
Journal of Combinatorial Optimization (2021) 42:1–23
https://doi.org/10.1007/s10878-021-00732-2

Efficient feature selection for logical analysis of large-scale
multi-class datasets

Kedong Yan1 · Dongjing Miao2 · Cui Guo3 · Chanying Huang1

Accepted: 31 March 2021 / Published online: 9 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Feature selection in logical analysis of data (LAD) can be cast into a set covering prob-
lem. In this paper, extending the results on feature selection for binary classification
using LAD, we present a mathematical model that selects a minimum set of necessary
features for multi-class datasets and develop a heuristic algorithm that is both mem-
ory and time efficient for this model correspondingly. The utility of the algorithm is
illustrated on a small example and the superiority of our work is demonstrated through
experiments on 6 real-life multi-class datasets from UCI repository.

Keywords Logical Analysis of Data · Supervised Learning · Feature Selection ·
Multi-classification · Set Covering

1 Introduction

LAD is a supervised learning method based on Boolean logic and combinatorial opti-
mization. It was introduced by Hammer (1986) and consummated by Hammer and
his co-workers Crama et al. (1988). LAD has wide applications across many research
domains, for example,medical science (Alexe et al. (2006, 2004, 2003); Brannon et al.

B Chanying Huang
hcy@njust.edu.cn

Kedong Yan
yan@njust.edu.cn

Dongjing Miao
miaodongjing@hit.edu.cn

Cui Guo
cguo@stu.edu.cn

1 School of Computer Science and Engineering, Nanjing University of Science and Technology,
200 Xiaolingwei, Nanjing 210094, China

2 Faculty of Computing, Harbin Institute of Technology, 92 Xidazhi, Harbin 150001, China

3 Business School, Shantou University, 243 Daxue Road, Shantou 515063, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00732-2&domain=pdf
http://orcid.org/0000-0002-1314-4949

2 Journal of Combinatorial Optimization (2021) 42:1–23

Fig. 1 Four sequential steps in LAD

(2010); Brauner et al. (2007); Gubskaya et al. (2011); Kim and Ryoo (2008); Kohli
et al. (2006); Kronek and Reddy (2008); Yacout et al. (2013)), mechanical engineering
(Jocelyn et al. (2017, 2018); Mortada et al. (2011, 2012, 2014); Ragab et al. (2016,
2018); Shaban et al. (2015, 2017a, b)), industrial control system in cyber-physical
systems (Das et al. (2020)), to name a few. Generally speaking, for the successful
application of LAD on real-life datasets, four stages need to be carried out in succes-
sion (Boros et al. (2000)), i.e., binarization, feature selection, pattern generation, and
theory formation, as shown in Fig. 1.

The first step, binarization, transforms a dataset that consists of numerical and/or
categorical features into a 0-1 dataset where features take only 0-1 values. In this
process, each feature in the original dataset is replaced by several 0-1 features. Hence
the transformed 0-1 dataset contains muchmore features after binarization. Like many
other feature selectionmethods inmachine learning literature, the second stage in LAD
aims at reducing computational difficulty for subsequent processing and improving the
performance of the predictor/classifier obtained in the fourth stage. Pattern generation,
the key step of LAD, discovers a set of patterns in a separate-an-conquer manner. A
pattern is a piece of knowledge formed by a conjunction of 0-1 features or their
negations that distinguishes at least one example of one type of data from all of the
other type. The final stage, theory formation, builds a model via pattern ensemble
using weighted linear combination.

Feature selection is an important procedure in data analysis. It has wide application
in bioinformatics (see, for example,Cai et al. (2006); Cai et al. (2007); Yang et al.
(2006).) In LAD, feature selection is an NP-hard problem, like other data related
problems (Miao et al. (2018);Cai et al. (2019);Miao et al. (2020b, a).) Feature selection
inLAD is usually formulated into thewell-knownminimumset covering (SC) problem
(see, e.g., Boros et al. (2000); Alexe et al. (2007).) Unlike its subsequent stage, pattern
generation, which draws a lot of research efforts (Alexe and Hammer (2006a, b);
Bonates et al. (2008); Ryoo and Jang (2009); Guo and Ryoo (2012); Yan and Ryoo

123

Journal of Combinatorial Optimization (2021) 42:1–23 3

(2017a, b, 2019b, a)), the literature specifically addressing feature selection problem
in LAD is relatively scarce (Bruni (2007); Ryoo and Jang (2007).) To be specific,
Bruni (2007) reformulated feature selection problem from SC into a weighted SC
problem, and Ryoo and Jang (2007) designed a memory and time efficient procedure
called implicit SC-based feature selection for large-scale datasets. Both of these results
are aimed at binary classification problems. With the increasing application of LAD
on various domains, more and more real-life datasets at hand contain more than two
classes of data.

For the problem of logical analysis of a multi-class dataset, the common practice is
decomposing it into several binary classification problems (Avila-Herrera and Subasi
(2015);KimandChoi (2015);Bain et al. (2020).) Twomost frequently used approaches
that transformmulti-classification problem into binary classification problems are ‘one
versus one’ (OvO) and ‘one versus rest’ (OvR), respectively (see, e.g., Galar et al.
(2011).) As the name indicates, OvO produces a binary classification problem for each
pair of classes, and OvR generates a binary classification problem for one class and the
rest of classes. Thus for a multi-class dataset with �(� ≥ 3) classes, OvO gives �(�−1)

2
binary classification problems, whereas OvR yields � binary classification problems.
LAD usually adopts OvR approach. Ryoo and Jang (2007) tested their implicit SC-
based feature selection procedure on multi-class datasets using this method. There is
a drawback in using OvR for feature selection in LAD. When the features selected
from each binary classification problem are merged, there may exist many redundant
features since each binary classification problem considers feature selection problem
locally without interaction with each other. This can lead to a very complex model in
the theory formation step. To overcome this drawback, we consider feature selection
for multi-classification problem from a global point of view in this paper. As will be
detailed later, we formulate a mathematical model for this problem and generalize
the procedure developed by Ryoo and Jang (2007) to select features for multi-class
dataset in one shot.

As for the organization of the paper, Section 2 gives a brief introduction of binariza-
tion and feature selection in LAD. The implicit SC-based feature selection procedure
is also summarized in this section for self-containedness. Section 3 deals with multi-
class datasets, it gives a mathematical formulation for the feature selection problem
and devises an algorithm for the model. Section 4 illustrates the process of feature
selection procedure in Section 3 step by step via a small multi-class dataset. Section 5
tests the efficacy and efficiency through experiments with 6 large-scale multi-class
datasets from Lichman (2013). Finally, Section 6 concludes this paper.

2 Preliminaries and overview of implicit SC-based feature selection
for binary classification

In this section, we briefly describe the first two steps of LAD and give an overview
of implicit SC-based feature selection presented in Ryoo and Jang (2007) for binary
classification problems to make this paper self-contained.

