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Abstract
The Delivery Man Problem with Time Windows (DMPTW) is an extension of the
Delivery Man Problem. The objective of DMPTW is to minimize the sum of cus-
tomers’ arrival time while the deliveries are made during a specific time window given
by the customers. Another close variant of objective is a travel duration. In the case,
the problemminimizes the sum of travel durations between a depot and customer loca-
tions. It has many practical applications to network problems, e.g., whenever servers
have to accommodate a set of requests to minimize clients’ total (or average) waiting
time. To solve medium to large-sized instances, a two-phase metaheuristic algorithm
is proposed. A construction stage generates a feasible solution using Neighborhood
Descent with Random neighborhood ordering (RVND), and the optimization stage
improves the feasible solution with an Iterated Local Search. Moreover, Tabu Search
(TS) is incorporated in the proposed algorithm to prevent it from getting trapped into
cycles. Therefore, our algorithm is prevented from becoming stuck at local optima.
The results of experimental simulations are compared with well-known and success-
ful metaheuristic algorithms. These results show that the proposed algorithm reaches
better solutions in many cases.

Keywords DMPTW · ILS · TS · and RVND

1 Introduction

Delivery Man Problem with Time Windows (DMPTW) is a variant of Delivery Man
Problem (DMP) that is seen as a “customer centric” routing problem. However, in
DMP, there is no restriction on the time the service begins. That means the service
begins as soon as the deliveryman reaches a location. In practice, this assumption does
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not always hold. If the deliveryman reaches locations before customers are available for
service, he will have to wait for the beginning of the service. Informally, in DMPTW,
there are a vehicle at themain depot s, andn customers. Each customer has an additional
restriction that is an interval time so that it has to be supplied. The goal is to find a tour
that minimizes the overall customers’ arrival time while ensuring that all customers
are served. This objective has received recent attention in the literature Ban and Nghia
(2017b). Another close variant of objective is a travel duration. In the case, the problem
minimizes the sum of travel durations between a depot and customer locations. The
travel duration of a customer is the difference between the beginning of his service
and the beginning of service at the depot. DMPTW with the travel duration objective
has been studied in Heilporna (2010).

DMPTW has many practical applications for scheduling tasks and logistics, etc.
In logistics, it aims at finding a tour that minimizes the sum of arrival times of all
customers so that each customer must be visited within a given time window. In
scheduling tasks, DMPTW can model the problem of scheduling jobs on a single
machine where setup times are sequence-dependent, and each job has a release and
due time. Let the latency of each job be the time that it has to wait to be started. In the
scheduling problem, the sum of latency of all jobs is subject to optimization.

To the best of our knowledge, there are three works for DMPTW in the literature.
Tsitsiklis Tsitsiklis (1992) presented a polynomial algorithm since the number of loca-
tions are bounded. Heilporn et al. Heilporna (2010) then provided heuristic algorithms
in accordance with insertion heuristic schemes or with an insertion heuristic scheme.
After that, Ban et al. Ban and Nghia (2017b) proposed ametaheuristic algorithm based
on Variable Neighborhood Search (VNS). Their experimental results Ban and Nghia
(2017b); Heilporna (2010) were quite promising. However, these algorithms have
drawbacks. The algorithm Ban and Nghia (2017b) might become trapped into cycles,
and they return to the points previously explored in the solution space. Consequently,
the algorithms can get stuck in local optima. The heuristic algorithms in Heilporna
(2010), on the other hand, are often too greedy, and the explored solution space is not
large enough. Therefore, they can get trapped into local optimum and fail to obtain
the global optimum solution in many cases.

The success of any heuristic approach depends on balance between right inten-
sification and diversification. While the above-mentioned algorithms Ban and Nghia
(2017b); Heilporna (2010)meet some drawbacks, the proposed algorithm is developed
to tackle them. The main contributions of this work can be summarized as follows:

– From the algorithmic design, we develop a two-phase metaheuristic consisting
of a constructive and optimization stage. The construction stage seeks a feasible
solution, whereas the improvement stage tries to improve it. Our metaheuristic
combines RVNDwith ILS, in which ILS Talbi (2009) ensures diversification while
RVND maintains intensification. This combination keeps the simplicity spirit of
RVND while it effectively explores the search space. Moreover, TS Talbi (2009)
is incorporated into our algorithm to mainly prohibit from getting trapped into
cycles.
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– From the computational perspective, extensive numerical experiments on bench-
mark instances show that our algorithm reaches better solutions than the-state-of-
art metaheuristics in many cases.

