
Journal of Combinatorial Optimization (2022) 43:1655–1670
https://doi.org/10.1007/s10878-021-00717-1

Fast algorithms for maximizing monotone nonsubmodular
functions

Bin Liu1 ·Miaomiao Hu1

Accepted: 22 February 2021 / Published online: 11 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In recent years, with the more and more researchers studying the problem of maximiz-
ing monotone (nonsubmodular) objective functions, the approximation algorithms for
this problem have gotten much progress by using some interesting techniques. In this
paper, we develop the approximation algorithms for maximizing a monotone function
f with generic submodularity ratio γ subject to certain constraints. Our first result is
a simple algorithm that gives a (1 − e−γ − ε)-approximation for a cardinality con-
straint using O( n

ε
log n

ε
) queries to the function value oracle. The second result is a new

variant of the continuous greedy algorithm for a matroid constraint. We combine the
variant of continuous greedy method with the contention resolution schemes to find
a solution with approximation ratio (γ 2(1 − 1

e )
2 − O(ε)), and the algorithm makes

O(rnε−4log2 n
ε
) queries to the function value oracle.

Keywords Nonsubmodular Function · Cardinality constraint · Matroid constraint ·
Approximation algorithm

1 Introduction

Given a ground set N = {1, 2, ..., n}, we say a set function f : 2N → R is nonnegative
if f (S) ≥ 0 for any S ⊆ N . The function f is monotone if f (S) ≤ f (T ) whenever
S ⊆ T , and f is normalized if f (∅) = 0. What’s more, the function f is called
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submodular if f (S ∪ { j}) − f (S) ≥ f (T ∪ { j}) − f (T ) for any S ⊆ T ⊆ N ,
j ∈ N \ T . That is, the marginal contribution of any element j to the value of the
function f (S) diminishes as the input set S increases. Without loss of generality,
we denote by fS(T ) = f (S ∪ T ) − f (S) the marginal gain of the set T in S for
any pair of S, T ⊆ N . Specially, for any S ⊆ N and any j ∈ N , we denote by
fS( j) = f (S ∪ { j}) − f (S) the marginal gain of the singleton set { j} in S. In the
following we always assume f is nomalized and nonnegative, and there is a value
oracle for the objective function f .

In recent years, the theory of submodular optimization hasmore andmore extensive
applications, such as machine learning and computer vision. Therefore, researchers
paid more attention to the ways to solve these problems. In fact, submodular maxi-
mization problems capture well known combinatorial optimization problems such as
cut functions of graphs and hypergraphs, rank functions of matroids, entropy, mutual
information, coverage functions, budget additive functions and the welfare functions,
etc. The reason why the submodular function maximization problems be applied so
extensively is that the submodular functions have a good property called diminishing
marginal returns. Although the submodular functions have some good properties and
important applications, many objective functions in practical problems are not sub-
modular. Therefore, it is necessary to study the nonsubmodular functionmaximization
problem.

The problems of maximizing a submodular or nonsubmodular function under the
combinatorial constraints are proved to be generally NP-hard. Thus we turn to find
approximation algorithms to solve these problems. Researchers are devoted to find a
better approximation ratio andmeanwhilewith fewer time complexity or fewer queries
to the function value oracle.

The common types of submodular maximization problems conclude the submod-
ular function maximization problems under the cardinality constraint or under the
matroid constraint. There are lots of results in this area, and the greedy approach is
a basic technique for these problems. For example, the greedy algorithm for solving
the submodular maximization problem under a cardinality constraint can be divided
into three steps successively: firstly start from an empty set; then iteratively add to
the current solution set one element that results in the largest marginal gain of the
objective function while satisfying the constraints; finally return the solution set of
the last step. Also, there are several variations of the greedy approach for different
focuses, such as streaming algorithms, parallel algorithms, etc.

1.1 Cardinality constraint

Submodular maximization problems with a cardinality constraint conclude two nor-
mally settings, monotone and non-monotone. There are lots of results for submodular
maximization under a cardinality constraint. In the following, we will give a brief
summary on this constraint.