123

4 Journal of Combinatorial Optimization (2021) 42:1–23

2.1 Binarization

A typical dataset S in LAD consists of two subsets. One subset is labeled as positive
S+, and the other negative S−. For real-life datasets, most of them consist of nominal
(e.g., color, shape, weather, etc.) and/or numerical features. In view of characteristics
of LAD, Boros et al. (1997) handles such kind of dataset by transforming it into 0-1
equivalent such that the resulting dataset is contradiction free, i.e., S+ ∩ S− = ∅.
That is to say, there should not exist a pair of + and − observations that have the
same 0-1 representation. A binarization like this is called proper, which works like
the following.

For a nominal feature F , it is straightforward to convert it into K 0-1 features
a1, . . . , aK if it has K distinct values μ1, . . . , μK . That is, for k = 1, . . . , K , set

ak =
{
1, if F = μk,

0, otherwise.

With regard to a numerical featureF , one needs to sort its values in increasing order as
μ(1) < μ(2) < . . . < μ(K), where K denotes the number of distinct values in feature
F . In this ascending sequence, if two adjacent numbers belong to different classes, a
cutpoint, taking the middle value of the two numbers, is introduced. Such a cutpoint
is called essential, and it is sufficient to use only essential cutpoints to binarize a
dataset. For a numerical feature F , suppose K ′ (1 ≤ K ′ ≤ K − 1) essential cutpoints
α1, . . . , αK ′ are needed, then F is transformed into K ′ 0-1 features a1, . . . , aK ′ with

ak =
{
1, if F ≥ αk,

0, otherwise.

for k = 1, . . . , K ′.

2.2 Feature selection

After the binarization step, a dataset S usually has a huge number of 0-1 features, which
contains redundant information and hampers the efficient generation of patterns in next
stage. A minimum and necessary set of features called minimum support set need to
be identified, where ‘necessary’ means the resulting dataset is contradiction free after
the selection process. To this end, suppose there are n 0-1 features in S, denoted by
a j , j ∈ N := {1, . . . , n}. For an example Ai , i ∈ S, let Ai j denote the value of its
j-th feature. To formulate a mathematical programming model for feature selection,
the following indicator variables are naturally due for j ∈ N , that is,

x j =
{
1, if feature a j is selected,

0, otherwise.

123

Journal of Combinatorial Optimization (2021) 42:1–23 5

Feature selection requires each pair of examples from different classes stay different
with respect to the selected features. For two 0-1 vectors b1 and b2, their difference
is usually measured by Hamming distance, i.e., the number of 1’s in the fingerprint
b1 ⊕ b2, where ‘⊕’ denotes exclusive-OR operator. Based on the discussion above,
the minimum and necessary set of 0-1 features can be found by solving the following
problem:

(FS)b

∣∣∣∣∣∣∣∣
min

x∈{0,1}n
∑
j∈N

x j

s.t.
∑
j∈N

(Ai j ⊕ Akj) x j ≥ 1, i ∈ S+, k ∈ S−

It is easy to see that (FS)b is an SC problem. There exist a number of heuristic
algorithms (Chvatal (1979); Balas and Carrera (1996); Ceria et al. (1998); Fisher
and Kedia (1990); Caprara et al. (1999)) for the solution of such problem. Among
these algorithms, the greedy heuristic by Chvatal (1979) is the most famous one and
becomes the standard procedure for feature selection in LAD (Boros et al. (2000).)
For application of the greedy heuristic, an SCmatrix with |S+|×|S−| rows needs to be
explicitly built. LetM represent the row index set of the SCmatrix, i.e.,M := S+×S−,
and I j ⊆ M denote the index set of rows that are covered by feature a j for j ∈ N .
In addition, denote Nt ⊆ N as the feature index set selected by the greedy heuristic
and Mu ⊆ M as the uncovered row index by Nt . Then the unselected feature index
set Nu = N\Nt . With these notation, the greedy heuristic henceforth referred as
standard FS is given in Algorithm 1.

Algorithm 1 standard FS

input: contradiction and duplicate free 0-1 data Ai , i ∈ S = S+ ∪ S−.

output: an index set of features Nt ⊆ N .

1: set Mu = M , Nt = ∅, Nu = N .

2: while Mu �= ∅ do

3: set f ← argmin

{
1

|Mu ∩ I j |
∣∣∣∣ j ∈ Nu

}
. Break ties by selecting the feature with

lowest index.

4: set Nt ← Nt ∪ { f }, Nu ← Nu\{ f }.

5: set Mu ← Mu\I f .

6: end while

123

6 Journal of Combinatorial Optimization (2021) 42:1–23

When S is large, the SC matrix can be very huge, which occupies so much memory
that the dataset under consideration can not be analyzed. The equivalent feature selec-
tion procedure proposed in Ryoo and Jang (2007) requires much less memory and
computational time than standard FS by circumventing the explicit construction
of the SC matrix. For this purpose, a term is defined as t := ∧

j∈Nt
l j for Nt ⊆ N ,

where l j = a j or its negation l j = ā j . In addition, for a term t , let

C•(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
i ∈ S•

∣∣∣∣∣∣∣∣∣
t(Ai) =

∏
l j=a j ,

j∈Nt Ai j

∏
l j=ā j
j∈Nt

Āi j = 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for • ∈ {+,−}. Then for j ∈ N ,

I j = (
C+(a j) × C−(ā j)

) ∪ (C+(ā j) × C−(a j)
)

Furthermore, let

T :=
⎧⎨
⎩ t =

∧
j∈Nt

l j

∣∣∣∣∣∣C+(t) �= ∅,C−(t) �= ∅
⎫⎬
⎭ (1)

Then
Mu =

⋃
t∈T

(
C+(t) × C−(t)

)
,

and for j ∈ Nu ,

|Mu ∩ I j | =
∑
t∈T

(∣∣C+(t ∧ a j)
∣∣× ∣∣C−(t ∧ ā j)

∣∣+
∣∣C+(t ∧ ā j)

∣∣× ∣∣C−(t ∧ a j)
∣∣) . (2)

Using the results above, Ryoo and Jang (2007) devised a memory efficient heuristic
procedure inAlgorithm2henceforth dubbed asimplicit FSB for feature selection.
When testing on real-life binary classification problems, implicit FSB are much
more efficient than standard FS.

3 Implicit SC-based feature selection for multi-classification

In this section, we are concernedwith amulti-class 0-1 dataset S that contains �(� ≥ 3)
types of examples. Let L := {1, . . . , �} and denote the set of examples of type p ∈ L
by S p. As the binary class case, S is a duplicate and contradiction free dataset with

S =
⋃
p∈L

S p

123

Journal of Combinatorial Optimization (2021) 42:1–23 7

Algorithm 2 implicit FSB

input: contradiction and duplicate free 0-1 data Ai , i ∈ S = S+ ∪ S−.

output: an index set of features Nt ⊆ N .

