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Abstract
Let n, k, t be positive integers. What is the maximum number of arcs in a digraph on n
vertices in which there are at most t distinct walks of length k with the same endpoints?
Determine the extremal digraphs attaining the maximum number. When t = 1, the
problem has been studied by Wu, by Huang and Zhan, by Huang, Lyu and Qiao, by
Lyu in four papers, and they solved all the cases but k = 3. For t ≥ 2, Huang and Lyu
proved that the maximum number is equal to n(n − 1)/2 and the extremal digraph is
the transitive tournament when n ≥ 6t + 2 and k ≥ n − 1. They also discussed the
maximum number for the case n = k + 2, k + 3, k + 4. In this paper, we solve the
problem for the case k ≥ 6t +1 and n ≥ k+5, and we also characterize the structures
of the extremal digraphs for n = k + 2, k + 3, k + 4.

Keywords Turánproblem · Digraph · Walk · Tournament

Mathematics Subject Classification 05C35 · 05C20

1 Introduction

Given a family of graphs F , what is the maximum number of edges in a graph on n
vertices if it does not contain any member of F as a subgraph? Turán (1941), Turán
(1954) determined the maximum number of edges of graphs on n vertices which do
not contain a complete graph, and also determined the unique graph attaining that
maximum. Most of the previous results in Turán type extremal graph theory concern
undirected graphs and only a few extremal problems on digraphs have been investi-
gated; see (Bollobás 1995; Brown et al. 1973, 1985; Brown and Harary 1970; Brown
and Simonovits 2002; Huang and Lyu 2020a, b; Jacob andMeyniel 1983;Maurer et al.
1980; Scott 2000). In this paper we study an extremal problem on digraphs.
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The systematic investigation of digraph extremal problem was initiated by Brown
and Harary (1970). This is where the area started and it covers all the cases where the
excluded subgraph has at most 4 vertices. Maurer et al. (1980) studied the extremal
subgraphs of the transitive tournament which contain at most one directed path from
x to y with x �= y. In this paper, we consider a problem posed in Huang and Lyu
(2020a):

Problem 1.1 Let n, k, t be positive integers. What is the maximum number of arcs in
a digraph on n vertices in which there are at most t distinct walks of length k with the
same endpoints? Determine the extremal digraphs attaining the maximum number.

When t = 1, the above problem is the same as the unsolved problem 20 in (Zhan 2013,
p.234). In Huang et al. (2019), Huang and Zhan (2011), Lyu (2020), Wu (2010) the
authors solved all the cases but k = 3. For t ≥ 2, Huang and Lyu (2020a) prove that
the maximum number is equal to n(n−1)/2 and the extremal digraph is the transitive
tournament when k ≥ n − 1 ≥ 6t + 1. They also discussed the maximum number
for the case k ≥ 6t + 1 and n ∈ {k + 2, k + 3, k + 4}. The most interesting case
of Problem 1.1 is that n is sufficiently large and t is fixed. In this paper, under this
condition we prove that the extremal digraphs are some particular k-partite transitive
tournaments for k ≥ 6t + 1, and the case that k is close to n is also solved. For the
case k ≤ 6t , the maximum number is difficult to determine and we leave it for future
research. Generally speaking, t substituting 1 leads a deeper problem. We follow the
similar approach with the approach in Huang et al. (2019) but different strategy to
present the general results.

We consider digraphs without multiple arcs but allowing loops. We abbreviate
directed walks and directed cycles as walks and cycles, respectively. The number of
vertices in a digraph is called its order and the number of arcs its size. A p-cycle is a
cycle of length p and a 1-cycle is a loop. Similarly, we define p-walk. Given a family
of digraphsF , we say a digraph D isF -free if D contains no subgraph fromF . Let
ex(n,F ) be the maximum size of F -free digraphs of order n and EX(n,F ) be the
set ofF -free digraphs of order n with size ex(n,F ). Given two positive integers k, t ,
denote byFk,t the family of digraphs consisting of t different walks of length k with
the same initial vertex and the same terminal vertex. The Problem 1.1 is equivalent to
the following

Problem 1.2 Givenpositive integersn, k, t , determine ex(n,Fk,t+1) and EX(n,Fk,t+1).

Given any positive integer t , we always assume k ≥ 6t + 1 and t0 = �log2 t�.
In Huang and Lyu (2020a), the authors determined ex(n,Fk,t+1) for n = k +
1, . . . , k+4. They also characterized EX(n,Fk,t+1) for n = k+1.Wewill determine
ex(n,Fk,t+1) for n ≥ k + 5 and characterize EX(n,Fk,t+1) for n ≥ k + 2. The rest
of this paper is organized as follows. Section 2 presents our main result Theorem 2.2,
which determines ex(n,Fk,t+1) for n ≥ k + 4+ t0 and characterizes EX(n,Fk,t+1)

for n ≥ k + 5+ t0. Section 3 and Section 4 present the exact values of ex(n,Fk,t+1)

for n = k + 5, . . . , k + 4 + t0 as well as the characterization of EX(n,Fk,t+1) for
n = k + 2, . . . , k + 4 + t0. Section 5 presents the proof of Theorem 2.2.
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Fig. 1 (s, k, t)-transitive tournament

2 Main result

In order to present our main result, we need the following notations and definitions.
For a digraph D = (V,A), we denote by a(D) the size of D. Given an arbitrary
subset X of V , the subgraphs of D induced by X and V\X are denoted by D[X ] and
D − X , respectively. For convenience, if a set X = {x} it will be abbreviated as x .
For i, j ∈ V , if there is an arc from i to j , then we say j is a successor of i , and i is a
predecessor of j . The notation i → j means there is an arc from i to j ; i � j means
there exists no arc from i to j . Given S, T ⊂ V , the notation S → T means there is
an arc from each vertex of S to each vertex of T ; S � T means there is no arc from
S to T . If S = {s}, we write s → T and s � T . Analogously, if T = {t}, we write
S → t and S � t .