For the case of monotone, in 1978, Nemhauser et al. (1978) found that the greedy
approach is highly effective and it yields a (1− 1

e )-approximation. AndNemhauser and
Wolsey (1978) showed that (1 − 1

e ) is the best approximation guarantee. Afterwards,
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Conforti and Cornuéjols (1984) introduced the total curvature α = 1 − min
S, j /∈S

fS( j)
f∅( j)

and proved that the greedy approach can achieve a 1
α
(1 − e−α)-approximation under

a cardinality constraint. Recently Sviridenko, Sviridenko et al. (2017) showed a
new ratio of (1 − α

e ). Later, researchers paid attention to reduce the query times
of the value oracle, and meanwhile it maintains the best approximation guarantee.
Badanidiyuru and Vondrák (2014) proposed a simple algorithm which gave a (1− 1

e )-
approximation for a cardinality constraint using O( n

ε
log n

ε
) queries to the function

oracle. Mirzasoleiman et al. (2015) proposed a randomized algorithm which can
achieve a (1 − 1

e )-approximation guarantee in expectation, and in time linear in
the size of the data and independent of the cardinality constraint. In recent years,
Mirzasoleiman et al. (2013) proposed a distributed algorithm which can achieve
(1 − 1

e )-approximation and the model can be implemented in MapReduce. In addi-
tion, due to the rapid increase in dataset sizes, parallel computing has received much
interest. Balkanski and Singer (2018) firstly prpoposed the adaptive algorithms to
achieve a (1/3− ε)-approximation with adaptivity O(log n). Later, it is improved to a
(1 − 1

e − ε)-approximation with adaptivity O(log n/ε2) Balkanski et al. (2019), Ene
and Nguyen (2019). More recently, Breuer et al. (2020) improved the the adaptivity to
O(log n(log2 log k

ε
)/ε2) and meanwhile maintaining the optimal approximation ratio.

For the case of non-monotone, Feige et al. (2011) firstly gave a deterministic local-
search 1

3 -approximation and a randomized 2
5 -approximation algorithm formaximizing

submodular functions in unconstraint setting. Later, Buchbinder and Feldman (2019)
presented a randomized algorithm for optimizing the multilinear relaxation whose
guarantee is 0.385. Afterwards, Buchbinder and Feldman (2018) applied the standard
derandomization techniques to obtain a deterministic algorithm with an approxima-
tion ratio of 1

e . There also have some fast algorithms in order to deal with the big
data. Fahrbach et al. (2019) proposed a distributed algorithm for maximizing a non-
monotone submodular function subject to a cardinality constraint k that achieves
an expected (0.039 − ε)-approximation in O(

log n
ε

) adaptive rounds using O(
n log k

ε2
)

expected queries to the function oracle. What’s more, Gotovos et al. (2015) presented
an adaptive random greedy algorithm for the problem, achieving 1

e -approximation.
Later, Balkanski et al. (2018) showed that there is an algorithm whose approximation
is arbitrarily close to 1

2e in O(log2 n) adaptive rounds.
The unprecedented growth of data streams and the limited storage require that

extract useful information frommassive data.A recent line ofwork focusedon studying
streaming algorithms.Badanidiyuru et al. (2014) presented the first one-pass streaming
algorithmwhose the approximation ratio achieved ( 12 −ε) for maximizing amonotone
submodular function with the cardinality constraint k. Feldman et al. (2020) proved
that ( 12 −ε) is the best possible in a streaming set. Later, Kazemi et al. (2019) improved

thememory complexity from O(k log k
ε

) to O( k
ε
)with the same approximation ratio and

one-pass. For the non-monotone case, Alaluf et al. (2020) proposed the StreamProcess
algorithm to achieve 0.2779 approximation ratio with one-pass.
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1.2 Matroid constraint

For the submodular maximization problems under the matroid constraint, researchers
usually use the continuous greedy algorithms to solve it. Generally speaking, the
continuous greedy algorithm returns a fractional solution, and we need some rounding
techniques to convert the fractional solution to an integer one. There are many useful
rounding methods which conclude the swap rounding technique Badanidiyuru and
Vondrák (2014), the pipage rounding technique Ageev and Sviridenko (2004) and the
CR schemes rounding techniqueChekuri et al. (2011). When we use these rounding
methods to rounding a fractional solution, there also have an approximation ratio
between the integer solution and the fractional one. Therefore we should consider the
two parts of the approximation ratio of the process when we deal with the submodular
function maximization problems under the matroid constraint.