The rest of this paper is organized as follows. Sections 2, 3 present the literature and
problem definition, respectively. Section 4 describes the proposed algorithm. Compu-
tational evaluations are reported in Section 5. Sections 6, 7 discuss and conclude the
paper, respectively.

2 Literature

DMPTW is NP-hard because it is a generalization case. Despite the similarities
between DMP and DMPTW, solving DMPTW is more challenging since its solu-
tion must satisfy the time windows’ constraint. M. W. Salvesbergh Salvesbergh
(1985) argues that even building a feasible solution to the problem is a NP-hard
problem. For NP-hard problems, there are three common approaches to solve the
problem, namely, 1) exact algorithms, 2) approximation algorithms, 3) heuristic (or
metaheuristic) algorithms. Firstly, the exact algorithms guarantee to find the opti-
mal solution and take exponential time in the worst case, but they often run much
faster in practice. In the literature, there is only work Heilporna (2010) to DMPTW.
However, this exact algorithm only solves the problem with small sizes. Secondly,
an α-approximation algorithm produces a solution within some factor of α of the
optimal solution. Currently, no approximation work is known for DMPTW. Thirdly,
heuristic algorithms perform well in practice and validate their empirical performance
on an experimental benchmark of interesting instances. The metaheuristic algorithm
falls into this approach. For DMPTW, there are two metaheuristic algorithms that
are the algorithms of Ban et al. Ban and Nghia (2017b), and Heilporn Heilporna
(2010).

Though only three works have been known for DMPTW, several classes of
problems closely related to the problem were introduced in the literature: Delivery
Man Problem (DMP), DMP with Profits (DMPP), Dynamic Traveling Repairman
Problem (DTRP), Minimizing latency in Post-disaster Road Clearance Operations
(ML-RCP), and Bi-objective Minimum Latency Problem with Profit Collection (BO-
MLPPC).

– DMP is a particular case of DMPTWwithout time windows. Numerous works for
DMP can be found in Ban and Nguyen (2010); Ban et al. (2013); Ban and Nghia
(2017a); Blum et al. (1994); Chaudhuri et al. (2003); Goemans and Kleinberg
(1996). Ban et al. (2013) presented an exact algorithm to solve instances with up
to 40 vertices. Several approximation algorithms Blum et al. (1994); Chaudhuri
et al. (2003); Goemans and Kleinberg (1996) were proposed to solve DMP with
the best approximation ratio of 3.59. In the metaheuristic approach, we can found
several algorithms Ban and Nguyen (2010); Ban and Nghia (2017a); Mladenovic
et al. (2012); Salehipour et al. (2011); Silva et al. (2012); Tsitsiklis (1992). In Ban
and Nguyen (2010), Ban et al. used a Genetic Algorithm to solve the problem
while the others Ban and Nghia (2017a); Mladenovic et al. (2012); Salehipour

123



Journal of Combinatorial Optimization (2021) 41:794–816 797

et al. (2011); Tsitsiklis (1992) were mainly based on Variable Neighborhood
Search (VNS). Specifically, Salehipour et al. Salehipour et al. (2011) success-
fully combined Greedy Randomized Adaptive Search Procedure (GRASP) and
VNS. Mladenovic et al. Mladenovic et al. (2012) then provided a General-VNS
to improve solution quality. Later on, Silva et al. (2012) presented a multi-start
approach, including a GRASP and RVNS. The algorithm finds good-quality solu-
tions for large instances. Finally, Ban and Nghia (2017a) proposed a two-phase
algorithm consisting of GRASP Feo and Resende (1995) in the construction phase
and VNS+TS in the improvement phase. Their algorithm found the new best solu-
tions in several small instances.

– InDMPP, the aim is to find a travel plan thatmaximizes the total revenue. However,
in contrast to DMP, in DMPP, not all the customers need to be visited. In [14],
Dewilde et al. combined VNS and Tabu Search to solve the problem. M. Avci then
proposed a metaheuristic that brings together GRASP, and Iterated Local Search
to improve solution quality. Their metaheuristic algorithms Avci and Avci (2017);
Dewilde et al. (2013) can well solve the problem with up to 500 vertices. After
that, Beraldi et al. Beraldi et al. (2018) have introduced a stochastic variant of
DMPP under uncertain travel times. The difference between DMPP and stochastic
DMPP is that the travel times in stochastic DMPP are uncertain. Stochastic DMPP
is heuristically solved by means of a beam search heuristic. Finally, Bruni et al.
extended stochastic DMPP with multiple vehicles Bruni et al. (2018, 2019). The
effectiveness of their algorithms was very promising through extensive experi-
mental results.

