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Abstract
One can get an integer solution for the one-dimensional cutting stock problem by
means of the constructive or residual heuristic. In this work we propose a change in
the Constructive Greedy Heuristic that consists in building a cutting pattern by sorting
in descending order the items of pair or odd length, priority being given to those which
appearmore frequently in the problem, cut fromobjects in stockwith pair or odd length
respectively, with the aim of minimizing the quantity of cut objects. Computing tests
that were carried out showed the efficiency of the proposed heuristic when compared
with other methods in the literature that generate an integer solution for the problem
and will be presented at the end of this work.

Keywords Optimization · Linear programming · Heuristic · Cutting pattern · Bin
packing · Column generation

1 Introduction

Cutting problems appear in several practical situations such as cutting steel sheets,
wood, electric wires, paper rolls etc. There are many industries where such problems
come up such as: car factories, aero-spatial, mechanics, naval, mobile factories, those
of tubes and connections, petrol and gas etc; a lot of them being often applied to such
areas as odontology, engineering, logistics, agronomy, fashion and designer, robotics,
among others; for applications in these sectors we suggest to look up (Stadtler 1990;
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Farley 1990; Cui 2005; Johnson et al. 1997). These problems may also be seen as
bin-packing problems present in food, pharmacy and construction materials indus-
tries etc. Specifically in the one-dimensional case, what we have is an optimization
combinatorial problem that consists in cutting pieces longer than length L (objects)
in order to produce shorter pieces of length li (items) so that one may supply the
di (demand) orders in which i = 1, . . . ,m trying to optimize any objective function,
which may be, for instance, the minimization of costs or the minimization of the quan-
tity of cut objects. For this paper, we considered only one objective to be attained, but
it is common in the literature to consider two or more objectives for the problem (see
Wascher 1990). A solution for the problem consists in determining a set of patterns
of cuttings and their frequency, that is, the quantity of times that each of them must
be cut so that the demands of the items are respected. Be n a quantity of patterns in
the solution, L the size of the object on stock, with utilization cost c j and J the set
of indexes of all variable patterns. The objective is to minimize the quantity of cut
objects. Let’s assume that c j = 1, ∀ j ∈ J . If αi j is the decision variable that indicates
the quantity of items type i in the cutting pattern j with frequency x j , for i = 1, . . . ,m
and j = 1, . . . , n, then the problem may be formulated as the following problem of
integral linear programming:

minimize: ∑

j∈J
x j

subject to: ∑

j∈J
αi j x j = di ,

m∑

i=1
αi j li ≤ L,

x j ;αi j ∈ Z+; j ∈ J ; i = 1, . . . ,m

(1)

Be A = [a1 a2 · · · an] the matrix whose columns represent the n-possible patterns
and d = (d1, . . . , di , . . . , dm)T the demand vector of the items. Each column-j vector
of A, aj = (α1 j , . . . , αi j , . . . , αmj )

T , represents a variable cutting pattern, and must
therefore satisfy the following restriction of the knapsack:

l1α1 j + l2α2 j + · · · + lmαmj ≤ L
0 ≤ αi j ≤ di and integers, i = 1, . . . ,m. j ∈ J

(2)

This problem is NP-hard (McDiarmid 1999), and which makes it difficult to solve are
the integrality conditions attributed to the decision variables, added to the fact that the
number of patterns to explicit increases a lot as the number of different items and their
demands increases.

2 Relaxed solution for the cutting problem

Thefirst efficientmethods to solve the cutting stockproblem (CSP) appeared the 1960’s
with the works by Gilmore and Gomory (1961, 1963),who presented the method sim-
plex generation of columns, a resolution technique inwhich the integrality requirement
of the decision variables is abandoned, thus considering this a relaxed model. At each
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iteration of the simplex method (Bazaraa et al. 1990), a column in the model is gen-
erated (Barnhart et al. 1994). The algorithm starts with a basic initial solution for the
one-dimensional cutting stock problem(1CSP), formed only by homogeneous patterns

of the kind aj = (0, . . . ,
⌊
L
li

⌋
, . . . , 0)T , i = 1, . . . ,m; j ∈ J . The basic matrix, in

this case, is diagonal, in which the only non-null element of each column indicates
the cut quantity of the item i , i = 1, . . . ,m :

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⌊
L
l1

⌋
0 . . . 0

0
⌊
L
l2

⌋
. . . 0

...
...

. . .
...