Nemhauser et al. (1978) firstly proved that when f is monotone and submodular,
the greedy approach yield a 1

2 -approximation for a matroid constraint. Then Calinescu
et al. (2007) enhanced the result to the optimal ratio 1 − 1

e . After introducing the
total curvature α, Conforti and Cornuéjols (1984) showed that the greedy appproach
can achieve a 1

α
(1 − e−α)-approximation under a uniform matroid constraint and

1
1+α

-approximation under a general matroid constraint. Recently, Sviridenko et al.
(2017) designed new approximation algorithms for a single matroid constraint which
obtained (1 − α

e )-approximation, and it was the first improvement over the results
of Conforti and Cornuéjols (1984) from 1984. Besides, it’s worth noting that the
continuous greedy algorithm is a basic approach under the matroid constraints. In
the previous research, Badanidiyuru and Vondrák (2014) proposed an accelerated
continuous greedy algorithmunder amatroid constraint using themultilinear extension
and swap rounding, and finally they achieved a (1 − 1

e − ε)-approximation. Vondrák
(2010) showed that there is a 1

α
(1− e−α)-approximation algorithm for any monotone

submodular function with the curvature α and under a matroid constraint, achieving
by the continuous greedy approach and the pipage rounding technique. The pipage
rounding and the swap rounding technique are effective methods, but it depends on
the submodularity of the objective function. In addition, Chekuri et al. (2011) firstly
proposed the contention resolution schemes (CR schemes), another framework for
rounding a fractional solution to an integer one, and achieved a (1− 1

e )-approximation
for the rounding process.

In this paper, we deal with the following two optimization problems:

Problem (1) : max{ f (S) : |S| ≤ k, S ⊆ N }
Problem (2) : max{ f (S) : S ∈ I, S ⊆ N }

where f : 2N → R+ is a monotone (nonsubmodular) function, k is a positive integer,
and (N , I) is a matroid.

123



Journal of Combinatorial Optimization (2022) 43:1655–1670 1659

1.3 Submodularity ratio

Though lots of results obtained for maximizing a submodular function subject to
different constraints, there are only a few results for nonsubmodular functions.

In order to use known results or methods for maximizing submodular functions, we
can define someparameters, such as submodularity ratio, to dealwith themaximazition
of nonsubmodular functions. Das and David (2011) firstly defined the submodularity

ratio γ̂ = minS,T⊆N

∑
j∈T \S fS( j)
fS(T )

, which describes how close a function is to being
submodular. Later, Elenberg et al. (2018) gave the definition of weak submodular-
ity ratio. A monotone non-negative set function f : 2N → R+ is called γ f -weakly

submodular for an integer k if γ f ≤ γk = min
S,T⊂N :|T |,|T \S|≤k

∑
j∈T \S fT ( j)
fT (S)

. Recently,

Kuhnle et al. (2018) and Nong et al. (2020) independently proposed the generic sub-
modularity ratio (or diminishing-return ratio) which is the largest scalar γ that satisfies
fS( j) ≥ γ fT ( j), for any S ⊆ T ⊆ N . We should note that all these parameters are
not equivalent, although each of them measures how close a set function to being
submodular.

For a cardinality constraint, Bian et al. (2017) proved that the greedy approach gives
a 1

α
(1 − e−αγ̂ )-approximation for maximizing a monotone nonsubmodular function

with the curvatureα. Then,Kohara et al. (2020) apllied the algorithm to solve the sensor
placement problem. Afterwards, Nong et al. (2020) showed that the greedy algorithm
can achieve a (1 − e−γ )-approximation for maximizing a strictly monotone nonsub-
modular function, and the queries of the function value oracle is O(kn). Recently,
Santiago and Yoshida (2020) proved that there existed an efficient randomized greedy

algorithm which has an approximation ratio of at least γ f e
− 1

γ f on expectation for
the problem of maximizing a non-monotone γ f -weakly submodular function. On the
data streaming summarization, Wang et al. (2019) designed sieve-streaming algo-
rithm which can achieve a 1− 1

2γ −ε
approximation ratio for maximizing a monotone

nonsubmmodular function. Further more, Li et al. (2020) proposed sieve-streaming++
algorithm to reach a min{ (1−ε)γ

2γ , 1− 1
2γ } approximation ratio for maximizing a mono-

tone non-submmodular function.
For knapsack constraints, Nong et al. (2020) showed that the greedy algorithm can

achieve (1−e−γ ) approximation formaximizating a strictlymonotone nonsubmodular
function under a knapsack constraint. Later, Zhang et al. (2019) proved that the greedy
algorithm gives a tight approximation guarantee of 1

