
Journal of Combinatorial Optimization (2021) 41:625–639
https://doi.org/10.1007/s10878-021-00705-5

The simple grid polygon exploration problem

Qi Wei1 · Jie Sun1 · Xuehou Tan2 · Xiaolin Yao3 · Yonggong Ren1

Accepted: 19 January 2021 / Published online: 3 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
This paper considers an on-line exploration problem.We use a mobile robot to explore
an unknown simple grid polygon. The robot is assumed to have limited sensing capa-
bility that can only detect the four basic cells adjacent to it. The robot’s task is to
explore each cell and to return to the start. To explore a cell, the robot has to enter it.
We ask for a short exploration tour, that is, minimizing the number of multiple-visit
cells. The competitive ratio is used to measure the performance of our strategy. It is the
ratio between the length of the on-line exploration path and the length of the shortest
path achieved with full knowledge of the polygon. As our main result, we present a
new on-line exploration strategy and prove that the robot’s path is at most 7/6 times
longer than the shortest path. This matches the previously known lower bound.

Keywords Path planning · On-line Exploration · Competitive analysis · Grid
polygon · Mobile robot

This work was supported in part by National Natural Science Foundation of China (No. 61702242,
61976109) and Doctoral Scientific Research Foundation of Liaoning Province (No. 2019-BS-153,
2019-BS-014).

B Qi Wei
qwei2009@hotmail.com

B Yonggong Ren
ryg@lnnu.edu.cn

1 School of Computer and Information Technology, Liaoning Normal University, South Liushu
Street 1, Dalian 116081, China

2 School of Information Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka
259-1292, Japan

3 School of Information Technology and Management, Dalian Neusoft University of Information,
software park road 8, Dalian 116021, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-021-00705-5&domain=pdf
http://orcid.org/0000-0002-2326-0601

626 Journal of Combinatorial Optimization (2021) 41:625–639

1 Introduction

Exploring an unknown environment is fundamental for many tasks of autonomous
mobile robots. It has important applications when the environment is dangerous for
humans Strom et al. (2017); Almeida et al. (2019), such as nuclear base or disaster area.
The exploration problem has received much attention in computational geometry, on-
line algorithms and robotics Ghosh and Klein (2010); Chalopin et al (2015); Foerster
and Wattenhofer (2016).

During the exploration, the robot has to see all points of an unknown environment
and return to the starting point. The length of the exploration path should be as short
as possible because of the cost saving requirements. A lot of variations on capability
of robot and type of environment have been studied Ghosh and Klein (2010); Ortolf
and Schindelhauer (2012).

The unknown environment is modeled as a simple polygon in this paper. Deng
et al. (1991) first showed that competitive strategy exists for polygon exploration.
They proposed a 2016-competitive strategy inspired by a greedy off-line approach.
Later, Hoffmann et al. (2002) improved the competitive ratio to 26.5, then it was
improved to 6.7 by Tan and Wei (2015). There is still a gap between the competitive
ratio 6.7 and the lower bound 1.28 Hagius et al. (2004).

In general, the robot is assumed to be equipped with a vision sensor that can see
any point in its visibility region at any distance. This is not realistic, because any
vision sensor can reliably gather information from the scene within a range. In this
paper, we consider a short-sighted robot model. We assume that the robot can sense
only four grid cells adjacent to its current position. Then, we subdivide the polygonal
environment according to the size of the grid cell. We call this kind of environment
the grid polygon. To explore the grid polygon, the robot must visit each grid cell at
least once.

Exploration of grid polygonwith orwithout holes has been both extensively studied.
For grid polygon with holes, Gabriely and Rimon (2003) proposed two Spanning Tree
Covering (STC) strategies and showed that the robot’s path is at most (n + m) times
longer than the optimal off-line exploration path, where m and n denote the number
of grid cells and the number of boundary cells respectively. They also proved that the
lower bound for this problem is 2. Icking et al. (2002) proposed an exploration strategy
whose competitive ratio is A + 1

2 B + C + 3D − 2, where A denotes area of the grid
polygon, B denotes the perimeter of the grid polygon, C denotes the number of holes
and D denotes the number of sinuosities. Except for the case that the gird polygon
is a corridor of width one, it performs better than above two STC strategies. For grid
polygonwithout holes, Icking et al. (2005) proposed an exploration strategy SmartDFS
based on the modification of DFS approach, and showed that the competitive ratio is
4/3. They also proved that the lower bound for this problem is 7/6. Doi et al. (2018)
proposed a strategy for exploring a simple grid polygon with the minimum number
of modules. Keshavarz-Kohjerdi and Bagheri (2016) proposed a linear time algorithm
for computing a Hamiltonian path in L-shaped grid polygon if it does exist.

