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Abstract
We consider a single-machine scheduling problem such that the due dates are assigned
to each job depending on its order, and the lengths of the intervals between consecutive
due dates are identical. The objective is to minimize the total penalty for the earliness
and tardiness of each job. The early penalty proportionally increases according to the
earliness amount, while the tardy penalty increases according to the step function. We
show that the problem is strongly NP-hard, and furthermore, polynomially solvable if
the two types of processing times exist.

Keywords Single-machine scheduling · Generalized due dates · Computational
complexity

1 Introduction

Consider a scheduling problem such that unlike the traditional scheduling problem,
the due date is assigned not to the specific job but to the job position. This due date is
referred to as the generalized due date (GDD).

The scheduling problemwith GDDwas introduced by Hall (1986). Hall (1986) and
Hall et al. (1991) established the computational complexities for single-machine cases
with various objective functions (e.g., maximum lateness, total weighted completion
time, total weighted tardiness, and weighted number of tardy jobs). In particular,
Hall (1986) showed that the problem to minimize the total tardiness is solvable in
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polynomial time. Srikandarajah (1990) and Gao and Yuan (2016) considered a single-
machine case to minimize the total weighted tardiness, and proved its NP-hardness
and strong NP-hardness, respectively. Hall and Posner (1991) considered a single-
machine case with a common due date to minimize the total weighted tardiness and
earliness, and proved its NP-hardness. Hall et al. (1991), Gao and Yuan (2015), and
Choi and Park (2019) considered a single-machine case to minimize the total earliness
and tardiness. Hall et al. (1991) showed that it remains NP-hard, even if the due dates
are identical, and Gao and Yuan (2015) proved its strong NP-hardness. In particular,
Choi and Park (2019) showed that it remains strongly NP-hard, even if the lengths
of the intervals between the consecutive due dates are identical. Note that such due
dates are referred to as periodic due dates (PDD). The PDD can be found in the
just-in-time (JIT) business environment such that the logistics shipping means trucks
periodically visit a factory according to a planned timetable (Lee and Li 1996). Choi
and Park (2018) considered a single-machine case with PDD, in which the objective
is to minimize the total weighted number of early and tardy jobs. They analyzed the
computational complexity for various cases. Mosheiov and Oron (2004) considered
the parallel-machine case to minimize the maximum tardiness or the total tardiness,
and suggested that the simple heuristic was verified as performing extremely well
through the numerical experiment.

The JIT production models usually used the same kind of penalty function for
earliness and tardiness–both are linear or both are stepwise (Choi and Park 2018,
2019; Gao and Yuan 2015). In this paper, we consider different penalty functions–
linear for earliness and stepwise for tardiness. This is motivated from the integrated
production, inventory, and delivery scheduling problems, in which companies try to
attain efficient inventory and logistics management through JIT production (Han et al.
2019; Li et al. 2017). In this environment, the manufacturer tries to minimize the total
inventory cost and the penalty cost for tardy jobs. This can be described concretely as
follows: consider trucks that periodically visit a manufacturer according to a planned
timetable. The i th truck visiting the manufacturer is responsible for delivering the i th
product. If the i th product is completed before the arrival of the i th truck, then the
inventory costs for a manufacturer are incurred, whereas the penalty costs for tardy
jobs are incurred, otherwise. Note that no cost occurs if the completion time of the
i th product is equal to the arrival time of the i th truck. The inventory cost is usually
expressed as a linear function of earliness because it incurs daily from production to
delivery. Also, the penalty for tardy jobs is usually expressed as a step function of
tardiness. See the references Han et al. (2019) and Li et al. (2017). To the best of
our knowledge, this objective function has not yet been considered in the literature on
scheduling with GDD. Since the asymmetry of the objective functionmakes it difficult
to utilize the existing results on the JIT production in Han et al. (2019) and Li et al.
(2017), it is necessary to reveal the computational complexity of our problem.

Our problem can be formally stated as follows: let p j be the processing time of job
J j ∈ J = {J1, J2, . . . , Jn}. Let σ = (π;S) be a schedule such that

• π =
(
π(1), π(2), . . . , π(n)

)
is the job sequence, where Jπ(i) is the i th job com-

pleted;

123



Journal of Combinatorial Optimization (2021) 41:781–793 783

• S =
(
S1(σ ), S2(σ ), . . . , Sn(σ )

)
is the vector for the job starting times, where

S j (σ ) is the starting time of J j in σ .

