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Abstract
This article studies scheduling problems with past-sequence-dependent delivery times
(denoted by psddt) on a single-machine, i.e., the delivery time of a job depends on its
waiting time of processing. We prove that the total (discounted) weighted completion
time minimization can be solved in O(n log n) time, where n is the number of jobs,
and the weight is a position-dependent weight. For common (denoted by con) and
slack (denoted by slk) due-date assignment and position-dependent weights (denoted
by pdw), we prove that an objective cost minimization is solvable in O(n log n) time.
The model (i.e., psddt and pdw) can also be extended to position-dependent (time-
dependent) processing times.

Keywords Delivery time · Position-dependent weight · Single-machine · Scheduling

1 Introduction

In a production situation, the phenomenon of past-sequence-dependent delivery times
(denoted by psddt) can be found in electronic industry (Koulamas and Kyparisis
2010). Koulamas and Kyparisis (2010) introduced psddt to scheduling problems
according to which the delivery time of a job depends on its waiting time of
processing. Using the three-field notation of Graham et al. (1979), they proved
that single-machine problem 1|psddt |X can be solved in polynomial time, where
(X ∈ {Cmax,

∑n
i=1 Ci , Lmax, Tmax,

∑n
i=1Ui }, Cmax is the makespan (i.e., maximal
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completion time value, represents the time interval needed to finish all jobs),
∑n

i=1 Ci

is the total completion time (represents the work-in-process inventory cost), Lmax
(Tmax) is the maximum lateness (tardiness) (represents the penalty cost in the case
where there are job delays over its due date),

∑n
i=1Ui is the number of tardy jobs

(represents the cost penalty incurred by a tardy job does not depend on how late it
is, but depends on the fact that it is late). Liu et al. (2012a) showed that the problem
1|psddt, ri , prmp| ∑n

i=1 Ci is polynomial time solvable if the jobs can be interrupted
(i.e., job preemption is allowed), where ri is the ready time of job Ji , prmp denotes job
preemption is allowed. Liu et al. (2012a) also proved that the non-preemptive problem
1|psddt, ri | ∑n

i=1 Ci is NP-hard, and proposed an approximation algorithm to solve
the 1|psddt, ri | ∑n

i=1 Ci problem. Liu et al. (2012b) studied the problem 1|psddt |ρ,
where ρ ∈ {∑n

i=1 wiCi ,
∑n

i=1 wi (1− e−γCi ), T ADC = ∑n
i=1

∑i
j=1 |Ci − C j |}, γ

(0 < γ < 1) is the discount factor, they proved that these problems remain polyno-
mially solvable.

Meeting due-dates has always been one of the most important objectives. There
are two more commonly used due-date assignment methods below: The con due-date
assignment method denotes that all jobs have a common due-date, i.e., the due-date
of job Ji is di = dopt , and dopt is a decision variable; The slk due-date assignment
method means that all jobs have a common flow allowance, i.e., di = pi +qopt , where
pi is the completion time of job Ji , and qopt is a decision variable. Liu et al. (2012b)
also considered the con due-date assignment problem 1|psddt, con|∑n

i=1(α1Ei +
α2Ti + α3dopt ), they proved that the problem is polynomial time solvable, where
Ei = max{0, dopt − Ci } (Ti = max{0,Ci − dopt }) is the earliness (tardiness) of job
Ji , α1, α2, α3 are given constant values, Ci is the completion time of job Ji .

