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Abstract

The complete bipartite graph K 3 is called a claw. A graph is said to be claw-free if
it contains no induced subgraph isomorphic to a claw. Given a graph G, the NP-hard
Graph Declawing Problem (GDP) consists of finding a minimum set S € V (G) such
that G — S is claw-free. This work develops a polyhedral study of the GDP polytope,
expliciting its full dimensionality, proposing and testing five families of facets: trivial
inequalities, claw inequalities, star inequalities, lantern inequalities, and binary star
inequalities. In total, four Branch-and-Cut algorithms with separation heuristics have
been developed to test the computational benefits of each proposed family on random
graph instances and random interval graph instances. Our results show that the model
that uses a separation heuristics proposed for star inequalities achieves better results
on both set of instances in almost all cases.

Keywords Graph declawing problem - Claw-free graphs - Branch-and-cut -
Polyhedral combinatorics

1 Introduction

A graph G is said to be claw-free if it contains no induced subgraph isomorphic to the
complete bipartite graph K 3, also called claw. The Graph Declawing Problem (GDP,
for short) consists of finding a minimum set S € V(G) such that G — S is claw-free.
Lewis and Yannakakis (1980) prove a general result showing that any vertex deletion
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Fig. 1 Forbidden subgraphs for unit interval graphs: a claw, b net, ¢ tent, d Cy, k > 4

problem on undirected/directed graphs for a nontrivial and hereditary property I1 is
NP-Hard. IT is considered to be nontrivial if it is true for infinitely many graphs and
false for infinitely many graphs, and hereditary if, for any graph H satisfying IT, every
vertex-induced subgraph of H also satisfies I. Clearly, being claw-free is a hereditary
and nontrivial property; therefore, the GDP is NP-Hard.

The GDP is related to the resolution of the Unit Interval Vertex Deletion Problem,
which consists of converting a given graph into a unit interval graph by removing
a minimum subset of vertices such that the resulting graph is free of the following
forbidden induced subgraphs: claws, nets, tents, and induced cycles Ci (k > 4) (see
Fig. 1). Studies on the parameterized version of this problem, including kernelization,
are developed by van Bevern et al. (2010), van’t Hof and Villanger (2013), Fomin
et al. (2013), and Ke et al. (2018).

The GDP is also related with the problem of converting an interval graph into a
unit interval graph. An interval graph is the intersection graph of a family of intervals.
Formally speaking, G is an interval graph if its vertices can be associated with intervals
on the real line such that uv € E(G) if and only if I, N I, # @, where I, and I, are
the intervals associated with u and v. A unit interval graph is an interval graph where
the intervals can be chosen so that all of them have the same length (or, equivalently,
length one). Figure 2 shows a transformation from an interval graph to a unit interval
graph.

Unit interval graphs coincide with proper interval graphs (interval graphs where the
intervals can be chosen so that no interval properly contains another) and indifference
graphs (defined below). See Bogart and West (1999) for a proof that G is a unit interval
graph if and only if G is a proper interval graph, and Roberts (1979) for a proof that
G is a unit interval graph if and only if G is an indifference graph.

Indifference graphs are defined in the context of Social Sciences, as discussed in
the work by Roberts (1979). A graph G is an indifference graph if there is a function
f : V(G) — R such that

(u,v) € E(G) <= [f(u) = f(v)| <,

where € is a positive number that measures closeness. Informally, this means that # and
v are indistinguishable items if and only if, according to f, there is a difference at most
€ between their values. But since item values are in general empirically obtained, there
is the possibility that some presumably close items are distinguishable. Therefore, one
may be interested in removing the fewer items possible to generate a real indifference
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(¢) Interval graph G. (d) A unit interval graph, obtained by removing F'.

Fig. 2 Converting an interval graph ¢ associated with a into a unit interval graph d associated with b by
removing F from ¢

graph. Since indifference graphs are precisely the claw-free interval graphs (Roberts
1969), this problem is precisely the GDP applied to a given interval graph as input,
as the process exemplified in Fig. 2. Fishburn (1985) poses the problem of converting
an interval order into an indifference order by the removal of some elements; again,
in terms of graphs, this problem is precisely the problem of optimally declawing an
interval graph. We remark that the complexity of this problem is still an open question.

Williams et al. (2015) summarize complexity results for the recognition of 4-node
induced subgraphs; in particular, claws have an O (n32>7) recognition time. Bonomo-
Braberman et al. (2020) prove that the GDP is hard to approximate within a constant
factor better than 2 assuming the Unique Games Conjecture; moreover, they show
that the weighted problem associated with the GDP can be solved in polynomial
time for graphs with bounded tree-width and for block graphs. Elimination of claws
and diamonds via edge deletion was studied by Cygan et al. (2016). Aravind et al.
(2017) present some general results on edge elimination problems, and present the first
polynomial kernel for elimination of claws via edge deletion under the assumption of
a K;-free input graph.