Another scenario is the graph exploration. In this setting, the robot is located at
a vertex of an unknown graph. It’s task is to visit all vertices by traversing edges.
Foerster and Wattenhofer (2016) considered the exploration of directed graph in both

123

Journal of Combinatorial Optimization (2021) 41:625–639 627

deterministic and randomized version. They proved upper and lower bounds for the
competitive ratio.Dereniowski et al. (2015) proposed a collaborative graph exploration
strategy which takes time O(D), where D is the distance from the start node to the
furthest node. Megow et al. (2012) proposed a graph construction to show whether a
constant competitive exploration strategy for general graphs exists.

In this paper, we consider the exploration of an unknown simple grid polygon using
a mobile robot. We present a new exploration strategy for this problem and show that
the competitive ratio is 7/6. This result matches the lower bound proposed by Icking
et al. (2005) and settles the open problem.

2 Preliminaries

This section formally defines the simple gird polygon exploration problem and gives
some preliminary results.

2.1 Definitions

Let P be a simple grid polygon, a polygon consists of a list of basic cells and has no
holes in it. Two basic cells p and q are adjacent to each other in case they have one
common edge. We write N to denote the number of boundary edges and M to denote
the total number of basic cells of P . N and M can also be considered as the perimeter
and area of P .

The robot is modeled as a short-sighted one. It can only discover four adjacent cells.
When a cell is discovered, the robot knows that it is blocked or free to visit. At the
beginning, the robot has no previous information of P . It is located at a boundary cell
s and has its back to the boundary of P . It can move from the current cell to one of
the adjacent free cells in one step. The robot can store the discovered cells and make
movement decisions based on them. The goal of the robot is to walk a closed path that
visits each basic cell at least once and returns to the start cell s. Once a basic cell has
been visited, we say it is explored. Note that all points of P have been seen when the
robot completes this tour. We want the exploration tour to be as short as possible, so
we should minimize the number of the cells visited more than once. See Fig. 1 for an
example.

We denote a path from basic cell p to q by �(p, q). There is a sequence of basic
cells contained in this path, p, c1, c2, . . . , q. The robot can compute the length of
�(p, q) if all cells in �(p, q) are already known to the robot. Since each basic cell
has the same size, we use the number of steps from cell to cell to measure the length
of the path. We denote the cell the robot currently located in by ccp.

In this paper, the performance of the strategy is evaluated by the competitive ratio,

C = supP
|�(P)|

|�opt (P)| ,

where |�(P)| is the length of the robot’s path, |�opt (P)| is the length of the shortest
path for the situation that the robot has full knowledge of P .

123

628 Journal of Combinatorial Optimization (2021) 41:625–639

Fig. 1 a An instance of the exploration tour. b The shortest exploration tour

Fig. 2 a An exploration tour walked by DFS. b An exploration tour walked by SmartDFS

2.2 Preliminary results

For the problem of exploring an unknown simple grid polygon, depth-first-search
(DFS) is a simple strategy which can be applied to complete the exploration task
Icking et al. (2005). It follows a rule called left-hand to continue the path, that is, the
robot prefers to turn left over go straight over turn right to an adjacent unexplored
cell. When the robot enters a cell with no adjacent unexplored cells, it backtracks to
the last cell with adjacent unexplored cell to go on the exploration. This yields an
exploration tour with at most 2M − 2 steps. Since |�opt (P)| needs at least M steps,
the competitive ratio of DFS is 2. See Fig. 2a for an example.