1: get C•(a j),C•(ā j) for • ∈ {+,−}, j ∈ N .

2: set f ← argmax
{|I j | | j ∈ N

}
, break ties by lowest index first rule.

3: set Nt ← { f } and obtain T via (1).

4: Nu = N\Nt .

5: while T �= ∅ do

6: set f ← argmin

{
1

|Mu ∩ I j |
∣∣∣∣ j ∈ Nu

}
, where |Mu ∩ I j | is calculated via (2).

Break ties by lowest index first rule.

7: set Nt ← Nt ∪ { f }, Nu ← Nu\{ f }.

8: obtain T via (1).

9: end while

and S p ∩ Sq = ∅ for p, q ∈ L, p �= q.
Although S is a multi-class dataset, the rationale behind feature selection does not

change. The selected minimum support set should separate examples in one type from
those in other types. In other words, each example from one class should have at
least Hamming distance 1 from every example in the remaining classes. By extending
the formulation of (FS)b, we obtain the following mathematical model that selects a
minimum support set for logical analysis of multi-class dataset:

(FS)m

∣∣∣∣∣∣∣∣
min

x∈{0,1}n
∑
j∈N

x j

s.t.
∑
j∈N

(Ai j ⊕ Akj) x j ≥ 1, i ∈ S p, k ∈ Sq , p, q ∈ L, p < q

The following result is immediate.

Theorem 1 Let x∗ be an optimal feasible solution to (FS)m, then F := { j ∈ N |x∗
j =

1} is a minimum support set.

Proof Suppose x is a feasible solution to (FS)m . For each pair of examples from dif-
ferent classes, for example, Ai , i ∈ S p, Ak, k ∈ Sq , p �= q, the constraint guarantees

123

8 Journal of Combinatorial Optimization (2021) 42:1–23

that they are at least Hamming distance 1 apart from each other after feature selection.
In addition, the objective function ensures the optimal solution x∗ gives the minimum
support set. ��

A few remarks are due here.

Remark 1 Model (FS)m reduces to (FS)b when � = 2.

Remark 2 In model (FS)m , the restriction p < q for p, q ∈ L avoids the introduction
of redundant rows in the constraint matrix.

Remark 3 If standard fs is adopted for the solution of (FS)m , one needs to explic-
itly construct an SC matrix with row index set

M =
⋃

p, q∈L
p<q

(
S p × Sq

)
.

Thus the number of rows in the matrix is

|M | =
∑
p, q∈L
p<q

(|S p| × |Sq |) .

For readers’ smooth transition from material in Ryoo and Jang (2007), we inherit
the notation therein and make changes if necessary.

As regards the term t defined in Section 2, let

C p(t) :=

⎧⎪⎪⎨
⎪⎪⎩i ∈ S p

∣∣∣∣∣∣∣∣
t(Ai) =

∏
l j=a j ,

j∈Nt

Ai j

∏
l j=ā j ,

j∈Nt

Āi j = 1

⎫⎪⎪⎬
⎪⎪⎭

for p ∈ L .

Proposition 1 For j ∈ N, the row index set I j ⊂ M that feature a j , j ∈ N covers is
given by

I j =
⋃

p, q∈L
p<q

{(
C p(a j) × Cq(ā j)

) ∪ (C p(ā j) × Cq(a j)
)}

. (3)

Given Nt ⊆ N , one needs to determine the rows with indices in M that are covered
or not covered by the set of features with indices in Nt . Note that a row in M is not
covered if the corresponding pair of examples Ai , i ∈ S p, Ak, k ∈ Sq that produces
it satisfy t(Ai) = 1, t(Ak) = 1, which means Ai and Ak take the same value with
respect to the feature index set Nt .

Proposition 2 For Nt ⊆ N and p, q ∈ L, p �= q, the row index set M p, q
u (t) ⊂ M

not covered by features with indices in Nt is given by

M p, q
u (t) = C p(t) × Cq(t), (4)

123

Journal of Combinatorial Optimization (2021) 42:1–23 9

where t =
∧
j∈Nt

l j .

Lemma 1 For Nt ⊆ N , Nt �= ∅, let T the set of all possible terms that can be
constructed from Nt with form t =

∧
j∈Nt

l j . Then the row index set Mu ⊂ M that is

not covered by the set of features in Nt is given by

Mu =
⋃

p,q∈L
p<q

⋃
t∈T

M p, q
u (t).

Let

T p, q :=
⎧⎨
⎩ t =

∧
j∈Nt

l j

∣∣∣∣∣∣C p(t) �= ∅,Cq(t) �= ∅
⎫⎬
⎭

for p, q ∈ L, p < q, and redefine T as

T =
⋃

p, q∈L
p<q

T p, q . (5)

Then Mu can be computed in the following way.

Theorem 2 For Nt ⊆ N , Nt �= ∅, define T via (5). Then the row index set Mu ⊂ M
that is not covered by the set of features in Nt is given by

Mu =
⋃

p, q∈L
p<q

⋃
t∈T

(
C p(t) × Cq(t)

)
. (6)

Proof Note that in (4), if either C p(t) = ∅ or Cq(t) = ∅ for p, q ∈ L, p < q, then
Mp, q

u (t) = ∅. For such a term t , it can be excluded in the calculation of Mu . In other
words, we only need to consider terms in T defined via (5). This completes the proof.

��
In each iteration of the feature selection, the candidate features need to be evaluated

to select a feature index j which yields the largest |Mu ∩ I j | among all features with
indices in Nu . With the notation introduced above, we first show how to compute
Mu ∩ I j below.

Theorem 3 For Nt ⊂ N , Nt �= ∅, the row index set that is not covered by the set of
features with indices in Nt but covered by features with indices in Nt ∪ { j}, j ∈ Nu is
given by

Mu ∩ I j =
⋃

p, q∈L
p<q

⋃
t∈T

{(
C p(t ∧ a j) × Cq(t ∧ ā j)

) ∪ (C p(t ∧ ā j) × Cq(t ∧ a j)
)}
(7)

123

10 Journal of Combinatorial Optimization (2021) 42:1–23

Proof For simplicity and convenience in proof, let

Mp, q
u =

⋃
t∈T

(
C p(t) × Cq(t)

)
and I p, qj

= (
C p(a j) × Cq(ā j)

) ∪ (C p(ā j) × Cq(a j)
)
.

Then

Mu ∩ I j =

⎛
⎜⎜⎝ ⋃

p, q∈L
p<q

M p, q
u

⎞
⎟⎟⎠⋂

⎛
⎜⎜⎝ ⋃

p, q∈L
p<q

I p, qj

⎞
⎟⎟⎠ .