Properties of claw-free graphs have been deeply investigated by the research
community (see the survey by Faudree et al. (1997)). For example, Minty (1980)
presents a polynomial-time algorithm for the problem of finding an independent set
with maximum weight in a claw-free graph. Hsu and Nemhauser (1982) presents a
polynomial-time algorithm for the Minimum Weighted Clique Cover Problem in claw-
free perfect graphs. Zhang (1988) proves Bondy’s Conjecture for claw-free graphs.
Broersma et al. (2011) present two algorithms that solve the Longest Cycle Problem
in polynomial time in claw-free graphs. Hermelin et al. (2014) show that induced
subgraph isomorphism for fixed graphs is fixed parameter tractable on claw-free
graphs. Hermelin et al. (2019) show that dominating set is fixed parameter tractable
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on claw-free graphs. Martin et al. (2020) prove that the Disconnected Cut Problem is
polynomially solvable for claw-free graphs.

Another application of claw-free graphs appear in resource constrained scheduling.
Suppose a set of n jobs Ji, Ja, ..., J, in a distributed computing environment, where
each J; needs exclusive access to a set R; of resources to execute. Let G be the conflict
graph of Ji, Ja, ..., J,, where each vertex v; of G is associated with job J;, and two
vertices v; and v;, i # j, are linked by an edge if and only if R; N R; # (. In
fact, G can be viewed as the intersection graph of a hypergraph, whose hyperedges
are Ry, Ry, ..., R,. If each job needs access to at most k resources, i.e., | R;| < k for
everyi = 1, ..., n, then the conflict graph G is (k+ 1)-claw free, where a (k+ 1)-claw
in G is an induced subgraph of G isomorphic to a star K1 4. (In this terminology, a
3-claw is a claw.) See details in (Halldérsson et al. 2003). Note that an independent set
in G corresponds to a set of jobs that can execute simultaneously. Finding a maximum
independent set in a (k + 1)-claw free graph is NP-hard for £ > 3 and solvable in
polynomial time for k = 2. Thus, if £ > 3, one can solve the GDP for the conflict
graph, obtaining a claw-free conflict graph G’, and then find in polynomial time a set
of jobs with no conflict.

Up to the author’s knowledge, there is no work in the literature presenting a poly-
hedral study of the GDP or a method to solve it via integer programming. Therefore,
we believe that the studies developed in this work are fully justified.

The remainder of this work is organized as follows. Section 2 defines the GDP
polytope and some facet-defining inequalities. Section 3 presents more facet-defining
inequalities that require deeper analyses, along with a more precise description of the
GDP polytope. Section 4 describes separation heuristics for support graphs needed to
generate the inequalities. Section 5 shows computational results for random graphs
and interval graph instances. Section 6 contains our conclusions.

2 The graph declawing problem polytope
From now on, G denotes a graph with |V (G)| = {1, ..., n}. Let P, be the convex
hull of m incidence vectors x ¥ that represent claw-free subgraphs H of a graph G,
that is:
P, = conv {XH € {0, 1}"" | H is a claw-free subgraph of G} .

Say that P,, is the GDP polytope of G. Figure 3 shows a claw-free subgraph H
induced by {1, 2, 4, 6, 7} and its incidence vector.

The GDP can be described as an optimization problem that aims at finding an

incidence vector xT = (x1, x2, ..., x,) with minimum number of zeros (removed
vertices):

n
minZ(l — X;)
i=1
s.it. x € Py
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(a) Claw-free subgraph H (b) Incidence vector x € {0,1}7

Fig.3 a A claw-free subgraph H = G[{1, 2, 4, 6, 7}] and b its incidence vector

In order to apply binary integer programming techniques for the GDP, we focus on
the characterization of P,,, which is n-dimensional and contains the null and all the
unit vectors, summing up to n + 1 affinely independent vectors. This means that P,
is full dimensional. The full dimensionality of a polytope implies that every facet of
it is uniquely defined by an inequality multiplied by some scalar «. This fact will be
used in the next subsections for proofs of facets. Another useful fact is that a facet of
an n-dimensional polytope must have n affinely independent points.

2.1 Trivial inequalities

Theorem 1 The following statements are true:

1. Trivial inequalities 0 < x™ and x® < 1 are valid for P,,.
2. Inequalities x > 0 induce facets of P,,.
3. Inequalities x < 1 induce facets of P,,.

Proof 1. Since all the coordinates of the m incidence vectors of claw-free subgraphs
are binary, it is clear that the trivial inequalities are valid for P,,.

2. Let x, represent the coordinate v € {1, ..., n} of a vector x. Then Xf =0is
satisfied by the null vector and all the unit vectors x with x, = 1, u # v. These n
vectors belong to P, and are affinely independent.

3. Xf = 1 is satisfied by the unit vector x with x, = 1 and by the vectors w such
that w, = 1, w, = 1 for some u # v, and w; = O for ¢ ¢ {u, v}. These n vectors
belong to P, and are affinely independent.

O

2.2 Claw inequalities

Say that an induced subgraph of G isomorphic to K 3 is a claw subgraph. For sim-
plicity, we denote by abcd a claw subgraph with central vertex a (the vertex with
degree three in the claw subgraph). In addition, for a subset S of vertices, sometimes
we simply write x5 to mean the incidence vector of the induced subgraph G[S].

@ Springer



90 Journal of Combinatorial Optimization (2021) 42:85-124

Theorem 2 Let
Xg+Xxp+Xc+x9 <3 (D

be the claw inequality associated with a claw subgraph abcd. Then:

1. The claw inequality is valid for Py,.
2. The claw inequality induces a facet of Py,.

Proof 1. Immediate. A claw inequality forces at least one of x,, xp, X, X4 to be zero.