A digraph D = (V,A) is said to be transitive if for any three vertices x, y, z ∈ V ,
x → y and y → z indicates x → z. Recall that a tournament is an orientation
of the complete graph. We denote by Tn the transitive tournament with vertex set
{1, 2, . . . , n} and arc set {(i, j) : 1 ≤ i < j ≤ n}.

For a digraph D = (V,A) with V = {v1, v2, . . . , vn}, a blow-up of D is obtained
by replacing every vertex vi with a finite collection of copies of vi , denoted by Vi , so
that (x, y) is an arc for x ∈ Vi and y ∈ Vj if and only if (vi , v j ) ∈ A. Note that each
Vi is an independent set.

Suppose s, k, t are nonnegative integers with t < k. We call a digraph D of order
sk + t an (s, k, t)-transitive tournament if it is a blow-up of Tk obtained by replacing
eachvertex of Tk with a collection of s or s+1 copies.An (s, k, t)-transitive tournament
has the following diagram (Fig. 1)
where each vertex partition Vi contains s or s + 1 vertices and there is an arc from
vertex x to vertex y if and only if x ∈ Vi , y ∈ Vj with i < j . If |V1| = s + 1 the
(s, k, t)-transitive tournament is initial; if |Vk | = s + 1 it is terminal.

In Huang and Lyu (2020a), the authors presented the following result.

Theorem 2.1 Let n, k, t be positive integers with n ≥ 6t + 2 and k ≥ n − 1. Then

ex(n,Fk,t+1) = n(n − 1)

2
,

and D ∈ EX(n,Fk,t+1) if and only if D is a transitive tournament.

They also determined ex(n,Fk,t+1) for k ≥ 6t + 1 and n = k + 2, k + 3, k + 4. Now
we are ready to state our main result.
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Theorem 2.2 Let k, t, t0 be nonegative integers with k ≥ 6t +1 and t0 = �log2 t�. Let
n, s, r be nonnegative integers with n = sk + r and r < k. If n ≥ k + t0 + 4, then

ex(n,Fk,t+1) =
(
n

2

)
−

(
s

2

)
k − sr . (2.1)

Moreover, if n ≥ k + t0 + 5, D ∈ EX(n,Fk,t+1) if and only if D is an (s, k, r)-
transitive tournament.

We will also determine EX(n,Fk,t+1) for n ∈ {k + 2, . . . , k + 4 + t0}, and
ex(n,Fk,t+1) for n ∈ {k + 5, . . . , k + 3 + t0}. For the case k ≤ 6t , our result does
not always hold. We can see the example in Huang et al. (2019), which illustrates
Theorem 2.2 is not true even when t = 1 and k = 3. We leave the cases k ≤ 6t of
Problem 1.2 for future work.

Remark (Huang et al. 2019, Theorem 1) implies Theorem 2.2 holds if t = 1. Hence,
throughout the article we always assume t ≥ 2. In addition, we also assume k ≥ 6t+1
and t0 = �log2 t� if no otherwise statement.

3 ex(n,Fk,t+1) and EX(n,Fk,t+1) for n ≤ k + t0 + 3

For convenience, we always use 〈n〉 = {1, . . . , n} to denote the vertex set of a digraph
D of order n unless otherwise stated. We need the following lemmas.

Lemma 3.1 (Huang et al. 2019) Let n ≥ 3 and p be nonnegative integers, and let D
be a digraph on n vertices. Given q ≥ 0 such that p(n−1)/2+q is a positive integer,
if

a(D − i) ≤ (n − 1)(n − 2)

2
− p(n − 1)

2
− q f or all i ∈ 〈n〉,

then

a(D) ≤ n(n − 1)

2
− p(n + 1)

2
− q − 1. (3.1)

Two distinct cycles are said to be joint if they have a common vertex.

Lemma 3.2 (Huang and Lyu 2020a) Let n, t be positive integers and D be a digraph
of order n. If an m1-cycle and an m2-cycle in D are joint or connected by an arc, then
D is not Fk,t+1-free for all k ≥ t L + 1, where L is the least common multiple of m1
and m2.

Given a digraph D = (V,A), denote by

N+(u) = {x ∈ V|(u, x) ∈ A} and N−(u) = {x ∈ V|(x, u) ∈ A}
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the sets of successors and predecessors of a vertex u. The outdegree and indegree of
u are d+(u) ≡ |N+(u)| and d−(u) ≡ |N−(u)|, respectively. Let d(u) be the number
of arcs incident with a vertex u. Then d(u) = a(D) − a(D − u) and

d(u) =
{
d+(u) + d−(u) − 1, u → u;
d+(u) + d−(u), otherwise.

Lemma 3.3 (Huang and Lyu 2020a) Let D = (V,A) be a digraph of order n and
let t be a positive integer. Suppose v ∈ V is contained in a cycle. If D[N+(v)] or
D[N−(v)] contains a transitive tournament of order t + 2, then D is notFk,t+1-free
for k ≥ 2.

Now we present the main result of this section.

Theorem 3.4 Let n, k, t be positive integers with k ≥ 6t + 1 and let t0 = �log2 t�. If
k + 1 ≤ n ≤ k + t0 + 3, we have

ex(n,Fk,t+1) = n(n − 1)

2
− n + k + 1. (3.2)

Moreover,

(1) If k + 1 ≤ n ≤ k + t0 + 1, D ∈ EX(n,Fk,t+1) if and only if D is a (1, k + 1, n −
k − 1)-transitive tournament;

(2) If n = k + t0 + 2, D ∈ EX(n,Fk,t+1) if and only if D is an initial or a terminal
(1, k + 1, t0 + 1)-transitive tournament;

(3) If n = k+t0+3, D ∈ EX(n,Fk,t+1) if and only if D is a (1, k+1, t0+2)-transitive
tournament both initial and terminal.

Proof We follows the strategy as follows. First we prove (3.2). Then we show that
every digraph H ∈ EX(n,Fk,t+1) has an induced subgraph in EX(n − 1,Fk,t+1),
say H ′. By the induction hypothesis, the structure of H ′ is clear. At last, we add a
vertex to H ′ to get the structure of H . Let D be anFk,t+1-free digraph of order n. We
use induction on the order of D. By Theorem 2.1, Theorem 3.4 holds for n = k + 1.
Assume Theorem 3.4 holds for n = k + 1, k + 2, . . . , k + τ , where 2 ≤ τ ≤ t0 + 2.
Now we consider n = k + τ + 1. It is clear that D − i isFk,t+1-free for each i ∈ V .
By the induction hypothesis a(D− i) ≤ ex(n− 1,Fk,t+1). Applying Lemma 3.1 we
obtain

a(D) ≤ n(n − 1)

2
− τ.