Liu (2013) and Wu and Wang (2016) studied learning effects problems with
psddt. For following objectives: T ADC ,

∑m
h=1 C

h
max (i.e., the sum of load on all

machines, Ch
max is the makespan of machine Mh , h = 1, 2, . . . ,m),

∑n
i=1 Ci , under

parallel-machine and aposition-dependent learning effect, Liu (2013) proved that these
problems (i.e., Pm|psddt |X , X ∈ {T ADC,

∑m
h=1 C

h
max,

∑n
i=1 Ci }) are polynomi-

ally time solvable. Under truncated sum-of-processing-times-based learning effect and
single-machine, Wu and Wang (2016) showed that some minimizations (i.e., Cmax,∑n

i=1 C
η
i (η > 0),

∑n
i=1 Li ,

∑n
i=1 wiCi , Lmax) are polynomially time solvable. Liu

et al. (2013) and Yin et al. (2013) tackled problems with psd delivery times and
deterioration effects. Under the parallel machine setting, Liu et al. (2013) presented
polynomial algorithms for followingobjectives:T ADC ,

∑m
h=1 C

h
max,

∑n
i=1 Ci .Under

the single-machine setting, Yin et al. [8] showed that the makespan (total completion
time) minimization is polynomial time solvable. Yin et al. (2013) also proved that
some special cases of

∑n
i=1 wiCi and Lmax minimizations remain polynomially solv-

able. Yang and Yang (2012), and Zhao and Tang (2014) investigated problems with
psddt and position-dependent processing times.

On the other hand, Kahlbacher (1992), Brucker (2001), Liu et al. (2017), Liu
and Jiang (2020), and Jiang et al. (2020) considered scheduling models with pdw
weights, i.e., the weight is not related to the job but to the position in which the job is
scheduled. If the con due-date d is a given constant, Kahlbacher (1992) showed that
problem 1 |d, pdw| ∑n

i=1 νi |LS(i) | is NP-hard, where νi is the weight of i th position
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in a sequence (i.e., pdw), LS(i) = CS(i) − d is the lateness of job JS(i) , S(i) denotes the
job scheduled in i th position under sequence S. Brucker (2001), concentrated on the
con method, he proved that the problem 1

∣
∣pdw, con, dopt

∣
∣ ∑n

i=1 νi |LS(i) | + ν0dopt
(where dopt is a decision variable, ν0 ≥ 0) is polynomial time solvable. Liu et al. (2017)
addressed the slk method, they showed that 1

∣
∣pdw, slk, qopt

∣
∣
∑n

i=1 νi |LS(i) |+ν0qopt
(ν0 ≥ 0 is the weight of qopt ) can also be solved in polynomial time. Liu and
Jiang (2020) dealed with resource allocation scheduling with learning effects. For
single-machine setting, they showed that con and slk methods remain polynomial
time solvable, respectively. Jiang et al. (2020) investigated problems with pdw. Under
proportionate flowshop setting, they proved that con and slk methods remain polyno-
mial time solvable, respectively.

In this article, we focus on scheduling under model with psddt and pdw weights.
Motivated by the phenomena in practice such that the weights are position-dependent
weights due to the importance of position in service production system, we introduce
position-dependent weights into the psddt model. To the best of our knowledge, there
are no results on scheduling with pdw weights and psddt in literature. The remainder
of the article is organized as follows: Sect. 2 formulates the model. Section 3 considers
two scheduling problems without due-date constraint. Section 4 studies two due-date
assignment problems. Section 5 provides some extensions. Conclusions are presented
in Sect. 6.

2 Model description

Consider a set N̆ = {J1, J2, . . . , Jn} of simultaneously available jobs to be processed
by a single-machine. Let pi , si , and qi be the processing time, starting time, and psddt
of job Ji , respectively, i = 1, 2, . . . , n, and let S(i) be the job scheduled in the i th
position under sequence S. As in Koulamas and Kyparisis (2010), we have

sS(i) =
i−1∑

l=1

pS(l) , qS(1) = 0 and qS(i) = bsS(i) = b
i−1∑

l=1

pS(l) , (1)

where
∑0

l=1 pS(l) := 0, and b ≥ 0 is a normalizing constant. Let Ci denote the
completion time of job Ji and CS(i) can be defined analogously, then

CS(i) = sS(i) + pS(i) + qS(i) = (1 + b)
i−1∑

h=1

pS(h)
+ pS(i) , i = 1, 2, . . . , n. (2)

3 Scheduling without due-date

The aim of this section is to study 1|psddt, pdw|∑n
i=1 �iCS(i) and 1|psddt, pdw|

∑n
i=1(1 − e−γCS(i) ), where

∑n
i=1 �iCS(i) is total weighted completion time and
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∑n
i=1 �i (1−e−γCS(i) ) is total discounted weighted completion time,�i is the weight

of i th position in a sequence (i.e., pdw), γ (0 < γ < 1) is the discount factor.