First, note that for a pair of classes, the row index set constructed from examples
of them has empty intersection with row index set from a different pair of classes. In
other words, for p, p′, q, q ′ ∈ L with p < q and p′ < q ′, if p �= p′ or q �= q ′, then
Mp, q

u ∩ I p
′, q ′

j = ∅. Therefore,

Mu ∩ I j =
⋃

p,q∈L
p<q

(
Mp, q

u ∩ I p, qj

)

=
⋃

p,q∈L
p<q

(⋃
t∈T

(
C p(t) × Cq(t)

)) ∩ I p, qj

=
⋃

p,q∈L
p<q

⋃
t∈T

((
C p(t) × Cq(t)

) ∩ I p, qj

)
.

Now it is essential to deal with (C p(t) × Cq(t))∩ I p, qj , which is detailed as follows.

(
C p(t) × Cq(t)

) ∩ I p, qj

= (
C p(t) × Cq(t)

) ∩ {(C p(a j) × Cq(ā j)
) ∪ (C p(ā j) × Cq(a j)

)}
= {(

C p(t) × Cq(t)
) ∩ (C p(a j) × Cq(ā j)

)} ∪ {(C p(t) × Cq(t)
)

∩ (C p(ā j) × Cq(a j)
)}

= {(
C p(t) ∩ C p(a j)

)× (
Cq(t) ∩ Cq(ā j)

)}
∪ {(C p(t) ∩ C p(ā j)

)× (
Cq(t) ∩ Cq(a j)

)}
= (

C p(t ∧ a j) × Cq(t ∧ ā j)
) ∪ (C p(t ∧ ā j) × Cq(t ∧ a j)

)
This completes the proof. ��

Theorem 3 naturally leads to the following result.

123

Journal of Combinatorial Optimization (2021) 42:1–23 11

Corollary 1 For Nt ⊂ N , Nt �= ∅, the number of rows that are not covered by the set
of features with indices in Nt but covered by features in Nt ∪ { j}, j ∈ Nu is given by

|Mu ∩ I j | =
∑
p,q∈L
p<q

∑
t∈T

(∣∣C p(t ∧ a j)
∣∣× ∣∣Cq(t ∧ ā j)

∣∣+
∣∣C p(t ∧ ā j)

∣∣× ∣∣Cq(t ∧ a j)
∣∣)

(8)

With the material presented above, now we are ready to introduce the procedure
intended to select support features for large-scale multi-class datasets.

Algorithm 3 implicit FSM

input: contradiction and duplicate free 0-1 data Ai , i ∈ S = ⋃
p∈L S p.

output: an index set of features Nt ⊆ N .

1: get C p(a j),C p(ā j) for p ∈ L, j ∈ N .

2: set f ← argmax
{|I j | | j ∈ N

}
, break ties by lowest index first rule.

3: set Nt ← { f } and obtain T via (5).

4: Nu = N\Nt .

5: while T �= ∅ do

6: set f ← argmin

{
1

|Mu ∩ I j |
∣∣∣∣ j ∈ Nu

}
, where |Mu ∩ I j | is calculated via (8).

Break ties by lowest index first rule.

7: set Nt ← Nt ∪ { f }, Nu ← Nu\{ f }.

8: obtain T via (5).

9: end while

implicit FSM is equivalent to standard FS in that they both produce the same
heuristic solution to (FS)m , as stated in the theorem below.

Theorem 4 implicit FSM terminates and selects the same set of support features
as standard FS.

123

12 Journal of Combinatorial Optimization (2021) 42:1–23

Fig. 2 Illustrative dataset. (Each dashed line denotes a cutpoint, which corresponds to a binary feature. For
a binary feature, an example takes value 0 if its value is less than the cutpoint associated to that feature)

Table 1 0-1 representation of
illustrative dataset Class i a1 a2 a3 a4 a5 a6 a7 a8 a9

1 1 1 1 0 0 0 0 0 0 0

2 1 1 1 0 1 0 0 0 0

3 1 1 1 1 1 1 1 0 0

2 4 1 1 1 0 1 1 0 0 0

5 1 0 0 0 1 1 0 0 0

6 1 1 1 0 1 1 1 1 1

3 7 0 0 0 0 1 0 0 0 0

8 0 0 0 0 1 1 1 1 0

9 1 1 0 0 1 1 1 1 0

Proof In each iteration, both of the algorithms examine the set of features a j , j ∈ Nu

in the same order and evaluate the same quantity
1

|Mu ∩ I j | , j ∈ Nu for selecting

next feature. The difference only lies in the way
1

|Mu ∩ I j | , j ∈ Nu is calculated.

For implicit FSM, it obtains the value via set operation, whereas standard FS
counts the number of 1’s among the SC matrix. Since the dataset under consideration
is conflict free, (FS)m is feasible and both algorithms terminate. This completes the
proof. ��

123

Journal of Combinatorial Optimization (2021) 42:1–23 13

4 Illustrative example

In this section, we showcase implicit FSM via a small dataset. Suppose we have
a dataset that consists of 3 classes of examples, and each class contains 3 examples, as
shown in Fig. 2. For binarization of the dataset, 9 cutpoints (dashed lines in Fig. 2) need
to be introduced, which correspond to 9 binary features a1, . . . , a9. The equivalent
0-1 representation of the dataset is given in Table 1.

For application of standard FS on this dataset, an SCmatrix needs to be explic-
itly built as following:

(A1 ⊕ A4) −→
(A1 ⊕ A5) −→
(A1 ⊕ A6) −→
(A2 ⊕ A4) −→
(A2 ⊕ A5) −→
(A2 ⊕ A6) −→
(A3 ⊕ A4) −→
(A3 ⊕ A5) −→
(A3 ⊕ A6) −→
(A1 ⊕ A7) −→
(A1 ⊕ A8) −→
(A1 ⊕ A9) −→
(A2 ⊕ A7) −→
(A2 ⊕ A8) −→
(A2 ⊕ A9) −→
(A3 ⊕ A7) −→
(A3 ⊕ A8) −→
(A3 ⊕ A9) −→
(A4 ⊕ A7) −→
(A4 ⊕ A8) −→
(A4 ⊕ A9) −→
(A5 ⊕ A7) −→
(A5 ⊕ A8) −→
(A5 ⊕ A9) −→
(A6 ⊕ A7) −→
(A6 ⊕ A8) −→
(A6 ⊕ A9) −→

⎛
⎜⎜⎝

0 0 1 0 1 1 0 0 0
0 1 0 0 1 1 0 0 0
0 0 1 0 1 1 1 1 1
0 0 0 0 0 1 0 0 0
0 1 1 0 0 1 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 1 0 0
0 1 1 1 0 0 1 0 0
0 0 0 1 0 0 0 1 1
1 1 0 0 1 0 0 0 0
1 1 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0
0 0 1 0 0 1 1 1 0
1 1 1 1 0 1 1 0 0
1 1 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0
1 1 1 0 0 1 0 0 0
1 1 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1 0
1 1 1 0 0 1 1 1 1
1 1 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1

⎞
⎟⎟⎠

which contains 3 × (3 + 3) + 3 × 3 = 27 rows and 9 columns. For this problem,
the reader can check that standard FS successively selects feature index in order
3 → 6 → 7 → 1 → 4 by breaking ties using lowest index first rule. Thus Nt =
{1, 3, 4, 6, 7}.