– In DTRP Bertsimas and Ryzin (1989), the objective function of TRP is stochastic
in a dynamic environment. Currently, to the best of our knowledge, this is the only
paper dealing with DTRP. However, neither metaheuristic nor exact algorithm is
proposed for the problem.

– ML-RCP Ajama et al. (2019) finds a tour with minimum latency sum in post-
disaster road clearance. Unlike TRP, in disaster situations, travel costs need
to be added to debris removal times. Moreover, they divide vertices in the
graph into two types: 1) critical vertices must be visited; 2) non-critical ver-
tices may or may not be visited. They provided GRASP with VNS metaheuristic
that obtained optimal or near-optimal solutions on Istanbul data within sec-
onds.

– In BO-MLPPC Bruni (2020), routes must be constructed to maximize the col-
lected profit and minimize the total latency. In this problem, not all the customers
need to be visited and there is the presence of uncertain travel times. To address
this problem, the authors proposed a Multi-Objective Iterated Local Search. The
experimental results concluded that the algorithm found good-quality solutions
for small and medium-size instances.

The above algorithms are the state-of-the-art algorithms for several variants of
DPMTW. However, there is no time restriction in these problems, and they cannot
be adapted directly to DMPTW. That means that we cannot use the above algorithms
to solve DMPTW.
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3 Problem definition

In this section, we provide a formulation of the DMPTW:
Given an complete graph Kn = (V , E), where V = {1, 2, . . . , n} is a set of vertices
representing the depot and client places, and E is the set of edges connecting the
vertices. Assume that, a tour is represented as T = (v1 = s, v2..., vn), and vk denotes
the index of the vertex at the k-th position of the tour. For each edge (vi , v j ) ∈ E , which
connects the two vertices vi and v j , there exists a cost c(vi , v j ). This cost describes
the travel time between vertex vi and v j . A time window [ei , li ] is associated to each
vertex vi ∈ V , which indicates when service time at vertex vi can start. This implies
that a vertex vi may be reached before the start ei , but service cannot start until ei and
no latter than li of its time window. In addition, the deliveryman spends time to serve
each customer. Let S(vi ) be the service time at vertex vi . Therefore, given a particular
tour T , let D(vk) be the time at which service begins at vertex vk . It is calculated as
follows: D(vk) = max {A(vk), ek}, where A(vk) = D(vk−1)+ S(vk−1)+c(vk−1, vk)

is the arrival time at vertex vk in the tour. We also define the travel duration of vertex
vi as the difference between the beginning of service at vi and the beginning of service
at the depot. A tour is feasible, if and only if A(vk) ≤ lk for all vertices. DMPTW
requires finding a feasible tour visiting all vertices to minimize the sum of arrival times
or travel durations.

4 Two-Phase Algorithm

4.1 Neighborhoods

Several popular neighborhoods in the literature are used to explore the solution space
of the problem [29]. Let Tsol be the time complexity of calculating solution’s cost.
The main operation in exploring these neighborhoods is the calculation of the cost
function of neighboring solutions. In straightforward implementation in the worst
case, this operation requires Tsol = Θ(n). Assume that T , and n are a tour, and its
size, respectively. We describe in more details about nine neighborhoods as follows:

– move-up moves a vertex forward one position in T . The complexity of exploring
the neighborhood is O(T sol × n).

– move-downmoves a vertex backward one position in T . The complexity of explor-
ing the neighborhood is O(T sol × n).

– shift relocates a vertex to another position in T . The complexity of exploring the
neighborhood is O(T sol × n).

– swap-adjacent attempts to swap each pair of adjacent vertices in T . The com-
plexity of exploring the neighborhood is O(T sol × n).

– swap tries to swap the positions of each pair of vertices in T . The complexity of
exploring the neighborhood is O(T sol × n2).

– 2-opt removes each pair of edges from T and reconnects them. The complexity
of exploring the neighborhood is O(T sol × n2).
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– Or-opt: Three adjacent vertices are reallocated to another position of T . The
complexity of exploring the neighborhood is O(T sol × n2).