0 0 0
⌊

L
lm

⌋

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

2.1 Column generation

By following the procedure suggested in Gilmore and Gomory (1961) the column ak
to enter the basis is corresponding to the variable xk with the least relative cost, which
means the resolution of the following subproblem:

(ck − πT ak) = min
{
(c j − πT aj), j = 1, . . . , n

}
. (3)

If (ck − πT ak) ≥ 0 thus the current basic solution xB = B−1d is optimal, in which π

is the simplex multiplying vector of the current iteration, B is the basic matrix m ×m,
xB is the vector of the basic variables, d is the vector of the demands. We need to
determine a non-basic column aj = (α1 j , . . . , αi j , . . . , αmj )

T , corresponding to a
feasible cutting pattern j ∈ J , which is a candidate to enter the basis. Thus, since
min

{
c j − πT aj

} = c j − max
{
πT aj

}
the column comes from solving the restrict

knapsack problem:

maximize
m∑

i=1

πiαi j

subject to :
m∑

i=1

liαi j ≤ L

0 ≤ αi j ≤ di , and integers i = 1, . . . ,m. j ∈ J (4)

Techniques for solving the knapsack problemare found inPisinger (1993) andMartello
andToth (1990). Themethod used in ourworkwas that implicit enumeration suggested
by Gilmore and Gomory (1963), based on depth search first, enabling through the use
of bounding that the worst solutions be discarded without losing the optimal solution.
For i = 1, . . . ,m, vi is the utility value of item-i. The complete algorithm is shown
below.
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Table 1 Cutting problem Item Length Demand

1 11 7

2 5 9

3 3 4

Table 2 Relaxed solution Freq Padrões

2.00 1 0 2

5.00 1 1 0

1.33 0 3 0

To better understand the Knapsack Problem Algorithm we present a small example
of the one-dimensional cutting stock problem, with three items. The size of the object
in stock is L = 17. The data are shown in the Table 1. With each iteration of the
Simplex Column Generation, the steps P.2. and P.3. determine the simplex multiplier
vector π = (π1, π2, π3), πi utility value of item-i, i = 1, 2, 3. The solution to the
relaxed problem is shown in Table 2. We will now detail the first iteration, whose
vector π = (1, 0.3333, 0.25) is passed as utility vector of the knapsack, that is,
v1 = 1; v2 = 0.333; v3 = 0.25. With these data the problem 4 becomes:

maximize g(y) = 1.00α1 j + 0.33α2 j + 0.25α3 j

subject to : 11α1 j + 5α2 j + 3α3 j . j ∈ J

0 ≤ α1 j ≤ 7; 0 ≤ α2 j ≤ 9; 0 ≤ α3 j ≤ 4 (5)

In P.1. Now defining πi = vi/li , the most valuable items are ordered by length
unit. Suppose π1 ≥ π2 ≥ π3, so π is now given by π = (0.09; 0.08; 0.06).
The initial solution according to P.2. is such that y1 = min

{⌊ 17
11

⌋
, 7

} = 1,
y2 = min

{⌊ 17−11
3

⌋
, 4

} = 2, y3 = min
{⌊ 17−11−6

5

⌋
, 9

} = 0, so y = (y1, y2, y3) =
(1, 2, 0). According P.3. g(y) =

3∑

i=1
vi yi = 1.5 = G and y∗ = y. In P.4. k = 2 and

G = v1y1 + v2(y2 − 1) + v3
l3

(L − l1y1 − l2(y2 − 1) = 1.33. Since G ≤ G in P.5.
make y2 = 0 turning y = (1, 0, 0) coming back to P.4. and repeating the process
one has G = 0 and again G ≤ G, now k=1 then one makes y1 = 0 which turns
y = (0, 0, 0) and therefore the current solution saved in y∗, y = (1, 2, 0) which in the
original problem corresponds to y = (1, 0, 2) it is optimal and it is exactly the first
pattern in the solution of the relaxed problem in Table2. Repeating the process, the
other patterns of the solution are determined.
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Knapsack Problem Algorithm
BEGIN
P.1. Sort the most valuable items by length unit
Do: ST OP = False and I T = 0.
{ The logic variable ST OP will be False until the optimal solution
is obtained and I T indicates the number of the current iteration }.
Define: πi = vi/li , i = 1, . . . ,m, re-sort the variables by the
non-increasing order. Suppose that: π1 ≥ π2 ≥ · · · ≥ πm
P.2. Determine the initial solution y = (y1, . . . , ym ), by searching
in depth first such that

y1 = min
{⌊

L
l1

⌋
, d1

}

y2 = min
{⌊

L−y1l1
l2

⌋
, d2

}

...

yk = min

⎧
⎪⎪⎨

⎪⎪⎩

⎢
⎢
⎢
⎢
⎢
⎣

L−
k−1∑

i=1
li yi

lk

⎥
⎥
⎥
⎥
⎥
⎦ , dk

⎫
⎪⎪⎬

⎪⎪⎭

, k = 2, . . . ,m.

P.3. Evaluate the current solution and save the best one.

Determine : g(y) =
m∑

i=1
vi yi .