SmartDFS Icking et al. (2005) is a modified strategy based on DFS. Two improve-
ments have been made to shorten the exploration tour. Firstly, when the robot enters a
cell with no adjacent unexplored cells, it returns directly to the last cell with adjacent
unexplored cell rather than backtracks to that cell. See Fig. 2 for an example. After
c1 has been visited, SmartDFS walks a shortest path to c2. Note that the cells in the
shortest path are already known to the robot. This ismore efficient thanDFS. Secondly,
the robot can identify and handle a special kind of cell called split cell (see Definition
1). See Fig. 2 for an example. After c3 has been visited, SmartDFS identifies it as a
split cell. It divides the unexplored cells into two parts. Then, the robot visits these
two parts in the following order: the part farther away from s, the part nearer to s. This
is more efficient than DFS. SmartDFS reports a exploration tour at most 4/3 times
longer than |�opt (P)|.

123

Journal of Combinatorial Optimization (2021) 41:625–639 629

Fig. 3 The first improvement: Identify the split cell as early as possible. a An exploration tour walked by
SmartDFS. b An exploration tour walked by our strategy

3 The exploration strategy

This section gives a new on-line exploration strategy based on SmartDFS. Two
improvements have been made to shorten the exploration tour.

Definition 1 During the exploration, a basic cell is called a split one if it can divide
the unexplored cells into several subgraphs.

The first improvement is to identify the split cell as early as possible. For each
basic cell, our strategy identify whether it is a split cell when it has been discovered.
This is different from SmartDFS. Note that SmartDFS identify the split cell while
visiting it. See Fig. 3 for an example. After c1 has been visited, SmartDFS continues
its exploration with left-hand rule, whereas our strategy identifies c2 as a split cell
which divides the unexplored cells into two subgraphs, T1 and T2. Then our strategy
explores T2 and T1 in turn. Obviously, our strategy is more efficient than SmartDFS.

To decide the visiting order of the divided subgraphs, we define a critical basic cell
called stage for each subgraph.

Definition 2 After each subgraph of P has been explored, our strategy guides the robot
to a critical basic cell. It is called the corresponding stage cell of this subgraph.

A stage cell can be considered as the ending of the exploration of a subgraph. See
Fig. 3b for an example. Here s and c2 are stage cells of T1 and T2, respectively. P can
be seen as the parent of T1 and T2, its stage cell is s. By the following visiting order
rule, we decide the visiting order of the divided subgraphs.

1. At the beginning of the exploration, s is recognized as the stage cell of P .
2. When the first split cell cs1 is identified by the robot, the unexplored cells divides

into several subgraphs. P is the parent of these divided subgraphs, and s is their
parent stage cell. Firstly, the robot finds the nearest cell cr to the parent stage
cell s from the cells discovered but not yet explored. Secondly, the robot makes
a decision of the visiting order of the divided subgraphs. It prefers to visit the
divided subgraph which contains cr at last, and visits other divided subgraphs
with the left-hand rule. Thirdly, the robot assigns the stage cell to each divided
subgraph according to the above visiting order. The stage cell of the subgraph
visited at last is its parent stage cell s; the stage cell of other subgraph is the split
cell cs1.

123

630 Journal of Combinatorial Optimization (2021) 41:625–639

Fig. 4 The second improvement: Identify and handle the situation of a corridor of width 3. aAn exploration
tour walked by SmartDFS. b and c Exploration tours walked by our strategy

3. When the second split cell cs2 is identified in the subgraph of P , the robot decides
the visiting order and assigns the stage cell as rule 2. And so on.

See Fig. 3b for an example. When c2 is identified as the split cell, the robot finds
the nearest cell c3 to s from the cells discovered but not yet explored. Then the robot
decides the visiting order: T2, T1. And assigns the stage cells c2 and s to T2 and T1
respectively.

During the exploration of P , a sequence of split cells, cs1, . . . , csk may occur.
We handle these split cells in a recursive way. When a split cell csi (1 ≤ i ≤ k) is
identified, we use the rule discussed above to decide the visiting order and assign the
corresponding stage cell of each divided subgraph.

A subgraph of size n × 3 (n ≥ 3) limits the performance of SmartDFS because
the interior cells should be visited twice. See Fig. 4a for an example. This situation is
called a corridor of width 3. Since it is contained in most simple grid polygons, the
handling of it is very important.