– Move-forward-k-vertices moves k consecutive vertex positions to the right of T
(k = 1, 2, . . . , l). The complexity of exploring the neighborhood is O(T sol × l ×
n2).

– Move-backward-k-verticesmoves k consecutive vertex positions to the left of T
(k = 1, 2, . . . , l). The complexity of exploring the neighborhood is O(T sol × l ×
n2).

In DMPTW, when the positions of vertices in T are changed, the other vertices’ arrival
timesmaybe affected later. Therefore,T sol requires exactlyΘ(n) time.Unfortunately,
it leads to Θ(n) operations for each move evaluation resulting in Θ(n3) operations
for a full neighborhood search.

4.2 RVND+ILS with Tabu

A good metaheuristic must ensure the balance between diversification and intensi-
fication. Mladenovic et al. Mladenovic and Hansen (1997) show that RVND allows a
better understanding of the characteristics and behavior of the problem. They further
claim that RVND yields local optima that are nearer to the global optimum in a more
straightforward manner than other metaheuristics. However, RVND only implements
intensification, and it needs to be added to diversification. Our two-phase metaheuris-
tic includes a constructive and optimization stage. Our metaheuristic combines RVND
with ILS, in which ILS Talbi (2009) ensures diversification while RVND maintains
intensification. This combination keeps the simplicity spirit of RVND while it effec-
tively explores the search space. Moreover, TS Talbi (2009) is incorporated into our
algorithm to mainly prohibit from getting trapped into cycles. Algorithm 1 depicts the
whole process.

The constructionphase:Algorithm2 shows the constructive procedure. The objec-
tive function used here is the sum of all positive differences between the time to reach
each vertex and its due time, that is, min

∑n
i=1 max(0, A(vi ) − li ). The algorithm

works until it finds a feasible solution. From lines 2 to 6, Restricted Candidate List
(RCL) is determined by ordering all non-selected vertices in terms of a greedy manner
that measures the benefit of including them on tour. After that, one element will be
chosen randomly from RCL. The size of RCL is a parameter that controls the balance
between greediness and randomness. Since all vertices are visited, we obtain a solu-
tion. In lines 7 and 8, if the solution is feasible, it is considered an initial solution,
and the construction stops. In contrast, a local search procedure based on the VNS
Mladenovic and Hansen (1997) is started, and the algorithm iterates until finding a
feasible solution or level_max is reached. The solution is perturbed, by making level
random shift moves, to prevent it from becoming stuck at local optima in line 12. Next,
the VNS is applied to the perturbed solution to create a new solution. If it is better
than the best-found solution, it is set to the new current solution through lines 13 to
24. At the end of each iteration from lines 25 to 30, level is increased by one if the
current solution is not improved, or reset to 1, otherwise.
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Algorithm 1 RVND+ILS with Tabu
Input: v1, V , Ni (T )(i = 1, ..., 9), level are a starting vertex, the set of vertices in Kn , the set of neigh-

borhoods, the parameter to control the strength of the perturbation procedure, respectively.
Output: the best solution T ∗.
1: for i ← 1, ..., Imax do
2: {Step 1}
3: {Construction phase}
4: T ← Construction(v1, V );
5: T ′ ← T ;
6: i ter I LS ← 0;
7: {Improvement phase}
8: while i ter I LS < m do
9: {Step 2: RVND}
10: Initialize the Neighborhood List NL;
11: while NL �= 0 do
12: Choose a neighborhood N in NL at random;

13: T
′′ ← arg min N (T );{T

′′
must be feasible} {Neighborhood search}

14: if (L(T
′′
) < L(T ) and T

′′
is not tabu) or (L(T

′′
) < L(T ∗))) then

15: T ← T
′′

16: Update NL;
17: Update tabu lists;

18: if (L(T
′′
) < L(T ∗)) then

19: T ∗ ← T
′′
; {Update the best solution}

20: end if
21: else
22: Remove Ni from the NL; {Do not implement neighborhood Ni }
23: end if
24: end while
25: T ← T

′′
;

26: if L(T ) < L(T
′
) then

27: {Step 3: Intensification to exploit the region}
28: T = Perform RVNDwithout using tabu list restrictions on the solution T ; {T must be feasible}

29: if (L(T ) < L(T )) or (L(T ∗) < L(T )) then
30: T ← T ;
31: end if
32: if (L(T ∗) < L(T )) then
33: T ∗ ← T ; {Update the best solution}
34: end if
35: T

