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Abstract
We study minmax due-date based on common flow-allowance assignment and 
scheduling problems on a single machine, and extend known results in scheduling 
theory by considering convex resource allocation. The total cost function of a given 
job consists of its earliness, tardiness and flow-allowance cost components. Thus, 
the common flow-allowance and the actual jobs’ processing times are decision var-
iables, implying that the due-dates and actual processing times can be controlled 
by allocating additional resource to the job operations. Consequently, our goal is 
to optimize a cost function by seeking the optimal job sequence, the optimal job-
dependent due-dates along with the actual processing times. In all addressed prob-
lems we aim to minimize the maximal cost among all the jobs subject to a constraint 
on the resource consumption. We start by analyzing and solving the problem with 
position-independent workloads and then proceed to position-dependent workloads. 
Finally, the results are generalized to the method of common due-window. For all 
studied problems closed form solutions are provided, leading to polynomial time 
solutions.

Keywords Single machine scheduling · Minmax · Common flow-allowance · 
Convex resource allocation · Position-dependent workloads

1 Introduction

In this paper, we address and combine two popular topics in scheduling theory: due-
date assignment problems and controllable processing times. One influential effect 
of the Just-In-Time (JIT) production methodology on scheduling theory was the vast 
research on due-date assignment and scheduling problems. In this class of problems, 
the due-dates are decision variables and we seek to balance the inherent trade-off 
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between early competitive due-dates on the one hand and late and, consequently, 
undemanding due-dates on the other. Three significant models were introduced: (i) 
CON (Common)—where all the jobs share a common due-date (Panwalkar et  al. 
1982); (ii) DIF (Different)—the unrestricted due date assignment method, in which 
each job can be assigned a different due date with no restrictions (Seidmann et al. 
1981); and (iii) SLK (Slack)—where the job-dependent due-dates are often linear 
functions of the job processing times (Adamopoulos and Pappis 1996).

The vast majority of studies addressed the minsum versions, i.e., minimizing the 
total cost of earliness, tardiness and due-date of all jobs. These objective functions 
were studied with various machine environments, position-independent/dependent 
job processing times, constant/controllable job processing times, problems involving 
optional job-rejection, and with single/multi-agent settings. Recent articles include, 
among others, Wang et al. (2016), Yin et al. (2016), Gerstl et al. (2017), Mor (2017, 
2019a), Mor and Mosheiov (2017), Cheng and Cheng (2018), Gao et  al. (2018), 
Xiong et al. (2018), Ji et al. (2019), Geng et al. (2019), Liu et al. (2020), Liu and 
Jiang (2020) and Mor et al. (2020).

In this study, we combine very important classes of scheduling theory—due-date 
assignment and scheduling problems and convex resource allocation, and provide 
optimal algorithm solutions for very practical problems. We concentrate on the SLK 
model, i.e., due-date assignments based on common flow-allowance. Unlike min-
sum, the minmax version has not received appropriate research attention. In minmax 
problems, we aim to minimize the maximal cost among all jobs. The importance 
of these problems is threefold: (i) realize a value that demonstrates the utilization 
of the production system that can be compared to the competition; (ii) estimate 
the worst case performance of the production system; and (iii) treat all clients in 
an equal way. Typically, in minmax scheduling problems with common flow-allow-
ance there are three cost components: earliness, tardiness, and flow-allowance. The 
first to consider single machine minmax scheduling and assignment problems with 
due-date based on flow-allowance were Mor and Mosheiov (2012a). Later, Mor and 
Mosheiov (2012b, 2016, 2017) extended the fundamental setting to identical parallel 
machines, proportionate flow-shop, and two competing agents, respectively.