The second improvement is to identify and handle the situation of a corridor ofwidth
3. To identify this situation, we define a critical basic cell called half-surrounded cell
(see for example, c1 and c2 in Fig. 4b).

Definition 3 During the exploration, a basic cell ch is called a half-surrounded one if:
(i) ch is adjacent to the robot’s current location ccp. (i i) ch is discovered but not yet
explored. (i i i) There are 5 connected explored cells around ch , including ccp. They
forms a U-shape and exactly 3 of them distribute along a side of ch .

After a half-surrounded cell ch has been identified, our strategy handles it in two
cases. We make a tangent l to the opening of the U- shape at ch . It divides P into
two components. In the first case, the stage cell of current subgraph and ch locate
in different components, then the robot deviates from the left-hand rule and visits ch
next. In the second case, the stage cell of current subgraph and ch locate in the same
component, then the robot continues its exploration tour with left-hand rule. We call
the ch in the first case real half-surrounded cell and the ch in the second case general
half-surrounded cell. See Fig 4 for an example. In Fig. 4b, c1 and c2 are identified as
real half-surrounded cells and handled as case 1. In Fig. 4c, c1 is identified as general
half-surrounded cell and handled as case 2. Obviously, our strategy behaves more
efficiently than SmartDFS in the situation of a corridor of width 3.

Based on above two improvements, we propose our strategy listed in the following
form.

123

Journal of Combinatorial Optimization (2021) 41:625–639 631

Algorithm 1 Explore a simple gird polygon
1: procedure ExploreGrid Polygon(Polygon, start , stage);
2: ToV isi t := NULL;
3: update(ToV isi t);
4: while ToV isi t is not empty do
5: target := First(ToV isi t);
6: if isSpli tCell(target) then
7: spli t := target ;
8: determine the visiting order of the divided subgraphs by the visiting order

rule(Without loss of generality, assume that there are two subgraphs T1 and
T2, and the visiting order is T2, T1);

9: walk on the shortest path into T2;
10: ExploreGrid Polygon(T2, s2, spli t);
11: walk on the shortest path into T1;
12: ExploreGrid Polygon(T1, s1, stage);
13: else
14: walk on the shortest path to target ;
15: end if
16: update(ToV isi t);
17: end while
18: walk on the shortest path back to stage;
19: end procedure

The procedure ExploreGrid Polygon(Polygon, start, stage) is first called
when the robot starts its exploration. The parameters Polygon, start and stage are P ,
s and s respectively.Throughout the executionof theprocedure ExploreGrid Polygon,
our strategy maintains a stack called ToV isi t . It is used to store the cell which have
been discovered but not yet explored.

We use the function update(ToV isi t) to update ToV isi t . Initially, it purges the
visited cells from ToV isi t . What’s more, it identifies whether the adjacent unvisited
cell is a split or a real half-surrounded cell. Finally, it pushes the adjacent unvisited cells
except the split or real half-surrounded cell onto ToV isi t according to the left-hand
rule, and then pushes the adjacent split or real half-surrounded cell onto ToV isi t .

Our strategy repeatedly handles the first cell, target , of ToV isi t until ToV isi t
becomes empty. We use the function isSpli tCell(target) to identify whether the
target cell is a split cell or not. If it is a split cell, our strategy first decides the visiting
order of the divided subgraphs by the visiting order rule discussed above, and then
recursively calls the procedure ExploreGrid Polygon(Polygon, start, stage) to
explore them in turn. Otherwise, our strategy guides the robot to the target along the
shortest path. Once the last target of ToV isi t has been explored, the robot walks on
the shortest path back to the stage cell.

4 Competitive analysis

This section analyzes the performance of the strategy by the competitive ratio. It shows
that the robot’s path is at most 7/6 times longer than the shortest path.

Starting form s, our strategy explores P layer by layer. It proceeds from outside to
inside. The first layer is the boundary cells of P .

123

632 Journal of Combinatorial Optimization (2021) 41:625–639

Definition 4 Let Pli denote the i th layer of P . P − ∑i
j=1 Pl j is called the i-offset of

P .