′ ← T ;
36: i ter I LS ← 0;
37: end if
38: {Step 4: Diversification to explore new region}
39: Clear all tabu lists;
40: T ←− Perturbation(T , level); {implement perturbation technique}

41: T
′ ← T ;

42: i ter I LS + +;
43: end while
44: end for
45: return T ∗;

The improvement phase: After the construction of the feasible initial solution,
this step tries to improve it. In this phase, the objective function is to minimize∑n

i=2(D(vk) − D(v1)). Our algorithm begins with the feasible solution provided
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Algorithm 2 Construction
Input: v1, V , k, α, level are a starting vertex, the set of vertices in Kn , the number of vehicles and the size

of RCL, the parameter to control the strength of the perturbation procedure, respectively.
Output: An initial solution T .
1: T = φ; {T is a tour}
2: while |T | < n do
3: Create RCL that includes α nearest vertices to ve in V ; {ve is the last vertex in T }
4: Select randomly vertex v = {vi |vi ∈ RCL and vi /∈ T };
5: T ← T ∪ vi
6: end while
7: if T is a feasible solution then
8: return T ;
9: else
10: level = 1;
11: while ((T is infeasible solution) and (level ≤ level_max)) do
12: T ′= Perturbation(T , level);
13: for i : 1 → 9 do
14: T

′′ ← arg min Ni (T
′
); {local search}

15: if (L(T
′′

< L(T
′
)) then

16: T
′ ← T

′′

17: i ← 1
18: else
19: i + +
20: end if
21: end for
22: if L(T

′
) < L(T ) then

23: T ← T
′
;

24: end if
25: if L(T

′
) == L(T ) then

26: level ← 1;
27: else
28: level + +;
29: end if
30: end while
31: end if
32: return T ;

by the first phase. In Step 1, in line 4, the algorithm starts with the initial solution
obtained from the construction phase and consists of three main steps repeated until
a stop condition is met. In Step 2, from lines 11 to 25, we introduce the structure of
several neighborhoods in RVND. Moreover, to avoid tabu moves, two tabu lists are
used. Step 3, from lines 26 to 39, aims at exploiting the current solution space. To
explore unvisited solution space, a diversification phase is added in Step 4 from lines
41 to 42. In the remaining of this section, more details about the four steps of our
algorithm are described. Some successful applications of ILS on other combinatorial
optimization problems can be found in Ibaraki et al. (2008).
In the local search procedure, the Neighborhood List (NL) is initialized with all neigh-
borhoods.Agivenneighborhood is selected at randomfrom theNL.Neighbor solutions
are evaluated, and the best feasible neighboring solution is accepted if it is non-tabu,
improving, or tabu but globally improving. In the case of improvement, NL is repop-
ulated with all neighborhoods. Otherwise, we removed it from NL. The procedure
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Algorithm 3 Perturbation(T , level)
Input: T , k are the tour, and the number of swap, respectively.
Output: a new tour T .
1: while (level > 0) do
2: k1 = 1 + rand( n4 );
3: k2 = k1 + 1 + rand( n4 );
4: k3 = k2 + 1 + rand( n4 );
5: {T1 copies consecutive vertices from 1-st to k1 − th position in T }
6: T1 = T [1 : k1] ;
7: {T2 copies consecutive vertices from k3 − th to k4 − th position in T }
8: T2 = T [k3 : k4];
9: {T3 copies consecutive vertices from k2 − th to k3 − th position in T }
10: T3 = T [k2 : k3];
11: {T4 copies consecutive vertices from k1 − th to k2 − th position in T }
12: T4 = T [k1 : k2];
13: T = T1 ∪ T2 ∪ T3 ∪ T4;
14: level = level − 1;
15: end while
16: return T ;

terminates when NL becomes empty. Due to different neighborhood structures, two
tabu lists are built. Amove of the type remove-insert, swap-adjacent, move-up (down),
and shift is stored in the first tabu list while the second is for 2-opt, and or moves.
After each move, only the tabu list of the corresponding neighborhood is updated. The
reverse move becomes tabu after some iterations that are determined dynamically. For
tabu lists, a tabu tenure is a random number between 5 and 10. Specifically, the tabu
lists in this work are implemented as follows:

– Move-up (down) moved up (down) vi forward (backward) one position cannot be
applied again while it is tabu.