In this paper, we combine the setting of due-date based on common flow-
allowance and the very important and practical model of controllable processing 
times. Scheduling models with controllable processing times are very widespread 
and influential. Unlike most studies in scheduling theory that presume constant 
job processing times, research with controllable processing times assumes that 
the processing times may be controlled through allocating extended resources 
to job operations. Thus, the updated approach aims to address various real-life 
problems where the improved deployment of inputs in the production system is 
achieved by allocating added resource to the job processing. There are two domi-
nant methodologies when addressing controllable processing times: (i) actual job 
processing times as a linear function of the amount of resource allocated to the 
processing of the job and (ii) actual job processing times as a convex decreasing 
function of the amount of resource allocated to the processing of the job. In their 
wide-ranging survey, Shabtay and Steiner (2007) state that “For many resource 
allocation problems in physical or economic systems, however, they do not use a 



81

1 3

Journal of Combinatorial Optimization (2022) 43:79–97 

linear resource consumption function, since it fails to reflect the law of diminish-
ing marginal returns. This law states that productivity increases at a decreasing 
rate with the amount of resource employed.” Thus, in this paper, we assume that 
the job processing time is a convex decreasing function of the amount of resource 
allocated to the processing of the job. Recent articles with convex resource allo-
cation include Liu et al. (2016, 2017), Sun et al. (2016), Wang et al. (2017) and 
Sun et al. (2019).

Many scheduling researchers have studied scheduling problems with variable 
job processing times, i.e., starting-time-dependent and/or position-dependent. 
The importance of this method is reflected in Gawiejnowicz (2008) with numer-
ous variable processing time problems, different objective functions, and diverse 
machine settings. Other articles include Mor and Mosheiov (2011, 2012c, 2018), 
Rudek (2012), Sun et  al. (2013), Agnetis et  al. (2014), Agnetis and Mosheiov 
(2017), Gerstl et  al. (2017), Pei et  al. (2019) and Zhang et  al. (2018). In gen-
eral, the extension to variable job processing times significantly increases the 
computational complexity of the problems, whether the processing times are (i) 
restricted to monotone functions of the job starting times; (ii) position-dependent, 
i.e., representing aging or learning effects; and (iii) specific functions, e.g., linear 
or exponential.

Oron (2016) was the first to introduce the realistic and challenging generali-
zation of position-independent workloads to position-dependent workloads. The 
author restricted the functional form of the workloads to reflect learning effect 
and studied minimizing makespan and total flowtime on a single machine, as well 
as minimizing total flowtime on parallel machines. Lu and Liu (2018) analyzed 
bi-criteria problems, where the first criterion is a scheduling measure and the 
second criterion is the total resource consumption cost. Mor (2019b) considered 
single machine minmax common due-window assignment and scheduling prob-
lems with convex resource allocation. Recently, Mor (2020) extended the results 
of Oron (2016) by omitting the restriction on the functional form of the work-
loads, and provided a unified approach for single machine scheduling with posi-
tion-dependent workloads and positional penalties.

Following Mor and Mosheiov (2012a), we focus on the minmax problem with 
due-date based on flow-allowance on a single machine, and extend their results 
by considering controllable job processing times. Firstly, we study position-inde-
pendent workloads, and then proceed to the model of position-dependent work-
loads. Secondly, we generalize the due-date method to the due-window method. 
For the problems with position-independent workloads, we provide O(n) proce-
dure solutions, whereas for the problems with position-dependent workloads, 
we introduce solution procedures with computational effort of O(n3) . Thus, in 
combining the minmax approach and controllable processing times, this study 
addresses theoretical and practical aspects in scheduling theory.

In Sect. 2, we provide the formulation. Sections 3 and 4 are dedicated to the 
setting of common due-date with position-independent and position-dependent 
workloads, respectively. In Sects. 5 and 6, we generalize the results of Sects. 3 
and 4 to the method of common due-window, respectively. In Sect. 7, we provide 
conclusions and future research topics.
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2  Formulation

A set of jobs J  needs to be processed on a single machine. All the jobs are available 
at time zero, and preemption is not allowed. The actual processing time of the job 
allocated to position j, j ∈ J  is defined as pj =

(
wj

uj

)k

 , where wj is a positive value 
reflecting the workload of the processing operation, uj is a decision variable demon-
strating the amount of resource allocated to the processing operation, and k is a con-
stant positive parameter. We also denote by wmax the largest workload among all 
jobs, wmax = maxj∈J

{
wj

}
.