123

14 Journal of Combinatorial Optimization (2021) 42:1–23

Initialization. Following the steps in implicit FSM, we first get C p(a j),C p(ā j)

for p ∈ {1, 2, 3} and j ∈ {1, . . . , 9} below:

p 1 2 3
C p(a1) {1, 2, 3} {4, 5, 6} {9}
C p(ā1) ∅ ∅ {7, 8}
C p(a2) {1, 2, 3} {4, 6} {9}
C p(ā2) ∅ {5} {7, 8}
C p(a3) {2, 3} {4, 6} ∅
C p(ā3) {1} {5} {7, 8, 9}
C p(a4) {3} ∅ ∅
C p(ā4) {1, 2} {4, 5, 6} {7, 8, 9}
C p(a5) {2, 3} {4, 5, 6} {7, 8, 9}
C p(ā5) {1} ∅ ∅
C p(a6) {3} {4, 5, 6} {8, 9}
C p(ā6) {1, 2} ∅ {7}
C p(a7) {3} {6} {8, 9}
C p(ā7) {1, 2} {4, 5} {7}
C p(a8) ∅ {6} {8, 9}
C p(ā8) {1, 2, 3} {4, 5} {7}
C p(a9) ∅ {6} ∅
C p(ā9) {1, 2, 3} {4, 5} {7, 8, 9}

We take j = 1 as an example to show how to calculate |I1|. Specifically, |I1| =
|C1(a1)|×|C2(ā1)|+|C1(ā1)|×|C2(a1)|+|C1(a1)|×|C3(ā1)|+|C1(ā1)|×|C3(a1)|+
|C2(a1)|×|C3(ā1)|+|C2(ā1)|×|C3(a1)| = 3×0+0×3+3×2+0×1+3×2+0×1 =
12. The remaining |I j |, j ∈ {2, . . . , 9} can be calculated in the same way. For readers’
easy reference, we list them below:

|I2| = 3 × 1 + 0 × 2 + 3 × 2 + 0 × 1 + 2 × 2 + 1 × 1 = 14

|I3| = 2 × 1 + 1 × 2 + 2 × 3 + 1 × 0 + 2 × 3 + 1 × 0 = 16

|I4| = 1 × 3 + 2 × 0 + 1 × 3 + 2 × 0 + 0 × 3 + 3 × 0 = 6

|I5| = 2 × 0 + 1 × 3 + 2 × 0 + 1 × 3 + 3 × 0 + 0 × 3 = 6

|I6| = 1 × 0 + 2 × 3 + 1 × 1 + 2 × 2 + 3 × 1 + 0 × 2 = 14

|I7| = 1 × 2 + 2 × 1 + 1 × 1 + 2 × 2 + 1 × 1 + 2 × 2 = 14

|I8| = 0 × 2 + 3 × 1 + 0 × 1 + 3 × 2 + 1 × 1 + 2 × 2 = 14

|I9| = 0 × 2 + 3 × 1 + 0 × 3 + 3 × 0 + 1 × 3 + 2 × 0 = 6

With |I3| taking the largest value, feature index 3 is selected. Thus Nt = {3},
T = {t1 = a3, t2 = ā3}, Nu = {1, 2, 4, 5, 6, 7, 8, 9}.

123

Journal of Combinatorial Optimization (2021) 42:1–23 15

Iteration 1. We gather C p(t1) and C p(t2) for p ∈ {1, 2, 3} below:
p 1 2 3

C p(t1) {2, 3} {4, 6} ∅
C p(t2) {1} {5} {7, 8, 9}

Based on the preceding information, the sets for calculating |Mu ∩ I j | are put in
the following table for reference.

p 1 2 3
C p(t1 ∧ a1) {2, 3} {4, 6} ∅
C p(t1 ∧ ā1) ∅ ∅ ∅
C p(t2 ∧ a1) {1} {5} {9}
C p(t2 ∧ ā1) ∅ ∅ {7, 8}

Thus |Mu ∩ I1| = |C1(t1 ∧ a1)| × |C2(t1 ∧ ā1)| + |C1(t1 ∧ a1)| × |C3(t1 ∧
ā1)| + |C2(t1 ∧ a1)| × |C3(t1 ∧ ā1)| + |C1(t1 ∧ ā1)| × |C2(t1 ∧ a1)| + |C1(t1 ∧
ā1)| × |C3(t1 ∧ a1)| + |C2(t1 ∧ ā1)| × |C3(t1 ∧ a1)| + |C1(t2 ∧ a1)| × |C2(t2 ∧
ā1)| + |C1(t2 ∧ a1)| × |C3(t2 ∧ ā1)| + |C2(t2 ∧ a1)| × |C3(t2 ∧ ā1)| + |C1(t2 ∧
ā1)|× |C2(t2 ∧ a1)|+ |C1(t2 ∧ ā1)|× |C3(t2 ∧ a1)|+ |C2(t2 ∧ ā1)|× |C3(t2 ∧ a1)| =
2×0+2×0+2×0+0×2+0×0+0×0+1×0+1×2+1×2+0×1+0×1+0×1 = 4.
|Mu ∩ I j | for j ∈ {2, 4, 5, 6, 7, 8, 9} can be obtained similarly. For reason of space,
we omit the specifics and just give the numbers below:

|Mu ∩ I2| = 4

|Mu ∩ I4| = 2

|Mu ∩ I5| = 4

|Mu ∩ I6| = 6

|Mu ∩ I7| = 6

|Mu ∩ I8| = 6

|Mu ∩ I9| = 2

Feature index 6 is the first lowest index with largest value, so it is selected in this
iteration. Therefore, Nt = {3, 6}, T = {t1 = a3a6, t2 = ā3ā6, t3 = ā3a6}, Nu =
{1, 2, 4, 5, 7, 8, 9}.
Iteration 2. Referring the sets C p(t1),C p(t2),C p(t3) for p ∈ {1, 2, 3},

p 1 2 3
C p(t1) {3} {4, 6} ∅
C p(t2) {1} ∅ {7}
C p(t3) ∅ {5} {8, 9}

one obtains |Mu ∩ I j |, j ∈ {1, 2, 4, 5, 7, 8, 9} below:

|Mu ∩ I1| = 2

123

16 Journal of Combinatorial Optimization (2021) 42:1–23

|Mu ∩ I2| = 2

|Mu ∩ I4| = 2

|Mu ∩ I5| = 1

|Mu ∩ I7| = 3

|Mu ∩ I8| = 3

|Mu ∩ I9| = 1

Thus feature index 7 is selected. We have Nt = {3, 6, 7}, T = {t1 = a3a6a7, t2 =
ā3ā6ā7}, Nu = {1, 2, 4, 5, 8, 9}.
Iteration 3. On the basis of C p(t1),C p(t2) for p ∈ {1, 2, 3} below

p 1 2 3
C p(t1) {3} {6} ∅
C p(t2) {1} ∅ {7}

|Mu ∩ I j |, j ∈ {1, 2, 4, 5, 8, 9} take value

|Mu ∩ I1| = 1

|Mu ∩ I2| = 1

|Mu ∩ I4| = 1

|Mu ∩ I5| = 1

|Mu ∩ I8| = 1

|Mu ∩ I9| = 1

respectively. By lowest index first rule, feature index 1 is selected. As a result, Nt =
{1, 3, 6, 7}, T = {t1 = a1a3a6a7}, Nu = {2, 4, 5, 8, 9}.
Iteration 4. With C1(t1) = {3}, C2(t1) = {6} C3(t1) = ∅, one can easily get

|Mu ∩ I2| = 0

|Mu ∩ I4| = 1

|Mu ∩ I5| = 0

|Mu ∩ I8| = 1

|Mu ∩ I9| = 1

Therefore, feature index 4 is selected. We have Nt = {1, 3, 4, 6, 7}, Nu = {2, 5, 8, 9}.
As T = ∅ in this iteration, implicit FSM terminates and selects the same set of
features in exactly the same order.

If we track the process of implicit FSM and record the information of term
t and C p(t), p ∈ {1, 2, 3}, we can draw a graph in Fig. 3. The graph comprises 3
binary trees, each of which tries to separate examples from a pair of different classes.
For a non-root node, the path from root node to it corresponds to a term t . Note that
each node of the tree is divided into two regions, the upper part and lower part, which

123

Journal of Combinatorial Optimization (2021) 42:1–23 17

Fig. 3 A forest of three binary trees built from the process of implicit FSM on dataset in Table 1.
(Each tree separates a pair of classes, and each node in a tree is divided into upper and lower parts, which
correspond to the two classes labeled next to the root node. Rectangles in the graph represent internal
nodes, and circles denote leaf nodes. The sequence at the bottom indicates the order of features selected by
implicit FSM)

contains C p(t) and Cq(t) with p < q, respectively. For leaf nodes, it is easy to see
that at least one of C p(t) and Cq(t) is an empty set.

Recall implicit FSB for binary classification, an acute reader may note from
this example that it works on one binary tree, whereas implicit FSM proposed in

this paper deals with
�(� − 1)

2
binary trees simultaneously for a dataset containing �

classes of data, with each tree trying to separate a pair of classes.
We close this sectionwith the discussion on thememory requirement of standard

FS and implicit FSM. With respect to the SC matrix constructed for standard
FS, suppose each 0/1 is stored using 1 bit, then the number of bits occupied by the SC

123

18 Journal of Combinatorial Optimization (2021) 42:1–23

Table 2 Multi-class datasets from Lichman (2013)

Dataset Number of

(Abbreviation) Examples Original Features Classes

Image Segmentation (imsg) 2310 19 7

Statlog Satellite Image (stim) 6435 36 6

Ann-thyroid (anth) 7200 21 3

Nursery (nurs) 12960 8 5

Letter Recognition (ltrc) 20000 16 26

Avila (avil) 20867 10 12

matrix are:
n × |M | = n

∑
p,q∈L
p<q

(|S p| × |Sq |) (9)

For implicit FSM, a smart implementation does not gather sets C p(a j), C p(ā j),
∀p ∈ L, j ∈ N explicitly to calculate |I j |, j ∈ N . One only needs to resort to the
dataset. When selecting a feature with implicit FSM, only one layer of nodes are
active during the selection process, all the previous layers of nodes can be dropped, so
we do not need to store the whole forest (see Fig. 3.) Due to the intersection operation,
the first layer (which consists of root nodes in the forest) requires most memory.
Suppose it requires κ bits to hold the index of each example, then the amount of bits
taken up by implicit FSM are:

κ ×
∑
p,q∈L
p<q

(∣∣S p
∣∣+ ∣∣Sq ∣∣)

=κ(� − 1) ×
∑
p∈L

∣∣S p
∣∣

=κ(� − 1)|S| (10)

The number in (10) is orders of magnitude less than the one in (9). To see this, suppose
we have a dataset with � = 3, |S1| = |S2| = |S3| = 104, and n = 103. In addition,
the indices of examples are stored using unsigned int (which usually occupy 32
bits.) Then (9) yields 3 × 1011, whereas (10) gives 1.92 × 106, which is 5 orders of
magnitude less.

5 Numerical experiments

This section tests the efficiency of our proposed implicit FSM on large-scale real-
life datasets. Toward this end, we run experiments on multi-class datasets obtained

123

Journal of Combinatorial Optimization (2021) 42:1–23 19

Ta
bl
e
3

C
om

pu
ta
tio

na
lr
es
ul
ts

N
um

be
r
of

0-
1
Fe
at
ur
es

C
PU

Se
co
nd
s
(s
)

D
at
as
et

�
†

‡
s
t
a
n
d
a
r
d

F
S

i
m
p
l
i
c
i
t

F
S
M

Im
pr
ov
em

en
t�

i
m
s
g

22
86
90
0

98
19

24
16
6.
43

48
.7
3

24
1%

s
t
i
m

16
77
74
87

22
64

51
25
1.
91

76
.5
3

22
9%

a
n
t
h

36
20
73
2

73
7

17
14
.1
5

0.
96

13
74
%

n
u
r
s

57
31
94
60

27
17

18
.8
0

0.
26

71
31
%

l
t
r
c

19
23
00
97
9

23
5

58
21
9.
97

52
.1
6

32
2%

a
v
i
l

16
76
01
21
5

32
13
5

50
—

�
13
89
2.
40

—

�:
nu
m
be
r
of

ro
w
s
in

SC
m
at
ri
x
w
he
n
us
in
g
s
t
a
n
d
a
r
d

F
S

†:
nu
m
be
r
of

0-
1
fe
at
ur
es

be
fo
re

fe
at
ur
e
se
le
ct
io
n

‡:
nu
m
be
r
of

0-
1
fe
at
ur
es

af
te
r
fe
at
ur
e
se
le
ct
io
n

�
:d

at
as
et

a
v
i
l
ru
n
ou
to

f
m
em

or
y
an
d
ki
lle
d
by

op
er
at
in
g
sy
st
em

�:
im

pr
ov
em

en
tc
al
cu
la
te
d
by

C
PU

se
co
nd
s
by

s
t
a
n
d
a
r
d

F
S

−
C
PU

se
co
nd
s
by

i
m
p
l
i
c
i
t

F
S
M

C
PU

se
co
nd
s
by

i
m
p
l
i
c
i
t

F
S
M

×
10
0%

123

20 Journal of Combinatorial Optimization (2021) 42:1–23

from UCI repository (Lichman (2013).) The information of these datasets are given
in Table 2, where we list the number of examples, number of original features, and
number of classes of each dataset, respectively. Note that for dataset that contains two
parts, i.e. training and testing set, we merge them into one larger dataset.

