Journal of Combinatorial Optimization (2021) 41:794-816
https://doi.org/10.1007/s10878-021-00716-2

®

Check for
updates

A metaheuristic for the delivery man problem with time
windows

Ha-Bang Ban'

Accepted: 19 February 2021 / Published online: 12 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The Delivery Man Problem with Time Windows (DMPTW) is an extension of the
Delivery Man Problem. The objective of DMPTW is to minimize the sum of cus-
tomers’ arrival time while the deliveries are made during a specific time window given
by the customers. Another close variant of objective is a travel duration. In the case,
the problem minimizes the sum of travel durations between a depot and customer loca-
tions. It has many practical applications to network problems, e.g., whenever servers
have to accommodate a set of requests to minimize clients’ total (or average) waiting
time. To solve medium to large-sized instances, a two-phase metaheuristic algorithm
is proposed. A construction stage generates a feasible solution using Neighborhood
Descent with Random neighborhood ordering (RVND), and the optimization stage
improves the feasible solution with an Iterated Local Search. Moreover, Tabu Search
(TS) is incorporated in the proposed algorithm to prevent it from getting trapped into
cycles. Therefore, our algorithm is prevented from becoming stuck at local optima.
The results of experimental simulations are compared with well-known and success-
ful metaheuristic algorithms. These results show that the proposed algorithm reaches
better solutions in many cases.

Keywords DMPTW - ILS - TS - and RVND

1 Introduction

Delivery Man Problem with Time Windows (DMPTW) is a variant of Delivery Man
Problem (DMP) that is seen as a “customer centric” routing problem. However, in
DMP, there is no restriction on the time the service begins. That means the service
begins as soon as the deliveryman reaches a location. In practice, this assumption does

B<X Ha-Bang Ban
BangBH@soict.hust.edu.vn

School of Information and Communication Technology, Hanoi University of Science and
Technology, Hanoi, Vietnam

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00716-2&domain=pdf
http://orcid.org/0000-0003-2241-5146

Journal of Combinatorial Optimization (2021) 41:794-816 795

notalways hold. If the deliveryman reaches locations before customers are available for
service, he will have to wait for the beginning of the service. Informally, in DMPTW,
there are a vehicle at the main depot s, and n customers. Each customer has an additional
restriction that is an interval time so that it has to be supplied. The goal is to find a tour
that minimizes the overall customers’ arrival time while ensuring that all customers
are served. This objective has received recent attention in the literature Ban and Nghia
(2017b). Another close variant of objective is a travel duration. In the case, the problem
minimizes the sum of travel durations between a depot and customer locations. The
travel duration of a customer is the difference between the beginning of his service
and the beginning of service at the depot. DMPTW with the travel duration objective
has been studied in Heilporna (2010).

DMPTW has many practical applications for scheduling tasks and logistics, etc.
In logistics, it aims at finding a tour that minimizes the sum of arrival times of all
customers so that each customer must be visited within a given time window. In
scheduling tasks, DMPTW can model the problem of scheduling jobs on a single
machine where setup times are sequence-dependent, and each job has a release and
due time. Let the latency of each job be the time that it has to wait to be started. In the
scheduling problem, the sum of latency of all jobs is subject to optimization.

To the best of our knowledge, there are three works for DMPTW in the literature.
Tsitsiklis Tsitsiklis (1992) presented a polynomial algorithm since the number of loca-
tions are bounded. Heilporn et al. Heilporna (2010) then provided heuristic algorithms
in accordance with insertion heuristic schemes or with an insertion heuristic scheme.
After that, Ban et al. Ban and Nghia (2017b) proposed a metaheuristic algorithm based
on Variable Neighborhood Search (VNS). Their experimental results Ban and Nghia
(2017b); Heilporna (2010) were quite promising. However, these algorithms have
drawbacks. The algorithm Ban and Nghia (2017b) might become trapped into cycles,
and they return to the points previously explored in the solution space. Consequently,
the algorithms can get stuck in local optima. The heuristic algorithms in Heilporna
(2010), on the other hand, are often too greedy, and the explored solution space is not
large enough. Therefore, they can get trapped into local optimum and fail to obtain
the global optimum solution in many cases.

The success of any heuristic approach depends on balance between right inten-
sification and diversification. While the above-mentioned algorithms Ban and Nghia
(2017b); Heilporna (2010) meet some drawbacks, the proposed algorithm is developed
to tackle them. The main contributions of this work can be summarized as follows:

— From the algorithmic design, we develop a two-phase metaheuristic consisting
of a constructive and optimization stage. The construction stage seeks a feasible
solution, whereas the improvement stage tries to improve it. Our metaheuristic
combines RVND with ILS, in which ILS Talbi (2009) ensures diversification while
RVND maintains intensification. This combination keeps the simplicity spirit of
RVND while it effectively explores the search space. Moreover, TS Talbi (2009)
is incorporated into our algorithm to mainly prohibit from getting trapped into
cycles.

@ Springer

796 Journal of Combinatorial Optimization (2021) 41:794-816

— From the computational perspective, extensive numerical experiments on bench-
mark instances show that our algorithm reaches better solutions than the-state-of-
art metaheuristics in many cases.

The rest of this paper is organized as follows. Sections 2, 3 present the literature and
problem definition, respectively. Section 4 describes the proposed algorithm. Compu-
tational evaluations are reported in Section 5. Sections 6, 7 discuss and conclude the
paper, respectively.

2 Literature

DMPTW is NP-hard because it is a generalization case. Despite the similarities
between DMP and DMPTW, solving DMPTW is more challenging since its solu-
tion must satisfy the time windows’ constraint. M. W. Salvesbergh Salvesbergh
(1985) argues that even building a feasible solution to the problem is a NP-hard
problem. For NP-hard problems, there are three common approaches to solve the
problem, namely, 1) exact algorithms, 2) approximation algorithms, 3) heuristic (or
metaheuristic) algorithms. Firstly, the exact algorithms guarantee to find the opti-
mal solution and take exponential time in the worst case, but they often run much
faster in practice. In the literature, there is only work Heilporna (2010) to DMPTW.
However, this exact algorithm only solves the problem with small sizes. Secondly,
an o-approximation algorithm produces a solution within some factor of « of the
optimal solution. Currently, no approximation work is known for DMPTW. Thirdly,
heuristic algorithms perform well in practice and validate their empirical performance
on an experimental benchmark of interesting instances. The metaheuristic algorithm
falls into this approach. For DMPTW, there are two metaheuristic algorithms that
are the algorithms of Ban et al. Ban and Nghia (2017b), and Heilporn Heilporna
(2010).

Though only three works have been known for DMPTW, several classes of
problems closely related to the problem were introduced in the literature: Delivery
Man Problem (DMP), DMP with Profits (DMPP), Dynamic Traveling Repairman
Problem (DTRP), Minimizing latency in Post-disaster Road Clearance Operations
(ML-RCP), and Bi-objective Minimum Latency Problem with Profit Collection (BO-
MLPPC).