– Shift applied to vi to another position of the tour cannot be applied again while it
is tabu.

– Swap, and swap-adjacent swapped a pair of (vi , v j ) cannot swapped again while
it is tabu.

– 2-opt implemented to a pair of (vi , v j ) cannot implement again to the samevertices.
– Or-opt applied to (vi , v j ) and vk is prohibited from applying the same vertices.

When a better solution is found, the intensification step starts. The solution is per-
formed with RVND without any tabu move. Since the new best-known solution is
found, i ter I LS is set to 0. After that, the algorithm goes to the perturbation step. The
Perturbation mechanism design is very important to achieve success in our algorithm.
If the mechanism produces too small perturbation moves, the search procedure may
return to the previously visited local optimum points. On the other hand, excessive
perturbationmovesmay drive the search procedure to undesirable regions in the search
space. To overcome these issues, we implement an adaptive perturbation mechanism.
The perturbation mechanism, called double-bridge, is originally developed in Martin
et al. (1991). It consists of removing and re-inserting four arcs in the tour. This mecha-
nism can also be seen as a permutation of two disjoint segments of the tour. The detail
of the step is described in Algorithm 3.
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The last aspect to discuss is the stop criterium of our algorithm. A balance must
be made between computation time and efficiency. Here, the algorithm stops if no
improvement is found after m loops.

5 Evaluations

Our algorithm is run on a Pentium 4 core i7 2.40 GHz processor with 8 GB of
RAM. On all experiments, parameters α, level_max ,m, and Imax are respectively set
to 10, 5, 50, and 10. These parameters are chosen through empirical tests, and with
them, the algorithm seems to produce good solutions at a reasonable amount of time
compared to the other parameter values.

We also tested the performance of the proposed algorithm against the state-of-the-
art algorithms Ban and Nghia (2017b); Heilporna (2010); Silva and Urrutia (2010);
Ohlmann and Thomas (2007).

5.1 Instances

We implement the algorithm in four sets of instances that include more than 160
instances as followings:

– The first set is proposed by Dumas et al. Dumas et al. (1995) and contains 135
instances grouped in 27 test cases. Each group has fiveEuclidean instances, coordi-
nates between0 and50,with the samenumber of customers and the samemaximum
range of time windows. For example, the instances n20w60.001, n20w60.002,
n20w60.003, n20w60.004, and n20w60.005 have 20 vertices and the time win-
dow for each vertex is uniformly random, between 0 and 60.

– The second set of instances is proposed by Gendreau et al. (1998) and contains
140 instances grouped in 28 test cases.

– The third set of instances is proposed byOhlmann andThomas (2007) and contains
25 instances grouped in 5 test cases. The second and third sets, in the majority, are
the instances proposed by Dumas et al. (1995) with wider time windows.

– The fourth is proposed by Silva et al. [36] to overcome the size limitations of the
others since the size of instances is more than 200 customers and has wider time
windows.

5.2 Results

Wedefine the improvement of the proposed algorithmwith respect toBest.Sol (Best.Sol
is the best solution found by our algorithm) in comparison with the-state-of-the-art
metaheuristic algorithms for the problem as followings:

Gap[%] = | Best .Sol − BK S

BK S
| × 100% (1)

Improv[%] = | Best .Sol − I ni t .Sol

I ni t .Sol
| × 100% (2)
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Table 3 Comparison between results obtained by Heilporn et al. Fischetti et al. (1993) and by our algorithm
on instances proposed by Gendreau et al. Dumas et al. (1995), and Ohlmann et al. Mladenovic et al. (2012)