If G < g(y) then do: G = g(y) (initially G = 0)
G(X) is the optimal value of the knapsack. (X ≤ L)

Save the corresponding solution y∗ = y.
P.4. Test the optimality and calculate the upper bound.
Determine k, the highest index such that yk �= 0.
If y = 0 STOP, the solution saved in y∗ is optimal.
Otherwise, calculate: (if k = m, do vm+1 = 0 and lm+1 = 1.)
G = v1y1 + v2y2 + · · · + vk (yk − 1) + vk+1

lk+1
(L − l1y1 − l2y2 − · · · − lk (yk − 1))

P.5. Backtracking
5.1. Long return. If G(y) ≤ G, then do: yk = 0 and come back to P.4.
5.2. Return to the previous node and new search in depth.
If G(y) > G then do yk ← yk − 1 and define the new solution y:

y j = min

⎧
⎪⎪⎨

⎪⎪⎩

⎢
⎢
⎢
⎢
⎢
⎣

L−
j−1∑

i=1
li yi

l j

⎥
⎥
⎥
⎥
⎥
⎦ , d j

⎫
⎪⎪⎬

⎪⎪⎭

, j = k + 1, . . . ,m and come back to P.3.

END.

3 Heuristics of rounding solutions

Be x = (x1, x2, . . . , xn) the optimal solution of the relaxed problem 1. Let’s admit
that at least one component of x not integer, otherwise the integer solution for the
problem would already have been found. There are two possibilities in this case to
determine an integer solution: one either round the components of vector x for the
inferior integer or for the superior integer. In the first case, the found solution is not
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Simplex Column Generation
BEGIN
P.1. Determine the initial basic matrix B.
Do: ST OP = False and I T = 0.
{The logic variable ST OP will be False until the optimal solution
be obtained and I T indicates the number of the current iteration}.
While (ST OP = False) Do:
P.2. Determine the current variable basic solution: xB = B−1d.
P.3. Determine the simplex multiplying vector: BT π = cB.
P.4. Solve the Knapsack Problem 4. Suppose that
a = (α1 j , α2 j , . . . , αmj ) j ∈ J , is the optimal solution
P.5. Optimality Test.

If (1 − g(a) ≥ 0) then ST OP = Truth
{The solution is optimal and it was obtained in I T iterations}.
Otherwise (determine the simplex direction: y = B−1a).
If (y < 0) then (ST OP = Truth). {The solution is unlimited}.
Otherwise (determine the size of the step):

Find l so that: xl
yl

= min
{
xi
yi

| yi > 0, i = 1, . . . ,m
}

P.6. Update of the basis.
Replace the l-nth column of matrix B by a.
do: I T = I T + 1.

End of the While
END.

always viable because the resulting rounding from the non-integer components of x
does not necessarily supply the demand of all items, while in the second case more
items are produced. In both cases, it is necessary to solve at least one residual problem.
Be x∗ = (	x1
 , 	x2
 , . . . , 	xn
)the rounding of the components of vector x for the
superior integer with objective function corresponding to f (x∗) = ∑n

j=1

⌈
x j

⌉
and

f (x) = ∑n
j=1 x j the objective function of the relaxed solution. An lower bound

(LB) for the objective function of problem 1 is given by LB = 	 f (x)
. We call
integrali t y gap the difference �(x) = f (x∗)− f (x). According to Marcotte (1985)
and Scheithauer and Terno (1995) if�(x) < 1 the (1CSP) 1 has IRUP (Integer Round-
Up Property), that is, the integrality gap, the difference between the optimal value of
the entire solution and the optimal value of the relaxed solution rounded to the nearest
upper integer is less than or equal to 1 (one). If f (x) = LB the solution is optimal.

3.1 Residual heuristics

We call residual heuristics each procedure that starts a search for an integer solu-
tion for the (1CSP) by means of rounding techniques applied to the relaxed solution.
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Since in such cases the original demand is not completely supplied one or more resid-
ual problems are solved with the remaining demand. One of the residual heuristics
often used in the literature was proposed by Wascher and Gau (1996) and it consists
in rounding the components of vector x downwards, x = (�x1� , �x2� , . . . , �xn�)
the corresponding objective function being given by f (x) = ∑n

j=1

⌊
x j

⌋
and in

solving the residual problem, which corresponds to solving problem 1 by replac-
ing the demand vector d by the residual demand r = (r1, . . . , ri , . . . , rm)T com
ri = di −∑n

j=1 ai j
⌊
x j

⌋
, i = 1, . . . ,m. In case of another fractional solution, round-

ing for the inferior integer is again carried out, generating a new residual demand. One
repeats the process until the rounding generates null frequencies. If there still remain
items with non-null demands, one solves a final residual problem with any heuristic
that furnishes an integer solution for the problem.