— DMP is a particular case of DMPTW without time windows. Numerous works for
DMP can be found in Ban and Nguyen (2010); Ban et al. (2013); Ban and Nghia
(2017a); Blum et al. (1994); Chaudhuri et al. (2003); Goemans and Kleinberg
(1996). Ban et al. (2013) presented an exact algorithm to solve instances with up
to 40 vertices. Several approximation algorithms Blum et al. (1994); Chaudhuri
et al. (2003); Goemans and Kleinberg (1996) were proposed to solve DMP with
the best approximation ratio of 3.59. In the metaheuristic approach, we can found
several algorithms Ban and Nguyen (2010); Ban and Nghia (2017a); Mladenovic
et al. (2012); Salehipour et al. (2011); Silva et al. (2012); Tsitsiklis (1992). In Ban
and Nguyen (2010), Ban et al. used a Genetic Algorithm to solve the problem
while the others Ban and Nghia (2017a); Mladenovic et al. (2012); Salehipour

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816 797

et al. (2011); Tsitsiklis (1992) were mainly based on Variable Neighborhood
Search (VNS). Specifically, Salehipour et al. Salehipour et al. (2011) success-
fully combined Greedy Randomized Adaptive Search Procedure (GRASP) and
VNS. Mladenovic et al. Mladenovic et al. (2012) then provided a General-VNS
to improve solution quality. Later on, Silva et al. (2012) presented a multi-start
approach, including a GRASP and RVNS. The algorithm finds good-quality solu-
tions for large instances. Finally, Ban and Nghia (2017a) proposed a two-phase
algorithm consisting of GRASP Feo and Resende (1995) in the construction phase
and VNS+TS in the improvement phase. Their algorithm found the new best solu-
tions in several small instances.

— In DMPP, the aim is to find a travel plan that maximizes the total revenue. However,
in contrast to DMP, in DMPP, not all the customers need to be visited. In [14],
Dewilde et al. combined VNS and Tabu Search to solve the problem. M. Avci then
proposed a metaheuristic that brings together GRASP, and Iterated Local Search
to improve solution quality. Their metaheuristic algorithms Avci and Avci (2017);
Dewilde et al. (2013) can well solve the problem with up to 500 vertices. After
that, Beraldi et al. Beraldi et al. (2018) have introduced a stochastic variant of
DMPP under uncertain travel times. The difference between DMPP and stochastic
DMPP is that the travel times in stochastic DMPP are uncertain. Stochastic DMPP
is heuristically solved by means of a beam search heuristic. Finally, Bruni et al.
extended stochastic DMPP with multiple vehicles Bruni et al. (2018, 2019). The
effectiveness of their algorithms was very promising through extensive experi-
mental results.

— In DTRP Bertsimas and Ryzin (1989), the objective function of TRP is stochastic
in a dynamic environment. Currently, to the best of our knowledge, this is the only
paper dealing with DTRP. However, neither metaheuristic nor exact algorithm is
proposed for the problem.

— ML-RCP Ajama et al. (2019) finds a tour with minimum latency sum in post-
disaster road clearance. Unlike TRP, in disaster situations, travel costs need
to be added to debris removal times. Moreover, they divide vertices in the
graph into two types: 1) critical vertices must be visited; 2) non-critical ver-
tices may or may not be visited. They provided GRASP with VNS metaheuristic
that obtained optimal or near-optimal solutions on Istanbul data within sec-
onds.

— In BO-MLPPC Bruni (2020), routes must be constructed to maximize the col-
lected profit and minimize the total latency. In this problem, not all the customers
need to be visited and there is the presence of uncertain travel times. To address
this problem, the authors proposed a Multi-Objective Iterated Local Search. The
experimental results concluded that the algorithm found good-quality solutions
for small and medium-size instances.

The above algorithms are the state-of-the-art algorithms for several variants of
DPMTW. However, there is no time restriction in these problems, and they cannot
be adapted directly to DMPTW. That means that we cannot use the above algorithms
to solve DMPTW.

@ Springer

798 Journal of Combinatorial Optimization (2021) 41:794-816

3 Problem definition

In this section, we provide a formulation of the DMPTW:

Given an complete graph K, = (V, E), where V = {1, 2, ..., n} is a set of vertices
representing the depot and client places, and E is the set of edges connecting the
vertices. Assume that, a tour is represented as T = (v| = s, v2..., V), and v denotes
the index of the vertex at the k-th position of the tour. For each edge (v;, vj) € E, which
connects the two vertices v; and v}, there exists a cost c(v;, v;). This cost describes
the travel time between vertex v; and v;. A time window [e;, [;] is associated to each
vertex v; € V, which indicates when service time at vertex v; can start. This implies
that a vertex v; may be reached before the start e;, but service cannot start until ¢; and
no latter than /; of its time window. In addition, the deliveryman spends time to serve
each customer. Let S(v;) be the service time at vertex v;. Therefore, given a particular
tour 7, let D(vg) be the time at which service begins at vertex vg. It is calculated as
follows: D(vr) = max {A(vy), ex}, where A(vr) = D(vg—1) + S(vr—1) +c(vr—1, Vk)
is the arrival time at vertex vy in the tour. We also define the travel duration of vertex
v; as the difference between the beginning of service at v; and the beginning of service
at the depot. A tour is feasible, if and only if A(vg) < I for all vertices. DMPTW
requires finding a feasible tour visiting all vertices to minimize the sum of arrival times
or travel durations.

4 Two-Phase Algorithm
4.1 Neighborhoods

Several popular neighborhoods in the literature are used to explore the solution space
of the problem [29]. Let Tsol be the time complexity of calculating solution’s cost.
The main operation in exploring these neighborhoods is the calculation of the cost
function of neighboring solutions. In straightforward implementation in the worst
case, this operation requires Tsol = ® (n). Assume that T, and n are a tour, and its
size, respectively. We describe in more details about nine neighborhoods as follows:

— move-up moves a vertex forward one position in 7. The complexity of exploring
the neighborhood is O (T sol x n).

— move-down moves a vertex backward one position in 7. The complexity of explor-
ing the neighborhood is O (T'sol x n).

— shift relocates a vertex to another position in 7. The complexity of exploring the
neighborhood is O (T sol x n).

— swap-adjacent attempts to swap each pair of adjacent vertices in 7. The com-
plexity of exploring the neighborhood is O (T sol x n).

— swap tries to swap the positions of each pair of vertices in 7. The complexity of
exploring the neighborhood is O (T'sol x n?).

— 2-opt removes each pair of edges from 7 and reconnects them. The complexity
of exploring the neighborhood is O (T'sol x n?).

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816 799

— Or-opt: Three adjacent vertices are reallocated to another position of 7. The
complexity of exploring the neighborhood is O (T'sol x n?).

— Move-forward-k-vertices moves k consecutive vertex positions to the right of 7
(k=1,2,...,1). The complexity of exploring the neighborhood is O (T'sol x [x
n2).

— Move-backward-k-vertices moves k consecutive vertex positions to the left of 7
(k=1,2,...,1). The complexity of exploring the neighborhood is O (T sol x [x
n?).

In DMPTW, when the positions of vertices in T are changed, the other vertices’ arrival
times may be affected later. Therefore, T sol requires exactly © (n) time. Unfortunately,
it leads to @ (n) operations for each move evaluation resulting in @ (n>) operations
for a full neighborhood search.

4.2 RVND+ILS with Tabu

A good metaheuristic must ensure the balance between diversification and intensi-
fication. Mladenovic et al. Mladenovic and Hansen (1997) show that RVND allows a
better understanding of the characteristics and behavior of the problem. They further
claim that RVND yields local optima that are nearer to the global optimum in a more
straightforward manner than other metaheuristics. However, RVND only implements
intensification, and it needs to be added to diversification. Our two-phase metaheuris-
tic includes a constructive and optimization stage. Our metaheuristic combines RVND
with ILS, in which ILS Talbi (2009) ensures diversification while RVND maintains
intensification. This combination keeps the simplicity spirit of RVND while it effec-
tively explores the search space. Moreover, TS Talbi (2009) is incorporated into our
algorithm to mainly prohibit from getting trapped into cycles. Algorithm 1 depicts the
whole process.