On the other hand, when τ ≤ t0, it is easily seen that all (1, k + 1, τ )-transitive
tournaments areFk,t+1-free with size n(n − 1)/2− τ . When τ = t0 + 1, an initial or
a terminal (1, k+1, τ )-transitive tournament isFk,t+1-free with size n(n−1)/2− τ .
When τ = t0 + 2, a (1, k + 1, τ )-transitive tournament both initial and terminal is
Fk,t+1-free with size n(n − 1)/2 − τ . Thus we get (3.2) and the sufficiency parts of
(1), (2), (3).
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Let D ∈ EX(n,Fk,t+1). By Lemma 3.1 and (3.2), there exists i0 ∈ V(D) such
that

a(D − i0) = (n − 1)(n − 2)

2
− τ + 1.

By the induction hypothesis, D − i0 is a (1, k + 1, τ − 1)-transitive tournament.
Let {i1, . . . , iτ−1} be an arbitrary (τ − 1)-subset of 〈k + 1〉. Denote by

Vi = {i, i + k + 1} for i ∈ {i1, . . . , iτ−1}

and

Vi = {i} for i ∈ 〈k + 1〉 \ {i1, . . . , iτ−1}.

Without loss of generality, we assume that D is a digraph with vertex set

V =
k⋃

i=1

Vi ∪ {i0} = {1, 2, . . . , k + 1, i1 + k + 1, . . . , iτ−1 + k + 1, i0}

such that there is an arc x → y in D − i0 if and only if x ∈ Vi , y ∈ Vj with i < j .
Since d(i0) = n − 2 = k + τ − 1, we have

d+(i0) + d−(i0) ≥ 6t + 1 ≥ 2t + 3 + 2t0.

Then either i0 has t + 2 predecessors in 〈k + 1〉 or it has t + 2 successors in 〈k + 1〉.
By Lemma 3.3, we have i0 � i0 and i0 is not contained in any 2-cycle. Recalling
d(i0) = n − 2, i0 is adjacent with all vertices in V \ {i0} but one, say j0.

Let s′ ∈ 〈k + 1〉 be the largest integer such that s′ → i0 and t ′ ∈ 〈k + 1〉 be the
smallest integer such that i0 → t ′. Here we let s′ = 0 if 〈k + 1〉 � i0 and t ′ = k + 2
if i0 � 〈k + 1〉. By Lemma 3.3, t ′ > s′. If t ′ = s′ + 1, we have the following walk of
length k + 1:

w : 1 → 2 → · · · → s′ → i0 → s′ + 1 → · · · → k + 1.

Note that if s′ = 0, w begins at i0; if t ′ = k + 2, w ends at i0. We obtain wi

from w by deleting i and joining its predecessor to its successor. There exists a set
{u1, u2, . . . , ut+1} ⊂ 〈k〉\{1} such that s′, t ′ /∈ {u1, u2, . . . , ut+1}. It is easily seen
that wu1, . . . , wut+1 are t + 1 distinct walks of length k sharing the same endpoints, a
contradiction. Hence t ′ > s′ + 1. Combining this with d(i0) = n − 2, we obtain

t ′ = s′ + 2 with s′ ∈ {0} ∪ 〈k〉. (3.3)

It follows that j0 = s′ + 1 and

{1, . . . , s′} → n → {t ′, . . . , k + 1}.
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Here s′ = 0 means {1, . . . , s′} is empty and s′ = k means {t ′, . . . , k + 1} is empty.
Note that i0 is adjacent with each vertex of {k + 1 + i1, . . . , k + 1 + iτ−1}. We

assert that for each i ∈ {i1, . . . , iτ−1}, if i → i0 we have k + 1 + i → i0. Otherwise
we assume i0 → k + 1+ i . Replacing the role of i with i + k + 1 we get t ′ �= s′ + 2,
contradicting (3.3). Similarly, if i0 → i we have i0 → k + 1 + i and if i = j0
there is no arc between i0 and i + k + 1. Recalling i0 is adjacent with each vertex
of {k + 1 + i1, . . . , k + 1 + iτ−1}, we get j0 /∈ {i1, . . . , iτ−1}. Therefore, D is a
(1, k + 1, τ )-transitive tournament. Then we leave the following two cases to discuss.

Case 1. τ = t0 + 1. We assert that D is initial or terminal. Otherwise {1, k + 1} �

{ j0, i1 . . . , iτ−1}. There is a k-walk w′ as follows.

1 → 2 → · · · → k + 1.

For each i ∈ { j0, i1 . . . , iτ−1}, we could obtain new k-walks from w′ by replacing i
with k + 1 + i . Note that we may replace j0 with i0. Hence there are 2t0+1 walks of
length k with the same endpoints, a contradiction.

Case 2. τ = t0 + 2. Applying the same arguments as above, we obtain that D is
both initial and terminal. This completes the proof. ��

4 ex(n,Fk,t+1) and EX(n,Fk,t+1) for n = k + t0 + 4

To present the main result of this section, we need the following lemmas.

Lemma 4.1 Let D be a digraph such that D − i0 is a blow-up of Tk+1 with vertex
partition

V \ {i0} =
k+1⋃
i=1

Vi ,

where i0 ∈ V(D). In D − i0 we have x → y for x ∈ Vi , y ∈ Vj if and only if i < j .
If k ≥ t + 2 and D isFk,t+1-free, then Vk+1 � i0 � V1.

Proof Without loss of generality, we assume that i ∈ Vi for i ∈ 〈k+1〉. Suppose there
is x ∈ V1 such that i0 → x , we obtain a walk of length k + 1 as follows.

w : i0 → x → 2 → · · · → k → k + 1.