Instances G. Heilporn et al. Our algorithm

Best.Sol T Best.Sol T cTime

n20w120.001 2535 1 2175 0.46 1.24

n20w140.001 1908 1 1846 0.45 1.22

n20w160.001 2150 1 2146 0.46 1.24

n20w180.001 2037 1 2477 0.45 1.22

n20w200.001 2294 1 1975 0.45 1.22

n40w120.001 7496 5 6800 2.25 6.09

n40w140.001 7203 4 6290 2.7 7.31

n40w160.001 6657 4 6143 2.51 6.79

n40w180.001 6578 5 6952 2.7 7.31

n40w200.001 6408 5 6169 2.88 7.79

n60w120.001 9303 20 11120 14.73 39.86

n60w140.001 9131 21 10814 14.1 38.15

n60w160.001 11422 17 11574 13.72 37.12

n60w180.001 9689 18 11363 13.25 35.85

n60w200.001 10315 17 10128 13.09 35.42

n80w120.001 11156 52 11122 21.32 57.69

n80w140.001 14131 43 14131 25.29 68.43

n80w160.001 8614 43 9108 22.99 62.21

n80w180.001 11222 56 11222 22.51 60.91

n80w200.001 8272 47 8302 39.02 105.58

n100w120.001 19246 73 22269 47.61 128.83

n100w140.001 22078 93 22078 49.53 134.02

n150w120.002 27192 388 27192 120.32 325.57

n200w120.003 17886 356 18010 160.2 433.48

Improved or same results are highlighted in boldface

In all tables, Init.Sol, Best.Sol, Aver.Sol, T correspond to the initial solution, best
solution, average solution, and average time in seconds of ten executions obtained
by the proposed algorithm, respectively while BKS is the best-known solution in the
literature. cTime represents scaled run times, estimated on a Pentium IV by means of
the factors of Dongarra Dongarra (2011). Tables from 1, 2, 3, 4 compare the results of
our algorithm with the best-known solutions of the other algorithms in Ban and Nghia
(2017b); Heilporna (2010); Silva and Urrutia (2010); Ohlmann and Thomas (2007).
The results of the state-of-the-art metaheuristic algorithms are directly extracted from
Ban and Nghia (2017b); Heilporna (2010); Silva and Urrutia (2010); Ohlmann and
Thomas (2007). Our algorithm runs on the same instances with the other algorithms.
Note that:Most of the results published in Ban andNghia (2017b) are used to compare.
In addition, Ban et al. Ban and Nghia (2017b) kindly provide us with their code as well
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Table 4 Comparison results
obtained by Ohlmann et al.
Mladenovic et al. (2012), and
Silva et al. Heilporna (2010) on
TSPTW-instances

Instances OPT BKS Best.Sol Gap T

n20w20 378 378 378 0.00 0.14

n20w40 254 254 254 0.00 0.15

n20w60 335 335 335 0.00 0.13

n20w80 329 329 329 0.00 0.13

n40w20 500 500 500 0.00 1.64

n40w40 465 465 465 0.00 1.87

n40w60 494 494 494 0.00 1.87

n40w80 395 395 395 0.00 1.77

n60w20 551 551 551 0.00 16.31

n60w40 591 591 591 0.00 16.34

n60w60 609 609 609 0.00 16.52

n80w20 616 616 616 0.00 29.01

n80w40 606 606 606 0.00 27.38

n80w60 554 554 554 0.00 27.20

n80w80 624 624 624 0.00 27.62

n100w20 738 738 740 0.00 48.03

n100w40 770 770 770 0.00 45.45

Aver 0.00 15.39

The optimal solutions are highlighted in boldface

as more detailed empirical results on different instances at the link [35]. To compare
with their results, we run the proposed algorithm on the same instances.

In Tables 1 and 2, it is shown that the difference in the average gap between the
construction and improvement phase is 2.49%. The average gap is rather small. It
indicates that the construction phase returns good quality solutions fast. Although
the improvement of the post phase upon the construction one is not too large, it is
significant since 136 new best-known solutions are found compared with the other
algorithms Ban and Nghia (2017b); Heilporna (2010). For the larger instances with up
to 250 instances, our search is quite time-consuming. Hence, the first way to reduce
the large running time is to run the construction phase with a slight loss of 2.49%
solution quality on average.

Tables 1 and 2 show the results on the Dumas et al.’s Dumas et al. (1995) instances
and compare themwith the results obtained by the algorithm inBan andNghia (2017b).
The quality of our solutions is much better than Ban et al. in Ban and Nghia (2017b)
in most instances. The average result of−3.3% is slightly better than the one obtained
by Ban et al. in Ban and Nghia (2017b), while the run time is comparable on average.
For the instances with more than 200 vertices, feasible solutions have been unknown
in the previous algorithms Ban and Nghia (2017b); Heilporna (2010); meanwhile, the
feasible solutions for instances with up to 250 vertices can be found by our algorithm.
It is also a significant result because building a feasible solution to the problem is
NP-hard problem Salvesbergh (1985).
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In Table 3, our result is comparable with Heilporn et al.’s algorithm Heilporna
(2010). Specifically, it reaches the better solutions for 10 out of 24 instances. Besides,
it obtains the same results for 4 cases. The improvement is significant when Heilporn
et al.’s algorithm is one of the state-of-the-art metaheuristics for the problem.