Theorem 1 For 1|psddt, pdw|∑n
i=1 �iCS(i) , an optimal sequence can be obtained

in O(n log n) time, i.e., by smallest processing time (SPT) first rule.

Proof Let S = (S̃1, Ji , J j , S̃2) and S⊥ = (S̃1, J j , Ji , S̃2) denote two sequences,where
pi ≤ p j , S̃1 and S̃2 are partial sequences (there are r − 1 jobs in S̃1). Under S and S⊥,
we have

n∑

i=1

�iCS(i) =
r−1∑

i=1

�iCS(i) + �r [(1 + b)
r−1∑

l=1

p[l] + pi ]

+�r+1[(1 + b)
r−1∑

l=1

p[l] + (1 + b)pi + p j ] +
n∑

i=r+2

�iCS(i) . (3)

n∑

i=1

�iCS⊥
(i)

=
r−1∑

i=1

�iCS⊥
(i)

+ �r [(1 + b)
r−1∑

l=1

p[l] + p j ] + �r+1[(1 + b)
r−1∑

l=1

p[l]

+ (1 + b)p j + pi ] +
n∑

i=r+2

�iCS⊥
(i)

. (4)

From (3) and (4), we have
∑r−1

i=1 �iCS(i) = ∑r−1
i=1 �iCS⊥

(i)
,
∑n

i=r+2 �iCS(i) =
∑n

i=r+2 �iCS⊥
(i)
,

n∑

i=1

�iCS(i) −
n∑

i=1

�iCS⊥
(i)

= (�r + b�r+1)(pi − p j ).

From pi ≤ p j , then
∑n

i=1 �iCS(i) − ∑n
i=1 �iCS⊥

(i)
≤ 0. ��

Theorem 2 For 1|psddt, pdw|∑n
i=1 �i (1 − e−γCS(i) ), an optimal sequence can be

obtained in O(n log n) time, i.e., by the SPT rule.

Proof It is same as Theorem 1, except that, if pi ≤ p j , we have

n∑

i=1

�i (1 − e−γCS(i) ) −
n∑

i=1

�i (1 − e
−γC

S⊥
(i) )

= �r (1 − e−γ [(1+b)
∑r−1

l=1 p[l]+pi ]) + �r+1(1 − e−γ [(1+b)
∑r−1

l=1 p[l]+(1+b)pi+p j ])

−�r (1 − e−γ [(1+b)
∑r−1

l=1 p[l]+p j ]) − �r+1(1 − e−γ [(1+b)
∑r−1

l=1 p[l]+(1+b)p j+pi ])

= �r e
−γ (1+b)

∑r−1
l=1 p[l] (e−γ p j − e−γ pi )

)

+�r+1e
−γ (1+b)

∑r−1
l=1 p[l]+pi+p j

(
e−γ bp j − e−γ bpi )

)

≤ 0. ��
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4 Due-date assignment problem

4.1 Con due-date

For the con method, we have di = dopt for all jobs, the aim is to determine dopt and a
job sequence such that

n∑

i=1

�i |LS(i) | + �0dopt =
n∑

i=1

�i |CS(i) − dopt | + �0dopt , (5)

is minimized, where �i > 0 (i = 0, 1, 2, . . . , n) is the pdw weights. Brucker
(2001) considered the problem 1

∣
∣pdw, con, dopt

∣
∣
∑n

i=1 νi |LS(i) | + ν0dopt , i.e., he
does not consider psddt. Obviously, for the problem 1