LetC j (σ ) be the completion time of J j in σ , that is,C j (σ ) = S j (σ )+ p j . To describe
PDD, let

di = i� for i = 1, 2, . . . , n, (1)

be the due date of the job processed i th, i = 1, 2, . . . , n, where � > 0 is a given
value. By relation (1), J can be divided as follows:

Js = {J j ∈ J | p j ≤ �}, and Jl = J \ Js .

Let the jobs in Js and Jl be referred to as small and large jobs, respectively. In
σ = (π;S), let Eπ(i)(σ ) and Uπ(i)(σ ) be the earliness and the tardy penalty of
Jπ(i) ∈ J , respectively, which are defined as

Eπ(i)(σ ) = max
{
0, di − Cπ(i)(σ )

}
(2)

and

Uπ(i)(σ ) =
{
0 if Cπ(i)(σ ) ≤ d1,i ,
uh,i if dh,i < Cπ(i)(σ ) ≤ dh+1,i , h = 1, 2, . . . , g,

(3)

where g is a given constant. Assume that, for i = 1, 2, . . . , n,

u1,i ≤ u2,i ≤ · · · ≤ ug,i and di = d1,i ≤ d2,i ≤ · · · ≤ dg+1,i = ∞.

Note that the step function in (3) has been used in the field of transportation and
semiconductor manufacturing (Chaurasia et al. 2017; Curry and Peters 2005; Detienne
et al. 2011; Tseng and Chen 2013). The objective is to minimize

z(σ ) =
∑
J j∈J

(
E j (σ ) +Uj (σ )

)
.

Let our problem be referred to as Problem P.
The remainder of the paper is organized as follows. In Sect. 2, we prove the strong

NP-hardness of Problem P. Section 3 introduces one polynomially solvable case.
Finally, in Sect. 4, we present our concluding remarks.

2 Strong NP-hardness

In this section, we show that Problem P with PDD is strongly NP-hard, even if the
penalty function for tardiness of each job has a single-step, that is,

Uπ(i)(σ ) =
{
0 if Cπ(i)(σ ) ≤ di ,
u1,i otherwise.
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Theorem 1 Problem P is strongly NP-hard, even if the penalty function for tardiness
of each job has a single-step.

Proof To prove the strongNP-hardness, we use the numerical 3-dimensional matching
(N3DM) problem, which is known to be strongly NP-hard (Garey and Johnson 1979).
The N3DM can be stated as follows: given the disjoint sets

W = {w1, w2, . . . , wm}, X = {x1, x2, . . . , xm}, and Y = {y1, y2, . . . , ym},

with each containingm elements, and a bound B, is there a partition (A1,A2, . . . ,Am)

of W ∪ X ∪ Y such that for i = 1, 2, . . . ,m,

• Each Ai = {wai (1), xai (2), yai (3)} contains exactly one element from each of W ,
X , and Y;

• wai (1) + xai (2) + yai (3) = B?

Given an instance of the N3DM problem, we can construct an instance of Problem P
as follows: there are 4m jobs in J = {J1, J2, . . . , J4m} with

pi =

⎧⎪⎪⎨
⎪⎪⎩

M − (wi + T ) for Ji ∈ Jw = {J1, J2, . . . , Jm},
M − (xi + T 2) for Ji ∈ Jx = {Jm+1, Jm+2, . . . , J2m},
M − (yi + T 3) for Ji ∈ Jy = {J2m+1, J2m+2, . . . , J3m},
M + T 3 + T 2 + T + B for Ji ∈ J0 = {J3m+1, J3m+2, . . . , J4m},

where M = 3m(T 3 + T 2 + T + B) + 1, and T = 3mB. For i = 1, 2, . . . , 4m, let
� = M and u1,i = M . Henceforth, we show that there exists a partition (Ai )i=1,2,...,m
to the N3DM problem if and only if there exists a schedule σ with z(σ ) ≤ K for the
reduced instance, where

K = 3
m∑
i=1

(wi + T ) + 2
m∑
i=1

(xi + T 2) +
m∑
i=1

(yi + T 3).