We assume a common flow-allowance denoted by q , which is a decision variable. 
The due-date (DD) of job j is dj and defined as its processing time plus the job-
independent constant q:

For a given schedule, the completion time of job j, j ∈ J  is denoted by Cj . We 
denote the makespan, i.e., the completion time of the last job to leave the system by 
Cmax . Jobs completed before/after the due-date are considered as early/tardy jobs and 
incur penalties. The earliness of the job j is Ej = max

{
0, dj − Cj

}
 and the tardiness 

of job j is defined as Tj = max
{
0,Cj − dj

}
, j ∈ J  . There are three cost components: 

for earliness, tardiness, and to motivate the scheduler to set competitive due-dates 
there is an additional cost for the common flow-allowance. Let � denote the unit ear-
liness cost, � denote the unit tardiness cost, and � denote the cost of delaying the due-
dates by one time unit. We note that in a given schedule a specific job is either early 
or tardy, implying that its cost is max

{
�Ej + �q, �Tj + �q

}
= max

{
�Ej, �Tj

}
+ �q.

We seek to find the optimal sequence and flow-allowance, such that the maximal 
cost among all jobs is minimized. Formally, the scheduling measure in this case is 
Z = maxj∈J

{
max

{
�Ej, �Tj

}
+ �q1 + �D

}
.

First, we focus on minimizing the scheduling measure, given that the total 
resource consumption cannot exceed an upper bound denoted by U . We denote the 
problem by P� and, utilizing the three-field notation introduced by Graham et  al. 
(1979), the first problem studied is,

Next, we extend the setting of common flow-allowance with position-independ-
ent workloads to the setting of position-dependent workloads, wjr , implying that the 
workload of job j if assigned to position r is given by pjr =

(
wjr

uj

)k

, j, r = 1,… , n.
Thus, the second problem, denoted by P� , is:

Finally, we generalize the above results and address the method of due-window 
(DW) based on common flow-allowance. Thus, jobs that are completed within a time 
interval (a due-window) are not penalized, whereas jobs that are completed prior to or 

dj = pj + q, j ∈ J.

P� ∶ 1
|||SLK DD, conv,wj,

∑
uj ≤ U

|||Z.

P� ∶ 1
|||SLK DD, conv,wjr,

∑
uj ≤ U

|||Z.
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after the window, are penalized according to their earliness/tardiness. In due-window 
assignment problems, we seek simultaneously the start time and the size of the win-
dow. We address job-dependent due-windows based on common flow-allowance. The 
job-dependent due-window is denoted by Dj , such that the window of job j, j ∈ J   is 
given by Dj = [d1

j
, d2

j
] , where

Similar to the due-date method, the common flow-allowance constants q1 and q2 
are decision variables, such that q2 ≥ q1 . Since 
Dj = d2

j
− d1

j
= pj + q2 −

(
pj + q1

)
= q2 − q1 = D, j ∈ J  , the size of the due-win-

dow is identical for all jobs. The earliness of j is Ej = max
{
0, d1

j
− Cj

}
 and the tar-

diness of job j is Tj = max
{
0,Cj − d2

j

}
, j ∈ J  . To motivate the scheduler to set 

reduced due-window size, there are four unit costs: for earliness, tardiness, the cost 
of the first flow-allowance, and extending the size of the due-window. Let � denote 
the unit earliness cost, � denote the unit tardiness cost, � denote the unit cost of the 
flow-allowance ( q1) , and �  denote the unit cost of extending the size of the due-
window ( D ). Our aim is to find the optimal common constants and the optimal size 
of the due-window, as well as the sequence, that minimize the maximal cost among 
all jobs. Formally, the scheduling measure in this case is 
Z = maxj∈J

{
max

{
�Ej + �q1 + �D, �Tj + �q1 + �D

}}
= maxj∈J

{
max

{
�Ej, �Tj

}
+ �q1 + �D

}
.

The third and fourth problems, denoted by P� and P� , respectively, are:

3  P1: 1���SLK DD, conv,wj,
∑

uj ≤ U
���Z

Mor and Mosheiov (2012a) proved that the same problem with constant job processing 
time, 1|SLK DD|Z , can be formulated as the following Linear Program (LP), denoted 
by LP3.1:

In this linear program, the subscript is the index of the job assigned to the 
j th position in a given sequence. Analyzing LP3.1, the authors concluded that an 

d1
j
= pj + q1, j ∈ J.

d2
j
= pj + q2, j ∈ J.