2. Let w be a vector such that w; = 1 fori € {a,b,c,d} and w; = O fori ¢
{a,b,c,d). Let ul x < ug be a facet-inducing inequality for the GDP polytope
P, suchthat F, = {x € P, | wTx" =3y C Fy = {x € Py | u” x" = ug}.
Clearly, F, # P, and F, # (). Thus, a proof that u = cw for some @ € R shows
that F, defines a facet of P,,.

For a claw subgraph abcd, the incidence vectors x{”’b"‘}, X{“’b"’}, x{b""‘”, and
xl@d} are in F, C F. Then, the following equalities hold: 0 = wug — ug =
uTX{a,b,c}_uTX{a,b,d} =u.—ug;0 = ug—up = MTX{a,h,c}_uTX{a,c,d} = up—ug;
0 = ug —ug = ul ylabeh _yTylbedt —y — y, This implies uy, = up = u, =
Ug = .

For a node v ¢ {a, b, c, d}, if its neighborhood satisfies |N(v) N {a, b,d}| < 2
then x!@24v} ¢ F, C F,. Then, the following equality holds: 0 = ug — uy =
ul yta.b.dvh _ Ty la.b.dl — - That means u, = 0.

Finally, for a vertex v ¢ {a, b, ¢, d} such that [N (v) N {a, b, d}| > 3, yi®b-cv}
F, C Fp. Then, the following equality holds: 0 = ug — ug = u’l xl®bcvh —
uTX{a,b,c} = u,. O

m

3 Facets derived from star, lantern, and binary star graphs
3.1 Star inequalities

Definition 1 A star graph Sy is a complete bipartite graph K, for k > 3. Si has
a central vertex ¢ whose neighborhood is an independent set I} of size k. Possible
topologies for Sy are illustrated in Fig. 4.

A star subgraph is an induced subgraph of G isomorphic to a star graph.

Theorem 3 Let Sy be a star subgraph, and consider the corresponding star inequality:

D%t (k= 2xe < k. @

vely

Then:

1. The star inequality is valid for Pp,.
2. The star inequality induces a facet of Py,.
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(@) S3 (b) S5 (©) Sk
Fig.4 Star graphs S3, S5, and Si

@) s (b) s
Fig.5 Subgraphs Si, S/, S, and S} of Sy

Proof 1. The case k = 3 corresponds to the claw inequality (see Theorem 2). For
k > 4, the proof is done by induction. Let S,f = S — v and Sg = Sk[{i, j, ¢, c}l,
where i, j, £ are distinct vertices in I. Note that St S,ﬁ s S,f, and Sé are subgraphs
of Si. See Fig. 5, wherei =1, j =2,¢ = 3.

By induction, the inequalities associated with S,i, S,f s S,f, and Sé are valid for P,,,
and summing them up leads to the valid inequality

> 3xy + (3k — 8)x < 3k.

vely

Adding 2x. < 2 to the above inequality gives

Z3xv + Bk — 6)x. < 3k +2,

vely
and, therefore,
2
va+(k—2)xc sk+|3|=k
vely

is valid for P,,.

2. Let w be a vector such that w, = k — 2, w; = 1 fori € I, and w, = 0 for
v ¢ I U{c}). Let u”x < ug be a facet-inducing inequality for the GDP polytope
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(@) Ly () Ly 3

Fig.6 Subgraphs L and L1 3 of Sy

Py suchthat F, = (x7 e P, |wix" =k} S Fp = {x € P | u” x" = up).
Clearly, F,, # P, and F, # (). Thus, a proof that u = ow for some @ € R shows
that F, defines a facet of P,,.

Let L; ; be aclaw-free subgraph of Sy suchthat L; ; = S¢[{i, j, c}], where {i, j} C I
and c is the center of Si. Figure 6 shows two examples of such subgraphs.

The incidence vectors Xlk, XL'V!', and XLJ?k are in F, C F}. Then, the following
equalitieshold: 0 = ug—ug = uTXLi~/' —uTXLJ'~k = u; —uy. Therefore, u; = up = «.
By applying this process to all v € [ we get u, = «a. Also, 0 = ug — ug =
ul e — yTylij = (X pern\(i.j) Uv) — e, and this implies u, = a(k — 2).

Foranode v ¢ I; U{c}, ifits neighborhood satisfies [N (v) N I;| < 3 then x Y} ¢
F, € F.Thus, the following equality holds: 0 = up—ugp = uTXIkU{”} —uTXIk = Uy.

Finally, for a node v ¢ Iy U {c} such that [N (v) N Ix| > 3, the incidence vector

x V£V where (i, j} € N(v) N I, is in F;, € Fp. Then, 0 = up — up =
uTXV(Li,j)U{U} — MTXLi.j = l,tv, I:l

3.2 Lantern inequalities

Definition 2 Let Sy and Sy, k > £ > 3, be two star graphs such that Sy has central node
c1 and independent set I, Sy has central node ¢, and independent set Iy, and I, C Ix.
A lantern graph Lyy is the union of Sy and Si. Figure 7 shows some topologies of
lantern graphs.

A lantern subgraph is an induced subgraph isomorphic to a lantern graph.

