Case 2.1:

q1 = q2 = 0, Z = �
(
Cmax − pn

)
.

q1 = q2 = q = �
Cmax − Pmax

� + �
and Z = �

� + �

� + �

(
Cmax − Pmax

)
.

q1 = q2 = q = Cmax − pn and Z = (� + �)
(
Cmax − Pmax

)
.

q1 = 0, q2 =
(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z = �q2 = �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

q1 = q2 = 0, Z = �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

91

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

Sub-Case 2.2:

Sub-Case 2.3:

Property 5.3 The optimal cost function is given by
Z = min

�
�, �, �

�+�

�+�
, � + �

��
W

U

�k∑n−1

j=1
w

k

k+1

j
.

Solution procedure to problem P�
Step 1 Find the job with the largest workload and assign it to the last position.
Step 2 Use Property 3.2 to calculate the amount of resource allocated to jobs

1,… , n − 1.
Step 3 Use Property 3.3 to calculate the actual processing times to jobs

1,… , n − 1.
Step 4 Use Properties 5.2 and 5.3 to determine the relevant case and to calcu-

late the optimal values of the flow-allowance constants and cost.

Theorem 5.1 The computational complexity of the proposed solution is O(n) time.

The proof is identical to that given in Sect. 3 for Theorem 3.1 and is thus
omitted.

Numerical example 5.1 Consider the following data:
The number of jobs is n = 8 , the total resource limitation is U = 13 and k = 0.75.
The workloads are (33, 22, 44, 6, 49, 41, 33, 2).

We solve the given input with four different sets of cost parameters to reflect
Case 1 and Subcases 2.1–2.3 (see Property 5.1).

Solution:
The optimal amount of resource allocated to each job, the actual processing

time of each job, and the optimal flow-allowance values, due-dates and cost are
provided in Table 2.

q1 = q2 = q =
�

� + �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z = (� + �)q = �

� + �

� + �

(
W

U

)k ∑
n−1
j=1

w
k

k+1

j
.

q1 = q2 = q =
(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z = (� + �)q = (� + �)

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

92 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

6 P4: 1���SLK DW , conv,wjr ,
∑

uj ≤ U
���Z

To present a solution for Problem P� , we combine the results achieved in Sects.
4 and 5. The input for the problem contains four unit costs, a matrix of n × n job-
position workloads, and an upper bound on the total resource.

Table 2 Numerical example 5.1—resource allocation, actual processing times, and the optimal flow-
allowance values, due-dates and cost

Job 1 2 3 4 8 6 7 5

Case 1: � = 5, � = 15, � = 9, � = 8

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1

0.000

q∗
2

44.275

d∗
1

7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

d∗
2

51.841 50.634 52.834 47.919 46.550 52.579 51.841 93.275

Z∗ 354.197

Job 1 2 3 4 8 6 7 5

Case 2, Subcase 2.1: � = 8, � = 5, � = 9, � = 11

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1
= q∗

2
0.000

d∗
1
= d∗

2
7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

Z∗ 221.373

Job 1 2 3 4 8 6 7 5

Case 2, Subcase 2.2: � = 15, � = 8, � = 5, � = 9

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1
= q∗

2
15.400

d∗
1
= d∗

2
22.966 21.759 23.959 19.044 17.676 23.704 22.966 64.400

Z∗ 307.998

Job 1 2 3 4 8 6 7 5

Case 2, Subcase 2.3: � = 0, � = 9, � = 5, � = 9

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1
= q∗

2
44.275

d∗
1
= d∗

2
51.841 50.634 52.834 47.919 46.550 52.579 51.841 93.275

Z∗ 221.373

93

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

From Property 5.1, the coefficient in the cost function is

� =

⎧
⎪⎪⎨⎪⎪⎩

�, Case1

�, Subcase 2.1
�(�+�)

�+�
, Subcase 2.2

� + � , Subcase 2.3

Similar to the due-date setting, � is a job- and position-independent constant and
the cost function can be further simplified,

Thus, to solve Problem P� , we can utilize AP4.1, presented in Sect. 4 for solv-
ing Problem P� , and the formal solution procedure is as follows.