Another residual approach proposed by Poldi and Arenales (2009), at each iteration
solves a relaxed cutting stock problem, sorts the solution vector x in decreasing order,
rounds the first frequency for the superior integer and tests the feasibility of the first
pattern of the solution in order to verify that there were no excesses in the production
of any item, otherwise, the frequency is reduced one unit until excesses be eliminated
and one proceeds to the next frequency pattern.When the last generated cutting pattern
is examined, one updates the demand and the stock. The residual problem is solved
and the rounding procedure is repeated until all the demand is supplied. Since every
time a relaxed problem is solved at least one cutting pattern is accepted to the solution,
the Greedy Rounding Heuristic-GRH guarantees that every demand be supplied in a
finite number of iterations. Two other versions of the heuristic, GRH2 and GRH3 sort
the solution vector xwith priority for the patterns with the least waste and for patterns
in which the solution vector x presents the largest fractional part respectively.

Greedy Rounding Heuristic
P.1. Do d0 = d, k= 0
P.2. While dk �= 0 do: solve the relaxed problem 1

Obtain xk = (xk1 , . . . , xkm ) and the basic matrix Bk = [ak1, . . . , akm ]
aki , i = 1, . . . ,m, are the patterns for the solution of problem-k

2.1: Order the patterns so that: xk1 ≥ · · · ≥ xkm
Determine a feasible solution:

2.2: If (
⌈
xk1

⌉
, 0, . . . , 0) is feasible do yk1 =

⌈
xk1

⌉

Otherwise yk1 =
⌈
xk1

⌉
− 1

For i = 2, . . . ,m do yki =
⌈
xki

⌉
; yk = (yk1 , . . . , yki−1, y

k
i , 0, . . . 0)

2.3: While yk is no a feasible solution do yki = yki − 1
yk is no feasible solution if (Bkyk > dk )

2.4: Keep Bk e yk

2.5: do: dk+1 = dk − Bkyk and k = k + 1.
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3.2 Constructive heuristics

Another way to determine an integer solution for a one-dimensional cutting problem
consists in constructing a good cutting pattern and use it as many times as possible (see
Hinxman 1980), without excess in the production of any item. These are the so-called
constructive heuristics. At each iteration of such procedure, the demand of the items
is updated and the process is repeated until it is fully supplied, generating at last an
integer solution for the problem.

3.2.1 FFD heuristic

FFD Heuristic consists in putting the largest item in the pattern the highest possible
number of times without excess in the demand. If the selected item does not fit the pat-
tern anymore, the second largest item is selected and so forth. The complete algorithm
is presented below:

FFD Heuristic
BEGIN
P.1. Sort the items in decreasing order of size.

Suppose l1 ≥ l2 ≥ · · · ≥ lm
P.2. Be ri the residual demand of the item i ∈ I .

I = {1, . . . ,m}. {set of indexes of the items}
At first: ri = di , ∀i ∈ I .
Do k = 1 {First cutting pattern }
STOP=False {logic variable tht indicates a non-null demand}

While STOP=False
P.3. Do: Rest = L and αik = 0, ∀i ∈ I ;

Be i = 1 {start by putting the first item in the pattern }
While (i ≤ m and Rest ≥ li ) Do:

αik = min
{⌊

Rest
li

⌋
, ri

}

(αik is the quantity of items type i in pattern k)
Do: Rest = Rest − (αik li )
ri = ri − αik ; i = i + 1
End of While

P.4. Determine the frequency of pattern k: xk =
{
min

⌊
di
αik

⌋
,

∀i ∈ I ; αik > 0

}

P.5. (Stop Criterion)
If ri = 0, ∀i ∈ I then STOP = Truth.
Otherwise Do k = k + 1 and come back to P.3

End of While.
END
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3.2.2 Greedy Heuristic

Greedy Heuristic follows the same idea as FFD Heuristic, except for step P.3. Instead
of giving priority to the largest items to build the pattern, this is obtained by solving the
restrict knapsack problem4,makingπi = li , in the objective function for i = 1, . . . ,m
.

3.2.3 Modified Greedy Heuristic

Until the submission of this article, we did not find in the literature any works that
propose any modification in the methodology of the pattern of Greedy Heuristic for
the CSP. Cherri et al. (2009) modify the FFD and Greedy Heuristic without modifying
the methodology of putting in the pattern the largest item in the list, the difference
is that at each iteration this list is shorter since the pattern is only accepted if it is
within the bounding acceptable loss, otherwise an item in the pattern (the largest one)
is withdrawn, the pattern is generated with FFD or Greedy Heuristic and the loss is
assessed, if the pattern is not accepted onewithdraws the largest item and so forth. This

Table 3 Example: cutting
problem

Item Length Demand

1 765 58

2 633 88

3 595 64

4 571 66

5 545 122

6 337 159

7 332 138

8 87 125

9 77 112

10 73 68

Table 4 Relaxed problem
solution

Freq Pattern

58.00 1 0 0 0 0 0 0 0 0 0

29.92 0 1 0 0 0 0 0 0 0 0

30.67 0 0 0 0 1 1 0 1 0 0

66.00 0 0 0 1 0 1 0 1 0 0

62.33 0 0 0 0 1 1 0 0 1 0

0.667 0 0 0 0 1 0 0 0 0 6

28.33 0 0 0 0 1 0 1 1 0 0

64.00 0 0 1 0 0 0 1 0 0 1

12.42 0 1 0 0 0 0 0 0 4 0

45.67 0 1 0 0 0 0 1 0 0 0
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Table 5 GRH solution Freq Pattern