The construction phase: Algorithm 2 shows the constructive procedure. The objec-
tive function used here is the sum of all positive differences between the time to reach
each vertex and its due time, that is, min) ;_, max(0, A(v;) — ;). The algorithm
works until it finds a feasible solution. From lines 2 to 6, Restricted Candidate List
(RCL) is determined by ordering all non-selected vertices in terms of a greedy manner
that measures the benefit of including them on tour. After that, one element will be
chosen randomly from RCL. The size of RCL is a parameter that controls the balance
between greediness and randomness. Since all vertices are visited, we obtain a solu-
tion. In lines 7 and 8, if the solution is feasible, it is considered an initial solution,
and the construction stops. In contrast, a local search procedure based on the VNS
Mladenovic and Hansen (1997) is started, and the algorithm iterates until finding a
feasible solution or level_max is reached. The solution is perturbed, by making level
random shift moves, to prevent it from becoming stuck at local optima in line 12. Next,
the VNS is applied to the perturbed solution to create a new solution. If it is better
than the best-found solution, it is set to the new current solution through lines 13 to
24. At the end of each iteration from lines 25 to 30, level is increased by one if the
current solution is not improved, or reset to 1, otherwise.

@ Springer

800 Journal of Combinatorial Optimization (2021) 41:794-816

Algorithm 1 RVND+ILS with Tabu

Input: vy, V, N;(T)([i =1, ...,9), level are a starting vertex, the set of vertices in K, the set of neigh-
borhoods, the parameter to control the strength of the perturbation procedure, respectively.

Output: the best solution 7*.

1: fori < 1, ..., I;ux do

2: {Step 1}

3: {Construction phase}

4 T <« Construction(vy, V);

50 T/« T,

6: iterILS < 0;

7 {Improvement phase }

8: whileiter/LS < m do

9: {Step 2: RVND}

10: Initialize the Neighborhood List NL;

11: while NL # 0 do

12: Choose a neighborhood N in NL at random;

13: 7" < arg min N(T);{T” must be feasible} {Neighborhood search}
14: it (L(T") < L(T) and T" is not tabu) or (L(T") < L(T*))) then
15: T<1"

16: Update NL;

17: Update tabu lists;

18: it (L(T") < L(T*)) then

19: T* < T//; {Update the best solution}

20: end if

21: else

22: Remove N; from the NL; {Do not implement neighborhood N; }
23: end if

24 end wh;/le

25: T <~T;

26: if L(T) < L(T") then

27: {Step 3: Intensification to exploit the region}

28: T =Perform RVND without using tabu list restrictions on the solution T'; {T must be feasible}
29: if (L(T) < L(T)) or (L(T*) < L(T)) then

30: T «T;

31: end if

32: if (L(T*) < L(T)) then

33: T* < T; {Update the best solution}

34: end if

35: T <« T;

36: iterILS < 0;

37: end if

38: {Step 4: Diversification to explore new region}

39: Clear all tabu lists;

40: T <— Perturbation(7, level); {implement perturbation technique}
41: T < T;

42: iter[LS + +;

43: end while

44: end for

45: return T%;

The improvement phase: After the construction of the feasible initial solution,
this step tries to improve it. In this phase, the objective function is to minimize
Z:’ZZ(D(vk) — D(vy)). Our algorithm begins with the feasible solution provided

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816 801

Algorithm 2 Construction

Input: vy, V, k, «, level are a starting vertex, the set of vertices in K, the number of vehicles and the size
of RCL, the parameter to control the strength of the perturbation procedure, respectively.

Output: An initial solution 7.

1: T = ¢; {T is atour}

2: while |T| < n do

3 Create RCL that includes « nearest vertices to ve in V; {ve is the last vertex in T}

4 Select randomly vertex v = {v;|v; € RCL and v; ¢ T};

5 T < TUv;

6: end while

7

8

. if T is a feasible solution then

return 7'
9: else
10: level = 1;
11: while ((7 is infeasible solution) and (level < level_max)) do
12: T'= Perturbation(T, level);
13: fori”: 1—9do ,
14: T <« argmin N;(T); {local search}
15: it (L(T" < L(T")) then
16: 7 < 71"
17: i<« 1
18: else
19: i+ +
20: end if
21: end fm/‘
22: if L(T) < L(T) then
23: T < T/;
24: end if/
25: if L(T) == L(T) then
26: level < 1;
27: else
28: level + +;
29: end if
30: end while
31: end if
32: return T';

by the first phase. In Step 1, in line 4, the algorithm starts with the initial solution
obtained from the construction phase and consists of three main steps repeated until
a stop condition is met. In Step 2, from lines 11 to 25, we introduce the structure of
several neighborhoods in RVND. Moreover, to avoid tabu moves, two tabu lists are
used. Step 3, from lines 26 to 39, aims at exploiting the current solution space. To
explore unvisited solution space, a diversification phase is added in Step 4 from lines
41 to 42. In the remaining of this section, more details about the four steps of our
algorithm are described. Some successful applications of ILS on other combinatorial
optimization problems can be found in Ibaraki et al. (2008).

In the local search procedure, the Neighborhood List (VL) is initialized with all neigh-
borhoods. A given neighborhood is selected at random from the NL. Neighbor solutions
are evaluated, and the best feasible neighboring solution is accepted if it is non-tabu,
improving, or tabu but globally improving. In the case of improvement, NL is repop-
ulated with all neighborhoods. Otherwise, we removed it from NL. The procedure

@ Springer

802 Journal of Combinatorial Optimization (2021) 41:794-816

Algorithm 3 Perturbation(7T', level)

Input: 7, k are the tour, and the number of swap, respectively.

Output: anew tour 7'.

1: while (level > 0) do

2: ky=1+rand(%);

ky =k + 1 +rand(%);

k3 = ko + 1 +rand(%);

{ T} copies consecutive vertices from 1-st to k; — th position in 7'}

Ty =T[1:k];

{T> copies consecutive vertices from k3 — th to k4 — th position in 7'}
Ty =Tlk3 : k4l;

9: {T3 copies consecutive vertices from ky — th to k3 — th position in T'}
10: T3 = T[k2 : k3];

11: { T4 copies consecutive vertices from k1 — th to kp — th position in T }
12: Ty =TIk : kal;

13: T=TIUThUT3UTy;

14: level = level — 1;

15: end while

16: return T;

A

terminates when NL becomes empty. Due to different neighborhood structures, two
tabu lists are built. A move of the type remove-insert, swap-adjacent, move-up (down),
and shift is stored in the first tabu list while the second is for 2-opt, and or moves.
After each move, only the tabu list of the corresponding neighborhood is updated. The
reverse move becomes tabu after some iterations that are determined dynamically. For
tabu lists, a tabu tenure is a random number between 5 and 10. Specifically, the tabu
lists in this work are implemented as follows:

Move-up (down) moved up (down) v; forward (backward) one position cannot be

applied again while it is tabu.

— Shift applied to v; to another position of the tour cannot be applied again while it
is tabu.

— Swap, and swap-adjacent swapped a pair of (v;, v;) cannot swapped again while
it is tabu.

— 2-optimplemented to a pair of (v;, v;) cannotimplement again to the same vertices.

— Or-opt applied to (v;, v;) and vy is prohibited from applying the same vertices.

When a better solution is found, the intensification step starts. The solution is per-
formed with RVND without any tabu move. Since the new best-known solution is
found, iter I LS is set to 0. After that, the algorithm goes to the perturbation step. The
Perturbation mechanism design is very important to achieve success in our algorithm.
If the mechanism produces too small perturbation moves, the search procedure may
return to the previously visited local optimum points. On the other hand, excessive
perturbation moves may drive the search procedure to undesirable regions in the search
space. To overcome these issues, we implement an adaptive perturbation mechanism.
The perturbation mechanism, called double-bridge, is originally developed in Martin
etal. (1991). It consists of removing and re-inserting four arcs in the tour. This mecha-
nism can also be seen as a permutation of two disjoint segments of the tour. The detail
of the step is described in Algorithm 3.