P� ∶ 1
|||SLK DW, conv,wj,

∑
uj ≤ U

|||Z,
P� ∶ 1

|||SLK DW, conv,wjr,
∑

uj ≤ U
|||Z.

LP3.1

minZ

s.t.

Z ≥ aE1 + �q = q(� + �),

Z ≥ �Tn + �q = q(� − �) + �
(
Cmax − pn

)
,

Z, q ≥ 0.
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optimal schedule exists in which the job with the largest processing time is sched-
uled last and the sequence of the remaining n − 1 jobs is immaterial.

Based on the above, the authors provided a closed form solution, where there are 
only two possible cases, and the optimal flow-allowance and cost function are given by:

Case 1: 𝛾 > 𝛽

Case 2: � ≤ �

In the context of this study, the actual processing time of each job is a function 
of the amount of resource allocated to it, i.e., pj =

(
wj

uj

)k

 . Therefore, and follow-
ing the analysis of Cases 1–2 above, we conclude that the job with the largest 
workload should be scheduled last and, consequently, does not contribute to the 
cost function. Moreover, since the coefficients in both cases are constants, it suf-
fices to minimize the term 

∑n−1

j=1
pj =

∑n−1

j=1

�
wj

uj

�k

.
We conclude that the following observations are adequate:

Observation 3.1 An optimal schedule exists in which the job with the largest work-
load is scheduled last and the sequence of the remaining n − 1 jobs is immaterial.

Observation 3.2 An optimal schedule exists in which no resource is allocated to the 
job scheduled last.

From Observations 3.1–3.2, we conclude that pn = wmax.
Kaspi and Shabtay (2004) proved the following properties for an optimal solu-

tion of the problem 1∕wj,
∑

uj ≤ U∕Cmax:

• The entire available resource is exploited.

• The optimal resource allocated to job j, j ∈ J  is given by uj = U
w

k
k+1
j

∑
j∈J w

k
k+1
j

.

• The actual processing time of job j, j ∈ J  is given by pj =

�∑n

j=1
w

k
k+1
j

U

�k

w
k

k+1

j
.

Combining Observation 3.1–3.2 and the results of Kaspi and Shabtay (2004), we 
can summarize the properties of an optimal solution for P�:

q∗ = 0 and Z∗ = �
(
Cmax − pn

)
= �

n−1∑
j=1

pj.

q∗ =
�

� + �

(
Cmax − pn

)
=

�

� + �

n−1∑
j=1

pj and Z∗ = (� + �)q∗ =
�(� + �)

� + �

n−1∑
j=1

pj.
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Property 3.1 The entire available resource is consumed to reduce the processing 
time of jobs j = 1,… , n − 1.

For ease of reading, we define a constant W , such that W =
∑n−1

j=1
w

k

k+1

j
.

Property 3.2 The optimal resource allocated to job j, j = 1,… , n − 1 is given by 
uj =

U

W
w

k

k+1

j
.

Property 3.3 The actual processing time of job j, j = 1,… , n − 1 is given by 
pj =

(
W

U

)k

w
k

k+1

j
.

Property 3.4 The optimal flow-allowance and cost function for P� are given by
Case 1: 𝛾 > 𝛽

Case 2: � ≤ �

Next, we present the formal solution procedure:
Solution procedure to problem P�
Step 1 Find the job with the largest workload and assign it to the last position.
Step 2 Use Property 3.2 to calculate the amount of resource allocated to jobs 

1,… , n − 1.
Step 3 Use Property 3.3 to calculate the actual processing times to jobs 

1,… , n − 1.
Step 4 Use Property 3.4 to determine the relevant case and calculate the optimal 

common flow-allowance and cost.

Theorem 3.1 The computational complexity of the proposed solution is O(n) time.

Proof Step 1: Determining the job with the largest workload requires O(n) time. 
Steps 2–3: Computing the amount of resource allocated to each job and the actual 
processing time of each job, respectively, is done in O(n) . Step 4: Calculating the 
optimal common flow-allowance and cost is done in O(n) . Hence we conclude that 
the computational complexity is O(n).                                                                       □

Numerical example 3.1 We solve the following 8-job problem:
The jobs workloads are: wj = (22, 24, 49, 50, 21, 14, 14, 6).
The cost parameters are: � = 8 , � = 10 and � = 5.
The available total resource is, U = 12 and k = 0.5.

q∗ = 0 and Z∗ = �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

q∗ =
�

� + �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z∗ =

�(� + �)

� + �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.
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Since wmax = 50 , switching the positions of jobs 4 and 8, we obtain one optimal 
sequence (1, 2, 3, 8, 5, 6, 7, 4).