Theorem 4 Let Ly be a lantern subgraph, and consider the corresponding lantern
inequality:

D xy+ (€= 2)xe + (k= O)xy < k. 3)

vely

Then:

1. The lantern inequality is valid for P,.
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(a) Lx (b) Lz (©) Luesy (d) L

Fig.7 Lantern graphs L34, L3k, Ly(e41)» and Lyg

2. The lantern inequality induces a facet of Py, except when k = £ + 1 and there is
avertex v & V(Lyy) such that N(v) N Iy = I and N(v) N{cy1, 2} = 0.

Proof 1. The validity of the lantern inequality for ¢ = 3 and k = 4 can be checked by
adding the star inequalities associated with the subgraphs Sé = L34[{1, 2,3, c1}]
and SA = L34[{1,2,3,4, c2}] and the inequality x.,, + x4 < 2, obtaining the
following valid inequality:

1
Z-xv +xc1 +xc2 S4+ \‘EJ =4,
vely

Now, consider Ly, = Lg — v. The case £ = 3,k = 5 can be checked by
adding the inequalities associated with subgraphs Lgs, Lgs (where {4, 5} C I5), §; =
Lis5[{1,4,5, c2}l, Sg = L3s[{1,2,3,4,5, c2}] and the valid inequality x.,, —x1 < 1,
obtaining the following inequality:

2
Z:x,,—l-xc1 + 2x¢, §5+{§J =35.

vels

For the case £ = 3 and k > 5, the proof is done by induction. Note that Lék, Lék,
Lg‘k, and S§ = L3¢[{i, j, h, c2}], for distinct i, j, h € I; \ I3, are subgraphs of L.
Figure 8 shows subgraphs Lék, L%k, 3> and 53 fori=4,j=k—1,h=k.

By induction, the inequalities associated with L3k, Lék, L3k, and S3 are valid for
P,,, and summing them up leads to the valid inequality

3 Z Xy +33 —=2)x¢, + Bk — 11)x., < 3k.

vely

Adding 2x., < 2, we get that

va+(3—2)xcl+(k—3)x625k+EJ =k

vely

is valid for P,,.
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(d) 53
Fig.9 Subgraphs of Ly forl > 3,k > £+ 1

Forthecase ¢ > 3andk > Z—i—l,notethatL;k,Lék,L?k,andSé = Lyl{i, j, h, c1}],
for distinct i, j, h € I, are subgraphs of L. Figure 9 shows subgraphs L@k, Lfk,
L and Sjfori=1,j=2h=¢.

By induction, the inequalities associated with sz, L'ék, L?k, and Sé are valid for
Py, and summing them up leads to

3 Z Xy 4 (3 — 8)x¢, + 3(k — £)x, < 3k.

vely

Adding 2x., <2 we get that

va—l—(Z—Z)xcl + (k — O)xe, 5kEJ =k

vel

is valid for P,,.

2. Letw beavectorsuchthatw,, =£—-2,w., = k—£,w; = lfori € Iy,andw, =0
forv ¢ V(Lg).Letu” x < ug be afacet-inducing inequality for the GDP polytope
P, suchthat F, = {x e P, |wTx" =k} C Fy = {x € Py | u” x" = uo}.
Clearly, F,, # P, and F, # (. Thus, a proof that u = ow for some @ € R shows
that w” x = k defines a facet of P,,.
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(a) Nip (b) Myyik

Fig. 10 Subgraphs of Ly

Let N; j and M; ; be claw-free subgraphs of Ly such that N; j = Lo[(Ix \ 1) U
{i,j.ci}land M; ; = Lgl{i, j.c1,c2}], where i, j € Iy, i # j. Figure 10 shows
examples of subgraphs N; j and M; ;.

Then:

a) The incidence vectors xMi.i and i with {i, j, h} C I are in F, C Fj. Thus,
0=up—up= uTXMi-f — uTXMJ'~h = u; — uy,. This implies u; = u;, = « for all
choices of {i, j, h} C I.

b) The incidence vectors x ¢ and x™ii with {i, j} C Iy are in F, € F,. Thus, 0 =
uo—ug = ul x—yl yNii = (Zveh\{i’j} uy)—uc,. Thisimplies u,, = a(£—2).

¢) The incidence vectors XIk and XM"J with {i, j} C I are in F, < Fj. Thus
0=up—ug=ul xk—ul yMij= (Zvelk\{i,j} Uy) — Ue, — Ue,. This implies
Uey =k —2) —a(l —2) =alk —£).

For anode v ¢ V(L) such that |[N(v) N Ix| < 3, x!"!Y/* isin F, C F},. Then, the
following equality holds: 0 = ug — ug = u? VIV — yT Ik =y,
For anode v ¢ V(Lg) such that [N (v) N Ix| > 3, we have that:

a) Ifk = ¢+1andk ¢ N(v), xVIVV Vi) withi € ,NN(v)and j € I;isin F, C Fp.
Then, the following equality holds: 0 = ug—ug = u” x WV WNi) —y Ty Nij =y,

b) Ifk =€+ 1,k € N(v),and N(v) N Iy # I, x W'Y Nii) with i € I, N N(v) and
Jj ¢ 1N N()isin F, € Fj. Then, the following equality holds: 0 = ug — ug =
ul WV W) Ty Nij — gy