For each j ∈ 〈k〉 \ {1}, we could obtain a new walk w j of length k from w by deleting
j and joining its predecessor to its successor. Since |〈k〉 \ {1}| ≥ t + 1, there are t + 1
distinct walks of length k with the same endpoints, a contradiction. Hence i0 � V1.
Similarly, Vk+1 � i0. ��

Let k be a positive integer and let α be an arbitrary subset of 〈k〉\{1}. Denote by
H(k, α) the digraph with vertex set

V =
⋃

i∈〈k+1〉
Vi ,
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where Vi = {i, (k + 1) + i} for i ∈ α ∪ {1, k + 1} and Vi = {i} for i ∈ 〈k〉\({1} ∪ α),
such that x → y if and only if x ∈ Vi , y ∈ Vj with i < j . Note that H(k, α) is a
(1, k + 1, |α| + 2)-transitive tournament both initial and terminal.

Now we define several new classes of digraphs. Given i ∈ α ∪ {1, k + 1}, let
Hi (k, α) be the digraph obtained from H(k, α) by adding a vertex 2k+2+ i , the arcs
2k +2+ i → Vj for i < j and the arcs Vj → 2k +2+ i for i > j ; given i ∈ 〈k −2〉,
let Hu(k, i, α) be the digraph obtained from H(k, α) by adding a vertex u, and the
arcs Vj → u for j ≤ i , u → Vj for j ≥ i + 3.

Lemma 4.2 Let k, t, t0 be nonegative integers with t0 = �log2 t�, k ≥ 6t + 1 and
let α be an arbitrary t0-subset of 〈k〉 \ {1}. Let D be an Fk,t+1-free digraph with
D − i0 = H(k, α). If there exist i, j ∈ 〈k + 1〉 with x ∈ Vi , y ∈ Vj such that
x → i0 → y, then j ≥ i + 2.

Proof Suppose there exist x ∈ Vi , y ∈ Vj with j ≤ i + 2 such that x → i0 → y.
Since D is Fk,t+1-free, by Lemma 4.1 we have i ≤ k and j ≥ 2. Without loss of
generality, we let i → i0 → j . If j ≤ i , there is a walk of length k + 2 as follows.

1 → · · · → i → i0 → j → i + 1 → · · · → k + 1.

Note that k ≥ 6t + 1. There are more than 6t − 3 vertices in 〈k〉 \ {1, i, j}. We
could obtain more than t walks from the walk above by deleting any pair of these
vertices and adding two arcs from their predecessors to their successors respectively,
a contradiction. From the above discussion, if i, j ∈ α, we have i + k + 1 → i0,
i0 → j + k + 1.

If j = i + 1, there is a walk of length k + 1 as follows.

1 → · · · → i → i0 → i + 1 → · · · → k + 1.

There are more than t vertices in 〈k〉 \ {1, i, i +1}. We could obtain more than t walks
from the walk above by deleting any one of vertices in 〈k〉 \ {1, i, i + 1} and adding
an arc from its predecessor to its successor, a contradiction. Hence, j ≥ i + 2. ��
The girth of a digraph D with a cycle, denoted by g(D), is the length of its shortest
cycle.

Lemma 4.3 Let D be a digraph of order n ≥ 13. If it has a cycle and

d(i) ≥ n − 2 for i ∈ V,

then g(D) ≤ 4.

Proof If D has a loop, we are done. Hence we always assume D is loopless. To the
contrary suppose g(D) ≥ 5. Assume there is a cycle as follows.

1 → 2 → 3 → 4 → · · · → g(D) → 1.

From the assumption, there is an arc between 1 and one of 3, 4. For the both cases,
we can get shorter cycles, a contradiction. Therefore, g(D) ≤ 4. ��
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Now we solve the case n = k + t0 + 4.

Theorem 4.4 Let n, k, t be positive integers with k ≥ 6t + 1 and let t0 = �log2 t�. If
n = k + t0 + 4, then

ex(n,Fk,t+1) = n(n − 1)

2
− t0 − 4. (4.1)

Moreover,

(1) if t ≥ 2t0−1 × 3, D ∈ EX(n,Fk,t+1) if and only if D is a (1, k, t0 + 4)-transitive
tournament or D ∼= H with H ∈ {Hi (k, α) : i ∈ α ∪ {1, k + 1}} ∪ {Hi0(k, i, α) :
i ∈ 〈k−2〉 and |Vi+1| = |Vi+2| = 1}∪{H(k, α∪{i +1})−(i +k+1, i +k+2) :
i ∈ α and i + 1 ∈ 〈k〉 \ ({1} ∪ α)}, where α is an arbitrary t0-subset of 〈k〉 \ {1};

(2) if t < 2t0−1 × 3, D ∈ EX(n,Fk,t+1) if and only if D is a (1, k, t0 + 4)-transitive
tournament or D ∼= H with H ∈ {Hi (k, α) : i ∈ {1, k + 1}} ∪ {Hi0(k, i, α) : i ∈
〈k − 2〉 and |Vi+1| = |Vi+2| = 1}, where α is an arbitrary t0-subset of 〈k〉 \ {1}.

Proof We follow the strategy as follows. First we prove (4.4). Then we characterise
the extremal digraphs. We distinguish two cases according to the maximum size of
the induced subgraphs of order n − 1. In the first case, there is an induced subgraph
containing ex(n−1,Fk,t+1) arcs. Hence, it is easy to get the structure of the subgraph,
then by adding a vertex we get the extremal digraph. In the other case, there is no
induced subgraph containing ex(n−1,Fk,t+1) arcs. We characterise the structure by
analysing the degrees of vertices.

Let D = (V,A) be an Fk,t+1-free of order n. Combining Theorem 3.4 with
Lemma 3.1 we obtain

a(D) ≤ n(n − 1)

2
− t0 − 3. (4.2)

Suppose equality in (4.2) holds. By Lemma 3.1, there exists i ∈ V such that

a(D − i) ≥ (n − 1)(n − 2)

2
− t0 − 2.

Applying Theorem 3.4 to D− i , it is an initial and terminal (1, k+1, t0+2)-transitive
tournament. Without loss of generality, we assume V(D − i) = H(k, α), where
α ⊂ 〈k〉 \ {1} with |α| = t0.