α
(1 − e−αγ̂ ) for maximizing a

monotone nonsubmodular function with the carvature α under a knapsack constraint.
On the data streaming summarization, for maximizing a monotone nonsubmodular
function with d-knapsack constraints, Jiang et al. (2019) gave an algorithm whose

approximation ratio is, min{ γ 2

d ( d
1+d )γ (1 − β)(1 − ε), 1 − ( d

1+d )γ } when β < 0.5;

and min{ γ 3

2d ( d
1+d )γ (1 − ε), 1 − ( d

1+d )γ } when β ≥ 0.5.
For matroid constraints, Nong et al. (2020) showed that the greedy algorithm can

achieve a γ
1+γ

-approximation for maximizing a strictly monotone nonsubmodular
function under a matroid constraint. The queries of the function value oracle of this
algorithm is O(n2). Afterwards,Gong et al. (2019) combined the continuous greedy
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Table 1 Overview of previous results

Setting Constraint Approximation ratio Query complexity

Submodular Cardinality 1 − 1
e O(kn)Nemhauser et al. (1978)

Matroid 1 − 1
eCalinescu et al. (2007) –

Nonsubmodular Cardinality 1 − e−γ O(kn)Nong et al. (2020)

Matroid γ
1+γ

O(n2)Nong et al. (2020)

Matroid γ (1 − 1
e )(1 − e−γ ) O(n2r2)Gong et al. (2019)

Knapsack 1 − e−γ Nong et al. (2020) –

Knapsack 1
α (1 − e−αγ̂ )Zhang et al. (2019) –

Table 2 Results in this paper Constraint Approximation ratio Query complexity

Cardinality 1 − e−γ O( nε log
n
ε )

Matroid γ 2(1 − 1
e )2 O( rn

ε4
log2 n

ε )

algorithm and the contention resolution schemes to achieve a γ (1 − e−1)(1 − e−γ −
O(1))-approximation.

The results mentioned above are listed in Table 1. In this paper, we will use the
generic submodularity ratio of the objective function, and we give an overview of the
results of this paper in Table 2. For nonsubmodular functions optimization, there are
other research efforts in application-driving, such as supermodular-degree Feldman
and Izsak (2014),Feige and Izsak (2013), difference of submodular functions Iyer and
Bilmes (2012),Narasimhan andBilmes (2005),Wuet al. (2019), and discrete difference
of convex functions Maehara and Murota (2015),Wu et al. (2018).

1.4 Our result

In this paper, our main contribution is to develop algorithms that have both theoret-
ical approximation guarantees, and fewer queries of the function value oracle. We
use the simple decreasing threshold algorithm to solve the problem of maximizing
a nonsubmodular function under a cardinality constraint. The following Theorem 1
implies the result in Badanidiyuru and Vondrák (2014) for submodular functions (the
case that γ = 1 in Theorem 1). Besides, we use the continuous greedy approach and
the contention resolution schemes to resolve the nonsubmodular maximizing problem
under a matroid constraint. In Theorem 2, we improve the query times of a former
result in Nong et al. (2020), from O(n2) to O(rnε−4log2 n

ε
). Formally, we obtain the

following two theorems.

Theorem 1 For the problem of maximizing a monotone function with the generic
submodularity ratio γ subject to a cardinality constraint, there exists a (1−e−γ −ε)-
approximation algorithm, using O( n

ε
log n

ε
) queries to the function oracle.
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Theorem 2 For the problem of maximizing a monotone function with the generic
submodularity ratio γ subject to amatroid constraint, there is a (γ 2(1−e−1)2−O(ε))-
approximation algorithm, using O(rnε−4log2 n

ε
) queries to the function oracle.

2 Preliminary

In this section, we propose some definitions and properties that we will use in the
following of the paper.

Definition 1 (TheMultilinear Extension Gong et al. (2019)) Given an increasing func-
tion f : 2N → R+, a function F : [0, 1]N → R+ is the multilinear extension of f
if

F(x) = ER←R(x)[ f (R)] =
∑

R⊆N

f (R) · Pr [R(x) = R],

where Pr [R(x) = R] = ∏
u∈R xu · ∏

v /∈R(1 − xv), and R(x) is a random set where
element i appears independently with probability xi .

Let f : 2N → R+ be an increasing function with generic submodularity ratio γ

andmultilinear extension F . For a settled vector x ∈ [0, 1]N , the multilinear extension
has some useful properties:

(a) ∂F
∂xi

= E[ fR\{i}(i)];
(b) ∂2F

∂x j ∂xi
= E[ fR∪{ j}\{i}(i) − fR\{i, j}(i)];

(c) | ∂2F
∂x j ∂xi

| ≤ 1
γ
max
u∈N f (u).