66 0 0 0 1 0 1 0 1 0 0

64 0 0 1 0 0 0 1 0 0 1

63 0 0 0 0 1 1 0 0 1 0

58 1 0 0 0 0 0 0 0 0 0

46 0 1 0 0 0 0 1 0 0 0

30 0 0 0 0 1 1 0 1 0 0

30 0 1 0 0 0 0 0 0 0 0

28 0 0 0 0 1 0 1 1 0 0

12 0 1 0 0 0 0 0 0 4 0

1 0 0 0 0 1 0 0 1 1 3

1 0 0 0 0 0 0 0 0 0 1

Table 6 Greedy solution Freq Pattern

64 0 0 1 0 0 0 1 0 0 1

2 0 0 0 0 0 0 1 6 0 2

22 0 0 0 0 0 0 1 5 3 0

1 0 0 0 0 0 1 1 2 2 0

14 1 0 0 0 0 0 0 0 3 0

16 0 0 0 0 0 0 3 0 0 0

1 0 0 0 1 0 1 0 1 0 0

2 0 0 0 1 0 1 0 0 1 0

88 0 1 0 0 0 1 0 0 0 0

63 0 0 0 1 0 1 0 0 0 0

4 0 0 0 0 1 1 0 0 0 0

1 0 0 0 0 1 0 1 0 0 0

44 1 0 0 0 0 0 0 0 0 0

117 0 0 0 0 1 0 0 0 0 0

procedure is repeated until the loss or rest is within the bounding defined as acceptable
or the demand is totally supplied. Ongkunaruk (2005) presents a modification in the
FFDHeuristic in order to solve theBin Packing Problem—BPP, but the idea is the same
contained in Cherri et al. (2009). The modification proposal that present in this work
differs from the Greedy Heuristic in the way the items are arranged in the decreasing
order. If there are more pair than odd numbers these are ordered first and the same
happens in the opposite case.

Following is an example of the cutting problem with 10 types of items (m = 10).
The length and the demand of each item are shownonTable 3. The objects in stock have
lengths 1000 and 1001. Variation in the lengths of the objects in stock also appear in the
works ofPoldi andArenales (2009) andBelov andScheithauer (2002).OnTables 4, 5, 6
and 7 one sees the patterns and frequencies of the solutions obtained by generating
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Modified Greedy Heuristic
BEGIN
P.1. Identify the sets of s-itens li so that li = 2wi

and t = (m − s)-items so that li = 2wi + 1; wi ∈ N ,
i = 1, . . . ,m. Sort them in decreasing order.
Suppose l1 > l2 > · · · > ls and ls+1 > ls+2 > · · · > lm

1.1. If (s ≥ t) start by putting the items li in the pattern li
so that li = 2wi , i = 1, . . . , s; with L = 2 · W ;W ∈ N

1.2. Be ri residual demand of item-i .
At first ri = di . i = 1, . . . ,m
Do k = 1 {first cutting pattern }
STOP=False {logic variable of the non-null demand}
While STOP=False

P.2. Do: Rest=L; αik = 0
Be i=1 {Put the first item in the pattern, i = 1, . . . ,m}
While(i ≤ s or (s < i ≤ m) and Rest ≥ li ) do

αik = min
{⌊

Rest
li

⌋
, ri

}

Do: Rest= Rest-αik
ri = ri − αik ;i = i + 1
End of While

P.3. Determine the frequency of pattern k

xk =
{
min

⌊
di
αik

⌋
,∀i ∈ I ; αik > 0

}
Keep xk and and pattern-k

P.4. (Stop Criterium)
If ri = 0 ∀i ∈ I Then STOP=Truth.
Otherwise Do k = k + 1 and come back to 1.2

End of While.
Otherwise (start by putting the items li so that li = 2wi + 1)
i = (s + 1), (s + 2), . . . ,m with L = 2 · W + 1;W ∈ N
and come back to step P.2

END

columns and by the GRH, Greedy and Modified Greedy Heuristic respectively. The
tables show that while the modified heuristic obtained a solution with the same 398
objects of the relaxed solution and 12 patterns, 02 more than that, the greedy heuristic
produced 41 objects and 4 extra patterns. The GRH Heuristic obtained a solution
very close to the relaxed solution with 01 object and 01 extra pattern. The only one
to have obtained an optimal solution in this case was the Modified Greedy Heuristic
(MGH) because according to the exposition on Sect. 3 f (x) = 398 = LB and the
integrali t y gap �(x) = 0.
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Table 7 Modified greedy
solution