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816 803

The last aspect to discuss is the stop criterium of our algorithm. A balance must
be made between computation time and efficiency. Here, the algorithm stops if no
improvement is found after m loops.

5 Evaluations

Our algorithm is run on a Pentium 4 core i7 2.40 GHz processor with 8 GB of
RAM. On all experiments, parameters «, level_max, m, and I, are respectively set
to 10, 5, 50, and 10. These parameters are chosen through empirical tests, and with
them, the algorithm seems to produce good solutions at a reasonable amount of time
compared to the other parameter values.

We also tested the performance of the proposed algorithm against the state-of-the-
art algorithms Ban and Nghia (2017b); Heilporna (2010); Silva and Urrutia (2010);
Ohlmann and Thomas (2007).

5.1 Instances

We implement the algorithm in four sets of instances that include more than 160
instances as followings:

— The first set is proposed by Dumas et al. Dumas et al. (1995) and contains 135
instances grouped in 27 test cases. Each group has five Euclidean instances, coordi-
nates between 0 and 50, with the same number of customers and the same maximum
range of time windows. For example, the instances n20w60.001, n20w60.002,
n20w60.003, n20w60.004, and n20w60.005 have 20 vertices and the time win-
dow for each vertex is uniformly random, between 0 and 60.

— The second set of instances is proposed by Gendreau et al. (1998) and contains
140 instances grouped in 28 test cases.

— The third set of instances is proposed by Ohlmann and Thomas (2007) and contains
25 instances grouped in 5 test cases. The second and third sets, in the majority, are
the instances proposed by Dumas et al. (1995) with wider time windows.

— The fourth is proposed by Silva et al. [36] to overcome the size limitations of the
others since the size of instances is more than 200 customers and has wider time
windows.

5.2 Results

We define the improvement of the proposed algorithm with respect to Best.Sol (Best.Sol
is the best solution found by our algorithm) in comparison with the-state-of-the-art
metaheuristic algorithms for the problem as followings:

Best.Sol — BK S

Gap[%] = |T| x 100% (1)
Best.Sol — Init.Sol
Improv[%] = | TnitSol | x 100% 2)
nit.So

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816

804

9L'C 871 871 LTSL LTSL 0v9L €9l 0¥9L 200°0Ta0ru
994 6v'1 [4n! SL8L SL8L 9S6L €6'C Y66L 100°0gM0pu
0 el 0cel ¥16C 16T 61€E 0 6l¢ce $00°00 140U
6¥°0 8C¢l 8C'¢l 91¥¢ 9IPT 98LT S0 98LC £00°001mocu
9¢°0 16°G1 161 80T 80T 9ILYT €50 9LYC 200°001M0cH
0 8¢°CI 8¢CI Y6CC Y44 819¢T o 819¢C 100°001MOCU
§S0 91'C 9I'C LT9t LT9T €89T 09°0 689¢ ¥00°0840¢U
6¥°0 L9'8 L9'8 £79¢ €99T P68¢ €50 ¥68¢C £€00°08m0cu
S0 vev 1424 699¢ 699T 06LT 960 06LC 200°0840cu
0s°0 €8'L €8'L 066C 066T 4 44% S0 yyee 100°08M0cu
6¥°0 6¢'8 6¢£'8 020T 020T S0TT 0 soce $00°0940cu
S0 000 81'8 69C 69T Pe6T LSO ¥69C £00°09mocu
¥$°0 £col 9L'€E 9L1T 9LIT 197C LSO ¥69¢ 200°09M0cu
60 616 61'6 1eve 1T 9997 99] 999¢ 100°09m0cu
£5°0 ! Ie1 89¢6¢C 895T 09T 60 09¢ ¥00°0¥MOcu
0S°0 86'¢ 86'¢ VLLT PLLT 688C Sso 688¢ £00°07mocu
€50 LTS 000 6L9¢ 6L9T 6L9T 1570 414 200°0¥mOcu
6¥'0 869 S9'¢ 0LcT 0LTT 90¥T £9°0 0€ve 100°07M0cU
0 LY'0 LY'0 SLe6t SL6T 686C 09°0 686¢ ¥00°0CmMOcu
0s°0 00°0 0€0 1L9T 1L9T 6L9T 860 1L9¢ £00°0Tmocu
¥5°0 6C'S 000 09s¢C 09sT 09sT LSO €0LT 200°0Tmocu
6¥°0 801 €0 8CST 8TST 9¢ST S0 y€8¢C 100°0cmocu
L den Aoxdwy [0S 1oAY 0S99 [0S Uy L [0S189g
wyLoge mQ ‘e 10 ueg saoue)su[

(0107) euzod[IoH T8

19 BATIS pue (0g0g) Tunig ‘e 1o sewn(q Aq pasodoid seouejsur uo unpuode mo £q pue (q/107) BIYSN pue ueg ‘e 10 ueq Aq paureiqo sjnsar uadamjeq uostredwo) | ajqel

pringer

as

805

Journal of Combinatorial Optimization (2021) 41:794-816

v vl 0¥°0 0¥°0 00°509¢1 P8STI SE€9T1 68°11 3394 $00°0rA09U
6911 LLO LLO L9180S1 PEOST ISIST 11! ISIST £00°07Mo9u
Syl (430 o 0¥°086¢C1 $9671 900€T 08°01 900¢1 ¥00°0CM09u
08'v1 170 170 ST'808¢l 8LET 6E8ET LOTI 6¢8¢1 £00°0Tmo9u
00v1 ¥8°0- 09°0 €9 1v0rl 966¢1 080¥1 0L°01 6L8E1 200°0Tmo9u
L8T 9¢'v 9¢'Y 610L 610L 6E€L 9LC 6€€L ¥00°00[A0pU
89°C LLOT LLOT 8L19 8L19 769 60°¢ Y269 €00°001MOpu
¥8'C 9091 9091 8LLY 8LLY SLOS 06C SLO8 200°001M0pu
Le 8Y'11 8Y'I1 8689 8589 LyLL SLT LYLL 100°00TM0pU
w7 LTce Lce 99I1L 991L 80¥L 19¢ 80vL $00°08401U
88°C LES LES SLOL SLOL TCLL €6C IeLL £00°08M0pu
e wy wy OLIL 9LIL 00SL Ly'e 00SL 200°08M0pu
£9°C 1€y 1€y 678 6778 0098 or'e 0098 100°08M0pU
6LC 098 098 (1499 8PsS 0L09 89C 0L09 ¥00°09M07U
86T 10v 0v 8GL9 8SL9 0oL €6'C 0¥0L £00°09M0ru
L9C YCL- 99°C LyeL LYCL SvvL we 86L9 200°09M0pu
9LT 0sC 059 990L 990L LSSL I8¢ LYCL 100°09M0pu
L8C 06°0 0Ce L169 L169 IVIL 68C 0869 00" 0rM0rU
¥8'C L6°0 89C £8YL €8PL 689L e 9SSL £00°0ymopu
0L'c £€e'e £€e'e YOIL YOIL 6vEL g9 6vEL 200°0rMopu
LT 0ore 0re €99L €99L LT8L Iv'¢C LT8L 100°0M0Pu
€6'C 10°0 Y70 1€0L 1€0L 90L 10°¢ 0L ¥00°0cM0pu
LLT S S SESL SESL YSIL °6'C YSOL £00°0Tmoru
L den Aoxduy [0S IoAY [0S"15og [0S Uy L [0S"159g