O Ifk=0+1,Nv)NI = I,and ¢; € N(v) or ¢ € N(v), x WY Mi)) with
i €lyand j = kisin F, € Fp. Then, the following equality holds: 0 = ugp —ug =
MTX{U}UV(Mi,j)

d) If k > € + 1 and there is no vertex i € (Ix \ Iy) N N(v), xWVNii) with
i e [NN@) and j € I;isin F, C Fp. Then, the following equality holds:
0= up—ug = ul VN _yTyNij —yy

e) Ifk > £+ 1,c1 ¢ N(v), and there is a vertex i € (I \ Iy) N N(v), the incidence
vector x VWY WMij) isin F, C Fp, for j € I \ I,. Then, the following equality
holds: 0 = ug — ug = uTX{"}UV(M"~/) — uTXM"-J' = Uy.

f) Ifk > £+ 1,c1 € N(v), and there is a vertex i € (I \ I;) N N (v), the incidence
vector y WY Mij) isin F, C Fp, for j € I,. Then, the following equality holds:
0= up—ug = ul WMy _ Ty Mij gy

— uTXMi’J' = Uy.
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(a) Bi (b) Bsp-y (€) By (d) By

Fig. 11 Examples of binary stars

Note that the only case not covered by the above items (a)-(f) is k = £ + 1,
N@)N Iy = Ix,and N(v) N{c1, 2} = 0. O

3.3 Binary star inequalities

Definition 3 Let Sy and Sy be two star graphs, k > £ > 3, such that Sy has central node
c1 with independent set I, Sy has central node ¢, with independent set Iy, | I, N I;| > 2,
and |l \ Ix| = 1. A binary star graph By is the union of Sy and Si. Figure 11 shows
some topologies of binary star graphs.

A binary star subgraph is an induced subgraph isomorphic to a binary star graph.

Theorem 5 Let Byy be a binary star subgraph, and consider the corresponding binary
star inequality:

> X+ (€= 2)xey + (k= Oxey <k +1. 4)

velrUly

Then:

1. The binary star inequality is valid for P,,.
2. The binary star inequality induces a facet of Py, except when there is a node v
such that N (v) N (I U Iy) = I U I,.

Proof 1. For £ =3 and k = 4, the validity can be checked by summing up the claw
inequality associated with Sé = Bz4[{1, 2, 3, c1}], the star inequality associated
with Sé" = B34[{2, 3,4, 5, cz}], and the valid inequality x| + x4 4+ x5 + x;; < 4,
yielding the valid inequality:

1
Z Xy + Xep + X, §5+\\EJ =5.

velzUly

For ¢ = 3 and k > 5, the proof is done by induction. Let B}, = By — v. Note that
Bék, B;k, 3> and S3 = B3il{i, j, h, c2}], for distinct i, j, h € I; \ Iy, are subgraphs

of Bzj. Figure 12 shows subgraphs B3k, B3k, B3k, and S§ fori = 4, j = k, and
h=k+1.
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(a) By, (b) Bék (c) B

Fig. 12 Subgraphs of B3y

Fig. 13 Subgraphs of By

By induction, the inequalities associated with Blik, B/,;, Bl’}(, and Sé are valid for
P,,, and summing them up leads to

3( 3 x,,) +3(0 = 2)xe, + 3k — 3€ — Dxe, < 3k + 3.
velUly

Adding 2x., < 2 we get that

2
Z Xp+ (= 2xe, + (k= Oxe, < (k+ 1)+ EJ =k+1
velUly

is valid for P,,.

For ¢ > 3 and k > £+ 1, the proof is also done by induction. Consider the following
subgraphs of Byy: Bék, Blfk, Bé’k, and Sé = Byl{i, j, h, c1}], for distinct i, j, h € I.
See Fig. 13, where i =2, j =3,and h = ¢.

By induction, the inequalities associated with Bék, BZk’ Bé’k, and Sé are valid for
P,,, and summing them up leads to

3( 3 xv)+(3ﬁ—6+1)xcl+3(k—£)x02§3k~|—3.

vel Ul

Adding —x., < 0 we get that

D xut (€= 2xey + (k= Oxey <k +1
velgUly

is valid for P,,.

2. Let w be a vector such that: we;, =€ —2, we, =k — €, w; = 1fori € Iy U1y,
and w, = 0 for v ¢ V(By). Let ulx <ugbea facet-inducing inequality for the
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(@) Nz (b) Mgy (c) My

Fig. 14 Subgraphs of By

GDP polytope Py, such that F, = {x € P, |wT x? =k + 1} C F, = {x" ¢
P, | uTXH = ugp}. Clearly, F, # P, and F, # (. Thus, a proof that u = aw for
some o € R shows that w? x# = k + 1 defines a facet of P,,.

Let Nij = Bu[(Ix \ Ip) U {i, j,c1}] and M; j = Be[(Ie \ Ix) U {i, j, c1, c2}] be
subgraphs of By as exemplified in Fig. 14. Observe that M; ; is claw-free when
{i,j} C Ik \Ipori € Iy NI and j € Iy \ I,. Figure 14 shows the graphs Nj 7,
Moty , and M o41.