Note that the robot knows the cell’s layer while visiting it. A useful property of
i-offset is listed as follows. It shows the relation between N (P) and N (i-offset),
where N (P) and N (i-offset) denote the number of boundary edges of P and i-offset
respectively.

Lemma 1 Icking et al. (2005) The i-offset of a simple grid polygon, P, has at least 8i
edges fewer than P.

The split cell is a critical one in the exploration. After it has been identified, current
graph splits into several subgraphs. Now we analyze the handling of the split cell. For
convenience, we give an instance shown in Fig. 5. After c1 has been identified in the
4th layer, P splits into four subgraphs:

P = T1 ∪ T2 ∪ c1 ∪ {explored cells},

where T1 and T2 are divided subgraphs of unvisited cells. By the visiting order rule
discussed in Sect. 3, the visiting order of the unvisited subgraphs can be decided as:
T2∪c1, T1. For convenience to analyze this situation, we extend T1 and T2 with several
layers of explored cells. Then we get two extended polygons P1 and P2 such that P
can be considered as a combination of them. There is an overlap square Q around c1
between P1 and P2. We set the width of Q to be 2(a − 1) + 1, where a is the number
of the layer in which c1 is located. We require that the exploration tour in P2\Q and
in P1\Q are the same as that in P . We set P2 such that T2 ∪ c1 is the (a − 1)-offset
of P2, and P1 = ((P\P2) ∪ Q) ∩ P .

For the task of exploring a simple grid polygon P , each strategy needs no less than
M steps, where M is the total number of basic cells of P . Thus, the length of the
robot’s path can be expressed as

|�(P)| = M(P) + excess(P),

where excess(P) denotes the excess cells visited by the robot.

Lemma 2 Assume that P is a simple grid polygon and c1 is the first split cell identified
by the robot. T1, T2, P1 and P2 are defined as above. Thus,

excess(P) ≤ excess(P1) + excess(T2 ∪ c1) + 1.

Proof As discussed above, we know that there is no excess before c1 has been iden-
tified. After that, the robot first visits T2 ∪ c1 and returns to c1. For the exploration
in this subgraph, we consider excess(T2 ∪ c1) as the excess. Then the robot visits
T1 and returns to s. For the exploration in this subgraph, we consider excess(P1) as
the excess. One step is added because c1 is visited twice. Altogether, the bound of
excess(P) can be achieved. ��

123

Journal of Combinatorial Optimization (2021) 41:625–639 633

Fig. 5 The handling of the spli t cell in our strategy

Lemma 3 Assume that P is a simple grid polygon and c1 is the first split cell identified
by the robot. T1, T2, P1 and P2 are defined as above. Thus,

N (P1) + N (P2) = N (P) + N (Q).

Lemma 3 shows the relation between the number of edges of P1 and P2 and the
number of edges of P and Q. See Fig. 5 for an example.

We call the corridor of width one or two narrow passage. Note that our strategy
can explore narrow passages optimally. After all the cells of P have been visited, the
robot has to return to the start cell s. The following lemma analyze the bound of the
length of the return path |�return(P)|.
Lemma 4 Assume that P is a simple grid polygon with N boundary edges and without
any narrow passages. The length of the return path can be bounded by

|�return(P)| ≤ 1

4
N (P) − 1.

Proof We consider P in three cases to analyze the bound of |�return(P)|. In the first
case, P is set to be a corridor ofwidth three. Since there is no narrow passages in P , this
case is the basis of the others. The robot starts from either a corner or other boundary
cell. See for example, Fig. 6a, b. In both situations, we can achieve |�return(P)| ≤ 2
by our strategy. Further, the number of the boundary cells of P satisfies N (P) ≥ 12
because the length of P is greater than or equal to three (otherwise, P is a narrow

123

634 Journal of Combinatorial Optimization (2021) 41:625–639

Fig. 6 Analysis of the length of the return path:a and b are two corridors of width 3, c and d are extended
polygons of a and b respectively

passage) and the width of P is three. Thus, the bound |�return(P)| ≤ 1
4N (P) − 1

holds.
In the second case, we consider P as an extended polygon of a corridor of width

three without split cells. See for example, Fig. 6c, d.Wewrite Pc to denote the corridor
contained in P . Each possible P in this case can be achieved by adding several cells
onto Pc. We add the cell ci (i = 1, 2, . . .) anticlockwise around Pc one by one, while
keeping the entry cell of Pc (c0) the same. Once a cell has been added, a polygon
Pi with starting cell ci is achieved. See for example Fig. 6c. Two layers of cells ci
(i = 1, 2, . . . , 48) havebeen addedonto Pc, and a list of polygons Pi (i = 1, 2, . . . , 48)
have been achieved.