Definition 2 (Matroid Edmonds (2003)) Given a ground set N , a pair (N , I) is called
independent system if I ⊆ 2N is satisfied that for any set T ∈ (N , I), every set
S ⊆ T is also in I. If an independent system satisfied for every two set S, T ∈ I,
s.t. |S| < |T |, there is an element e ∈ T \ S, s.t. S ∪ {e} ∈ I. Then the independent
system be a matroid, and this is the augmentation property of a matroid. That is :

AmatroidM = (N , I) can be defined as a finite N and a nonempty family I ⊂ 2N

such that:

(i) S ⊂ T , T ∈ I, then S ∈ I;
(ii) S, T ∈ I, |S| ≤ |T |, then there is an element j ∈ T \S, S + j ∈ I.
Definition 3 (Matroid Polytope Gong et al. (2019)) Given a matroid (N , I), the
matroid polytope is defined as PI = conv{1I : I ∈ I} = {x ≥ 0 : for any
S ⊂ N ;∑

j∈S x j ≤ rI(S), where rI(S) = max{|I | : I ⊂ S, I ⊂ I} is the rank
function of matroid (N , I)(hereinafter called r ).

Lemma 1 (Property of the generic submodularity ratio Gong et al. (2019)) For an
increasing set function f : 2N → R, with generic submodularity ratio γ , it holds
that:

(a) γ ∈ [0, 1];
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(b) f is submodular iff γ = 1;
(c)

∑
j∈T \S fS( j) ≥ γ fS(T ), for any S, T ⊆ N.

Lemma 2 (Sviridenko (2004)) LetM = (N , I) be a matroid, and B1, B2 ∈ B be two
bases. Then there is a bijection φ : B1 → B2 such that for every b ∈ B1, we have
B1 − b + φ(b) ∈ B.
Lemma 3 (Badanidiyuru and Vondrák (2014)) (Relative + Additive Chernoff Bound)
Let X1, X2, ..., Xm be independent random variables such that for each i , Xi ∈ [0, 1],
and let X = 1

m

∑m
i=1 Xi and μ = E[X ]. Then

Pr [X > (1 + α)μ + β] ≤ e−mαβ
3 ,

and

Pr [X < (1 − α)μ − β] ≤ e−mαβ
2 .

Note that the generic submodularity ratio of a strictly monotone function is greater
than 0. In the following of the paper, we consider the problem of maximizing a strictly
monotone and normalized set function under certain constraints.

3 Cardinality constraint

First we present a simple algorithm, Simple Decreasing Threshold Algorithm, for
Problem (1): max{ f (S) : |S| ≤ k, S ⊆ N }, where f is a monotone function with
the generic submodularity ratio γ . Our goal is to develop an algorithm that have both
theoretical approximation guarantee and fewer queries of the function value oracle.

Algorithm 1 Simple Decreasing Threshold Algorithm

Input: f : 2N → R+, k ∈ {1, 2, ..., n}.
Output: A set S ⊂ N satisfying |S| ≤ k.
1: S ← ∅;
2: d ← max j∈N f ( j);

3: for (w = d
γ ;w ≥ εd

nγ ; w ← 1−ε
γ w) do

4: for all i ∈ N do
5: if |S ∪ { j}| ≤ k and fS( j) ≥ w then
6: S ← S ∪ { j}
7: end if
8: end for
9: end for
10: return S

Next we prove Theorem 1. For the approximation ratio, it is necessary to proved
the following claim.

Claim 1 Let O be an optimal solution. Given a current solution S at the beginning of
each iteration, the gain of the element added to S is at least 1−ε

k

∑
a∈O\S fS(a).
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Proof Suppose that the next element chosen is a and the current threshold value is w.
Then it implies the following inequalities

{
fS(x) ≥ w, i f x = a;
fS(x) ≤ w

1−ε
, i f x ∈ O \ S ∪ {a}.

The above inequalities imply that fS(a) ≥ (1− ε) fS(x) for each x ∈ O\(S∪{a}).
Taking an average over these inequations, we have

fS(a) ≥ 1 − ε

|O\S|
∑

x∈O\S
fS(x) ≥ 1 − ε

k

∑

x∈O\S
fS(x).

Now we finish the proof of Claim 1.