It is clear that d(i) = n − 2. By Lemma 3.3, i � i . Then by Lemma 4.1, Vk+1 �

i � V1. Hence, i has both predecessors and successors. Let s′ be the largest integer
such that there exists a vertex x ∈ Vs′ with x → i and let t ′ be the smallest integer
such that there exists a vertex y ∈ Vt ′ with i → y. By Lemma 4.2 we get t ′ ≥ s′ + 2.
Recalling that d(i) = n − 2 and i � i , we get t ′ ≤ s′ + 2. Hence t ′ = s′ + 2 and D
is a (1, k + 1, t0 + 3)-transitive tournament. It is clear that D is not Fk,t+1-free.

Therefore, equality in (4.2) does not hold. It follows that

a(D) ≤ n(n − 1)

2
− t0 − 4.
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On the other hand, any (1, k, t0 +4)-transitive tournament isFk,t+1-free and it has
the maximum number of arcs. Hence, (4.1) holds.

Suppose D is a (1, k, t0 + 4)-transitive tournament or D ∼= H with H ∈
{H1(k, α), Hk+1(k, α)}∪ {Hi0(k, i, α) : i ∈ 〈k−2〉 and |Vi+1| = |Vi+2| = 1}, where
α is an arbitrary subset of 〈k〉 \ {1} with |α| = t0. Then a(D) = n(n − 1)/2− t0 − 4.
Moreover, it is easy to check that D is Fk,t+1-free. When t ≥ 2t0−1 × 3, it is clear
that for any t0-subset of 〈k〉 and each i ∈ α, D ∈ Hi (k, α) is Fk,t+1-free and has
n(n − 1)/2 − t0 − 4 arcs. For D ∈ {H(k, α ∪ {i + 1}) − (i + k + 1, i + k + 2) :
i ∈ α and i + 1 ∈ 〈k〉 \ ({1} ∪ α)}, it is clear that D is Fk,t+1-free and it has
n(n − 1)/2 − t0 − 4 arcs. Therefore, D ∈ Ex(n,Fn−4) and we get the sufficiency
part.

Next we prove the necessity part. Let D ∈ Ex(n,Fk,t+1). Note that all subgraphs
of D are Fk,t+1-free. By Theorem 3.4 we have

a(D − i) ≤ (n − 1)(n − 2)

2
− t0 − 2 for all i ∈ V.

We distinguish two cases.
Case 1. There exists i ∈ V such that

a(D − i) = (n − 1)(n − 2)

2
− t0 − 2.

By Theorem 3.4(iii), D − i is an initial and terminal (1, k + 1, t0 + 2)-transitive
tournament. We may assume D − i = H(k, α) with α is a t0-subset of 〈k〉 \ {1}. It is
clear that

d(i) = a(D) − a(D − i) = n − 3. (4.3)

By Lemma 3.3, we have

i � i . (4.4)

By Lemma 4.1, Vk+1 � i � V1. If V � i , we have i → V\V1, which implies
that D ∼= H1(k, α). Similarly, if i � V , we have V\Vk+1 → i . It follows that
D ∼= Hk+1(k, α). Now assume i has both predecessors and successors. Define s′ and
t ′ as before. By (4.3) and (4.4), t ′ ≤ s′ + 3. By Lemma 4.2, t ′ ≥ s′ + 2.

Suppose t ′ = s′ +3. It is clear that s′ ∈ 〈k−2〉. Moreover, |Vs′+1| = |Vs′+2| = 1 as
d+(i) + d−(i) = n − 3. It follows that D = Hi (k, s′, α) with |Vs′+1| = |Vs′+2| = 1
and s′ ∈ 〈k − 2〉. Suppose t ′ = s′ + 2. By (4.3) and (4.4), 1 ≤ |Vs′+1| ≤ 2. If
|Vs′+1| = 1, we can conclude that |Vs′ | + |Vs′+2| ≥ 3. Otherwise, there is a walk of
length k as follows.

1 → · · · → s′ → s′ + 1 → s′ + 2 → · · · → k + 1.

For each j ∈ α, in the above walk we can replace j by k+1+ j to obtain a new walk.
We can also replace s′+1 by i since s′ → i → s′+2. So there are 2t0+1 walks of length
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k from 1 to k + 1, a contradiction. Hence, we get |Vs′ | ≥ 2 or |Vs′+2| ≥ 2. Moreover,
there is a vertex in Vs′ ∪ Vs′+2 not adjacent with i . Without loss of generality, we
assume that |Vs′ | = 2 and s′ +k+1 � i , i.e., D ∼= H(k, α1)− (s′ +k+1, s′ +k+2)
with α1 = α ∪ {s′ + 1} and |Vs′ | = 2. If |Vs′+1| = 2, D is isomorphic to Hs′+1(k, α)

with s′ + 1 ∈ α \ {1}. For the both cases, when t < 2t0−1 × 3, D is not Fk,t+1-free,
a contradiction; when t ≥ 2t0−1 × 3, D isFk,t+1-free and has the maximum number
of arcs.

Case 2. For all i ∈ V , a(D − i) ≤ (n − 1)(n − 2)/2 − t0 − 3. Then

d(i) ≥ n − 2 for all i ∈ V. (4.5)

By Lemma (Huang and Lyu 2020a, Lemma 2.3) we have

d(i) ≤ n for all i ∈ V. (4.6)

Suppose d(i0) = n. If i0 → i0, we get d+(i0) + d−(i0) = k + t0 + 5. Without
loss of generality, we assume d+(i0) ≥ 3t + 3. By Lemma 3.2, i0 is joined with
every vertex by exactly one arc. Moreover, D − i0 contains no cycles of length less
than 5. Combining with Lemma 4.3, D − i0 contains no cycles. It is well known
(West 1996, Lemma 1.4.23) that if each vertex of a diagraph has a successor, then
this digraph contains a cycle. It follows that there is a vertex i1 with no successors
in V \ {i0}. (4.5) indicates i1 has at least n − 3 predecessors in V \ {i0}. Moreover,
|N+(i0) ∩ N−(i1)| ≥ 3t − 1. Then there are more than t walks of length k in the
following form.