Solution procedure to problem P�
Step 1 Apply AP4.1, to obtain the optimal sequence of the jobs assigned to

positions 1,… , n − 1.
Step 2 Schedule the unassigned job to position n.
Step 3 Use Property 3.2 to calculate the amount of resource allocated to jobs

1,… , n − 1.
Step 4 Use Property 3.3 to calculate the actual processing times to jobs

1,… , n − 1.
Step 5 Use Properties 5.2 and 5.3 to determine the relevant case and to calcu-

late the optimal values of the flow-allowance constants and cost.

Theorem 6.1 The proposed solution solves P� in O(n3) time.

The proof is exactly like the one given in Sect. 4 for Theorem 4.1.

Numerical example 6.1 We solve the 8 × 8 job-position processing times problem
given in Table 3, where U = 16 and k = 0.6 . As in Numerical example 4.1, we solve
this input with four different sets of cost parameters.

Z = �

n∑
j=1

n−1∑
r=1

(
wjr

uj

)k

Xjr.

Table 3 Example 6.1—job-
position workloads

Job Position

1 2 3 4 5 6 7 8

1 13 12 1 27 4 35 19 40
2 11 33 22 47 34 46 3 8
3 44 46 44 17 24 42 48 25
4 49 3 48 23 30 8 37 46
5 14 27 15 36 40 25 31 49
6 2 7 45 7 20 46 36 28
7 47 24 37 23 5 32 37 31
8 43 32 44 25 35 39 1 24

94 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

Solution:
The optimal amount of resource allocated to each job, the actual processing

time of each job, and the optimal flow-allowance values, due-dates and cost are
provided in Table 4.

Table 4 Numerical example 6.1—resource allocation, actual processing times, and the optimal flow-
allowance values, due-dates and cost

Job 6 4 1 3 7 5 8 2

Case 1: � = 5, � = 17, � = 10, � = 9

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1

0.000

q∗
2

11.298

d∗
1

1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

d∗
2

12.436 12.623 12.175 13.837 12.902 14.232 12.175 19.298

Z∗ 101.678

Job 6 4 1 3 7 5 8 2

Case 2, Subcase 2.1: � = 9, � = 6, � = 10, � = 17

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1
= q∗

2
0.000

d∗
1
= d∗

2
1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

Z∗ 67.785

Job 6 4 1 3 7 5 8 2

Case 2, Subcase 2.2: � = 17, � = 9, � = 5, � = 10

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1
= q∗

2
3.911

d∗
1
= d∗

2
5.049 5.236 4.788 6.450 5.516 6.845 4.788 11.911

Z∗ 86.035

Job 6 4 1 3 7 5 8 2

Case 2, Subcase 2.3: � = 0.01, � = 10
6
, � = 5, � = 9

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1
= q∗

2
11.298

d∗
1
= d∗

2
12.436 12.623 12.175 13.837 12.902 14.232 12.175 19.298

Z∗ 56.601

95

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

7 Conclusion

We studied minmax due-dates based on common flow-allowance assignment and
scheduling problems on a single machine. We extended the basic model by consid-
ering controllable processing times and focused on a model where the job process-
ing time is a convex function of the amount of resource allocated to it. The results
of the due-date method were then generalized to that of common due-window. In
both settings, the problems with position-independent workloads were shown to
be solved in O(n) , whereas the problems with position-dependent workloads were
solved in O

(
n3
)
.

Given the similarities between the single machine and the proportionate flow-
shop environments, interesting subjects for future research are the extensions of the
addressed problems to the setting of proportionate flow-shop. Another challenging
extension is to the setting of parallel machines. However, since even minimizing the
makespan with constant processing times is ordinary NP-hard, a different approach
must be applied.

Funding This research did not receive any specific grant from funding agencies in the public, commer-
cial, or not-for-profit sectors.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed dur-
ing the current study.