Now, we analyze the bound of |�return(Pi)|. Firstly, we consider Pi (i =
1, 2, . . . , 20), i.e., extended polygons achieved by adding one layer of cells one by
one around Pc. Note that Pc is the 1-offset of P20. We write si and ei to denote the
first and last visited cell of Pi . ch1 and ch2 are two half-surrounded cells in Pc. Table 1
shows the bound of |�return(Pi)|. Since each of Pi (i = 1, 2, 4, 5, 10, 11, 14, 15)
has a narrow passage, we do not consider them in this case. For each Pi in Table 1,
we compute 1

4N (Pi) − 1 by N (Pc) ≥ 12 discussed in case 1 and then compare it
with |�return(Pi)|. Thus, the bound |�return(Pi)| ≤ 1

4N (Pi)−1 holds. Secondly, we
consider Pi (i = 21, 22, . . . , 48). Note that Pc is the 2-offset of P48. For each Pi (i =
21, 22, . . . , 48) with no narrow passages, we can always find a grid polygon Pk which
is achieved by adding the first layer of cells and satisfies |�(ei , sk)| ≤ |�return(Pk)|
and |�(sk, si)| ≤ 2. Pk can be used to show that the bound holds,

123

Journal of Combinatorial Optimization (2021) 41:625–639 635

Table 1 The bound of |�return |
in Pi (i = 1, 2, . . . , 20 Pi si ei N (Pi)

1
4 N (Pi) − 1 |�return(Pi)|

P3 c3 ce N (Pc) + 2 ≥ 2 1

P6 c6 ch2 N (Pc) + 4 ≥ 3 2

P7 c7 ch2 N (Pc) + 4 ≥ 3 3

P8 c8 ch1 N (Pc) + 4 ≥ 3 2

P9 c9 ch1 N (Pc) + 4 ≥ 3 3

P12 c12 ch1 N (Pc) + 6 ≥ 3 2

P13 c13 ch1 N (Pc) + 6 ≥ 3 3

P16 c16 ch1 N (Pc) + 8 ≥ 4 2

P17 c17 ch2 N (Pc) + 8 ≥ 4 3

P18 c18 ch2 N (Pc) + 8 ≥ 4 2

P19 c19 ce N (Pc) + 8 ≥ 4 3

P20 c20 ce N (Pc) + 8 ≥ 4 4

|�return(Pi)| = |�(ei , si)|
≤ |�(ei , sk)| + |�(sk, si)|
≤ |�return(Pk)| + |�(sk, si)|
≤ 1

4
N (Pk) − 1 + 2

= 1

4
(N (Pk) + 8) − 1

≤ 1

4
N (Pi) − 1.

See P48 in Fig. 6c for an example. P20 can be found to prove that the bound holds.
Analogously, we can add three or more layers of cells around Pc and prove that the
bound holds for the achieved polygons.

In the third case, we consider P with split cells. It can be seen as a combination of
extended polygons considered in the second case. See Fig. 5 for an example. Let P1
denote the extended polygon which contains the last visited cell of P . As discussed
above, we have

|�return(P)| = |�return(P1)|
≤ 1

4
N (P1) − 1

<
1

4
N (P) − 1.

Thus, the bound holds for this case.
Altogether, the proof is complete. ��

Theorem 1 Assume that P is a simple grid polygon with N boundary edges, M basic
cells and without any narrow passages. The length of the exploration tour achieved

123

636 Journal of Combinatorial Optimization (2021) 41:625–639

by our strategy can be bounded by

|�(P)| ≤ M(P) + 1

4
N (P) − 2.

Proof Each strategy requires no less than M steps to explore P . By induction, we
prove that excess(P) ≤ 1

4N (P) − 2.
First of all, we consider the situation that P has no split cells as the base of the

induction. For visiting each cell of P ,M−1 steps should be used at least. By Lemma 4,
|�return(P)| can be bounded by 1

4N (P)−1. Thus, we have excess(P) ≤ 1
4N (P)−2.