Then:

a) The incidence vectors x i and xNi# with {i, j, h} C I, are in F, C Fj. Thus
0=uyg—uy= uTXN"~f — uTXNM = u; — uyp,. This implies u; = uj, = « for all
choices of {i, j, h} C I,.

b) The incidence vectors x™i.j and xMi» with {i, j,h} C It \ I; are in F, C F},.
Thus 0 = ug — ug = u! xMii —u® yMih = u; — uy. This implies u; = up = o
for all choices of {i, j, h} C Iy \ I;.

¢) The incidence vectors x kYt and xNii with {i, j} C I, are in F, € F},. Thus

0 = ug—ug = ul xVle — Ty Nij = (Zvelg\{i,j}uv) — u¢,. This implies
ue, =all —2).

d) The incidence vectors x *Y!¢ and yMi.i with {i, j} C I} \ I; are in F, € F;,. Thus,
0 =ug—ug=ul ke —yTyMij — (Zve(jkum\{i,j} Uy) — Ue, — Ue,. This

implies ue, = a(k —2) — a(t —2) = a(k — £).

For anode v ¢ V (Bg) such that [N (v) N (I U Ip)| < 3, VYVt i in F, C Fy,.
Then, the following equality holds: 0 = ug — ug = u’ y VIV — T o VT — 4
For anode v ¢ V(Byx) such that |N(v) N (Ix U I;)] > 3, we have that:

a) If there is no vertex i € N(v) N (Ix \ I¢), the incidence vector x (M1VV Vi) | with
i e NvyNIlgand j € Iy, is in F, C Fp. Then, the following equality holds:
0=up—up = ul VN Ty Nij —

b) If there are verticesi € N(v) N (Ix \ I¢) and j € (I N Ix) \ N (v), the incidence
vector x M"Y Mij) is in F, C Fj,. Therefore, the following equality holds: 0 =
g — g = ul g WV Ty Mij — gy

c) Ifthereisavertexi € N(v) N (I \ I¢) and, in addition, (Ip N Ix) \ N(v) = @ and
N)N(IxUI,) # I U, the incidence vector x 1YY Mij) withi € N(v)N(I\I¢)
and j € (Ix \ Iy) \ N(v), is in F, < Fp. Thus, the following equality holds:
0=up—ug=ul WM _yTyMij—y,.
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3.4 Formulation for the GDP

A formulation for the GDP is given by combining all the previous facets in the fol-
lowing binary integer programming problem:

F : min Z (1 —xy)

veV(G)
s.t.
Z Xy + (k= 2)xc <k, for all star subgraphs Sy of G
vely
Z Xy + (€ = 2)x¢; + (k — O)xe, <k, for all lantern subgraphs Ly of G
vely

Z Xy + (€ = 2)x¢; + (k — €)xc, <k+1, forall binary star subgraphs By of G
velpUl
0<x, =<1, YveV(G)={l,...,n}

X, integer

Observe that claw inequalities are star inequalities with k = 3.

4 Separation claws, stars, lanterns, and binary stars

F can have an exponential number of inequalities, therefore a Branch-and-Cut algo-
rithm is suitable for the solution of the GDP. This section explains how to extract
support graphs and separate cuts for a Branch-and-Cut algorithm.

4.1 Extracting claw subgraphs

Claw subgraphs are obtained by verifying all triples of mutually nonadjacent vertices
that have a common neighbor v in O(n*) time. Each claw subgraph is added to a
collection Sy of support graphs.

4.2 Extracting maximal star subgraphs

In order to reduce the number of extracted star subgraphs, we consider only stars
formed by a central vertex v and a maximal independent set in G[N (v)] (“maximal
stars”). For example, Fig. 15 shows star subgraphs S3 and S4 centered at v whose
independent sets are maximal in G[N (v)].

Since maximal independent sets of a graph are maximal cliques in its complement,
an algorithm for maximal clique extraction hybrid(.) proposed by Eppstein and Strash
(2011) can be used to extract all maximal stars Sy centered at a vertex v by taking the
complement of G[N (v)].

@ Springer



100 Journal of Combinatorial Optimization (2021) 42:85-124

®» ©
© (&)
O—

(a) Graph G (b) GIN()]
» A ©
(F—© H—T—©
O,
(C) Star subgraph Sy (d) Star subgraph S3

Fig. 15 Extraction of maximal stars centered at v ¢ and d from a by using the neighborhood of v b

Algorithm 1 summarizes the extraction of the maximal stars S; of a graph G. Line
1 initializes the collection &> of support graphs. Line 2 goes through V (G), fixing the
center of the star at each iteration. Line 3 computes the complement of G[N (v)]. Line
4 extracts all the maximal cliques in G[N (v)] using algorithm Aybrid(.). Lines 5-8
add to S only maximal stars with independent sets of size at least three.