As for Algorithm 1, firstly, we check the number of queries of it. Obviously, there
are two loops in Algorithm 1. In each inner loop, for all i ∈ N , we must get the value
of fS( j) from the function value oracle, therefore each inner loop executes n queries
of value oracle. According to the termination condition of the outer loop: w ≥ εd

nγ
.

When per inner loop runs over, the threshold w will turn down by a ratio 1−ε
γ

. Then

we can calculate the query numbers of per outer loop is O( 1
ε
log n

ε
). Therefore the

algorithm using O( n
ε
log n

ε
) queries of the value oracle.

Next we prove the approximation ratio of Algorithm 1.

Proof Consider on a solution Si = {a1, a2, ..., ai }. After i steps, by Claim 1, we have

fSi (ai+1) ≥ 1 − ε

k

∑

a∈O\Si
fSi (a)

.
Then

∑

a∈O\Si
fSi (a) ≥ γ fSi (O) ≥ γ ( f (O) − f (Si )).

Therefore,

f (Si+1) − f (Si ) = fSi (a + 1) ≥ 1 − ε

k
γ ( f (O) − f (Si )).

The second and the fourth inequations follows from that f is γ -submodular.
We have

f (Sk) ≥
(

1 −
(

1 − (1 − ε)γ

k

)k
)

f (O)

≥
(
1 − e−γ (1−ε)

)
f (O)

≥ (
1 − e−γ − ε

)
f (O).
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So we complete the proof of Theorem 1.

4 Matroid contraint

In this sectionwe introduce theCRschemes roughly andwegive a (γ 2(1− 1
e )

2−O(ε))-
approximation algorithm for maximizing a monotone nonsubmodular function under
a matroid constraint.

4.1 Contention resolution schemes(CR schemes)

In this subsection we will study the CR schemes, an efficient rounding method, which
is firstly researched by Chekuri et al. Chekuri et al. (2011) in 2011, in order to solve
nonsubmodular functions maximization problem under a matroid constraint. Since
Chekuri et al. and Gong Gong et al. (2019) have studied the theorem of CR schemes
in detail, here we just give a rough description.

Given a matroid (N , I), there is matroid polytope PI = conv{1I : I ∈ I}
over matroid (N , I). We denote a random set where each element i ∈ N appears
independently with probability xi by R(x), where x = (x1, x2, ..., xn) ∈ PI .
Pr [R(x) = R] = ∏

i∈R xi · ∏
i /∈R(1 − xi ). Then, for any fixed element j ∈ N ,

Pr [R(x) = R| j ∈ R] = ∏
i∈R\{ j} xi · ∏

i /∈R∪{ j}(1 − xi ).

Definition 4 (CR schemes Gong et al. (2019)) For any vector x ∈ PI and any subset
A ⊆ N , a CR scheme ß for PI is a removal procedure that returns a random set
ßx(A) such that ßx(A) ⊆ A ∩ support(x) where support (x) = { j ∈ N |x j > 0} and
ßx(A) ∈ I with probability 1(since the definition of PI ).

A discussion of existence of CR schemes is as follows. Remark that a CR scheme
π is a collection of ßx, for each x ∈ PI , related to the matroid polytope PI , and every
ßx corresponds to a probability distribution. Now let ϕ : 2N → I be a valid mapping
that for any A ⊆ N , ϕ(A) ⊆ A and ϕ(A) ∈ I. Denote the family of all valid mapping
from 2N to I byψ∗. Easy to see, sinceπ(A) ⊆ A andπ(A) ∈ I, then ßx ∈ ψ∗. On the
one hand, the probability distribution picks and applies mapping ϕ with probability λϕ

from ψ∗, since each ßx corresponds to a probability distribution, then ßx can written
as (λϕ)ϕ∈ψ∗ . On the other hand, any probability distribution (λϕ)ϕ∈ψ∗ can respond to a
random scheme ßx, that is for any subset A ⊆ N , ßx picks ϕ ∈ ψ∗ with probability λϕ

and returns ϕ(A). Therefore, given a x ∈ PI , if the probability distribution (λϕ)ϕ∈ψ∗
exists, the CR scheme ßx also exists.

Since the R(x)may not be an independent set of thematroid, researchers introduced
the c-balanced CR schemes, and it’s function is to remove some elements in R(x) in
order to guarantee that the R(x) be an independent set. The definition of c-balanced
CR schemes is as follows.