Next, we consider the situation that P splits into several subgraphs by the split
cells. Without loss of generality, assume that c1 is the first split cell identified by the
robot. After c1 has been identified, the unexplored part of P splits into two subgraphs
T1 and T2. Two extended polygons P1 and P2 can be defined as above with an overlap
square Q around c1. By our strategy, the robot visits T2 ∪ c1 and T1 in turn and returns
to s. From Lemma 2, we know that

excess(P) ≤ excess(P1) + excess(T2 ∪ c1) + 1.

By induction hypothesis, we have

excess(P) ≤ 1

4
N (P1) − 2 + 1

4
N (T2 ∪ c1) − 2 + 1.

With Lemma 1 and Lemma 3, we have

excess(P) ≤ 1

4
N (P1) − 2 + 1

4
(N (P2) − 8i) − 2 + 1

= 1

4
(N (P1) + N (P2)) − 2i − 3

≤ 1

4
(N (P) + 4(2i + 1)) − 2i − 3

= 1

4
N (P) − 2.

Thus, the proof is complete. ��

Lemma 5 Icking et al. (2005) Assume that P is a simple grid polygonwith N boundary
edges and M basic cells. It has no narrow passages or split cells in the first layer. The
relation between N and M satisfies

N (P) ≤ 2

3
M(P) + 6.

Theorem 2 The competitive ratio of our strategy is 7/6.

123

Journal of Combinatorial Optimization (2021) 41:625–639 637

Fig. 7 Three cases of the split cell detected in the first layer. The colored cells are the ones that have been
explored

Proof Since narrow passages can be explored optimally, we cut away all of them from
P . Then P divides into a list of subgraphs Pj , j = 1, 2, We can analyze each Pj

separately. This will not affect the competitive factor of P .
We show the competitive factor of Pj by induction. Firstly, assume that the first

layer of Pj contains no split cell, and we consider this situation as the base of the
induction. By applying Lemma 5 and Theorem 1, we have

∣
∣�(Pj)

∣
∣ ≤ M(Pj) + 1

4
N (Pj) − 2

≤ M(Pj) + 1

4
(
2

3
M(Pj) + 6) − 2

= 7

6
M(Pj) − 1

2
.

Secondly, we consider the situation that a split cell c2 is detected in the first layer
of Pj . Three cases may occur, see Fig. 7 for an example. Before the first split cell
c2 is detected, the robot discovers a cell c1 which touches c2 in the first layer. Note
that the robot will not recognize c1 as the first split cell, because it has not enough
information (known cells) of Pj when c1 is discovered. We write Q to denote the
smallest connected component which contains c1 and c2.

As discussed in Theorem 1, Pj divides into two polygons Pj1 and Pj2, with an
overlap square Q. The cells of Q will be counted twice if we analyze Pj1 and Pj2
separately. Thus, we have

∣
∣�(Pj)

∣
∣ = ∣

∣�(Pj1)
∣
∣ + ∣

∣�(Pj2)
∣
∣ − M(Q) and M(Pj) =

M(Pj1) + M(Pj2) − M(Q). Further, By induction hypothesis, we have

∣
∣�(Pj)

∣
∣ = ∣

∣�(Pj1)
∣
∣ + ∣

∣�(Pj2)
∣
∣ − M(Q)

≤ 7

6
M(Pj1) − 1

2
+ 7

6
M(Pj2) − 1

2
− M(Q)

= 7

6
M(Pj) + 1

6
M(Q) − 1

≤ 7

6
M(Pj) − 1

2

123

638 Journal of Combinatorial Optimization (2021) 41:625–639

Fig. 8 Aworst case instance. a The shortest exploration tour. b The exploration tour walked by our strategy

Since the length of the optimal exploration tour is no less than M steps, the proof
is complete. ��

Figure 8 shows an instance of the worst case. The exploration tour of our strategy
needs 28 steps to explore this grid polygon, whereas the shortest exploration tour needs
only 24 steps. Thus, the competitive ratio of 7/6 is achieved.