Note that M > K . ��

(⇒) Suppose that there exists a partition (Āi )i=1,2,...,m to the N3DM problem such
that Āi = {wāi (1), xāi (2), yāi (3)}, i = 1, 2, . . . ,m. Then, we can construct a schedule
σ̄ = (π̄, S̄) such that

• π̄ = (π̄1, J3m+1, π̄2, J3m+2, . . . , π̄m, J4m), where

π̄i = (Jāi (1), Jm+āi (2), J2m+āi (3)) for i = 1, 2, . . . ,m,

is the sub-sequence consisting of three jobs in {Jāi (1), Jm+āi (2), J2m+āi (3)} corre-
sponding to three items in Āi = {wāi (1), xāi (2), yāi (3)}, respectively;• Sπ̄(1)(σ̄ ) = 0 and Sπ̄ (i+1)(σ̄ ) = Sπ̄(i)(σ̄ ) + pπ̄(i) for i = 1, 2, . . . , 4m − 1.
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Note that the 4i th job in π̄ is J3m+i . Since wāi (1) + xāi (2) + yāi (3) = B,

4i∑
j=4i−3

pπ̄( j) = pāi (1) + pm+āi (2) + p2m+āi (3) + p3m+i = 4M for i = 1, 2, . . . ,m.

(4)
By p j < M for J j ∈ Jw ∪Jx ∪Jy and equation (4), the jobs in Jw ∪Jx ∪Jy and J0
become the early and JIT jobs, respectively, under σ̄ . Thus, for each i = 1, 2, . . . ,m,

Eāi (1)(σ̄ ) = d4(i−1)+1 −
(
4(i − 1)M + pāi (1)

)
= wāi (1) + T , (5)

Em+āi (2)(σ̄ ) = d4(i−1)+2 −
(
4(i − 1)M + pāi (1) + pm+āi (2)

)

= wāi (1) + xāi (2) + T + T 2, (6)

and

E2m+āi (3)(σ̄ ) = d4(i−1)+3 −
(
4(i − 1)M + pāi (1) + pm+āi (2) + +p2m+āi (3)

)

= wāi (1) + xāi (2) + yāi (3) + T + T 2 + T 3. (7)

By equations (4)–(7),

z(σ̄ ) = 3
m∑
i=1

(wi + T ) + 2
m∑
i=1

(xi + T 2) +
m∑
i=1

(yi + T 3) = K .

(⇐) Suppose that there exists a schedule σ̂ = (π̂; Ŝ) with

z(σ̂ ) ≤ K . (8)

Claim 1 No tardy job exists in σ̂ .

Proof Since the tardy penalty cost of every job is greater than K , Claim 1 holds. ��
Claim 2 There is no idle time in σ̂ .

Proof Since
∑4m

j=1 p j = 4mM and d4m = 4mM , the existence of the idle time implies
that the last job is tardy in σ̂ . Thus, Claim 2 holds immediately from Claim 1. ��

By Claim 2, it is observed that

Sπ̂(1)(σ̂ ) = 0 and Sπ̂(i+1)(σ̂ ) = Sπ̂(i)(σ̂ ) + pπ̂(i) for i = 1, 2, . . . , 4m − 1.

If the last job does not belong to J0, then the second job from the last is tardy by
Claim 2. Since this contradicts Claim 1, the last job belongs to J0. Without loss of
generality, assume that, in σ̂ , J3m+i is processed before J3m+ j for j > i . Then, π̂ can
be represented as

π̂ = (π̂1, J3m+1, π̂2, J3m+2, . . . , π̂m, J4m),
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where π̂1 is the sub-sequence of jobs before J3m+1, and π̂i is the sub-sequence of jobs
between J3m+i−1 and J3m+i , i = 2, 3, . . . ,m. Since every job is not tardy from Claim
1, every small job Jπ̂(i) ∈ Jw ∪ Jx ∪ Jy satisfies

Eπ̂(i)(σ̂ ) ≥ � − pπ̂(i), (9)

and
Eπ̂(i)(σ̂ ) = Eπ̂(i−1)(σ̂ ) + (� − pπ̂(i)). (10)

Then, we have the following claim: ��
Claim 3Exactly one job inJw,Jx , andJy should be processed in π̂i , i = 1, 2, . . . ,m.

Proof See Appendix A. ��
By Claim 3, let

π̂i = (Jâi (1), Jm+âi (2), J2m+âi (3)).

It is observed from Claim 3 and inequalities (9) and (10) that in σ̂ = (π̂; Ŝ), for
i = 1, 2, . . . ,m,

• Eâi (1)(σ̂ ) ≥ wâi (1) + T ;
• Em+âi (2)(σ̂ ) ≥ wâi (1) + xm+âi (2) + T + T 2;
• E2m+âi (3)(σ̂ ) ≥ wâi (1) + xm+âi (2) + y2m+âi (3) + T + T 2 + T 3.