Solution:
Since � ≤ �, the relevant case is Case 2.
The amount of resource allocated to each job is:

The actual processing times are:

The optimal common flow-allowance is q∗ = 13.013 , implying that the due-dates 
are:

The optimal cost is: Z∗ = 169.165.

4  P2: 1���SLK DD, conv,wjr ,
∑

uj ≤ U
���Z

In this section, we extend the due-date setting by considering position-dependent 
workloads. The solution of Problem P� requires us to establish the optimal job 
sequence and then to evaluate the effect of allocating resource to each job on the 
optimal due-date and cost function. Let wjr denote the workload of job j if pro-
cessed in position r , j, r = 1,… n . Thus, the input for the problem contains three 
cost parameters, a matrix of n × n job-position workloads, the upper bound on the 
total amount of resource consumption and the constant parameter. Consequently, the 
flow allowance and the derived due-dates are defined for any given realization of a 
job sequence, and we have to simultaneously seek the optimal job sequence and the 
optimal flow allowance. We conclude that for any given job sequence, Observations 
3.1–3.2 and Properties 3.1–3.4 are still valid.

Oron (2016) solved the problem, 1∕wjr, conv,
∑

j∈J uj ≤ U∕Cmax and proved that 
the objective function can be rewritten as:

Since U, k > 0 , the author proved that minimizing f  is equal to minimizing �∑n

r=1
wk
jr
Xjr

� 1

1+k.
Subsequently, the author proved that obtaining the optimal job sequence is 

reduced to solving the following linear Assignment Problem (AP):

uj = (1.794, 1.847, 2.343, 1.163, 1.766, 1.543, 1.543, 0).

pj = (3.502, 3.605, 4.573, 2.271, 3.448, 3.012, 3.012, 50).

dj = (16.515, 16.618, 17.586, 15.284, 16.461, 16.025, 16.025, 63.013).

f =

n�
j=1

n�
r=1

�
wjr

uj

�k

Xjr =
1

Uk

⎛⎜⎜⎝

n�
j=1

�
n�

r=1

wk
jr
Xjr

� 1

1+k ⎞⎟⎟⎠

1+k

.
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where

After the optimal sequence is realized, the makespan can be calculated based on 
the effect of the additional resource allocation on the actual processing times.

From Property 3.4, the coefficient in the cost function is given by 

� =

{
�, Case 1
�(�+�)

�+�
, Case 2

.

Since, � is a job-independent and position-independent constant, then the cost 
function can be formulated as follows,

Thus, to minimize the cost function it suffices to minimize the term ∑n

j=1

∑n−1

r=1

�
wjr

uj

�k

Xjr.
Moreover, the latter implies that to solve Problem P2 , we can use the assignment 

problem provided by Oron (2016) with a minor modification. Specifically, to obtain 
the optimal job sequence we need to solve the following special form n × (n − 1) AP 
(denoted AP4.1):

min

n�
j=1

n�
r=1

w
k

1+k

jr
Xjr

s.t.

n∑
j=1

Xjr = 1, r = 1,… , n,

n∑
r=1

Xjr = 1, j = 1,… , n,

Xjr, binary, j = 1,… , n, r = 1,… , n.

Xjr =

{
1, if job j is assigned to position r

0, otherwise
.

Z = �

n∑
j=1

n−1∑
r=1

(
wjr

uj

)k

Xjr.

AP4.1

min

n�
j=1

n−1�
r=1

�
wjr

uj

�k

Xjr

s.t.

n∑
j=1

Xjr = 1, r = 1,… , n − 1,

n−1∑
r=1

Xjr ≤ 1, j = 1,… , n,

Xjr, binary, j = 1,… , n, r = 1,… , n − 1.
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where

Now, we are ready to present the formal solution procedure.
Solution procedure to problem P�:
Step 1 Apply AP4.1 to obtain the optimal sequence of the jobs assigned to posi-

tions 1,… , n − 1.
Step 2 Schedule the unassigned job to position n.
Step 3 Use Property 3.2 to calculate the amount of resource allocated to jobs 

1,… , n − 1.
Step 4 Use Property 3.3 to calculate the actual processing times to jobs 

1,… , n − 1.
Step 5 Use Property 3.4 to determine the relevant case and calculate the optimal 

common flow-allowance and cost.