∣
∣psddt, pdw, con, dopt

∣
∣

∑n
i=1 �i |LS(i) |+�0dopt , there are no-idle time between the jobs and first job’s starting

time is 0 (see Lemma 7.1 in Brucker 2001).
Now, a dummy job J0 is adopted such that its processing time is p0 = 0, position-

dependent weight is �0, starting time is 0, we have

n∑

i=1

�i |CS(i) − dopt | + �0dopt =
n∑

i=0

�i |CS(i) − dopt |, (6)

and an optimal schedule can be given by S = (S(0), S(1), . . . , S(n)), where S(0) = 0.

Lemma 1 For a given sequence S = (S(0), S(1), . . . , S(n)) of the problem 1 |psddt,
pdw, con, dopt

∣
∣ ∑n

i=1 �i |LS(i) | +�0dopt , dopt = CS(k) = γ
∑k−1

i=1 pS(i) + pS(k) ,
where k is a median for the sequence �0,�1, . . . ,�n,

k−1∑

i=0

�i ≤
n∑

i=k

�i and
k∑

i=0

�i ≥
n∑

i=k+1

�i . (7)

Proof Similar to the proof of Lemma 7.2 in Brucker (2001). ��
Lemma 2 For the problem 1

∣
∣psddt, pdw, dopt

∣
∣
∑n

i=1 �i |LS(i) | + �0dopt , we have

n∑

i=1

�i |LS(i) | + �0dopt =
n∑

i=1

ϑi pS(i) , (8)

where

ϑi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i∑

v=0
b�v +

i−1∑

v=0
�v, i = 1, 2, . . . , k − 1;

k∑

v=0
�v +

n∑

v=k
b�v, i = k;

n∑

v=i
�v +

n∑

v=i+1
b�v, i = k + 1, k + 2 . . . , n.

(9)
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Proof For S = (S(0), S(1), . . . , S(n)), from Lemma 1, dopt = CS(k) ,

n∑

i=1

�i |LS(i) | + �0dopt

=
k∑

i=0

�i (CS(k) − CS(i) ) +
n∑

i=k+1

�i (CS(i) − CS(k) )

=
k∑

i=0

�i
(
bpS(i)

+(1 + b)
k−1∑

v=i+1

pS(v)
+ pS(k)

)

+
n∑

i=k+1

�i

(

bpS(k) + (1 + b)
i−1∑

v=k+1

pS(v)
+ pS(i)

)

=
k−1∑

v=1

pS(v)

(
v∑

i=0

b�i +
v−1∑

i=0

�i

)

+ pS(k)

(
k∑

i=0

�i +
n∑

i=k

b�i

)

+
n∑

v=k+1

pS(v)

(
n∑

i=v

�i +
n∑

i=v+1

b�i

)

=
n∑

i=1

ϑi pS(i) ,

where ϑi (i = 1, 2, . . . , n) are given by (9). ��

4.2 Slack due-date assignment

For the slk method, we have dS(i) = pS(i) + qopt , where qopt is a decision variable.
The problem is to determine qopt and a job sequence such that

n∑

i=1

�i |LS(i) | + �0qopt =
n∑

i=1

�i |CS(i) − dS(i) | + �0qopt (10)

isminimized. Liu et al. (2017) considered theproblem1
∣
∣pdw, slk, qopt

∣
∣∑n

i=1 νi |LS(i) |+ν0qopt , i.e., theydoes not consider psddt. Obviously, for the problem1 |psddt, pdw,

slk, qopt
∣
∣
∑n

i=1 �i |LS(i) | + �0qopt , there are no-idle time between the jobs and the
first job’s starting time is 0 (see Liu et al. 2017).