By the observation above,

z(σ̂ ) ≥
∑

J j∈Jw∪Jx∪Jy

E j (σ̂ ) ≥ K . (11)

By inequalities (8) and (11), each job J3m+i ∈ J0 is a JIT job. Then, it is observed
that

wâi (1) + xâi (2) + yâi (3) = B for i = 1, 2, . . . ,m.

Let Âi = {wâi (1), xâi (2), yâi (3)}, i = 1, 2, . . . ,m. Then, the partition (Âi )i=1,2,...,m
becomes a solution to the N3DM problem. ��

Since the single-step model is a special case of the multi-step one, the strong NP-
hardness result of the single-step model holds in the multi-step one.

3 Polynomiality

In this section, we show that Problem P can be solved in polynomial time if the
processing times of the small and large jobs are identical.
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First, we introduce some optimality properties that will be used to construct a
polynomial-time algorithm. For simplicity, let Jπ(i) be referred to as a key job under
σ , if

Cπ(i)(σ ) ∈
{
dh,i | h = 1, 2, . . . , g

}
.

Suppose that σ ∗ is an optimal schedule with the greatest number of key jobs, if any,
among the multiple optimal schedules. Let A j and B j be the sets of jobs processed
after and before J j in σ ∗, respectively.

Lemma 1 If job Jl is the last key job in σ ∗, then every job in Al is tardy, and there is
no idle time after Jl .

Proof Suppose that an early job exists in Al . Then, we can construct a new schedule
σ̄ = (π∗; S̄) by letting S j (σ̄ ) = S j (σ

∗) + ε for each J j ∈ Al , where ε > 0 is a
sufficiently small value. Then, since

∑
J j∈J

E j (σ̄ ) <
∑
J j∈J

E j (σ
∗), and

∑
J j∈J

Uj (σ̄ ) =
∑
J j∈J

Uj (σ
∗),

we have z(σ̄ ) < z(σ ∗). Since this is a contradiction, every job in Al is tardy. In turn,
the idle time after Jl is unnecessary. ��

By Lemma 1, if no key job exists in σ ∗, then every job is tardy, and no idle time
exists. Hence, a sequence with a non-increasing order of p j is an optimal schedule.
To exclude this trivial case, we assume that σ ∗ has at least one key job.

Lemma 2 If Jπ∗(k) and Jπ∗(l) are the consecutive key jobs in an optimal schedule σ ∗,
then no idle time exists between jobs Jπ∗(k) and Jπ∗(l).

Proof Suppose that the idle time first exists between jobs Jπ∗(i ′) and Jπ∗(i ′+1) for
some i ′ ∈ {k + 1, k + 2, . . . , l − 1} in the sub-schedule consisting of the jobs in
{Jπ∗(k+1), Jπ∗(k+2), . . . , Jπ∗(l)}. Consider two cases. ��
(i) An early job exists in {Jπ∗(k+1), Jπ∗(k+2), . . . , Jπ∗(i ′)}. We can construct a new

schedule σ̄ = (π∗; S̄) by letting Sπ∗(i)(σ̄ ) = Sπ∗(i)(σ ∗) + ε for i = k + 1, k +
2, . . . , i ′, where ε > 0 is a sufficiently small value. Then,

z(σ̄ ) ≤ z(σ ∗) − ε < z(σ ∗).

This is a contradiction.
(ii) No early job exists in {Jπ∗(k+1), Jπ∗(k+2), . . . , Jπ∗(i ′)}. We can construct a new

schedule σ̂ = (π∗; Ŝ) by letting Sπ∗(i)(σ̂ ) = Sπ∗(i)(σ ∗) + δ for i = k + 1, k +
2, . . . , i ′, where δ is the idle time between jobs Jπ∗(i ′) and Jπ∗(i ′+1). From the
assumption that σ ∗ is an optimal schedule with the greatest number of key jobs,

U (σ̂ ) = U (σ ∗),
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which implies that z(σ̂ ) = z(σ ∗). By applying this argument repeatedly, Lemma
2 is obtained.

From two cases, Lemma 2 holds. ��
Theorem 2 Problem P can be solved in strongly polynomial time O(n6) if p j = ps
for J j ∈ Js and p j = pl for J j ∈ Jl .