Theorem 4.1 The proposed solution solves P� in O(n3) time.

Proof Step 1: The computational complexity required for solving the assignment 
problem is known to be O(n3) . Step 2: Scheduling the unassigned job to position 
n is done in constant time. Steps 3–4: Computing the amount of resource allocated 
to each job and the actual processing time of each job, respectively, is done in O(n) . 
Step 5: The calculation of the optimal cost and due-dates is done in O(n) . Thus, the 
total complexity of the solution procedure is dominated by Step 1, and is O(n3).     □

Numerical example 4.1 We solve the 8 × 8 job-position workloads problem given in 
Table 1, where the cost parameters are: � = 2 , � = 10 , and � = 15.

The available total resource is U = 14 and k = 1.

Solution:
Applying AP4.1, we obtain an optimal sequence (6, 2, 7, 3, 5, 8, 4, 1).
Since 𝛾 > 𝛽 the relevant case is Case 1.
The amount of resource allocated to each job is:

The actual processing times are:

The optimal common flow-allowance is q∗ = 0 , implying that dj = pj, j = 1,… , n

.
The optimal cost is: Z∗ = 201.248.

Xjr =

{
1, if job j is assigned to position r

0, otherwise
.

uj = (1.865, 1.865, 1.668, 0.834, 4.086, 1.180, 2.502, 0).

pj = (2.681, 2.681, 2.398, 1.199, 5.874, 1.696, 3.597, 47.000).



89

1 3

Journal of Combinatorial Optimization (2022) 43:79–97 

5  P3: 1���SLKDW , conv,wj,
∑

uj ≤ U
���Z

In this section, we generalize the results of the due-date method (Sect.  3) to the 
method of due-window. Mor and Mosheiov (2012a) proved that the problem with 
constant processing times can be formulated by the following LP, denoted LP5.1:

Examining LP5.1, the authors observed that similar to the due-date case, the job 
sequence is immaterial, except for the last job, which must have the largest process-
ing time. Furthermore they proved several properties of an optimal solution and con-
cluded that there are exactly four candidates for the optimal values of q1 and q2:

Case 1: The window has the maximum possible size.

Case 2: The window is reduced to a due-date.
In this case, q1 = q2 = q, and three sub-cases must be solved and compared.

Sub-Case 2.1:

LP5.1

minZ

s.t.

Z ≥ �E1 + �q1 + �
(
q2 − q1

)
= q1(� + � − �) + q2�,

Z ≥ �Tn + �q1 + �
(
q2 − q1

)
= q1(� − �) + q2(� − �) + �

(
Cmax − pn

)
,

q2 ≥ q1,

Z, q1, q2 ≥ 0.

q1 = 0, q2 = Cmax − pn and Z = �q2.

Table 1  Example 2—job-
position workloads

Job Position

1 2 3 4 5 6 7 8

1 28 10 14 44 42 13 35 47
2 30 5 36 19 43 35 25 36
3 29 17 17 1 21 6 31 20
4 44 21 38 18 34 38 9 22
5 39 50 47 14 24 38 29 39
6 5 36 15 29 49 47 35 20
7 19 44 4 8 44 35 17 50
8 3 16 32 18 46 2 47 9
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Sub-Case 2.2:

Sub-Case 2.3:

Property 5.1 The optimal cost function is given by 
Z = min

{
�, �, �

�+�

�+�
, � + �

}
(Cmax − Pmax).

Based on the above, we conclude that Observations 3.1–3.2 and Properties 
3.1–3.3 and 5.1, still hold for Problem P3 , and update the above results accordingly:

Property 5.2 The optional values of q1 and q2 and cost function for P� are given 
by,

Case 1: The window has the maximum possible size.

Case 2: The window is reduced to a due-date.
In this case, q1 = q2 = q , and we have to solve and compare three sub-cases.