wyLod[e mQ ‘Te 10 ueg sooue)Su[

penunuod | a|qel

pringer

as

Journal of Combinatorial Optimization (2021) 41:794-816

806

SI'LT 10C 10C Srevsel (4318 8TL6T 0€ce 8CL6l1 200°09M08u
16'LC e §TT [1°€2961 6T¥61 LL86T 0r'€c LL861 100°09M08u
88'LT 0¢'1 0¢'1 L1'88CIT 6LIIT 6SPIT clee 65¥1¢ ¥00°0rM08U
9C'9¢ €e0 €€'0 9€°56861 09861 97661 clee 92661 £00°07Mo8U
18°9¢ 11 sl €' 1980¢ €1L0T 1€01¢ 0¢'1¢ 1€01¢ 100°07M08U
8¥'9C ¥8°0 ¥8°0 80°L920C 6107 $9€0T 96°Ce ¥9¢€0¢ ¥00°0TM08U
8L°9T €00 €0 L979650T 1€50C 8LS0T €Cve 8LS0T £00°0Tmo8u
9¢'LT 691~ SIo 0$°9690¢ 0890¢ ClL0T cece PSL61 200°0TM08u
YSve 10 10 6091961 S9S61 99961 9¢ee 99961 100°0TmO8U
9811 881 881 (XA 68CET TL6ET L6'T1 1L6€1 ¥00°00 409U
9l'vl (444 (444 £€6°09CCl 980C1 LEYTL 11 LeEYCI £€00°001M09u
124! 0Lv 0Ly 8L99071 669€T vLEVI ¥0Cl YLEV] 200°001M409u
9611 €CC €CC LTT8611 8811 €SITI 60Cl €S1CI 100°001M09u
8LY1 88°C 88'C 06’ IvIcl 99671 0SEET cocl 0seel ¥00°08409U
Plad! 661 66'Y €0'96071 L8LET TIsvl 16711 syl £00°08M09u
wyl 0s'L 0s’L Y€066¢1 86vEL €65V1 Ly'11 €65yl 200°08mQ9u
STyl 8SY 8SY 6L°058¢1 TLSET [X4441 SIel €yl 100°08409u
LTEl gTe §Te 9609011 €76€1 (37448 L6'T1 evevl ¥00°09409U
€evl we we L1I'8ELTI €CSTL 0v62T Pl 0r6cl £00°09m09u
6v'€l 691 691 8097871 90S¥1 0TSt G8Cl 0cest 200°09M09u
LT'¥1 vl vl 08'vesel 6SPET pSIEl 1eel PSoEl 100°09M09u
L den Aoxduy [0S ToAY [0S"159g [0S Uy L [0S"159g
wyuod[e Qg ‘Te 10 ueg sooue)Su[

penunuod | a|qel

pringer

as

807

Journal of Combinatorial Optimization (2021) 41:794-816

S9vCl - ¢80 8'1¥8¥ 0€T8y €PI8y - - 00" 0rMOS U
86°CCI - 1€l ¥'€C08 6166¥ €850S - - €00°0PMOs U
6%'0CI - 8¢€°0 9°L8CS P08TS LOOES - - 200°0rMOSTU
89vC1 - 8L°0 L8LY S69LY TLOSY - - 100°0vMOsTu
SL'ETT - w0 ['e96v vesey SvL6Y - - 00°0TM0STU
el - LLO 9'88LY SILLY L808Y - - €00°0cmosTu
or'ret - 6v'0 6'CSES 96£€S 859¢S - - 200°0TmosTu
crvel - LYo 9'LTvS 0STPS 80¥PS - - 100°0cmOs U
oL’ Sy 09°1 09°1 0920£9¢ PS19T 0859T 0681 0859¢ 000940011
86'Ly 0Tl 0’1 [L799SLT 8IPLT 0SLLT 08°LY 0SLLT £00°09M001U
6191 8¥°0 8¥°0 6L969LC 0€9LT €ILLT 0L 9% €9LLT 2007094001 U
6l'Ly SI'e SI'e 66'L9SLT 80€LT 606LT 09°Sv 606LC 100°09M001u
08°9% It SL'1 ¥9°0€LLT 68PLT 086LC sy 896LC 700" 0rM00 U
6S°Ly 060 801 ¥9°1T18C 8008T ST€8T (4844 9C8¢ €00°0¥M00Tu
€6'LY 600 L1 6¢°0L06C 6188C 0€€6T 0L 9% 9¥88¢ 200°07M001u
09°Ly £€6°0 €60 1672665¢ 140314 9ST19¢ €01y 9¢19¢ 100°0vM00Tu
89°¢y 6C°0 60 0065€£8¢ 91€8T L6E8T cror L6€8C $00°0TA00 U
LISy 1€°0 9¢°0 P$7€800€ 1€00€ 8E€T0E cror YCl0¢ €00°0cmo01u
8T8y 8L'L- LY'0 £5°9L90¢ ¥090¢ 8YL0OE w9or Y6£8¢C 100°0Zm001u
LY'9C ort ort 8€V110C LI€0T €PS0T 0Lce £vS0C ¥00°09M08U
(814 vyl ! 1sevel SIE61 86S61 0sve 86561 £00°09m08U
L dep Aoxduy [0S ToAY [0S 159 [0S Uy L [0S1s9g

wyLode mQ ‘Te 19 ueg sooue)Su[

penunuod | a|qel

pringer

as

Journal of Combinatorial Optimization (2021) 41:794-816

808

Q0BJp1oq ur pAYSIIYSIY e s)[nsar paroxduy

LSy we 80°¢ A4
PE1ET - 6¢°0 0€°€CLO6ST 0€6L8ST LOTY6ST - 200°00empSTU
SO'SYe - Ay 91'GS60€ELT 9T06TLI 186TELT - 100°00gM0STU
SO'Eve - cro CT6685991 LI6V991 £€869991 - 200°00TmpSTu
PEErT - 170 9T 1L69091 7909091 PESLOIL - 100°00cM0STuH
€EPET - 00 00°8¥CLTLI S8OLTLI YovLILY - 200°00Imoscu
00°0€T - 100 9€'6£89691 9TLISIT PS69S91 - 100°001408cu
06'vLI - ce0 679L 8LI9L 6hPIL - ¥00°0TA00cU
LL'O8I - 0 96508 €LV08 €€L08 - £00°07m00cu
06°181 - 0€0 L'LESS 9S8 91S<8 - 200°0gM00cu
IEILT - €0 T0L8L VLSSL 1788L - 100°0¢M00Cu

L den Aoxdury [0S ToAY [0S"159g [0S Uy [0S"1sog
wipLode mQ ‘e 190 ueg sooue)Su[

penunuod | a|qel

pringer

as

809

Journal of Combinatorial Optimization (2021) 41:794-816

L'e 60C 9¢'1 058¢ 0s8s 1940 96'C SL6S £00°091mOopu
16C or'l L8°0 89¢9 89¢€9 yer9 86'C VY9 200°091M0opu
¥9°C Iy °6'C 61LS 6ILS 168S YL'C 796S 700° 0 [MOPU
ILe e 60 LS9 LS9 €€99 09°C 68L9 €00 07 [Mopu
L9T 00T ov'l ovLS LS €€8S 69C £98¢ 200°0vIMOpU
cLe €61 vl G68¢ SS8S 0v6S 86T 0L6S ¥00°0CIM0PU
68T SL'1 L9'1 119 1199 0Ts9 66'C §TS9 £00°0CIMOoTu
¥8°C 88'C LS'T §979 €979 S9¢€9 1s°¢ 1S¥9 200°0TIMOpU
6%°0 Ie'L 5 ¥29¢ 9T LLLT 9¢°0 1€8¢C ¥00°00CM0TH
70 16°¢ €81 l24Ye 1444 81T €50 eee £00°00¢mocu
90 €98 789 66L1 66L1 1€61 650 6961 200°00TMOcH
1$°0 IeL 155 ¥29C ¥9T LLLT 9¢0 1€8¢ 700°081M0CU
90 €9 ¥6'¢ 14874 14844 €IST S0 085¢C £00°081M0Cu
0 LL9 06'¢ SIee SIET 60¥T 60 £€8¥C 200°081M0cu
050 6L'T1 (43" 9191 9191 STLIY 650 e8I 700°091M0CU
S¥'0 LL'S LO'S 98¢C 98¢T 80¥C 9¢°0 9Tye £00°091Mmocu
6¥°0 Iv'6 06'L 0€81 0€81 L861 9¢°0 020T 200°091M0cu
S¥'0 6S°S gee 6LCC 6LTC 8€€T 86°0 yive 00°0¥ 1 M0CH
87°0 06'¢ L6'1 61T P61T 8€TT 090 £8¢CC £00°0vImocu
0¢0 €L°01 €y 0€eT 0€€T %% 44 LSO 019¢ 200°0vIMocu
€70 ¢8'¢ S6'v 989¢ 989T 978¢T S0 £68¢C 700" 0TI MOTU
870 Ly'e €Tl LEET LEET 99¢T 860 1ve £00°0CIMmocu
IS0 9C €CC €61¢C €61T 3 c44 650 (4544 200°0TIM0cu
L den Aoxdwy [0S TOAY [0S189g [0S 31Uy 1 [0S189g
unpLose mQ ‘Te 10 ueg soour)su|