i0 → · · · → i0 → x → i1,

where x is any vertex in N+(i0)∩N−(i1). We get a contradiction. Thus i0 � i0. Now
we assume there is i ′0 ∈ V \{i0} such that i0 → i ′0 → i0. Adopting the same technique
as above, we can get a contradiction. Therefore, we obtain

d(i) ≤ n − 1 for all i ∈ V. (4.7)

We assert that D is loopless. Otherwise, we let i0 → i0. By (4.5), d+(i0)+d−(i0) ≥
k + t0 + 3. Without loss of generality, we let d+(i0) ≥ 3t + 2. By Lemma 3.2,
each successor of i0 except itself cannot be contained in any 2-cycle or loop. Then
each vertex in N+(i0) is incident with more than d+(i0) − 2 arcs in D[N+(i0)]. By
Lemma 4.3 and Lemma 3.2, D[N+(i0)] has only one cycle: i0 → i0. Then there is
a vertex, say i1, with no successors in N+(i0). Moreover, |N+(i0) ∩ N−(i1)| ≥ 3t .
Then there are more than t walks of length k in the following form.

i0 → · · · → i0 → x → i1,

where x is any vertex in N+(i0)∩N−(i1).Weget a contradictionwith D isFk,t+1-free.
Hence, D has no loop. Similarly, D has no 2-cycles.
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Let

V1 = {i ∈ V : d(i) = n − 1} and V2 = {i ∈ V : d(i) = n − 2}.

Recalling (4.5) and (4.7), V = V1 ∪ V2. From (4.1) we have |V1| = k − t0 − 4 and
|V2| = 2t0+8. It is clear D[V1] is a tournament. Suppose D[V1] has a cycle. By (Huang
and Lyu 2020a, Lemma 2.2), D[V1] has a 3-cycle, say, a → b → c → a. Without
loss of generality, we assume N+

D[V1](a) ≥ t + 2. By Lemma 3.3, D[N+
D[V1](a)]

contains a cycle. Moreover, D[N+
D[V1](a)] has a 3-cycle. By Lemma 3.2, D[V1] is not

Fk,t+1-free, a contradiction. Thus D[V1] is a transitive tournament. For simplicity,
we let k1 = k − t0 − 4. Without loss of generality, let V1 = 〈k1〉 and

D[V1] = Tk1 . (4.8)

Moreover, Lemma 3.3 implies the following claim.

Claim 1 D contains no cycles.

WepartitionV2 intoW1,W2, . . . ,Wt0+4 such that eachWi consisting of twovertices
of V2 which are not adjacent, say xi and yi . Given i ∈ V2, let si ∈ 〈k1〉 be the largest
integer such that si → i and ti ∈ 〈k1〉 be the smallest integer such that i → ti . Here if
i � 〈k1〉 let si = 0 and if 〈k1〉 � i let ti = k1 + 1. For each i ∈ V2, it is joined with
each vertex of 〈k1〉 by exactly one arc. By Claim 1 we have

ti = si + 1 for all i ∈ V2, (4.9)

which implies

{1, . . . , si } → i → {si + 1, . . . , k1}. (4.10)

Moreover, for i, j ∈ V2,

if i → j, then si ≤ s j . (4.11)

Given anyα ⊂ V2, there are n(α) distinct neighborhoods in 〈k1〉 for the vertices inα.

We partitionα into
n(α)⋃
i=1

Ui (α) such that for each pair j, l, s j = sl if and only if j, l ∈ Ui

with i ∈ n(α). We abbreviate Ui (α) as Ui if no confusion arises. Define s(Ui ) = s j
with j ∈ Ui for i = 1, . . . , n(α).Wemay assume s(U1) < s(U2) < · · · < s(Un(α)). α
is said to be insertable if D[Ui ] contains a path of length |Ui |−1 for i ∈ {1, . . . , n(α)}.
There is a path of length k1 − 1 as follows.

p : 1 → 2 → · · · → k1.
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If α ⊆ V2 is insertable, we can obtain a new walk by inserting the vertices of α into
p following the strategy below.

1 → · · · → s(U1)
P1−→ s(U1) + 1 → · · · → s(Un(α))

Pn(α)−−−→ s(Un(α)) + 1 → · · · → k1,

where Pi is the path made up of all vertices ofUi . Note that if s(U1) = 0, P1 precedes
1; and if s(Un(α)) = k1, k1 precedes Pn(α) and the new path ends at Pn(α). Hence, we
could obtain a new path of length k1 − 1 + |α| from inserting vertices of α into p. In
the remainder of this proof, our discussion is based on this fact: every tournament has
a path containing all its vertices (Harary and Moser 1966, Theorem 4).

Claim 2 sxi = syi for i ∈ {1, . . . , t0 + 4}.
Otherwise, there is b ∈ {1, . . . , t0 + 4} such that sxb < syb . Let

α1 = {yb} ∪ {xi : i ∈ 〈t0 + 4〉}.

It is clear that if D[Ui ] is a transitive tournament for i = 1, . . . , n(α), then α1 is
insertable. Without loss of generality, we assume xb ∈ Uj1 and yd ∈ Uj2 with j1 < j2.

Suppose for any distinct pair {i, j} ⊆ 〈t0 + 4〉 \ {b}, Wi → Wj or Wj → Wi . We
obtain a walkw of length k by inserting the vertices of α1 into p. Assume x is its initial
vertex and y its terminal vertex. Without loss of generality, we assume x ∈ Wc and
y ∈ Wd with b, c, d three distinct integers. Let β = 〈t0+4〉\{b, c, d}. For each i ∈ β,
we have two choices, i.e., we can replace xi with yi in α1 to obtain a new insertable
set. Then there are 2t0+1 walks of length k with initial vertex x and terminal vertex y,
a contradiction.

Now assume without loss of generality there are c, d ∈ 〈t0 + 4〉 \ {b} such that
xc → xd → yc. Let

α = {yb, yc} ∪ {xi : i ∈ 〈t0 + 4〉}.