Definition 5 (C-balanced schemes Gong et al. (2019)) A CR scheme π for PI is c-
balanced if it satisfies Pr [ j ∈ ßx(R(x))| j ∈ R(x)] ≥ c, for any vector x ∈ PI and
any element j ∈ support (x).
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Definition 6 (Monotone schemes Gong et al. (2019)) A CR scheme π forPI is mono-
tone if it satisfies Pr [ j ∈ ßx(A1)] ≥ Pr [ j ∈ ßx(A2)], for any x ∈ PI , j ∈ A1 ⊆ A2.

After given the two definitions, Chekuri proposed and proved the folloeing impor-
tant claim.

Claim 2 Chekuri et al. (2011) For any matroid polytope PI , there exists a monotone
(1 − 1

e )-balanced CR scheme and no c-balanced scheme with better c.

The existence of c-balanced CR scheme and Claim 2 had been proved by Chekuri
in detail. We only quote here.

As for CR schemes, the most important and useful result is the approximation
ratio of rounding a fractional solution. Gong et al.Gong et al. (2019) proved that
there is a γ (1 − 1

e ) approximation ratio when rounding a fractional solution in the
nonsubmodular setting by usingCR schemes. Herewe do not give unnecessary details.

4.2 Matroid contraint

In this subsection, we give a (γ 2(1− 1
e )

2 −O(ε))-approximation algorithm for Prob-
lem (2): max{ f (S) : S ∈ I, S ⊆ N }, where f is a monotone function with the
generic submodularity ratio γ , using O(rnε−4log2 n

ε
) queries to the value oracle. The

genenral outline of our algorithm follows from the continuous greedy algorithm in
Badanidiyuru and Vondrák (2014). With a fractional solution being built up gradually
from x = 0, and finally using the contention resolution schemes from Chekuri et al.
(2011) to convert the fractional solution to an integer one.

4.3 Notation

In the following context, for x ∈ [0, 1]N , a random set that contains each element
i ∈ N independently with probability xi is denoted by R(x). We denote R(x+ε1S) as
R(x, S). Before we analyse the approximation of Algorithm 2, we give and analyse a
subroutine-Algorithm 3, which is used in Algorithm 2. This subroutine takes a current
fractional solution x and adds to it an increment corresponding to an independent
set B, to obtain x + ε1B . The B in the Algorithm 3 can be seemed as the fastest
increasing direction of the value f . The way we find B in Algorithm 3 is similar to
that in Algorithm 1.

Claim 3 Let O be an optimal solution. Given a fractional solution x, by the Algorithm
3 we can get a new fractional solution x′ = x + ε1B such that

F(x′) − F(x) ≥ ε

(

γ (1 − ε) − 2ε

γ

)

f (O) − F(x′).

Proof Actually, the Algorithm 3 gave the fastest increasing direction of the f (S).
It is because that B corresponding to a direction vector 1B . We suppose that B =
{b1, b2, ..., br }, bi (i ∈ {1, 2, ..., r}) is the element that joins in the B at the i th step. If
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Algorithm 2 Revised Continuous Greedy Algorithm

Input: f : 2N → R+, I ⊆ 2N .
Output: A set S ⊆ N satisfying S ∈ I.
1: x ← 0;
2: for (t ← ε; t ≤ 1; t ← t + ε) do
3: B ← the output of Algorithm 3
4: x ← x + ε1B
5: end for
6: S ← contention resolution schemes (x,I)

7: return S

Algorithm 3 Decreasing Threshold Procedure

Input: f : 2N → R+, x ∈ [0, 1]N , ε ∈ [0, 1], I ⊆ 2N .
Output: A set B ⊂ N satisfying B ∈ I
1: B ← ∅;
2: d ← max j∈N f ( j);

3: for (w = d
γ ;w ≥ εd

rγ ;w ← 1−ε
γ w) do

4: for all e ∈ N do
5: we(B, x) ← estimate of E[ fR(x+ε1B )(e)] by averaging rlogn

ε2
random samples.

6: if B ∪ {e} ∈ I and we(B, x) ≥ w then
7: B ← B ∪ {e}
8: end if
9: end for
10: end for
11: return B

the threshold has turned down to the εd
rγ before the algorithm terminates, in this case

we can add the fictitious elements in order to make sure |B| = r .
Next we should build up the connection between the output solution and the optimal

solution. We suppose that the O = {o1, o2, ..., or } be the optimal solution and accord-
ing to Lemma 2, there is a bijection between O and B s.t. φ(bi ) = oi . Additionally,
the first i elements of B are denoted as Bi , and the first i elements of O are denoted
as Oi .