(Z102) 'T& 12 J1AOUSPR[IA “[€ 12 uuew{yQ

pue ‘(G661) Te 12 sewn(y T 30 neaipuan) £q pasodoid seoueisur uo unpLIoS[e Mo Aq pue (q/107) BIYSN pue ueq ‘Te 12 ueg £q paurelqo sj[nsal uoamieq uostedwo) g ajqel

pringer

as

Journal of Combinatorial Optimization (2021) 41:794-816

810

0¢°se 8¥°0 0r'o 6L79¢681 18181 00Z8T §8°CC 89¢81 00°0TIMo8U
80'¥1 18°0 09°0 99'evecl 827411 OISTI Yol PESTI ¥00°00gA09U
9¢¢el 09C 2! SL'LETTI L6901 €S801 9601 8601 £00°00¢mO9u
LTyl 681 ¥6°0 86'CLICI SYLIT 6S8TI 98°01 YLOL1 200°00gMO9u
8¢¢l ¥6°0 L0 9%°9661 1 TOTTI P8ITL SLOI 90¢I1 700°08[A(09U
6C¢el 1! el 99°810¢1 yIcel 9LETT 6C11 68¢CI €00°081MO9u
el 901 660 68°6C9C1 ST0TI SEITI ILT1 144Y4! 200°081M09u
6¢°€l 8v'1 LT 08'1vSTl SYITL S6LIT 9611 0cC8I1 ¥00°0912409U
86°¢l §S°0 1744 €8 78911 78901 80L0T 601 IvLO1 €00°091M09u
oret ¥8'C 69'1 87°06LE] ILYCT 98971 L0l 33141 200°091m09u
€yl S9'¢ 43! 08'99¢¢€1 68I€T 6T el 889¢1 00°0r [A09U
90°¢l 811 S6°0 8T'L68E 8CIET pSTel oL’ 11 G8eel £00°0¥[Mo9u
rad! T $6'0 9°69CCl T8LIT S68IT 48! ¥90C1 200°0v[MQ9u
wrel 99°0 £€v'0 €0'ICLIT CEILL (117888 €0l 90¢I1 700°0TIM09U
6911 860 £€v'0 0r"LSITI 06911 IvLIT 00¢I 8SLIT €00°0CIMO9u
L6'El ¥6°0 89°0 €C°L60ET LISTI €091 9¢01 9¢9¢1 200°0TIM09u
06C §eT Il €019 €019 6079 §9¢ 0529 ¥00°00CM0rU
19C wy 86'¢ (4253 wss CTLLS 66'C LS £00°00¢moru
69°C 6181 9’6 ¥L99 L9 LyEL ILe 8618 200°00Tmopu
06C SeT L1 €019 €019 6079 LLT 0529 ¥00°08[A0pU
0L'C ¥$°0 8C°0 0¥09 0¥09 LS09 ILC €L09 €00°081MOpu
88°C 091 9’1 019 019 819 €9°C €09 200708 [M(pu
¥6'C ore §TT 89vv 8PP ILsY €5°C 119% 700°09 [M0QpU
L den Aoxduy [0S IoAY [0S"15og [0S Uy L [0S"159g

wyLod[e mQ ‘Te 10 ueg sooue)Su[

penunuod ga|qel

pringer

as

811

Journal of Combinatorial Optimization (2021) 41:794-816

208Jp1oq ul pAYSIIYSIY e s)nsar paroxduy

90°¢l 86'C 6’1 1oAY
9561 50 Sv'0 6¢£°1808C 8SPPLT TLSLT 0rsy T6SLT 00" 0714001
LY 09°0 €C0 66'CL86T 60€8¢ SLEST yY0'ev 08¥8¢ €00°0¥IM00Tu
8€8Y 950 9C°0 TT°SLSTE °610€ 1L20E LTYY £9€0¢ 200°0r1M00TU
Y0'9r 9¢°0 ev'o 1$°0101¢€ 010€ 1€20€ 09y €£L20¢E $00°0TTA00TU
88'Cy 0S'1 ¥8°0 CTL'S999C SLTST 06¥€T eIy 659¢C £00°0CIM00Tu
89°9% ¥T0 Sro 99°CIllE 78867 9766T LUy £566C 00°0TIM00 U
Peee Sv'0 £e0 9I'¥6SL1 6TLIT ¥8LI1 8C'CC 0891 00°08[M08U
99CC LSO w0 0¥'L6GLT TLTLY E€PELL LO'IT 0LELT €00°081MO8u
8¥'CC 860 680 9€CLT81 6EELT S6vL1 8L'CC LISLT 200°081M08U
0Lsc 101 8¥°0 6C°€0C61 PO8LI 068LI SY'eT S86LI 00°091M08U
SI'ic S6'1 171 LS™86E8I 90991 60891 ¥9°€C 9¢691 €00°091M08u
L9'1C Sv'o €e0 06°18281 T60L1 SPYILL CLeC 89ILI 200°091m08u
68°1C 86°0 6v°0 S'c0661 9¢€681 62061 SLce Y061 00°07 [A08U
LS€T LLO §co [T 186L1 STELT 6SELT £0'CC 0SyLI €00°0¥ MO8
£6'7C 90°1 S9°0 61°8LT61 SISLI TE6LI 6l°¢C 90081 200°0v[M08U
°6°ST Iv'0 90 [L°66¥81 SIELT PIELT LY'€T 06¢L1 00°0TIM08U
L9'ST LS'T 801 7 vLL8T 8L8LI €L08T 08°1¢ €9181 €00°0CIMO8u
L den Aoxdury [0S oAy [0S 159 [0S Uy L [0S1s9g
wyLode mQ ‘e 19 ueg sooue)Su[

panunuod g 3jqel

pringer

As

812 Journal of Combinatorial Optimization (2021) 41:794-816

Table3 Comparison between results obtained by Heilporn et al. Fischetti et al. (1993) and by our algorithm
on instances proposed by Gendreau et al. Dumas et al. (1995), and Ohlmann et al. Mladenovic et al. (2012)