If sxc �= syc , then D[Ui ] is a tournament for i = 1, . . . , n(α). It follows that α is
insertable, so there is awalk of length k+1obtainedby insertingα into p.Wecanobtain
a newwalk of length k by deleting any vertex in 〈k1〉\{1, k1, sxb +1,min(sxc , syc )+1}
and joining its predecessor to its successor. There are more than t walks of length k
with the same endpoints, a contradiction. Now we assume sxc = syc . Then there is
j ∈ {1, 2, . . . , n(α)} such that xc, xd , yc are contained in Uj . By Claim 1, we can
partitionUj \ {xc, xd , yc} into N+

Uj
(yc), N

+
Uj

(xd) ∩ N−
Uj

(yc), N
+
Uj

(xc) ∩ N−
Uj

(xd) and

N−
Uj

(xc), where N+
V (x) (N−

V (x)) denotes the set of successors (predecessors) of x
in the vertex set V . The vertices of each set make up a path. Then there is a path
containing all vertices in Uj . Moreover, α is insertable.

By inserting α into p, we can obtain a walkw1 of length k+1 with the initial vertex
x and the terminal vertex y. Then new walks of length k with the same endpoints x, y
could be obtained from w1 by deleting any vertex of {2, . . . , k1 − 1} \ {sxb + 1} and
joining its predecessor to its successor. Note t ≥ 2. Then there are more than t walks
of length k with the same endpoints, a contradiction. Hence, we get Claim 2.
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Claim 3 For distinct pair i, j ∈ 〈t0 + 4〉, either Wi → Wj or Wj → Wi .

Recalling (4.11), it is sufficient to consider the case sxi = sx j . Suppose there are
c, d ∈ 〈t0 + 4〉 such that xc → xd → yc. If yd → xc, we let

α = {yc, yd} ∪ {xi : i ∈ 〈t0 + 4〉}.

Applying the same analysis as in the proof of Claim 2, α is insertable. Then we can
obtain a walk of length k + 1 with endpoints x, y by inserting α into p, say, w1. We
obtain walks of length k with endpoints x, y from the above walk by deleting one of
vertex of 〈k1〉\{1, k1} and joining its predecessor to its successor. Then there are more
than t walks of length k with the same endpoints, a contradiction. If xd → yd , using
the same analysis we get a contradiction.

Now assume xc → yd → yc. Without loss of generality, we assume x j ∈ Wj and
xl ∈ Wl such that x j has no predecessor in V2 and xl has no successor in V2. We let

α = Wc ∪ {x j , xl} ∪ {zi : i ∈ 〈t0 + 4〉 \ {c, j, l}},

where zi ∈ Wi for i ∈ 〈t0 + 4〉. It is clear that α is insertable.
By inserting α into w we obtain walks of length k with the same endpoints. For

i ∈ 〈t0+4〉\{c, j, l}, we have two choices for zi . Then there are 2t0+1 walks of length
k with the same endpoints, a contradiction. Therefore, we get Claim 3.

Combining with (4.8), (4.10), (4.11), Claim 2 and Claim 3, D is a (1, k, t0 + 4)-
transitive tournament. This completes the proof. ��

5 Proof of theorem 2.2

In this section, we give the proof of Theorem 2.2.

Proof of theorem 2.2 To complete the proof, we follow the strategy as follows. First
we prove (2.1). The sufficiency of the second part is clear. It is sufficient to prove the
necessity. Next we show that Theorem 2.2 holds for n = k + t0 + 5 (Claim 1). Taking
this fact as the inductional base, we use induction to complete the proof.

We first use induction on n to prove (2.1). By Theorem 4.4 we know (2.1) holds for
n = k + 4+ t0. Assume (2.1) holds for n = k + 5+ t0, . . . , sk + r , where 0 ≤ r < k
and s > 0 are integers. Now consider the case n = sk + r + 1. Let u, v be integers
such that v < k and n = uk + v. Then u = s, v = r + 1 when r < k − 1, and
u = s + 1, v = 0 when r = k − 1.

Given anyFk,t+1-free digraph D of order n. For any i ∈ V , since the digraph D− i
isFk,t+1-free, by the induction hypothesis we have

a(D − i) ≤ ex(n − 1,Fk)

=
(
n − 1

2

)
−

(
s

2

)
k − sr

= (n − 1)(n − 2)

2
− (s − 1)(n − 1)

2
− (s + 1)r

2
. (5.1)
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Applying Lemma 3.1 we have

a(D) ≤ n(n − 1)

2
− (s − 1)(n − 1)

2
− (s + 1)r

2
− s

= n(n − 1)

2
− (s − 1)n

2
− (s + 1)(r + 1)

2

= n(n − 1)

2
− (u − 1)n

2
− (u + 1)v

2
.

Hence,

ex(n,Fk) ≤ n(n − 1)

2
− (u − 1)n

2
− (u + 1)v

2
.

On the other hand, if D is a (u, k, v)-transitive tournament, then D is Fk,t+1-free
since it has no walk of length k. Moreover, the size of D is

a(D) = n(n − 1)

2
− (u − 1)n

2
− (u + 1)v

2
.

Hence, (2.1) holds.
Now we prove the second part. It is sufficient to prove the necessity since the

sufficiency is clear. Next we prove that Theorem 2.2 holds for n = k + t0 + 5 ��
Claim 1 The second part of Theorem 2.2 holds when n = k + t0 + 5.

Let D ∈ EX(k + t0 + 5,Fk,t ). By (2.1), we have

d(i) ≥ n − 2 for all i ∈ V. (5.2)

By Lemma 3.1, there exists some i0 such that

a(D − i0) = (n − 1)(n − 2)

2
− t0 − 4.

According to Theorem 4.4 we distinguish four cases.
Case 1. D− i0 ∼= Hi (k, α), where α is a t0-subset of 〈k〉\{1} and i ∈ α∪{1, k+1}.

Without loss of generality, we let D−i0 = Hi (k, α), where α is a t0-subset of 〈k〉\{1}.
By (5.2) we get i ↔ i0 and i + k + 1 ↔ i0. By Lemma 3.2, D is not Fk,t+1-free, a
contradiction.