Sub-Case 2.1:

q1 = q2 = 0, Z = �
(
Cmax − pn

)
.

q1 = q2 = q = �
Cmax − Pmax

� + �
and Z = �

� + �

� + �

(
Cmax − Pmax

)
.

q1 = q2 = q = Cmax − pn and Z = (� + �)
(
Cmax − Pmax

)
.

q1 = 0, q2 =
(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z = �q2 = �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.

q1 = q2 = 0, Z = �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.
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Sub-Case 2.2:

Sub-Case 2.3:

Property 5.3 The optimal cost function is given by 
Z = min

�
�, �, �

�+�

�+�
, � + �

��
W

U

�k∑n−1

j=1
w

k

k+1

j
.

Solution procedure to problem P�
Step 1 Find the job with the largest workload and assign it to the last position.
Step 2 Use Property 3.2 to calculate the amount of resource allocated to jobs 

1,… , n − 1.
Step 3 Use Property 3.3 to calculate the actual processing times to jobs 

1,… , n − 1.
Step 4 Use Properties 5.2 and 5.3 to determine the relevant case and to calcu-

late the optimal values of the flow-allowance constants and cost.

Theorem 5.1 The computational complexity of the proposed solution is O(n) time.

The proof is identical to that given in Sect.  3 for Theorem  3.1 and is thus 
omitted.

Numerical example 5.1 Consider the following data:
The number of jobs is n = 8 , the total resource limitation is U = 13 and k = 0.75.
The workloads are (33, 22, 44, 6, 49, 41, 33, 2).

We solve the given input with four different sets of cost parameters to reflect 
Case 1 and Subcases 2.1–2.3 (see Property 5.1).

Solution:
The optimal amount of resource allocated to each job, the actual processing 

time of each job, and the optimal flow-allowance values, due-dates and cost are 
provided in Table 2.

q1 = q2 = q =
�

� + �

(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z = (� + �)q = �

� + �

� + �

(
W

U

)k ∑
n−1
j=1

w
k

k+1

j
.

q1 = q2 = q =
(
W

U

)k n−1∑
j=1

w
k

k+1

j
and Z = (� + �)q = (� + �)

(
W

U

)k n−1∑
j=1

w
k

k+1

j
.
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6  P4: 1���SLK DW , conv,wjr ,
∑

uj ≤ U
���Z

To present a solution for Problem P� , we combine the results achieved in Sects. 
4 and 5. The input for the problem contains four unit costs, a matrix of n × n job-
position workloads, and an upper bound on the total resource.

Table 2  Numerical example 5.1—resource allocation, actual processing times, and the optimal flow-
allowance values, due-dates and cost

Job 1 2 3 4 8 6 7 5

Case 1: � = 5, � = 15, � = 9, � = 8

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1

0.000

q∗
2

44.275

d∗
1

7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

d∗
2

51.841 50.634 52.834 47.919 46.550 52.579 51.841 93.275

Z∗ 354.197

Job 1 2 3 4 8 6 7 5

Case 2, Subcase 2.1: � = 8, � = 5, � = 9, � = 11

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1
= q∗

2
0.000

d∗
1
= d∗

2
7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

Z∗ 221.373

Job 1 2 3 4 8 6 7 5

Case 2, Subcase 2.2: � = 15, � = 8, � = 5, � = 9

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1
= q∗

2
15.400

d∗
1
= d∗

2
22.966 21.759 23.959 19.044 17.676 23.704 22.966 64.400

Z∗ 307.998

Job 1 2 3 4 8 6 7 5

Case 2, Subcase 2.3: � = 0, � = 9, � = 5, � = 9

uj 2.222 1.867 2.513 1.070 0.668 2.438 2.222 0

pj 7.566 6.359 8.559 3.644 2.276 8.304 7.566 49.000

q∗
1
= q∗

2
44.275

d∗
1
= d∗

2
51.841 50.634 52.834 47.919 46.550 52.579 51.841 93.275

Z∗ 221.373
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From Property 5.1, the coefficient in the cost function is 

� =

⎧
⎪⎪⎨⎪⎪⎩

�, Case1

�, Subcase 2.1
�(�+�)

�+�
, Subcase 2.2

� + � , Subcase 2.3

Similar to the due-date setting, � is a job- and position-independent constant and 
the cost function can be further simplified,

Thus, to solve Problem P� , we can utilize AP4.1, presented in Sect. 4 for solv-
ing Problem P� , and the formal solution procedure is as follows.