5 Conclusions

In this paper, we considered the problem of exploring an unknown simple grid poly-
gon. We proposed a 7/6-competitive strategy which matches the lower bound. Thus
improves upon the previously known 4/3-competitive strategy.

We conclude this study with two open problems as follows. First, it would be
interesting to consider the situation that the grid polygon contains holes. Second, if
we use twoormore robots to complete this task, canwe achievemore efficient strategy?
We leave this as a topic for future work.

References

Almeida JPLSD, Nakashima RT, Neves-Jr F, Arruda LVRD (2019) Bio-inspired on-line path planner for
cooperative exploration of unknown environment by a multi-robot system. Robot Auton Syst 112:32–
48

Chalopin J, Das S, Disser Y, Mihalák M, Widmayer P (2015) Mapping simple polygons: The power of
telling convex from reflex. ACM Trans Algorithms 11(4):33:1–33:16

Deng X, Kameda T, Papadimitriou C (1991) How to learn an unknown environment. In: Proceedings 32nd
annual symposium of foundations of computer science, pp. 298–303

Dereniowski D, Disser Y, Kosowski A, Paja̧k D, Uznański P (2015) Fast collaborative graph exploration.
Inf Comput 243:37–49

Doi K, Yamauchi Y, Kijima S, Yamashita M (2018) Exploration of finite 2d square grid by a metamorphic
robotic system. In: Izumi T, Kuznetsov P (eds.) Stabilization, Safety, and Security of Distributed
Systems, Lecture Notes in Computer Science, vol. 11201, pp. 96–110. Springer, Berlin

Foerster KT, Wattenhofer R (2016) Lower and upper competitive bounds for online directed graph explo-
ration. Theoret Comput Sci 655:15–29

123

Journal of Combinatorial Optimization (2021) 41:625–639 639

Gabriely Y, Rimon E (2003) Competitive on-line coverage of grid environments by a mobile robot. Comput
Geom 24(3):197–224

Ghosh SK, Klein R (2010) Online algorithms for searching and exploration in the plane. Comput Sci Rev
4(4):189–201

Hagius R, Icking C, Langetepe E (2004) Lower bounds for the polygon exploration problems. In: 20th
European Workshop Computer Geometry, pp. 135–138

Hoffmann F, Icking C, Klein R, Kriegel K (2002) The polygon exploration problem. SIAM J Comput
31(2):577–600

Icking C, Kamphans T, Klein R, Langetepe E (2002) On the competitive complexity of navigation tasks.
In: Hager GD, Christensen HI, Bunke H, Klein R (eds) Sensor Based Intelligent Robots, vol 2238.
Lecture Notes in Computer Science. pp 245–258. Springer, Berlin

Icking C, Kamphans T, Klein R, Langetepe E (2005) Exploring simple grid polygons. In: Wang L (ed)
Computing and Combinatorics, vol 3595. Lecture Notes in Computer Science. pp 524–533. Springer,
Berlin

Keshavarz-Kohjerdi F, Bagheri A (2016) Hamiltonian paths in l-shaped grid graphs. Theoret Comput Sci
621:37–56

Megow N, Mehlhorn K, Schweitzer P (2012) Online graph exploration: New results on old and new
algorithms. Theoret Comput Sci 463:62–72

Ortolf C, Schindelhauer C (2012) Online multi-robot exploration of grid graphs with rectangular obstacles.
In: Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’12, pp 27–36. ACM, New York, USA

Strom DP, Bogoslavskyi I, Stachniss C (2017) Robust exploration and homing for autonomous robots.
Robot Auton Syst 90:125–135

Tan X, Wei Q (2015) An improved on-line strategy for exploring unknown polygons. Combinatorial Opti-
mization and Applications, vol 9486. Lecture Notes in Computer Science. pp 163–177. Springer,
Berlin

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	The simple grid polygon exploration problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Preliminary results

	3 The exploration strategy
	4 Competitive analysis
	5 Conclusions
	References