Freq Pattern

37 1 0 0 0 0 0 0 0 3 0

21 1 0 0 0 0 0 0 2 0 0

20 0 1 0 0 0 0 0 4 0 0

1 0 1 0 0 0 0 0 3 1 0

13 0 1 0 0 0 0 0 0 0 5

1 0 1 0 0 0 0 0 0 0 3

53 0 1 0 0 0 1 0 0 0 0

64 0 0 1 0 0 1 0 0 0 0

42 0 0 0 1 0 1 0 0 0 0

24 0 0 0 1 0 0 1 0 0 0

114 0 0 0 0 1 0 1 0 0 0

8 0 0 0 0 1 0 0 0 0 0

Table 8 Test problems used
Class m v1 v2 d

1 10 0.01 0.2 10

2 10 0.01 0.2 100

3 20 0.01 0.2 10

4 20 0.01 0.2 100

5 40 0.01 0.2 10

6 40 0.01 0.2 100

7 10 0.01 0.8 10

8 10 0.01 0.8 100

9 20 0.01 0.8 10

10 20 0.01 0.8 100

11 40 0.01 0.8 10

12 40 0.01 0.8 100

13 10 0.2 0.8 10

14 10 0.2 0.8 100

15 20 0.2 0.8 10

16 20 0.2 0.8 100

17 40 0.2 0.8 10

18 40 0.2 0.8 100

4 Computational experiments

For the computing experiments, the test problems were obtained by Cutgen1, a ran-
dom generator of cutting problems of one-dimensional stock developed by Gau and
Wascher (1995). We considered 18 classes of problems each one with 100 instances
and we adopted in Cutgen1 the seed 1994. The classes are divided according to the
quantity of items m, the average of the items demands d, and different combinations
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Table 9 Cut objects average

Classe Constructive Residual

FFD Greedy MGH FFD Greedy BPP GRH MGH

1 11.61 11.05 11.67 11.54 11.48 11.48 11.50 11.57

2 111.68 110.72 112.45 110.28 110.23 110.25 110.31 110.28

3 22.07 22.20 22.26 22.26 22.26 22.26 22.15 22.26

4 217.70 216.16 217.89 225.97 215.91 215.93 215.91 215.94

5 43.13 42.95 43.09 42.99 42.95 43.00 42.96 42.95

6 426.53 424.71 426.39 424.74 424.72 424.68 424.86 424.66

7 50.35 53.30 52.46 50.26 50.26 50.27 50.53 50.25

8 501.15 532.53 523.62 499.62 499.62 499.63 500.65 499.61

9 94.06 100.49 97.68 93.73 93.70 93.70 94.38 93.67

10 936.30 1003.03 974.76 932.32 932.35 932.35 936.87 932.29

11 177.56 191.75 183.66 176.96 177.41 177.41 177.89 177.00

12 1770.26 1916.53 1836.03 1763.53 1766.40 1766.40 1771.15 1770.79

13 63.59 65.93 65.39 63.46 63.46 63.47 63.50 63.46

14 633.70 658.53 653.23 632.37 632.36 632.36 632.42 632.35

15 119.93 125.55 122.13 119.62 119.63 119.63 119.68 119.61

16 1195.29 1254.7 1218.76 1192.02 1192.01 1192.02 1192.08 1192.01

17 225.30 244.24 230.37 224.89 224.90 224.89 224.95 224.86

18 2247.42 2435.96 2298.88 2242.58 2242.63 2242.64 2242.70 2242.67

of values v1 and v2 for determining the length of the items that are generated in the
interval [v1L, v2L], as shown on Table 8. In the carried out computing experiments,
the considered size of the stock object was L = 1000 for all implemented heuris-
tics. For Modified Greedy Heuristic we used two sizes of objects, because for every
problem one decision is taken to cut the items out of the object of length L = 1000
or L = 1001 inasmuch we have even or odd length respectively, a variation of 0.1%
longer than the object used by the other heuristics. For FFD, Greedy, GRH, BPP and
Modified Greedy Heuristic the Simplex Method of Column Generation and the knap-
sack algorithm were implemented in C++ and all the computing tests for this work
were carried out in an Intel Core i5-2450M computer with 4GB memory (Ram).

5 Results analysis

On Table 9 one presents the results of the computing tests carried out with the eight
tested heuristics: three constructive ones: FFD, Greedy, andModified Greedy (MGH);
and five residual ones: FFD, Greedy, Bin Packing (BPP), GRH and Modified Greedy.
Each column of Table 9 provides the average of the number of cut objects from the
100 problems of each of the 18 classes that were used. The values in bold in the rows
of Table 9 indicate the heuristics that presented the lowest average of cut objects.
In this case we point out the optimal performance of the residual Modified Greedy
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Table 10 Patterns average