Proof For simplicity, let

Js = {J1, J2, . . . , Jns } and Jl = {Jns+1, Jns+2, . . . , Jn}.

We prove this theorem by reducing it to the shortest path (SP) problem, which can be
stated as follows: in a directed graph G = (V, E) with a node set V = {1, 2, . . . , n}
and an edge set E such that each arc (i, j) ∈ E has a length li, j , the objective is to find
the shortest path from the source to the sink nodes.

For 0 ≤ a ≤ ns, 0 ≤ b ≤ nl , 1 ≤ h ≤ g such that dh,a+b ≥ a · ps + b · pl , let
N (a, b, h) be the node representing sub-schedule such that

• The jobs in Ja,b have been scheduled, where

Ja,b = {J1, J2, . . . , Ja} ∪ {Jns+1, Jns+2, . . . , Jns+b};

• The last job inJa,b is a key jobwhose completion time and tardy penalty are dh,a+b

and uh−1,a+b, respectively. Note that for consistency of notation, let dh,0 = 0 and
u0,a+b = 0.

Let N (0, 0, 1) and t be the source and sink nodes, respectively. For 0 ≤ α ≤ ns − a,
0 ≤ β ≤ nl − b and 1 ≤ γ ≤ g, let N (a, b, h) be connected to N (a + α, b + β, γ ) if
α + β ≥ 1 and dh,a+b ≤ S, where

S = dγ,a+b+α+β − α · ps − β · pl .

Note that S is the start time of the first job in Ja+α,b+β \ Ja,b by Lemma 2. This
edge shows that the last jobs in Ja,b and Ja+α,b+β are two consecutive key jobs at
dh,a+b and at dγ,a+b+α+β , respectively. The length of the edge from N (a, b, h) to
N (a +α, b+β, γ ), denoted L(e;α, β; S), is calculated as follows, where e = a + b.

Procedure L(e;α, β; S)

Step 1 (Initialization) Set L0,0 = 0 and Li, j = ∞ if i < 0 or j < 0.
Step 2 For i = 0, 1, . . . , α and j = 0, 1, . . . , β,

Li, j = min
{
Li−1, j , Li, j−1

} + Eπ(e+i+ j)(σ ) +Uπ(e+i+ j)(σ ).

Note that Eπ(e+i+ j)(σ ) andUπ(e+i+ j)(σ ) are calculated by Eqs. (2) and (3) with

Cπ(e+i+ j)(σ ) = S + i · ps + j · pl , for 0 ≤ i ≤ α and 0 ≤ j ≤ β.
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Fig. 1 Reduced graph for Example 1

Step 3 Return L(e;α, β; S) = Lα,β .

Note that the above procedure can be done in O(n2). Finally, for 0 ≤ a ≤ ns ,
0 ≤ b ≤ nl and 1 ≤ h ≤ g, let N (a, b, h) be connected to the sink node t , which
shows that the last job in Ja,b is the last key job at dh,a+b in the schedule. The length
of this edge is L(a + b; ns − a, nl − b; S̄), where S̄ = dh,a+b is the start time of the
first job in J \ Ja,b by Lemma 1. The objective is to find the shortest path between
the source and sink nodes. See the reduced SP for Example 1 in Fig. 1 and calculating
the length of edge from N (0, 0, 1) to N (2, 1, 1) in Fig. 2. Note that the shortest path
consists of dashed edges. It is observed from the reduction scheme above that in the
constructed SP problem,

• The total number of arcs is O(g2n4), since the number of nodes is O(gn2), and
the number of arcs coming from each node is at most O(gn2);

• The length of each arc can be obtained in O(n2) by Procedure L, which implies
that the reduced graph is constructed in O(g2n6);

• The reduced graph is acyclic, which implies that the corresponding SP problem
can be solved in O(g2n4) by the algorithm in Ahuja et al. (1990).

By these observations and the fact that g is a constant, Theorem 2 holds. ��
Example 1 An instance of Problem P is as follows:

• ns = 2, nl = 1, ps = 3, pl = 7 and � = 5;
• (d1,1, d1,2, d1,3) = (5, 10, 15);
• (u1,1, u1,2, u1,3) = (1, 3, 4).

4 Concluding remarks and future works

We considered a single-machine scheduling problem with periodic due dates in which
the objective is to minimize the total early and tardy penalties. Assume that the early
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Fig. 2 Procedure L(0; 2, 1; 2) for the edge from N (0, 0, 1) to N (2, 1, 1)

and tardy penalties increase according to the linear and step functions, respectively.We
showed that the problem is stronglyNP-hard, and can be solved in strongly polynomial
time if the processing times of the small and large jobs are identical.