Solution procedure to problem P�
Step 1 Apply AP4.1, to obtain the optimal sequence of the jobs assigned to 

positions 1,… , n − 1.
Step 2 Schedule the unassigned job to position n.
Step 3 Use Property 3.2 to calculate the amount of resource allocated to jobs 

1,… , n − 1.
Step 4 Use Property 3.3 to calculate the actual processing times to jobs 

1,… , n − 1.
Step 5 Use Properties 5.2 and 5.3 to determine the relevant case and to calcu-

late the optimal values of the flow-allowance constants and cost.

Theorem 6.1 The proposed solution solves P� in O(n3) time.

The proof is exactly like the one given in Sect. 4 for Theorem 4.1.

Numerical example 6.1 We solve the 8 × 8 job-position processing times problem 
given in Table 3, where U = 16 and k = 0.6 . As in Numerical example 4.1, we solve 
this input with four different sets of cost parameters.

Z = �

n∑
j=1

n−1∑
r=1

(
wjr

uj

)k

Xjr.

Table 3  Example 6.1—job-
position workloads

Job Position

1 2 3 4 5 6 7 8

1 13 12 1 27 4 35 19 40
2 11 33 22 47 34 46 3 8
3 44 46 44 17 24 42 48 25
4 49 3 48 23 30 8 37 46
5 14 27 15 36 40 25 31 49
6 2 7 45 7 20 46 36 28
7 47 24 37 23 5 32 37 31
8 43 32 44 25 35 39 1 24
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Solution:
The optimal amount of resource allocated to each job, the actual processing 

time of each job, and the optimal flow-allowance values, due-dates and cost are 
provided in Table 4.

Table 4  Numerical example 6.1—resource allocation, actual processing times, and the optimal flow-
allowance values, due-dates and cost

Job 6 4 1 3 7 5 8 2

Case 1: � = 5, � = 17, � = 10, � = 9

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1

0.000

q∗
2

11.298

d∗
1

1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

d∗
2

12.436 12.623 12.175 13.837 12.902 14.232 12.175 19.298

Z∗ 101.678

Job 6 4 1 3 7 5 8 2

Case 2, Subcase 2.1: � = 9, � = 6, � = 10, � = 17

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1
= q∗

2
0.000

d∗
1
= d∗

2
1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

Z∗ 67.785

Job 6 4 1 3 7 5 8 2

Case 2, Subcase 2.2: � = 17, � = 9, � = 5, � = 10

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1
= q∗

2
3.911

d∗
1
= d∗

2
5.049 5.236 4.788 6.450 5.516 6.845 4.788 11.911

Z∗ 86.035

Job 6 4 1 3 7 5 8 2

Case 2, Subcase 2.3: � = 0.01, � = 10
6
, � = 5, � = 9

uj 1.612 1.877 1.243 3.596 2.273 4.156 1.243 0

pj 1.138 1.325 0.878 2.539 1.605 2.935 0.878 8.000

q∗
1
= q∗

2
11.298

d∗
1
= d∗

2
12.436 12.623 12.175 13.837 12.902 14.232 12.175 19.298

Z∗ 56.601
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7  Conclusion

We studied minmax due-dates based on common flow-allowance assignment and 
scheduling problems on a single machine. We extended the basic model by consid-
ering controllable processing times and focused on a model where the job process-
ing time is a convex function of the amount of resource allocated to it. The results 
of the due-date method were then generalized to that of common due-window. In 
both settings, the problems with position-independent workloads were shown to 
be solved in O(n) , whereas the problems with position-dependent workloads were 
solved in O

(
n3
)
.

Given the similarities between the single machine and the proportionate flow-
shop environments, interesting subjects for future research are the extensions of the 
addressed problems to the setting of proportionate flow-shop. Another challenging 
extension is to the setting of parallel machines. However, since even minimizing the 
makespan with constant processing times is ordinary NP-hard, a different approach 
must be applied.
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