Algorithm 1: STAR EXTRACTION ALGORITHM

185 =0

2 forv € V(G) do

G' = Gu[N(@)]

Stemp = h}’brid(Gl)

for I; € Stemp do

if kK > 3 then

‘ Sk = Gl U {o}]
S =S US;

3
4
5
6
7
8
9

return S

4.3 Separation for the basic and star models

With the current collection of support graphs at hand, the Branch-and-Cut algorithm
solves the relaxed linear programming problem at each Branch-and-Cut node and
then searches for all inequalities violated by the current optimal solution x*, measures
their violation A, and adds the one hundred most violated inequalities to the current
node. The equation A =}, x; + (k — 2)x7 — k is used to measure the violation.
If A > 0,0001 the inequality is considered to be violated and is added to a pool of
inequalities, in order to choose the one hundred best ones (those with the largest values
of 1).
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4.4 Separation for lantern and binary star models

It is not reasonable to extract all lantern and binary star subgraphs previously to the
Branch-and-Cut routines. Thus, a separation heuristic is executed during the Branch-
and-Cut algorithm at each node of the tree. It begins by finding the one hundred most
violated star inequalities using the same strategy described in Sect. 4.3. Let Syip1areqa be
the collection of support star graphs associated with such inequalities. Then, for each
pair Sp, Sy, of distinct support graphs in Sy;siared, New lantern (binary star) subgraphs
are constructed and added to the collection of support lantern (binary star) graphs, and
the violation of the associated new inequalities is measured. Finally, the one hundred
most violated inequalities are added to the current region See Algorithms 2 and 3 for a
brief description of the process used to obtain the new support graphs and associated
inequalities. Figures 16 and 17 also illustrate this process. The violation A for both
models is measured as follows:

D ven Xy + € =2)xk + (k= OxF —k, for each support lantern graph
A=
Y venur Xy + (€ =2)x} + (k — 0)x% — (k + 1), for each support binary star graph

If A > 0, 0001 the inequality is considered to be violated.

Algorithm 2: LANTERN SEPARATION ALGORITHM

L = Syiolated
for distinct Sp., S1. € Syiolated dO
Suppose w.l.o.g. |[V(Sp)| = |V(Sp)|
Let cp, ¢y, be the centers of Sp, Sy, respectively
Let I, I, be the independent sets of Sp, Sy, respectively
if |[Ip NIy | > 3 then
Ly =G[V(Sp) U{cL}]
L=LU{L}
if |77 | > 3 then
Ly = G[V(SL) U{cp}l
L=LU{Ly}
12 Measure A for all Ly, € £ and add the one hundred best cuts to the current node

R S - Y T VI C R

—
=)

o
=

Algorithm 2 summarizes how to construct the collection £ of support lantern graphs
and evaluate the violation of the inequalities associated with such graphs. Line 1
initializes £ with Syjpiareq- Lines 2 goes through each possible pair Sp, Sp. of stars in
Syiolateq- Line 6 checks if the independent sets of S and Sy, have at least three vertices
in common, in order to construct valid lantern graphs. Line 7 creates the support
lantern graph L by taking induced subgraph G[V (Sp) U {c}] formed by Sp and the
center of Sz, and in line 8 the graph L is stored in the collection £ of support lantern
graphs. Lines 9—11 create and store the support lantern graph L, = G[V (S) U{cp}],
provided that /;, contains vertices outside Ip N Iy.. Fig. 16 illustrates the construction
of L and L.
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Algorithm 3: BINARY STAR SEPARATION ALGORITHM

B = Syiolated
for distinct Sp., S1. € Syiolated dO
Let cp, ¢y, be the centers of Sg, Sy, respectively
Let Ip, I7, be the independent sets of Sg, S, respectively
if |[Ip NIy | > 2 then
forve V(G)\ (IpnNIy)do
ifvelpand|lg| > |Ig N1I|+ 1then
‘ By = G[V(Sp) U{v}U{cL}]
B=BU{By}
ifvelgand|Ip| > |IgNIL|+ 1then
By = G[V(Sp) U{v}U{cp}]
B =BU{By}
13 Measure X for all By; € B and add the one hundred best cuts to the current node

R = Y I UV C R

_
==Y

-
)

Algorithm 3 is analogous to Algorithm 2. For each v outside Ip N Iy, it tries to
construct the binary star subgraph B, = G[V (Sp) U {v} U {c }] (if v € I, \ Ip) or
B, = G[V(SL) U {v} U {cp}] (if v € Ig \ IL). The collection B stores the support
binary star graphs.

5 Computational results
5.1 Used models

Four binary integer programming models are proposed by combining the inequalities
previously presented. The claw model contains only claw inequalities, the star model
contains star inequalities associated with maximal stars, the lantern model adds lantern
inequalities to the star model, and the binary star model adds binary star inequalities
to the star model.

5.2 Random graph instances

Forty random graph instances generated by Bastos et al. (2016) are used to test the four
proposed models, with n € {50, 100}. All of the benchmark instances are available at

https://sites.google.com/view/graphdeclaw/instances.

5.3 Interval graph instances

A random generator is used to create interval graph instances. It receives the number n
of intervals, their maximum length, and a time ruler as input parameters. See Algorithm
4 below.