Similar to Sect. 4.1, a dummy job J0 is adopted such that its processing time is
p0 = 0, position-dependent weight is �0, starting time is 0, then

n∑

i=1

�i |CS(i) − dS(i) | + �0qopt =
n∑

i=0

�i |CS(i) − dS(i) |, (11)

and an optimal schedule is S = (S(0), S(1), . . . , S(n)).
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Lemma 3 For a given sequence S = (S(0), S(1), . . . , S(n)) of the problem 1 |psddt,
pdw, slk, qopt

∣
∣ ∑n

i=1 �i |LS(i) | + �0qopt , qopt = CS(l) = γ
∑l−1

i=1 pρ(i) + pρ(l),
where l is a median for the sequence �0,�1, . . . ,�n,

l∑

i=0

�i ≤
n∑

i=l+1

�i and
l+1∑

i=0

�i ≥
n∑

i=l+2

�i . (12)

Proof Similar to the proof of Liu et al. (2017). ��
Lemma 4 For the problem 1

∣
∣psddt, pdw, slk, qopt

∣
∣∑n

i=1 �i |LS(i) | + �0qopt , the
optimal total cost can be written as:

n∑

i=1

�i |Lρ(i)| + �0qopt =
n∑

i=1

�i |CS(i) − dS(i) | + �0qopt =
n∑

i=1

ϑi pS(i) , (13)

where

ϑi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1∑

v=0
b�v +

i∑

v=0
�v, i = 1, 2, . . . , l − 1;

l+1∑

v=0
�v +

n∑

v=l+1
b�v, i = l;

n∑

v=i+1
�v +

n∑

v=i+2
b�v, i = l + 1, l + 2, . . . , n − 1;

0, i = n.

(14)

Proof For S = (S(0), S(1), . . . , S(n)), from Lemma 3, qopt = CS(l) ,

n∑

i=1

�i |LS(i) | + �0qopt

=
l+1∑

i=0

�i
(
CS(l) − CS(i−1)

) +
n∑

i=l+2

�i
(
CS(i−1) − CS(l)

)

=
l+1∑

i=0

�i

(

bpS(i−1) + (1 + b)
l−1∑

v=i

pS(v) + pS(l)

)

+
n∑

i=l+2

�i

(

bpS(l) + (1 + b)
i−2∑

v=l+1

pS(v) + pS(i−1)

)

=
l−1∑

v=1

pS(v)

(
v+1∑

i=0

b�i +
v∑

i=0

�i

)

+ pS(l)

(
l+1∑

i=0

�i +
n∑

i=l+1

b�i

)

+
n−1∑

v=l+1

pS(v)

(
n∑

i=v+1

�i +
n∑

i=v+2

b�i

)
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=
n∑

i=1

ϑi pS(i) ,

where ϑi (i = 1, 2, . . . , n) are given by (14). ��

4.3 Optimal solution

The terms (8) and (13) can be minimized by sequencing the vectors ϑi and
pS(i) in opposite order (see Hardy et al. 1967) in O(n log n) time, therefore
1
∣
∣psddt, pdw, con, dopt

∣
∣

∑n
i=1 �i |LS(i) | + �0dopt and 1

∣
∣psddt, pdw, slk, qopt

∣
∣

∑n
i=1 �i |LS(i) | + �0qopt are solved by following algorithm:

Algorithm 1 Step 1. By Lemma 1 (Lemma 3), calculate k (l).
Step 2. By sequencing the vectors ϑi and pi in opposite order (see (9) and (14)) to
identify the optimal sequence.
Step 3. For con (slk) due-date assignment, set dopt = CS(k) = (1+b)

∑k−1
h=1 pS(h)

+pS(k)

(qopt = CS(l) = (1 + b)
∑i−1

h=1 pS(h)
+ pS(l)).

Theorem 3 Algorithm 1 solves 1
∣
∣psddt, pdw, con, dopt

∣
∣
∑n

i=1 �i |LS(i) | + �0dopt
and 1|psddt, pdw, slk, qopt | ∑n

i=1 �i |LS(i) | + �0qopt in O(n log n) time, respec-
tively.