For future research, it would be interesting to analyze the computational complexity
of the problem such that each job has an identical step function for tardiness.
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Appendix A. The proof of Claim 3 in Theorem 1

(i) Suppose that two jobs Jk and Jl inJy are processed in π̂i for some i ∈ {1, 2, . . . ,m}.
We assume that Jl is processed later than Jk . Then, by inequalities (9) and (10), we
have

El(σ̂ ) ≥ Ek(σ̂ ) + (� − pl) ≥ (� − pk) + (� − pl) > 2T 3. (12)

By inequality (9) and p j < M − T 3 for J j ∈ Jy , we have

E j (σ̂ ) > T 3 for J j ∈ Jy . (13)

By inequalities (12) and (13),

z(σ̂ ) ≥
∑
J j∈Jy

E j (σ̂ ) > (m + 1)T 3 > K .

This is a contradiction. Thus, we have the following result.

Result 1 Exactly one job in Jy is processed in π̂i .
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For simplicity, let J2m+âi (3) be that job. By equation (10), furthermore, the later the
small job is processed, the better. Thus, since J2m+âi (3) has the smallest processing
time in π̂i , it is processed last.

(ii) Suppose that two jobs Jk and Jl in Jx are processed in π̂i for some i ∈
{1, 2, . . . ,m}. We assume that Jl is processed later than Jk . Then, by inequalities
(9) and (10), we have

El(σ̂ ) ≥ Ek(σ̂ ) + (� − pl) ≥ (� − pk) + (� − pl) > 2T 2. (14)

By inequality (9) and p j < M − T 2 for J j ∈ Jx , we have

E j (σ̂ ) > T 2 for J j ∈ Jx . (15)

By inequalities (14) and (15),

∑
J j∈Jx

E j (σ̂ ) > (m + 1)T 2. (16)

Also, by inequalities (9) and (10) and Result 1, we have

E2m+âi (3)(σ̂ ) > ni T
2 + T 3 for J2m+âi (3) ∈ Jy, (17)

where ni is the number of jobs of Jx in π̂i . By Result 1, and inequalities (16) and
(17),

z(σ̂ ) ≥
∑
J j∈Jx

E j (σ̂ ) +
m∑
i=1

E2m+âi (3)(σ̂ ) > (m + 1)T 2 +
m∑
i=1

(ni T
2 + T 3) > K .

This is a contradiction. Thus, we have the following result.

Result 2 Exactly one job in Jx is processed in π̂i .

For simplicity, let Jm+âi (2) be that job. Since J2m+âi (3) has the smallest processing
time in π̂i , it is processed immediately before job J2m+âi (3).

(iii) Suppose that two jobs Jk and Jl in Jw are processed in π̂i for some i ∈
{1, 2, . . . ,m}. We assume that Jl is processed later than Jk . Then, by inequality (9)
and (10), we have

El(σ̂ ) ≥ Ek(σ̂ ) + (� − pl) ≥ (� − pk) + (� − pl) > 2T . (18)

By inequality (9) and p j < M − T for J j ∈ Jw, we have

E j (σ̂ ) > T for J j ∈ Jw. (19)
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By inequalities (18) and (19),

∑
J j∈Jw

E j (σ̂ ) > (m + 1)T . (20)

Also, by inequalities (9) and (10), and Results 1 and 2, we have

Em+âi (2)(σ̂ ) > li T + T 2, for Jm+âi (2) ∈ Jx , (21)

and
E2m+âi (3)(σ̂ ) > li T + T 2 + T 3, for J2m+âi (3) ∈ Jy, (22)

where li is the number of jobs of Jw in π̂i . By Results 1 and 2, and inequalities
(20)–(22),

z(σ̂ ) ≥
∑

J j∈Jw

E j (σ̂ ) +
m∑
i=1

(
Em+âi (2)(σ̂ ) + E2m+âi (3)(σ̂ )

)

> (m + 1)T +
m∑
i=1

(2li T + 2T 2 + T 3) > K .

This is a contradiction. Thus, we have the following result.

Result 3 Exactly one job in Jw is processed in π̂i .

For simplicity, let Jâi (1) be that job. Thus, by Results 1–3, Claim 3 holds. ��
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