Instances G. Heilporn et al. Our algorithm

Best.Sol T Best.Sol T cTime
n20w120.001 2535 1 2175 0.46 1.24
n20w140.001 1908 1 1846 0.45 1.22
n20w160.001 2150 1 2146 0.46 1.24
n20w180.001 2037 1 2477 0.45 1.22
n20w200.001 2294 1 1975 0.45 1.22
n40w120.001 7496 5 6800 2.25 6.09
n40w140.001 7203 4 6290 2.7 7.31
n40w160.001 6657 4 6143 2.51 6.79
n40w180.001 6578 5 6952 2.7 7.31
n40w200.001 6408 5 6169 2.88 7.79
n60w120.001 9303 20 11120 14.73 39.86
n60w140.001 9131 21 10814 14.1 38.15
n60w160.001 11422 17 11574 13.72 37.12
n60w180.001 9689 18 11363 13.25 35.85
n60w200.001 10315 17 10128 13.09 3542
n80w120.001 11156 52 11122 21.32 57.69
n80w140.001 14131 43 14131 25.29 68.43
n80w160.001 8614 43 9108 22.99 62.21
n80w180.001 11222 56 11222 22.51 60.91
n80w200.001 8272 47 8302 39.02 105.58
n100w120.001 19246 73 22269 47.61 128.83
n100w140.001 22078 93 22078 49.53 134.02
n150w120.002 27192 388 27192 120.32 325.57
n200w120.003 17886 356 18010 160.2 433.48

Improved or same results are highlighted in boldface

In all tables, Init.Sol, Best.Sol, Aver.Sol, T correspond to the initial solution, best
solution, average solution, and average time in seconds of ten executions obtained
by the proposed algorithm, respectively while BKS is the best-known solution in the
literature. cTime represents scaled run times, estimated on a Pentium IV by means of
the factors of Dongarra Dongarra (2011). Tables from 1, 2, 3, 4 compare the results of
our algorithm with the best-known solutions of the other algorithms in Ban and Nghia
(2017b); Heilporna (2010); Silva and Urrutia (2010); Ohlmann and Thomas (2007).
The results of the state-of-the-art metaheuristic algorithms are directly extracted from
Ban and Nghia (2017b); Heilporna (2010); Silva and Urrutia (2010); Ohlmann and
Thomas (2007). Our algorithm runs on the same instances with the other algorithms.
Note that: Most of the results published in Ban and Nghia (2017b) are used to compare.
In addition, Ban et al. Ban and Nghia (2017b) kindly provide us with their code as well

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816 813

Table4 Comparison results

obtained by Ohlmann et al. Instances OPT BKS Best.Sol Gap T

Miadenovic et al. (2012), and ooy 378 378 378 000 0.14

Silva et al. Heilporna (2010) on

TSPTW-instances n20w40 254 254 254 0.00 0.15
n20w60 335 335 335 0.00 0.13
n20w80 329 329 329 0.00 0.13
n40w20 500 500 500 0.00 1.64
n40w40 465 465 465 0.00 1.87
n40w60 494 494 494 0.00 1.87
n40w80 395 395 395 0.00 1.77
n60w20 551 551 551 0.00 16.31
n60w40 591 591 591 0.00 16.34
n60w60 609 609 609 0.00 16.52
n80w20 616 616 616 0.00 29.01
n80w40 606 606 606 0.00 27.38
n80w60 554 554 554 0.00 27.20
n80w80 624 624 624 0.00 27.62
n100w20 738 738 740 0.00 48.03
n100w40 770 770 770 0.00 45.45
Aver 0.00 15.39

The optimal solutions are highlighted in boldface

as more detailed empirical results on different instances at the link [35]. To compare
with their results, we run the proposed algorithm on the same instances.

In Tables 1 and 2, it is shown that the difference in the average gap between the
construction and improvement phase is 2.49%. The average gap is rather small. It
indicates that the construction phase returns good quality solutions fast. Although
the improvement of the post phase upon the construction one is not too large, it is
significant since 136 new best-known solutions are found compared with the other
algorithms Ban and Nghia (2017b); Heilporna (2010). For the larger instances with up
to 250 instances, our search is quite time-consuming. Hence, the first way to reduce
the large running time is to run the construction phase with a slight loss of 2.49%
solution quality on average.

Tables 1 and 2 show the results on the Dumas et al.’s Dumas et al. (1995) instances
and compare them with the results obtained by the algorithm in Ban and Nghia (2017b).
The quality of our solutions is much better than Ban et al. in Ban and Nghia (2017b)
in most instances. The average result of —3.3% is slightly better than the one obtained
by Ban et al. in Ban and Nghia (2017b), while the run time is comparable on average.
For the instances with more than 200 vertices, feasible solutions have been unknown
in the previous algorithms Ban and Nghia (2017b); Heilporna (2010); meanwhile, the
feasible solutions for instances with up to 250 vertices can be found by our algorithm.
It is also a significant result because building a feasible solution to the problem is
NP-hard problem Salvesbergh (1985).

@ Springer

814 Journal of Combinatorial Optimization (2021) 41:794-816

In Table 3, our result is comparable with Heilporn et al.’s algorithm Heilporna
(2010). Specifically, it reaches the better solutions for 10 out of 24 instances. Besides,
it obtains the same results for 4 cases. The improvement is significant when Heilporn
et al.’s algorithm is one of the state-of-the-art metaheuristics for the problem.

Table 4 shows that most algorithms are developed for a specific variant that does
not apply to the other variants. Our algorithm still runs well to TSPTW, although it
was not designed for solving it. In comparison with the best-known solution in Silva
and Urrutia (2010); Ohlmann and Thomas (2007), our algorithm’s solutions obtain the
optimal solutions for the instances with up to 100 vertices. The average gap between
the best-known solution and our result is about 0.0%. It shows that our result reaches
the best-known solutions for all instances.

The algorithm in Ban and Nghia (2017b) was executed on the nearly similar config-
uration with the proposed algorithm. However, G. Heilporna et al’s and the proposed
algorithm were executed on computers with different configurations. To compare the
running time of them, a scaled running time (c7ime) estimated on an AMD Opteron
275/2.2 Ghz (this configuration is almost the same as one used in Heilporna (2010))
by means of the factors of Dongarra Dongarra (2011) is used. In this case, the running
time comparison is evaluated in a relative manner. From the experimental results, the
running time of the proposed algorithm grows quite moderate compared to the Heil-
porn et al.’s algorithm Heilporna (2010) while it is comparable with the one of Ban et
al.’s algorithm Ban and Nghia (2017b).

6 Discussions

According to our observation, there are numerous local optima and only one global
optimal solution in DMPTW. The search space overall seems to exhibit the big-valley
structure. The big valley hypothesis suggests that, in combinatorial optimization, local
optima of good quality are clustered and surround the global optimum. It is an impor-
tant characteristic of many hard problems from combinatorial optimization Reeves
(1999). The structure suggests the idea of the hybrid approach between RVND with
ILS, and Tabu, as follows. Firstly, the combination between RVND and ILS, in which
ILS ensures diversification while RVND maintains intensification, generates many
good locally optimal solutions dispersed over the global optimal solution. Secondly,
TS is entirely attracted to the global optimal. Even though the initial solution is set far
from the global optimal solution, TS is capable to prevent from getting trapped into
cycles to drive the search to the global optimal solution.

With respect to the instances, the algorithm finds better solutions than Ban et al.’s
algorithm Ban and Nghia (2017b) for 136 out of 160 instances. Moreover, for 24
instances, it obtains better solutions for 10 cases and the same quality for 4 cases
when comparing with Heilporn et al.’s algorithm Heilporna (2010). For the large
instances with up to 250 customers, this is the first time our algorithm has provided
feasible solutions. It is a significant improvement because finding a feasible solution is
also NP-hard problem. In TSPTW, our algorithm obtains the optimal solutions for the
instances with up to 100 vertices. Moreover, it also reaches the best-known solutions
for all instances. Although our purpose is not to provide metaheuristic for TSPTW,

@ Springer

Journal of Combinatorial Optimization (2021) 41:794-816 815

the obtained results for this problem show the efficiency and broad applicability of
our algorithm.
Our algorithm performs better than the others thanks to two reasons as followings:

(1) Heuristic algorithms such as Heilporna (2010) are often too greedy, therefore, it can
get stuck into a local optimum in many cases. On the other hand, the metaheuristic
approach is not greedy and may even accept a temporary deterioration of solution,
which allows it to explore the solution space more thoroughly, and thus the chance
to get better solutions is higher.