Proof Steps 1 and 3 require O(n) time respectively, and Step 2 needs O(n log n) time,
thus the complexity of Algorithm 1 is O(n log n). �

Note: If the con method d is a given constant, Kahlbacher (1992) proved that problem
1 |d, pdw| ∑n

i=1 �i |LS(i) | is NP-hard, hence, 1 |psddt, pdw, d| ∑n
i=1 �i |LS(i) | is

also NP-hard. Hall and Posner (1991) showed that con due-date assignment problem
1
∣
∣con, dopt

∣
∣ ∑n

i=1 wi |Li | is NP-hard, where wi is the job-dependent weight of Ji ,
hence, the job-dependentweights problem1

∣
∣psddt, con, dopt

∣
∣∑n

i=1 wi |Li |+w0dopt
is also NP-hard, where w0 is a given constant.

5 Extensions

5.1 Positional-dependent processing times

The positional-dependent processing times have been given by Mosheiov (2011), i.e.,
the processing time of job Ji , if scheduled in position r , is given by the function
f (i, r), (i.e., pA

i = f (i, r), i, r = 1, . . . , n). Biskup (1999) considered the model
f (i, r) = pira , Mosheiov and Sidney (2003) considered the model f (i, r) = pirai ,
Cheng et al. (2013) considered the model f (i, r) = pi max{ra, β}, Wang et al. (2014)
considered the model f (i, r) = pi max{rai , β}, where a ≤ 0 is the learning effect
(Biskup 1999; Wang and Zhang 2015; Wang et al. 2020), ai ≤ 0 is the job-dependent
learning effect, and β is a truncation parameter (0 < β < 1) (Cheng et al. 2013; Wang
et al. 2014, 2019; Lu et al. 2015).
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Obviously, from (2), we have

n∑

i=1

�iCS(i) =
n∑

i=1

�i

(

(1 + b)
i−1∑

h=1

pA
S(h)

+ pA
S(i)

)

=
n∑

i=1

ϑi p
A
S(i)

=
n∑

i=1

ϑi f (i, r),

(15)

where

ϑi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 +
n∑

v=2
(1 + b)�v, for i = 1;

�2 +
n∑

v=3
(1 + b)�v, for i = 2;

. . .

�n−1 + (1 + b)�n, for i = n − 1;
�n, for i = n;

(16)

Let

yi,r =
{
1, if Ji is assigned to r th position,
0, otherwise.

Then, we can formulate the sequence problem of 1|psddt, pdw, pA
i = f (i, r)| ∑n

i=1
�iCS(i) as following Assignment Problem:

min
n∑

i=1

n∑

r=1

ϑr f (i, r)yi,r (17)

s.t .
n∑

i=1

yi,r = 1; r = 1, 2, . . . , n (18)

n∑

r=1

yi,r = 1; i = 1, 2. . . . , n (19)

yi,r = {0, 1} (20)

where

ϑr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 +
n∑

v=2
(1 + b)�v, for r = 1;

�2 +
n∑

v=3
(1 + b)�v, for r = 2;

. . .

�n−1 + (1 + b)�n, for r = n − 1;
�n, for r = n.

(21)
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Obviously, Lemmas 1, 2, 3 and 4 still hold when positional-dependent processing
times are introduced, we have

n∑

i=1

�i |LS(i) | + �0dopt/qopt =
n∑

i=1

ϑi p
A
S(i)

=
n∑

i=1

ϑi f (i, r), (22)

where, for the con and slk models, ϑi (i = 1, 2, . . . , n) are given by (9) and (14),
respectively.