The algorithm maintains a list of intervals Z during its execution. It creates the
initial and end times for each interval i and checks if i intersects any previously
created interval j; if an intersection happens, edge (j, i) is added to E(G).
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(a) Graph G (b) S (c) Sp

@ (e) L,

Fig. 16 Figure a shows graph G, figures b and ¢ shows two maximal stars S; and Sp in G, figures d and
e shows the two lantern subgraphs L and L, constructed from S;, and Sp

Fig. 17 Figure a shows graph G, figures b and ¢ shows two maximal stars S;, and Sp in G, figures d, e,
and f shows three binary star subgraphs constructed from S7, and Sp
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Algorithm 4: INTERVAL GRAPH GENERATION ALGORITHM

1 Interval_graph_generator (n, interval_max_length, time_ruler):

2 I=0,G=0,i=1

3 fori=1,...,ndo

4 initial_time = rand() mod (time_ruler — interval_max_length)
5 end_time = initial_time + (rand() mod interval_max_length)
6 if initial_time = end_time then

7 ‘ end_time = end_time + 1

8 add interval i = (initial_time, end_time) to T

9 add vertex i to V(G)

10 for jeZ, j#ido

1 if (j.initial_time < i.end_time) and (i.initial_time < j.end_time) then
12 | addedge (j.i)to E(G)

13 return G

Twenty seven groups of interval graph instances were created by combining the
parameters n € {100, 200, 300}, time_ruler = 100, and interval_max_length €
{10, 20, 30, 40, 50, 60, 70, 80, 90}. For each combination (group), nine instances were
created. Interval graph instances are named following the pattern x_y_z-d where
x =n,y = time_ruler, z = interval_max_length, and d is the identification of
the test instance.

5.4 Experimental setup

All algorithms proposed in this work have been developed in C++ with the aid of the
mathematical solver CPLEX 11. The computational experiments have been performed
on an Intel i7 processor running at 3.4 GHz with 16 GB of RAM, and executing the
operating system Linux Ubuntu 14.04.

CPLEX has two internal callbacks to cope with Branch-and-Cut. The first one is
the lazy callback, which verifies if any integer solution found by the Branch-and-Cut
algorithm is feasible. The second one is the cut callback, which adds valid cuts to
the current node being solved at any time during the execution of the Branch-and-Cut
algorithm. For the claw and star models, the lazy and cut callbacks were implemented
with the same separation routines described in Sect. 4.3. For the lantern and binary
star models, the lazy callback uses the separation routine of the star model, and the
cut callback uses proper separation routines described in Sects. 4.4 and 13.

The stop criteria used for the Branch-and-Cut tree are the use of a total memory of
10 Gb and a total time of 6 hours to solve the instances, using only one thread for the
processing.

5.5 Comparing the claw, star, lantern, and binary star models for random graph
instances

Tables 1 and 2 present results for random graph instances with n = 50. All models

have been able to solve them optimally. Both tables show the running time, the number
of nodes solved, and the number of cuts added by the Branch-and-Cut algorithm for
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each model. For this set of instances, the star model, when compared with the other
models, achieves better running times for all random graph instances.

Comparing only the star and claw models, we observe that the star model has a
fewer number of cuts and expanded nodes for all random graph instances. This is
an evidence that star inequalities dominate claw inequalities and thus reach optimal
solutions faster. For example, for instance 105_6_50, the star model took nearly eight
times fewer nodes and four times fewer cuts. This explains the gain in time to find the
optimal solution.

The comparison between the star model and the lantern/binary star models is more
involved, because for each model there are instances for which it performs well, in
terms of number of cuts or number of expanded nodes. But, in general, the star model
is still the one with best results. It seems that star inequalities are simpler to manage,
and provide a very strong relaxation. For example, instance 106_8_50 generates fewer
nodes for the lantern and binary star models, but a worse execution time than the star
model. Still for instance 106_8_50, the star model adds fewer cuts — possibly lantern
and binary stars inequalities are making the feasible region more difficult to dealt with,
forcing the Branch-and-Cut algorithm to take more time to find an optimal solution.

Tables 3 and 4 present results for random graph instances with n = 100. Both
tables show the separation lower lound, upper bound, running time, number of nodes,
and number of cuts for each model. In general, the star model is again the one with
best results, although the lantern and binary star models have produced a better lower
bound for some instances. Probably, this is due to the time increase these inequalities
impose on the Branch-and-Cut tree by reducing the number of nodes.

5.6 Comparing the claw and star models for interval graph instances

Only the claw and star models were used to solve interval graph instances, since
chordless cycles with four vertices are forbidden structures for interval graphs, and
both lantern and binary star subgraphs contains such cycles.

For instances optimally solved by both models, see Table 6. Instances with density
higher than 60% were easier to solve (most of them were solved at the root node).

Table 5 shows the instances not solved to optimality by at least one of the models
(Table 6). The star model was able to solve optimally all the instances with n = 200
and some with n = 300. But it could not solve instances 300_100_40-9, 300_100_50-
1, 300_100_50-3, 300_100_50-7, and 300_100_50-9, because of the large amount of
maximal independent sets. In such cases, the claw model achieves better results.

6 Conclusions

In this paper we studied the Graph Declawing Problem (GDP). Some facet-defining
inequalities of the GDP polytope were presented. Separation algorithms were pro-
posed and used into a Branch-and-Cut procedure for solving the GDP. Computational
experiments were carried out and the results show that the algorithms are able to solve
many interval graph instances with n € {100, 200, 300} using fewer than six hours

@ Springer
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of processing and 10 Gb of memory for the Branch-and-Cut tree. The computational
results also show that random graph instances were harder to solve. Random graph
instances with n = 50 were optimally solved but most random graph instances with
n = 100 were not solved to optimality.

A Computational results for interval graph instances optimally
solved

See Table 6

@ Springer
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