Class Constructive Residual

FFD Greedy MGH FFD Greedy BPP GRH MGH

1 9.50 9.07 9.76 9.06 8.80 8.80 7.77 9.07

2 16.8 15.67 16.90 13.92 13.4 13.42 12.80 13.94

3 18.32 17.77 16.43 16.48 16.31 22.26 17.23 16.43

4 32.36 30.54 32.02 26.08 25.80 25.82 24.79 26.02

5 34.50 33.78 34.37 30.88 30.79 30.79 28.55 30.93

6 62.05 59.11 60.62 49.63 49.30 49.33 46.98 49.56

7 10.89 11.08 11.12 9.78 9.75 9.75 10.10 9.87

8 12.12 12.34 12.46 10.41 10.43 10.45 11.22 10.58

9 20.94 21.21 21.26 19.38 19.50 19.50 19.13 19.67

10 23.50 23.51 23.82 20.82 20.90 20.90 21.77 20.97

11 39.84 40.36 40.55 38.09 38.58 38.58 36.58 38.30

12 44.65 44.36 44.23 42.00 41.94 41.94 43.57 45.81

13 10.55 10.55 10.75 10.21 10.22 10.23 10.19 10.21

14 11.05 11.10 11.27 10.79 10.77 10.77 10.78 10.81

15 20.64 20.65 20.79 20.10 20.11 20.11 19.82 20.09

16 21.72 21.66 21.83 21.07 21.03 21.04 20.88 21.12

17 39.36 39.38 39.73 38.50 38.63 38.60 37.87 38.54

18 41.58 41.38 41.95 41.04 41.09 41.09 40.41 41.17

Heuristic (MGH), which got a better performance than the others in 12 out of the 18
tested classes. The constructive heuristics obtained better performances in only 02 out
of the 18 classes, thus confirming the tendency that the best solutions in this case be
gotten by the residual heuristics, because the solution of the relaxed problem besides
a technique of rounding solutions are demonstrably more efficient than building one
pattern after another and use it exhaustively, as do the constructive heuristics.

The Table 10 provides the average of the number of patterns for each of the 18 tested
classes. The values in bold in the rows indicate the heuristics with the lowest average
of patterns used. We did not use any efforts in order to reduce the number of patterns
as the methods proposed by Foerster and Wascher (1999) and Yanasse et al. (2011)
which were used for example in the works by Yanasse and Limeira (2006), Cerqueira
and Yanasse (2009) and Cui et al. (2008) among others. Even though that was not
an objective of our work, by the data in the table we notice that the averages of the
patterns used by the residual heuristics kept themselves very close to one another, and
much better than the average of the constructive heuristics, something expected as we
explained earlier. The residual GRH got the best results for the average of the objects,
surpassing the others in 12 of the 18 classes. There were no significant variations in
the average time of the heuristics as shown in Table 11.

The Table 12 shows the average rate of variation of objects and patterns between
the constructive Modified Greedy Heuristic and Greedy Heuristic. The positive and
negative values indicate respectively the upward and downward average of objects and
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Table 11 Average time