Similarly, we can formulate the sequence problem of 1|psddt, pdw, con/slk,
dopt/qopt , pA

i = f (i, r)| ∑n
i=1 �i |LS(i) | + �0dopt/qopt as the assignment problem

(17)–(20), where, for the con due-date assignment,

ϑr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

i∑

v=0
b�v +

i−1∑

v=0
�v, i = 1, 2, . . . , k − 1;

k∑

v=0
�v +

n∑

v=k
b�v, i = k;

n∑

v=i
�v +

n∑

v=i+1
b�v, i = k + 1, k + 2 . . . , n;

(23)

for the slk due-date assignment,

ϑr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1∑

v=0
b�v +

i∑

v=0
�v, i = 1, 2, . . . , l − 1;

l+1∑

v=0
�v +

n∑

v=l+1
b�v, i = l;

n∑

v=i+1
�v +

n∑

v=i+2
b�v, i = l + 1, l + 2, . . . , n − 1;

0, i = n.

(24)

Based on the above analysis, we have

Theorem 4 1|psddt, pdw, pA
i = f (i, r)| ∑n

i=1 �iCS(i) , 1|psddt, pdw, con, dopt ,
pA
i = f (i, r)| ∑n

i=1 �i |LS(i) | +�0dopt and 1|psddt, pdw, slk, qopt , pA
i = f (i, r)|

∑n
i=1 �i |LS(i) | + �0qopt are solvable in O(n3) time, respectively.

If pA
i = pi max{ra, β}, the term ∑n

i=1 ϑi f (i, r) = ∑n
i=1 ϑi max{ia, β}pS(i) can

be minimized by sequencing the vectors ϑi max{ia, β} and pS(i) in opposite order (see
Hardy et al. 1967), hence, we have

Theorem 5 1|psddt, pdw, pA
i = pi max{ra, β}| ∑n

i=1 �iCS(i) ,1|psddt, pdw, con,

dopt , pA
i = pi max{ra, β}|∑n

i=1 �i |LS(i) |+�0dopt and1|psddt, pdw, slk, qopt , pA
i =

pi max{ra, β}| ∑n
i=1 �i |LS(i) |+�0qopt are solvable in O(n log n) time, respectively.
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5.2 Time-dependent processing times

Time-dependent processing times (Gawiejnowicz 2008; Lu 2016) are adopted to
scheduling model, i.e.,

pA
i = pi + csi , i = 1, . . . , n, (25)

where c ≥ 0 (denotes common deterioration rate), si is starting time of Ji (Gaw-
iejnowicz 2008; Lu 2016).

Obviously, for the problem 1|psddt, pdw, pA
i = pi +csi | ∑n

i=1 �iCS(i) , we have

s[1] = 0, s[2] = 0 + p[1] + c × 0 = p[1],
s[3] = s[2] + p[2] + c × s[2] = p[2] + (1 + c)p[1],

. . . ,

s[i] = p[i−1] + (1 + c)p[i−2] + . . . + (1 + c)i−2 p[1],
pA[i] = p[i] + cs[i] = p[i] + cp[i−1] + c(1 + c)p[i−2] + . . . + c(1 + c)i−2 p[1].

For the objective functions
∑n

i=1 �iCS(i) = ∑n
i=1 ϑi pA

S(i)
and

∑n
i=1 �i |LS(i) | +

ω0dopt/qopt = ∑n
i=1 ϑi pA

S(i)
, from the above analysis, we have

n∑

i=1

ϑi p
A
S(i)

=
n∑

i=1

ψi pS(i) , (26)

where

ψ1 = ϑ1 + cϑ2 + c(1 + c)ϑ3 + . . . + c(1 + c)n−2ϑn

ψ2 = ϑ2 + cϑ3 + c(1 + c)ϑ4 + . . . + c(1 + c)n−3ϑn

ψ3 = ϑ3 + cϑ4 + c(1 + c)ϑ5 + . . . + c(1 + c)n−4ϑn

. . .