Declaration

Conflict of interest The authors declare that they have no conflict of interest.

References

Adamopoulos GI, Pappis CP (1996) Single machine scheduling with flow allowances. J Oper Res Soc
47(10):1280–1285

Agnetis A, Mosheiov G (2017) Scheduling with job-rejection and position-dependent processing times
on proportionate flowshops. Optim Lett 11(4):885–892

Agnetis A, Billaut JC, Gawiejnowicz S, Pacciarelli D, Soukhal A (2014) Multiagent scheduling. Springer,
Berlin. https:// doi. org/ 10. 1007/ 978-3- 642- 41880-8

Cheng B, Cheng L (2018) Single machine slack due-window assignment and scheduling of linear time-
dependent deteriorating jobs and a deteriorating maintenance activity. Open Access Library J
5(10):1–9

Gao F, Liu M, Wang JJ, Lu YY (2018) No-wait two-machine permutation flow shop scheduling prob-
lem with learning effect, common due date and controllable job processing times. Int J Prod Res
56(6):2361–2369

Gawiejnowicz S (2008) Time-dependent scheduling. Springer, Berlin
Geng XN, Wang JB, Bai D (2019) Common due date assignment scheduling for a no-wait flowshop with

convex resource allocation and learning effect. Eng Optim 51(8):1301–1323
Gerstl E, Mor B, Mosheiov G (2017) Minmax scheduling with acceptable lead-times: extensions to posi-

tion-dependent processing times, due-window and job rejection. Comput Oper Res 83:150–156
Graham RL, Lawler EL, Lenstra JK, Kan AR (1979) Optimization and approximation in deterministic

sequencing and scheduling: a survey. Ann Discrete Math 5:287–326

https://doi.org/10.1007/978-3-642-41880-8

96 Journal of Combinatorial Optimization (2022) 43:79–97

1 3

Ji M, Zhang W, Liao L, Cheng TCE, Tan Y (2019) Multitasking parallel-machine scheduling with
machine-dependent slack due-window assignment. Int J Prod Res 57(6):1667–1684

Kaspi M, Shabtay D (2004) Convex resource allocation for minimizing the makespan in a single machine
with job release dates. Comput Oper Res 31(9):1481–1489

Liu W, Jiang C (2020) Due-date assignment scheduling involving job-dependent learning effects and con-
vex resource allocation. Eng Optim 52(1):74–89

Liu L, Wang JJ, Wang XY (2016) Single machine due-window assignment scheduling with resource-
dependent processing times to minimise total resource consumption cost. Int J Prod Res
54(4):1186–1195

Liu L, Wang JJ, Liu F, Liu M (2017) Single machine due window assignment and resource allocation
scheduling problems with learning and general positional effects. J Manuf Syst 43:1–14

Liu W, Yao Y, Jiang C (2020) Single-machine resource allocation scheduling with due-date assignment,
deterioration effect and position-dependent weights. Eng Optim 52(4):701–714

Lu YY, Liu JY (2018) A note on resource allocation scheduling with position-dependent workloads. Eng
Optim 50(10):1810–1827

Mor B (2017) Minmax common due-window assignment and scheduling on a single machine with two
competing agents. J Oper Res Soc. https:// doi. org/ 10. 1057/ s41274- 017- 0253-0

Mor B (2019a) Minmax scheduling problems with common due-date and completion time penalty. J
Combin Optim 38(1):50–71

Mor B (2019b) Single-machine minmax common due-window assignment and scheduling problems with
convex resource allocation. Eng Optim 51(7):1251–1267

Mor B (2020) A unified approach for single machine scheduling with position-dependent workloads and
positional penalties. SN Appl Sci 2(2):214

Mor B, Mosheiov G (2011) Total absolute deviation of job completion times on uniform and unrelated
machines. Comput Oper Res 38(3):660–665

Mor B, Mosheiov G (2012a) Minmax scheduling problems with common flow-allowance. J Oper Res Soc
63(9):1284–1293