According to Lemma 3, we know that there is an error while using we(Bi , x) to
estimate E[ fR(x,Bi )(e)], with high probability we have the following inequality

|we(Bi , x) − E[ fR(x,Bi )(e)]| ≤ ε f (O)

γ r
+ εE[ fR(x,Bi )(e)]. (1)

We get that when an element bi is chosen, oi is a candidate element which could have
been chosen instead of bi . Therefore, according to the process of Algorithm 3, and
because either oi is a potential candidate of value within a factor of 1−ε of the element
we chose instead, or the algorithm terminated and all remaining elements have value
below εd

rγ , we have

wbi (Bi−1, x) ≥ (1 − ε)woi (Bi−1, x) − εd

γ r
. (2)
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Combining (1) and (2), and the fact that f (O) ≥ d, we have

E[ fR(x,Bi−1)(bi )] ≥ (1 − ε)E[ fR(x,Bi−1)(oi )] − 2
ε f (O)

γ r
. (3)

Then at each step in Algorithm 2:

F(x′) − F(x) = F(x + ε1B) − F(x)

=
r∑

i=1

(F(x + ε1Bi ) − F(x + ε1Bi−1))

=
r∑

i=1

ε
∂F

∂xbi

∣
∣
∣
x+ε1Bi−1

≥
r∑

i=1

εE[ fx+ε1Bi−1 )(bi )] (monotone)

≥
r∑

i=1

ε

(

(1 − ε)E[ fx+ε1Bi−1 )(oi )] − 2
ε f (O)

γ r

)

≥
r∑

i=1

ε

(

(1 − ε)γ E[ fR(x+ε1B∪{o1,o2,...,oi−1})(oi )] − 2
ε f (O)

γ r

)

= ε((1 − ε)γ E[ f (R(x′) ∪ O) − f (R(x′))] − 2
ε f (O)

γ

≥
(

γ ε(1 − ε) − 2ε2

γ

)

f (O) − εF(x′) (monotone)

= ε

((

γ (1 − ε) − 2ε

γ

)

f (O) − F(x′)
)

.

The second inequality follows from that oi is the candidate element when bi is chosen,
and the third inequality is due to the definition of generic submodularity ratio γ .

Claim 4 Algorithm 3 makes O( 1
ε3
nrlog2 n

ε
) queries to the function oracle.

Proof Obviously, there are two loops in Algorithm 3. According to the termination
condition of the outer loop, we get the query numbers of per outer loop is O( 1

ε
log n

ε
).

The number of iterations in the inner loop is n, and the number of samples per evalua-
tion of F is 1

ε2
rlogn in per inner loop. Therefore, Algorithm 3 makes O( 1

ε3
nrlog2 n

ε
)

queries to the value oracle.

Claim 5 Algorithm 2 has an approximation ratio of γ 2(1 − 1
e )

2 − O(ε).

Proof Define � = (γ (1 − ε) − 2ε
γ

) f (O). Substituting this in the result of Claim 2,
we have

F(x(t + ε)) − F(x(t)) ≥ ε(� − F(x(t + ε))).
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Add � − F(x(t + ε)) to the inequation we have

� − F(x(t + ε)) ≤ � − F(x(t))
1 + ε

.

Using induction to this inequation, we have

� − F(x(t)) ≤ �

(1 + ε)
t
ε

.

Substituting t = 1 and rewriting the inequation, we have

F(x(t)) ≥
(

1 − 1

(1 + ε)
1
ε

)

�

=
(

1 − 1

(1 + ε)
1
ε

) (

γ (1 − ε) − 2ε

γ

)

≥ γ

(

1 − 1

e

)

− O(ε).

Besides, when we use CR schemes to convert the fractional solution to the integer
one, there also have an approximation ratio which is γ (1 − 1

e ).
Therefore, the approximation ratio of Algorithm 2 is γ 2(1 − 1

e )
2 − O(ε).

Claim 6 Algorithm 2 makes O( 1
ε4
nrlog2 n

ε
) queries to the function oracle.

Proof Observe that in Algorithm 2, the queries to the function oracle is only related
to Algorithm 3. Therefore the total number of oracle calls to the function is equal to
the number of the loop multiplied with the number of oracle calls in one iteration. So
we get the queries to the function oracle are at most O( 1

ε4
nrlog2 n

ε
).
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