Case 2. D − i0 ∼= Hu(k, i, α) with α is a t0-subset of 〈k〉 \ {1}, i ∈ 〈k − 2〉 and
|Vi+1| = |Vi+2| = 1. Without loss of generality, we assume D − i0 = Hu(k, i, α).
Since u is incident with n − 4 arcs in D − i0. Combining with (5.2), we obtain

u → i0 → u. (5.3)

Since two 2-cycles cannot be joint, there is at most one arc between i0 and 1. It
follows that d(1) ≤ n − 2. Recalling (5.2), we obtain d(1) = n − 2, which implies
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D − 1 ∈ EX(k + t0 + 4,Fk,t+1). From Theorem 4.4 D − 1 contains no cycle, which
contradicts (5.3).

Case 3. D− i0 ∼= H(k, α ∪ {i + 1})− (i + k + 1, i + k + 2), where α is a t0-subset
of 〈k〉 \ {1}, i ∈ α and i + 1 ∈ 〈k〉 \ ({1} ∪ α). Without loss of generality, we let
D − i0 = H(k, α ∪ {i + 1}) − (i + k + 1, i + k + 2). Applying the same arguments
as in Case 2 we can get a contradiction.

Case4. D−i0 is a (1, k, t0+4)-transitive tournament.Givenα = { j1, j2, . . . , jt0+4} ⊂
〈k〉, denote by

Vi = {i, i + k} for i ∈ α, Vi = {i} for i ∈ 〈k〉\α.

Without loss of generality, we let D be a digraph with vertex set

V =
k⋃

i=1

Vi ∪ {i0}

such that there is an arc (x, y) in D − i0 if and only if x ∈ Vi , y ∈ Vj with i < j . It
is clear that

d(i0) = a(D) − a(D − i0) = n − 2. (5.4)

Now we assert that

i0 � i0. (5.5)

Otherwise, i0 → i0. By (5.4), d+(i0)+d−(i0) = k+ t0 +4 ≥ 6t +5. Without loss of
generality, we assume i0 has at least 3t successors in V\({i0} ∪ Vk). For each vertex
i ∈ N+(i0)\({i0} ∪ Vk), there is a walk of length k with the initial vertex i0 and the
terminal vertex k in the following form.

· · · → i0 → i0 → i → k.

We get a contradiction. Thus, (5.5) holds.
Let s′ ∈ 〈k〉 be the largest integer such that there is a vertex x ∈ Vs′ with x → i0

and let t ′ ∈ 〈k〉 be the smallest integer such that there is a vertex y ∈ Vt ′ with i0 → y.
Here we let s′ = 0 if V � i0 and let t ′ = k + 1 if i0 � V . Without loss of generality,
we let s′ → i0 and i0 → t ′.

We assert that t ′ = s′ +2. By (5.4) and (5.5), we obtain t ′ ≤ s′ +2. To the contrary
suppose t ′ ≤ s′ + 1. If s′ = 0, we get t ′ = 1, i.e., i0 → 1. Then there is a walk of
length k as follows.

i0 → 1 → 2 → · · · → k.

For each i ∈ α\{1, k}, we can replace i with i + k in the above walk to obtain a new
one. Hence, there are at least 2t0+2 walks from i0 to k with length k, a contradiction.
If s′ = k, applying the same arguments as above, we get a contradiction.
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Now we assume s′ ∈ {1, . . . , k − 1}. If t ′ = s′ + 1, there is a walk of length k as
follows.

1 → 2 → · · · → s′ → i0 → s′ + 1 → · · · → k.

Recalling (5.4) and (5.5), either Vs′ → i0 or i0 → Vt ′ . Without loss of generality, we
assume Vs′ → i0. For each i ∈ α\{1, s′ +1, k}, we can replace i with i +k in the walk
above. Hence, there are at least 2t0+1 walks from 1 to k with length k, a contradiction.

Now we assume t ′ ≤ s′. Then there is a walk of length k + 1 as follows.

1 → 2 → · · · → s′ → i0 → t ′ → s′ + 1 → · · · → k.

For each i ∈ 〈k〉 \ {1, s′, t ′, k}, we can obtain a walk from the above walk by deleting
i and joining its predecessor to its successor. Since k ≥ 6t + 1, we have |〈k〉 \
{1, s′, t ′, k}| ≥ t + 1. Then there are more than t walks of length k with the same
endpoints, a contradiction.

Therefore, we obtain t ′ = s′ + 2. It follows that Vi → i0 for i ≤ s′ and i0 → Vi
for i ≥ s′ + 2, where s′ ∈ 〈k − 1〉. Moreover, |Vs′+1| = 1. Hence, we get D is a
(1, k, t0 + 5)-transitive tournament. We get Claim 1.

We use induction on n to prove the second part of Theorem 2.2. Assume for n ≤
sk + r and 0 ≤ r < k, D ∈ EX(n,Fk,t+1) if and only if D is a (s, k, r)-transitive
tournament. Now consider the case n = sk + r + 1. Let u, v be integers such that
v < k and n = uk + v. Then u = s, v = r + 1 when t < k − 1, and u = s + 1, v = 0
when r = k − 1.

Suppose D ∈ Ex(u, k, v). Applying Lemma 3.1 to D, by (2.1) we know there is
some i0 ∈ V such that equality in (5.1) holds. By the induction hypothesis we may
assume D − i0 is an (s, k, r)-transitive tournament.

Let { j1, . . . , jr } be an arbitrary r -subset of {1, . . . , k}. Denote by

Vi = {i, k + i, . . . , (s − 1)k + i, sk + i} for i ∈ { j1, . . . , jr }

and

Vi = {i, k + i, . . . , (s − 1)k + i} for i ∈ {1, . . . , k}\{ j1, . . . , jr }.

Without loss of generality, we let D be a digraph with vertex set

V =
k⋃

i=1

Vi ∪ {i0}

such that there is an arc (x, y) in D − i0 if and only if x ∈ Vi , y ∈ Vj with i < j .
Applying the same arguments as in Case 4 of Claim 1, we obtain D is a (u, k, v)-

transitive tournament. This completes the proof. �
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