Class Constructive Residual

FFD Greedy MGH FFD Greedy BPP GRH MGH

1 0.0301 0.0010 0.0115 0.0016 0.0035 0.0036 0.0228 0.0024

2 0.0302 0.0010 0.0114 0.0015 0.0036 0.0036 0.0254 0.0023

3 0.0291 0.0019 0.0046 0.0037 0.0057 0.0059 0.0397 0.0046

4 0.0309 0.0012 0.0117 0.0028 0.0049 0.0051 0.3236 0.0037

5 0.0302 0.0014 0.0124 0.0117 0.0142 0.0142 0.0559 0.0125

6 0.0354 0.0018 0.0129 0.0125 0.0150 0.0151 0.1168 0.0133

7 0.0302 0.0010 0.0119 0.0008 0.0029 0.0027 0.0132 0.0015

8 0.0306 0.0010 0.0123 0.0007 0.0027 0.0027 0.0135 0.0014

9 0.0293 0.0013 0.0119 0.0017 0.0039 0.0039 0.0165 0.0028

10 0.0400 0.0016 0.0125 0.0017 0.0039 0.0037 0.0168 0.0026

11 0.0300 0.0041 0.0119 0.0118 0.0141 0.0143 0.0271 0.0127

12 0.1114 0.0153 0.0126 0.0107 0.0132 0.0134 0.0341 0.0682

13 0.2965 0.0010 0.0115 0.0007 0.0027 0.0025 0.0108 0.0014

14 0.0326 0.0011 0.0114 0.0006 0.0027 0.0025 0.0115 0.0013

15 0.0299 0.0012 0.0120 0.0015 0.0036 0.0032 0.0132 0.0023

16 0.0495 0.0015 0.0121 0.0014 0.0034 0.0032 0.0135 0.0023

17 0.0314 0.0036 0.0123 0.0112 0.0137 0.0130 0.0208 0.0123

18 0.1672 0.0075 0.0126 0.0107 0.0129 0.0126 0.0214 0.0118

Table 12 Greedy X modified Greedy Heuristic

Class 1 2 3 4 5 6 7 8 9

Object 0.62 1.73 0.06 1.73 0.14 1.68 −0.84 −8.91 −2.82

Pattern 0.69 1.23 −1.34 1.48 0.59 1.51 0.04 0.12 0.05

Class 10 11 12 13 14 15 16 17 18

Object −28.27 −8.09 −80.50 −0.54 −5.30 −3.42 −35.94 −13.87 −137.08

Pattern 0.31 0.19 −0.13 0.20 0.17 0.14 0.17 0.35 0.57

patterns used by MGH as compared with Greedy Heuristic. One notices by the data
in the table that in 12 of the 18 tested classes, MGH reduces enough the average of
objects cut byGreedyHeuristic, virtually keeping the patterns average stable, reducing
in 80.5 the average of the objects and 0.13 the average of the patterns in class 12.
We calculated the average pattern deviation of objects in the solution of the Greedy
Heuristic (G-XXX) and Modified Greedy Heuristic (M-XXX) in relation to other
tested heuristics, which consists in calculating the difference of the average of objects
among the generated solutions.

The results on Table 13 show how much each heuristic was better than the others,
producing downward objects, if the values are negative, or upward if they are positive.
As pointed out earlier we have not proposed as an objective to reduce patterns, even
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Table 13 Modified Greedy performance

Class Constructive Residual

G-FFD M-FFD G-FFD M-FFD G-Greedy M-Greedy G-BPP M-BBP G-GRH M-GRH

1 − 0.56 0.07 − 0.49 0.13 − 0.43 0.19 − 0.43 0.19 − 0.45 0.17

2 − 0.96 0.77 0.44 2.17 0.49 2.22 0.47 2.20 0.41 2.14

3 0.13 0.19 − 0.06 0.00 − 0.06 0.00 − 0.06 0.00 0.05 0.11

4 − 1.54 0.19 − 9.81 − 8.08 0.2 1.98 0.23 1.96 0.11 1.84

5 − 0.18 − 0.04 − 0.04 0.10 0.00 1.73 − 0.05 0.09 − 0.01 0.13

6 − 1.82 − 0.14 − 0.03 1.65 − 0.01 1.67 0.03 1.71 − 0.15 1.53

7 2.95 2.11 3.04 2.20 3.04 2.20 3.03 2.19 2.77 1.93

8 31.38 22.47 32.91 24.00 32.91 24.00 32.90 23.99 31.88 22.97

9 6.43 3.62 6.76 3.95 6.79 3.98 6.79 3.98 6.11 3.30

10 66.73 38.46 70.98 42.44 70.95 42.41 70.95 42.41 66.43 37.89

11 14.19 6.10 14.79 6.70 14.34 6.25 14.34 6.25 13.86 5.77

12 146.27 65.77 153 72.50 150.13 69.63 150.13 69.63 145.38 64.88

13 2.34 1.80 2.47 1.93 2.47 1.93 2.46 1.92 2.43 1.89

14 24.83 19.53 26.16 20.86 26.17 20.87 26.17 20.87 26.11 20.81

15 5.62 2.50 5.93 2.51 5.92 2.50 5.92 2.50 5.87 2.45

16 59.41 23.47 62.68 26.74 62.69 26.75 62.68 26.74 62.62 26.68

17 18.94 5.07 19.35 5.51 19.34 5.47 19.35 5.48 19.29 5.42

18 188.54 51.46 193.38 56.30 193.33 56.25 193.32 56.24 193.26 56.18

though we consider excellent the performance of MGH in relation to the average of
patterns in the solution. In class 18, for instance, with a small rise of 0.57 in the average
of patterns one cuts 137.08 objects fewer than Greedy Heuristic, and the few classes in
which MGH does not reduce the average of objects and patterns, the upward variation
rate is very low, in class 5 for instance, 0.14 and 0.59 respectively (Table 11).

6 Conclusion and future works

In this work, we presented theModified Greedy Heuristic, a change of Greedy Heuris-
tic, which instead of ordering in decreasing order of the size of all the items, it orders
first the pair items or the odd ones in case there are more items in the problem, of pair
and odd size respectively. The results of the computing tests carried out showed that
the solutions generated by the MGH have the average of cut objects lower than the
GreedyHeuristic. Theywere also assessed in other constructive and residual heuristics
in the literature for the problem of cutting in the one-dimensional stock, the residual
MGH being the one that got the best performance as for the proposed objective of
minimizing the number of objects in the solution, as shown on Table 9. The average of
patterns was also compared and GRH obtained the best performance, but the residual
MGH got results very close to the other tested residual heuristics, since these obtain
much better solutions than the constructive heuristics, as we explained earlier. For
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future works, we intend to carry out other computing simulations with MGH, assign-
ing different pairs of values with the size of the pair and odd object and consider the
problem with different sizes of the stocked object.
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