The experiments were conducted on a machine with i9-9900KS CPU (Base Fre-
quency 4.00GHz, 8 Cores 16 Threads) and 64GB RAM. The numerical results are
summarized in Table 3. Numbers in the table are fairly self-explanatory. The two
columns under ‘CPU Seconds’ suggest implicit FSM is exceptional and runs sev-
eral times faster than standard FS.

It is worth mentioning that for dataset avil, standard FS failed to select a set
of features due to its huge requirement of memory. Recall that each 0/1 is stored using
one bit in our experiment, so the SC matrix constructed from dataset avil takes up
167601215 × 32135/(10243 × 8)GB ≈ 627GB of main memory, almost 10 times
more than the RAM we have. The feature selection process was killed by operating
system before any feature could be selected. On the other hand,implicit FSM only
needs 32 × (12 − 1) × 20867/(1024 × 8)KB ≈ 894KB of main memory, which is 5
orders of magnitude less than the memory needed by standard FS. So, in terms of
memory occupation, implicit FSM is far superior to the counterpart standard
FS.

6 Conclusion

In this paper, we addressed the feature selection problem in logical analysis of multi-
class datasets. Themathematical formulation for this problem is given and a procedure
that generalizes the one for solving binary classification problem in literature is devel-
oped accordingly. Numerical experiments on 6 real-life multi-class datasets echo our
theoretical discussion and demonstrate the superiority of our algorithm over the stan-
dard one.With the aid of the proposed algorithm, more large-scale multi-class datasets
can be analyzed using LAD.

Funding This research was supported by the National Natural Science Foundation of China (NSFC) under
grant U19A2059, 61806095, 61802183 and 61972110, the Fundamental Research Funds for the Central
Universities under grant 30920021130, the Jiangsu Planned Projects for Postdoctoral Research Funds under
grant 1701146B, the Natural Science Foundation of Guangdong Province under grant 2017A030307026,
National Foundation Raising Project of Shantou University under grant NFC16002, Scientific Research
Start-up Funding Project of Shantou University under grant STF15003.

Data availability andmaterial The data used in this paper can be found in UCI machine learning repository
at https://archive.ics.uci.edu/ml/index.php

Declaration

Conflict of interest The authors declare no conflict of interest.

Code availability The experiments were conducted using custom code written by the authors.

123

https://archive.ics.uci.edu/ml/index.php

Journal of Combinatorial Optimization (2021) 42:1–23 21

References

Alexe G, Hammer PL (2006a) Spanned patterns for the logical analysis of data. Discret Appl Math
154(7):1039–1049

Alexe G, Alexe S, Liotta LA, Petricoin E, Reiss M, Hammer PL (2004) Ovarian cancer detection by logical
analysis of proteimic data. Proteomics 4:766–783

Alexe G, Alexe S, Axelrod DE, Bonates T, Lozina II, Reiss M, Hammer PL (2006) Breast cancer prognosis
by combinatorial analysis of gene expression data. Breast Cancer Research 8R41

Alexe G, Alexe S, Bonates TO, Kogan A (2007) Logical analysis of data - the vision of Peter L. Hammer.
Ann Math Artif Intell 49:265–312

Alexe S, Hammer PL (2006b) Accelerated algorithm for pattern detection in logical analysis of data. Discret
Appl Math 154:1050–1063

Alexe S, Blackstone E, Hammer PL, Ishwaran H, Lauer MS, Snader CEP (2003) Coronary risk prediction
by logical analysis of data. Ann Op Res 119:15–42

Avila-Herrera JF, Subasi MM (2015) Logical analysis of multi-class data. In: 2015 Latin American Com-
puting Conference (CLEI), pp 1–10

Bain TC, Avila-Herrera JF, Subasi E, Subasi MM (2020) Logical analysis of multiclass data with relaxed
patterns. Ann Op Res 287:11–35

Balas E, Carrera MC (1996) A dynamic subgradient-based branch-and-bound procedure for set covering
problem. Op Res 44(6):875–890

Bonates TO, Hammer PL, Kogan A (2008) Maximum patterns in datasets. Discret Appl Math 156(6):846–
861

BorosE,HammerPL, Ibaraki T,KoganA (1997)Logical analysis of numerical data.Math Progr 79:163–190
Boros E, Hammer PL, Ibaraki T, Kogan A, Mayoraz E, Muchnik I (2000) An implementation of logical

analysis of data. IEEE Trans Knowl Data Eng 12:292–306
BrannonAR,ReddyA, SeilerM,ArreolaA,MooreDT, PruthiRS,WallenEM,NielsenM,LiuH,Nathanson

KL, Ljungberg B, Zhao H, Brooks JD, Ganesan S, Bhanot G, Rathmell WK (2010) Molecular stratifi-
cation of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival
patterns. Genes Cancer 1(2):152–163

BraunerMW,BraunerN,Hammer PL, Lozina I, ValeyreD (2007) Logical analysis of computed tomography
data to differentiate entities of idiopathic interstitial pneumonias. Data Min Biomed 7:193–208

Bruni R (2007) Reformulation of the support set selection problem in the logical analysis of data. Ann Op
Res 150:79–92

Cai Z, Xu L, Shi Y, Salavatipour MR, Goebel R, Lin G (2006) Using gene clustering to identify discrimi-
natory genes with higher classification accuracy. In: Sixth IEEE Symposium on BioInformatics and
BioEngineering (BIBE’06), pp 235–242, 10.1109/BIBE.2006.253340

Cai Z, Goebel R, Salavatipour MR, Lin G (2007) Selecting dissimilar genes for multi-class classification,
an application in cancer subtyping. BMC Bioinform 8(206):1–15

Cai Z, Miao D, Li Y (2019) Deletion propagation for multiple key preserving conjunctive queries: Approx-
imations and complexity. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pp 506–517, 10.1109/ICDE.2019.00052

Caprara A, Fischetti M, Toth P (1999) A heuristic method for the set covering problem. Op Res 47(5):730–
743

Ceria S, Nobili P, Sassano A (1998) A lagrangian-based heuristic for large-scale set covering problems.
Math Progr 81(2):215–228

Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Op Res 4(3):233–235
Crama Y, Hammer PL, Ibaraki T (1988) Cause-effect relationships and partially defined Boolean functions.