Table 4 shows that most algorithms are developed for a specific variant that does
not apply to the other variants. Our algorithm still runs well to TSPTW, although it
was not designed for solving it. In comparison with the best-known solution in Silva
and Urrutia (2010); Ohlmann and Thomas (2007), our algorithm’s solutions obtain the
optimal solutions for the instances with up to 100 vertices. The average gap between
the best-known solution and our result is about 0.0%. It shows that our result reaches
the best-known solutions for all instances.

The algorithm in Ban and Nghia (2017b) was executed on the nearly similar config-
uration with the proposed algorithm. However, G. Heilporna et al’s and the proposed
algorithm were executed on computers with different configurations. To compare the
running time of them, a scaled running time (cTime) estimated on an AMD Opteron
275/2.2 Ghz (this configuration is almost the same as one used in Heilporna (2010))
by means of the factors of Dongarra Dongarra (2011) is used. In this case, the running
time comparison is evaluated in a relative manner. From the experimental results, the
running time of the proposed algorithm grows quite moderate compared to the Heil-
porn et al.’s algorithm Heilporna (2010) while it is comparable with the one of Ban et
al.’s algorithm Ban and Nghia (2017b).

6 Discussions

According to our observation, there are numerous local optima and only one global
optimal solution in DMPTW. The search space overall seems to exhibit the big-valley
structure. The big valley hypothesis suggests that, in combinatorial optimization, local
optima of good quality are clustered and surround the global optimum. It is an impor-
tant characteristic of many hard problems from combinatorial optimization Reeves
(1999). The structure suggests the idea of the hybrid approach between RVND with
ILS, and Tabu, as follows. Firstly, the combination between RVND and ILS, in which
ILS ensures diversification while RVND maintains intensification, generates many
good locally optimal solutions dispersed over the global optimal solution. Secondly,
TS is entirely attracted to the global optimal. Even though the initial solution is set far
from the global optimal solution, TS is capable to prevent from getting trapped into
cycles to drive the search to the global optimal solution.

With respect to the instances, the algorithm finds better solutions than Ban et al.’s
algorithm Ban and Nghia (2017b) for 136 out of 160 instances. Moreover, for 24
instances, it obtains better solutions for 10 cases and the same quality for 4 cases
when comparing with Heilporn et al.’s algorithm Heilporna (2010). For the large
instances with up to 250 customers, this is the first time our algorithm has provided
feasible solutions. It is a significant improvement because finding a feasible solution is
also NP-hard problem. In TSPTW, our algorithm obtains the optimal solutions for the
instances with up to 100 vertices. Moreover, it also reaches the best-known solutions
for all instances. Although our purpose is not to provide metaheuristic for TSPTW,
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the obtained results for this problem show the efficiency and broad applicability of
our algorithm.

Our algorithm performs better than the others thanks to two reasons as followings:

(1) Heuristic algorithms such asHeilporna (2010) are often too greedy, therefore, it can
get stuck into a local optimum in many cases. On the other hand, the metaheuristic
approach is not greedy and may even accept a temporary deterioration of solution,
which allows it to explore the solution space more thoroughly, and thus the chance
to get better solutions is higher.

(2) The algorithm in Ban and Nghia (2017b) can get trapped into cycles in some
cases, by using Tabu lists our algorithm overcomes their drawback and obtains
better solutions. Moreover, the proposed algorithm uses more neighborhoods than
the algorithm in Ban and Nghia (2017b); therefore, the explored solution space is
larger. As a result, the chances of finding better solutions are higher.

7 Conclusions

In thiswork,DMPTWis studied.As ourmain contribution,we propose ametaheuristic
algorithm that combines ILS, RNVD, and Tabu for DMPTW.We tested the algorithm
on the benchmark dataset, comparing it to several state-of-the-art metaheuristic algo-
rithms. Our algorithm is comparable with the state-of-the-art metaheuristic algorithms
and it is able to find optimal solutions for instances with up to 100 vertices in a short
time. In addition, for 136 instances, it provides new best-known solutions. In the
future, we intend to extend the algorithm by including more neighborhoods and care-
fully studying the effectiveness of each neighborhood. Increasing the efficiency as
well as the running time of our algorithm, even more, to allow even larger problems
to be solved, is another future research topic.
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