Mor B, Mosheiov G (2012b) Parallel machine scheduling problems with common flow-allowance. Int J
Prod Econ 139(2):623–633

Mor B, Mosheiov G (2012c) Heuristics for scheduling problems with an unavailability constraint and
position-dependent processing times. Comput Ind Eng 62(4):908–916

Mor B, Mosheiov G (2016) Minsum and minmax scheduling on a proportionate flowshop with common
flow-allowance. Eur J Oper Res 254(2):360–370

Mor B, Mosheiov G (2017) A two-agent single machine scheduling problem with due-window assign-
ment and a common flow-allowance. J Combin Optim 33(4):1454–1468

Mor B, Mosheiov G (2018) A note: Minimizing total absolute deviation of job completion times on unre-
lated machines with general position-dependent processing times and job-rejection. Ann Oper Res
271(2):1079–1085

Mor B, Mosheiov G, Shapira D (2020) Flowshop scheduling with learning effect and job rejection. J
Sched 23:631–641. https:// doi. org/ 10. 1007/ s10951- 019- 00612-y

Oron D (2016) Scheduling controllable processing time jobs with position-dependent workloads. Int J
Prod Econ 173:153–160

Panwalkar SS, Smith ML, Seidmann A (1982) Common due date assignment to minimize total penalty
for the one machine scheduling problem. Oper Res 30(2):391–399

Pei J, Cheng B, Liu X, Pardalos PM, Kong M (2019) Single-machine and parallel-machine serial-batch-
ing scheduling problems with position-based learning effect and linear setup time. Ann Oper Res
272(1–2):217–241

Rudek R (2012) Scheduling problems with position dependent job processing times: computational com-
plexity results. Ann Oper Res 196(1):491–516

Seidmann A, Panwalkar SS, Smith ML (1981) Optimal assignment of due-dates for a single processor
scheduling problem. Int J Prod Res 19(4):393–399

Shabtay D, Steiner G (2007) A survey of scheduling with controllable processing times. Discrete Appl
Math 155(13):1643–1666

Sun LH, Cui K, Chen JH, Wang J, He XC (2013) Research on permutation flow shop scheduling prob-
lems with general position-dependent learning effects. Ann Oper Res 211(1):473–480

Sun LH, Cui K, Chen JH, Wang J (2016) Due date assignment and convex resource allocation scheduling
with variable job processing times. Int J Prod Res 54(12):3551–3560

https://doi.org/10.1057/s41274-017-0253-0
https://doi.org/10.1007/s10951-019-00612-y

97

1 3

Journal of Combinatorial Optimization (2022) 43:79–97

Sun X, Geng XN, Wang JB, Liu F (2019) Convex resource allocation scheduling in the no-wait flowshop
with common flow allowance and learning effect. Int J Prod Res 57(6):1873–1891

Wang DJ, Yin Y, Cheng SR, Cheng TCE, Wu CC (2016) Due date assignment and scheduling on a single
machine with two competing agents. Int J Prod Res 54(4):1152–1169

Wang D, Yin Y, Cheng TCE (2017) A bicriterion approach to common flow allowances due window
assignment and scheduling with controllable processing times. Naval Res Logist (NRL) 64(1):41–63

Xiong X, Wang D, Edwin Cheng TC, Wu CC, Yin Y (2018) Single-machine scheduling and common due
date assignment with potential machine disruption. Int J Prod Res 56(3):1345–1360

Yin Y, Wang DJ, Wu CC, Cheng TCE (2016) CON/SLK due date assignment and scheduling on a single
machine with two agents. Naval Res Logist 63(5):416–429

Zhang X, Liao L, Zhang W, Cheng TCE, Tan Y, Ji M (2018) Single-machine group scheduling with new
models of position-dependent processing times. Comput Ind Eng 117:1–5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads
	Abstract
	1 Introduction
	2 Formulation
	3 P1:
	4 P2:
	5 P3:
	6 P4:
	7 Conclusion
	References