Ann Op Res 16:299–326
Das TK, Adepu S, Zhou J (2020) Anomaly detection in industrial control systems using logical analysis of

data. Comput Secur 16:299–326
Fisher ML, Kedia P (1990) Optimal solution of set covering/partitioning problems using dual heuristics.

Manag Sci 36:674–688
Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2011) An overview of ensemble methods for

binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes.
Pattern Recognit 44:1761–1776

123

22 Journal of Combinatorial Optimization (2021) 42:1–23

Gubskaya AV, Bonates TO, Kholodovych V, Hammer P, Welsh WJ, Langer R, Kohn J (2011) Logical
analysis of data in structure-activity investigation of polymeric gene delivery.Macromol Theory Simul
20(4):275–285

Guo C, Ryoo HS (2012) Compact MILP models for optimal and Pareto-optimal LAD patterns. Discret
Appl Math 160:2339–2348

Hammer PL (1986) Partially defined Boolean functions and cause-effect relationships
Jocelyn S, ChinniahY,OualiM,Yacout S (2017)Application of logical analysis of data tomachinery-related

accident prevention based on scarce data. Reliab Eng Syst Safety 159:223–236
Jocelyn S, Ouali MS, Chinniah Y (2018) Estimation of probability of harm in safety of machinery using an

investigation systemic approach and logical analysis of data. Safety Sci 105:32–45
Kim HH, Choi JY (2015) Pattern generation for multi-class LAD using iterative genetic algorithm with

flexible chromosomes and multiple populations. Expert Syst App 42:833–843
KimK, Ryoo HS (2008) A LAD-based method for selecting short oligo probes for genotyping applications.

OR Spectr 30:249–268
Kohli R, Krishnamurtib R, Jedidi K (2006) Subset-conjunctive rules for breast cancer diagnosis. Discret

Appl Math 154:1100–1112
Kronek LP, Reddy A (2008) Logical analysis of survival data: prognostic survival models by detecting

high-degree interactions in right-censored data. Bioinformatics 24:i248–i253
Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Miao D, Cai Z, Li J (2018) On the complexity of bounded view propagation for conjunctive queries. IEEE

Trans Knowl Data Eng 30(1):115–127
Miao D, Cai Z, Li J, Gao X, Liu X (2020a) The computation of optimal subset repairs. Proc VLDB Endow

13(11):2061–2074
Miao D, Cai Z, Liu X, Li J (2020b) Functional dependency restricted insertion propagation. Theor Comput

Sci 819:1–8. https://doi.org/10.1016/j.tcs.2017.03.043
Mortada M, Carroll T, Yacout S, Lakis A (2012) Rogue components: their effect and control using logical

analysis of data. J Intell Manuf 23:289–302
Mortada MA, Yacout S, Lakis A (2011) Diagnosis of rotor bearings using logical analysis of data. J Qual

Maint Eng 17(4):371–397
Mortada MA, Yacout S, Lakis A (2014) Fault diagnosis in power transformers using multi-class logical

analysis of data. J Intell Manuf 25(6):1429–1439. https://doi.org/10.1007/s10845-013-0750-1
Ragab A, Ouali M, Yacout S, Osman H (2016) Remaining useful life prediction using prognostic method-

ology based on logical analysis of data and kaplan-meier estimation. J Intell Manuf 27:943–958
Ragab A, El-Koujok M, Poulin B, Amazouz M, Yacout S (2018) Fault diagnosis in industrial chemical

process using interpretable patterns based on logical analysis of data. Expert Syst Appl 95:368–383
Ryoo HS, Jang IY (2007) A heuristic method for selecting support features from large datasets. In: Kao

M, Li X (eds) Algorithmic Aspects in Information and Management, Third International Conference,
AAIM 2007, Portland, OR, USA, June 6-8, 2007, Proceedings, Springer, Lecture Notes in Computer
Science, vol 4508, pp 411–423, 10.1007/978-3-540-72870-2_39

Ryoo HS, Jang IY (2009) MILP approach to pattern generation in logical analysis of data. Discret Appl
Math 157:749–761

Shaban Y, Yacout S, Balazinski M (2015) Tool wear monitoring and alarm system based on pattern recog-
nition with logical analysis of data. J Manuf Sci Eng 137(3):1–14

ShabanY,MeshrekiM,Yacout S,BalazinskiM,AttiaH (2017a) Process control based onpattern recognition
for routing carbon fiber reinforced polymer. J Intell Manuf 28(1):165–179

Shaban Y, Yacout S, Balazinski M, Jemielniak K (2017b) Cutting tool wear detection using multi-class
logical analysis of data. J Mach Sci Technol 21(3):1–16

Yacout S, Danish A, Saadany S, Kapongo J, Mani S, Gomes J (2013) Knowledge discovery from observa-
tional data of causal relationship between clinical procedure and alzheimer’s disease. J Publ Health
2:1–10

Yan K, Ryoo HS (2017a) 0–1 multilinear programming as a unifying theory for LAD pattern generation.
Discret Appl Math 218:21–39

Yan K, Ryoo HS (2017b) Strong valid inequalities for Boolean logical pattern generation. J Global Optim
69(1):183–230

Yan K, Ryoo HS (2019a) Cliques for multi-term linearization of 0-1 multilinear program for Boolean
logical pattern generation. In: Thi HAL, Le HM, Dinh TP (eds) Optimization of Complex Systems:
Theory,Models, Algorithms andApplications,WCGO2019,WorldCongress onGlobalOptimization,

123

http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.tcs.2017.03.043
https://doi.org/10.1007/s10845-013-0750-1

Journal of Combinatorial Optimization (2021) 42:1–23 23

Metz, France, 8-10 July, 2019, Springer, Advances in Intelligent Systems and Computing, vol 991, pp
376–386, 10.1007/978-3-030-21803-4_38

Yan K, Ryoo HS (2019b) A multi-term, polyhedral relaxation of a 0–1multilinear function for boolean
logical pattern generation. J Global Optim 74(4):705–735

Yang K, Cai Z, Li J, Lin G (2006) A stable gene selection in microarray data analysis. BMC Bioinform
7(228):1–16

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Efficient feature selection for logical analysis of large-scale multi-class datasets
	Abstract
	1 Introduction
	2 Preliminaries and overview of implicit SC-based feature selection for binary classification
	2.1 Binarization
	2.2 Feature selection

	3 Implicit SC-based feature selection for multi-classification
	4 Illustrative example
	5 Numerical experiments
	6 Conclusion
	References