ψn−1 = ϑn−1 + cϑn

ψn = ϑn, (27)

where, for
∑n

i=1 �iCS(i) , ϑi (i = 1, 2, . . . , n) are given by (16); for the con due-
date model, ϑi (i = 1, 2, . . . , n) are given by (9); for the slk due-date model, ϑi

(i = 1, 2, . . . , n) are given by (14).
Similarly, we have:

Theorem 6 The problems 1|psddt, pdw, pA
i = pi + csi | ∑n

i=1 �iCS(i) , 1|psddt,
pdw, con, dopt , pA

i = pi + csi | ∑n
i=1 �i |LS(i) | + �0dopt and 1|psddt, pdw,

slk, qopt , pA
i = pi + csi | ∑n

i=1 �i |LS(i) | + �0qopt can be solved in O(n log n) time,
respectively.
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Table 1 Results of this paper

Problem Complexity

1|psddt, pdw|∑n
i=1 �i CS(i) O(n log n) Theorem 1

1|psddt, pdw|∑n
i=1 �i (1 − e

−γCS(i) ) O(n log n) Theorem 2

1
∣
∣psddt, pdw, con, dopt

∣
∣
∑n

i=1 �i |LS(i) | + �0dopt O(n log n) Theorem 3

1
∣
∣psddt, pdw, slk, qopt

∣
∣
∑n

i=1 �i |LS(i) | + �0qopt O(n log n) Theorem 3

1|psddt, pdw, pAi = f (i, r)| ∑n
i=1 �i CS(i) O(n3) Theorem 4

1
∣
∣psddt, pdw, con, dopt

∣
∣∑n

i=1 �i |LS(i) | + �0dopt O(n3) Theorem 4

1
∣
∣psddt, pdw, slk, qopt

∣
∣
∑n

i=1 �i |LS(i) | + �0qopt O(n3) Theorem 4

1|psddt, pdw, pAi = pi max{ra , β}| ∑n
i=1 �i CS(i) O(n log n) Theorem 5

1
∣
∣
∣psddt, pdw, con, dopt , pAi = pi max{ra , β}

∣
∣
∣
∑n

i=1 �i |LS(i) | + �0dopt O(n log n) Theorem 5

1
∣
∣
∣psddt, pdw, slk, qopt , pAi = pi max{ra , β}

∣
∣
∣
∑n

i=1 �i |LS(i) | + �0qopt O(n log n) Theorem 5

1|psddt, pdw, pAi = pi + csi |
∑n

i=1 �i CS(i) O(n log n) Theorem 6

1
∣
∣
∣psddt, pdw, con, dopt , pAi = pi + csi

∣
∣
∣
∑n

i=1 �i |LS(i) | + �0dopt O(n log n) Theorem 6

1
∣
∣
∣psddt, pdw, slk, qopt , pAi = pi + csi

∣
∣
∣
∑n

i=1 �i |LS(i) | + �0qopt O(n log n) Theorem 6

6 Conclusions

We addressed the problems with psddt and pdw (see Table 1). We proved that
the problems 1|psddt, pdw|∑n

i=1 �iCS(i) , 1|psddt, pdw|∑n
i=1 �i (1 − e−γCS(i) ),

1
∣
∣psddt, pdw, con, dopt

∣
∣∑n

i=1 �i |LS(i) | + �0dopt , and 1
∣
∣psddt, pdw, slk, qopt

∣
∣

∑n
i=1 �i |LS(i) | + �0qopt are solvable in O(n log n) time, respectively. For the

position-dependent and time-dependent processing times extensions, we showed that
the objective functions

∑n
i=1 �iCS(i) , and

∑n
i=1 �i |LS(i) | + �0dopt/qopt remain

polynomially solvable respectively. Future research may consider the problem
1|psddt, pdw, B|∑n

i=1 �i (1 − e−γCS(i) ), B ∈ {pA
i = f (i, r), pA

i = pi + csi },
study multi-machine settings (such as flow shop and job shop scheduling), investigate
resource allocation scheduling (Lu and Liu 2018; Li et al. 2018), or optimize other
objective functions with deterioration and learning effects (see Wang et al. 2012a, b
and Lu et al. (2016)).
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