(2) The algorithm in Ban and Nghia (2017b) can get trapped into cycles in some
cases, by using Tabu lists our algorithm overcomes their drawback and obtains
better solutions. Moreover, the proposed algorithm uses more neighborhoods than
the algorithm in Ban and Nghia (2017b); therefore, the explored solution space is
larger. As a result, the chances of finding better solutions are higher.

7 Conclusions

In this work, DMPTW is studied. As our main contribution, we propose a metaheuristic
algorithm that combines ILS, RNVD, and Tabu for DMPTW. We tested the algorithm
on the benchmark dataset, comparing it to several state-of-the-art metaheuristic algo-
rithms. Our algorithm is comparable with the state-of-the-art metaheuristic algorithms
and it is able to find optimal solutions for instances with up to 100 vertices in a short
time. In addition, for 136 instances, it provides new best-known solutions. In the
future, we intend to extend the algorithm by including more neighborhoods and care-
fully studying the effectiveness of each neighborhood. Increasing the efficiency as
well as the running time of our algorithm, even more, to allow even larger problems
to be solved, is another future research topic.

Acknowledgements This research was supported by the Asahi Glass Foundation under grant number
AGF.2020-02.

References

Ajama M, Akbari V, Salmana FS (2019) Minimizing latency in post-disaster road clearance operations. J
Oper Res 277:1098-1112

Avci M, Avei MG (2017) A GRASP with iterated local search for the traveling repairman problem with
profits. J Comput Ind Eng 113:323-332

Ban HB, Nguyen DN (2010) Improved genetic algorithm for Minimum Latency Problem. Proc. SOICT
9-15

Ban HB, Nguyen K, Ngo MC, Nguyen DN (2013) An efficient exact algorithm for Minimum Latency
Problem. J PI 10:1-8

Ban HB, Nghia ND (2017) A Meta-Heuristic algorithm combining between Tabu and variable neighborhood
search for the minimum latency problem. J FI 156(1):21-44

Ban HB, Nghia ND (2017) Metaheuristic for the Traveling Repairman Problem with Time Windows. Proc.
RIVF 1-6

Beraldi P, Bruni ME, Lagana D, Musmanno R (2018) The Risk-Averse Traveling Repairman Problem with
Profits. J. Soft Computing 1-15

@ Springer

816 Journal of Combinatorial Optimization (2021) 41:794-816

Bertsimas D, Ryzin G (1989) “The Dynamic Traveling Repairman Problem, MIT Sloan School of Man-
agement Working Paper No. 3036-89-MS

Blum A, Chalasani P, Coppersmith D, Pulleyblank W, Raghavan P, Sudan M (1994) The Minimum Latency
Problem. Proc. STOC 163-171

Bruni ME, Beraldi P, Khodaparasti S (2018) A heuristic Approach for the k-Traveling Repairman Problem
with Profits under Uncertainty.] ENDM 69:221-228

Bruni ME, Beraldi P, Khodaparasti S (2019) A Hybrid Reactive GRASP Heuristic for the Risk-Averse
k-Traveling Repairman Problem with Profits.] Comput Oper Res 115:1-16

Bruni ME (2020) Sara Khodaparasti and Samuel Nucamendi-Guillén, “The bi-objective Minimum Latency
Problem with Profit Collection and Uncertain Travel Times”. Proc. ICORES 2020:109-118

Chaudhuri K, Goldfrey B, Rao S, Talwar K (2003) Path, Tree and Minimum Latency Tour. Proc. FOCS
36-45

Dewilde T, Cattrysse D, Coene S, Frits CR, Spieksma FCR, Vansteenwegen P (2013) Heuristics for the
Traveling Repairman Problem with Profits. J] Comput Oper Res 40:1700-1707

Dumas Y, Desrosiers J, Gélinas E (1995) An optimal algorithm for the Traveling Salesman Problem with
Time Windows. J Oper Res 43:367-371

Dongarra JJ (2011) Performance of various computers using standard linear equations software. Tech. Rep.
CS-89-85, Computer Science Department, University of Tennessee, Knoxville, TN, USA

Fischetti M, Laporte G, Martello S (1993) The delivery man problem and cumulative matroids. J Oper Res.
41:1055-1064

Feo TA, Resende MGC (1995) “Greedy Randomized Adaptive Search Procedures”, J. Global Opt., pp.
109-133

Gendreau M, Hertz A, Laporte G, Stan M (1998) A generalized Insertion Heuristic for the Traveling
Salesman Problem with Time Windows. J. Oper Res 43:330-335

Goemans M, Kleinberg J (1996) An improved approximation ratio for the Minimum Latency Problem.
Proc. SIAM SODA 152-158

Heilporna G, Cordeaua Jean-Frangois, Laporte Gilbert (2010) The Delivery Man Problem with Time Win-
dows. 7:269-282

Ibaraki T, Imahori S, Nonobe K, Sobue K, Uno T, Yagiura M (2008) An iterated local search algorithm for the
vehicle routing problem with convex time penalty functions. J Discrete Appl Math 11(156):2050-2069

Johnson DS, McGeoch LA. “The traveling salesman problem: A Case Study in Local Optimization in Local
Search in Combinatorial Optimization”, E. Aarts and J. K. Lenstra, eds., pp. 215-310

Martin O, Otto SW, Felten EW (1991) Large-step Markov Chains for the Traveling Salesman Problem. J
Complex Syst 5(3):299-326

Mladenovic N, Hansen P (1997) Variable neighborhood search. J. Oper. Res. 24(11 24):1097-1100

Mladenovic N, Urosevi D, Hanafi S (2012) Variable neighborhood search for the Travelling Deliveryman
Problem. J. 40R 11:1-17

Salehipour A, Sorensen K, Goos P, Braysy O (2011) Efficient GRASP+VND and GRASP+VNS meta-
heuristics for the Traveling Repairman Problem. J Oper Res 9(2):189-209

Silva M, Subramanian A, Vidal T, Ochi L (2012) A simple and effective metaheuristic for the minimum
latency problem. J EOR 221(3):513-520

Silva RF, Urrutia S (2010) A general VNS Heuristic for the Traveling Salesman Problem with Time Win-
dows. J. Discrete Optim 7(4):203-211

Tsitsiklis JN (1992) Special cases of Traveling Salesman and Repairman Problems with time windows. J
Netw 22:263-283

Talbi EG (2009) Metaheuristics: from Design to Implementation. Wiley, New Jersey

Ohlmann JW, Thomas BW (2007) A compressed-annealing heuristic for the traveling salesman problem
with time windows. J Informs 19(1):80-90

Salvesbergh MW (1985) Local search in routing problems with time windows. J Ann Oper Res 4:285-305

Reeves CR (1999) Landscapes, operators and heuristic search. Ann Oper Res 86:473—-490

https://sites.google.com/a/soict.hust.edu.vn/dmptw/trptw

https://homepages.dcc.ufmg.br/~rfsilva/tsptw/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://sites.google.com/a/soict.hust.edu.vn/dmptw/trptw
https://homepages.dcc.ufmg.br/~rfsilva/tsptw/

	A metaheuristic for the delivery man problem with time windows
	Abstract
	1 Introduction
	2 Literature
	3 Problem definition
	4 Two-Phase Algorithm
	4.1 Neighborhoods
	4.2 RVND+ILS with Tabu

	5 Evaluations
	5.1 Instances
	5.2 Results

	6 Discussions
	7 Conclusions
	Acknowledgements
	References

