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Abstract
We introduce the discount allocation problem to a new online social networks (OSNs)
scenario where the nodes and the relationships between nodes are determined but the
states of edges between nodes are unknown. We can know the states of all the edges
centered on a node only when it becomes active. Different frommost previous work on
influence maximization discount allocation problem in OSNs, our goal is to minimize
the discount cost that the marketer spends while ensuring at least Q customers who
adopt the target product in the end in OSNs. We propose an online discount allocation
policy to select seed users to spread the product information. The marketer initially
selects one seed user to offer him a discount and observes whether he accepts the
discount. If he accepts the discount, the marketer needs to observe how well this
seed user contributes to the diffusion of product adoptions and how much discount he
accepts. The remaining seeds are chosen based on the feedback of diffusion results
obtained by all previous selected seeds. We propose two online discount allocation
greedy algorithms under two different situations: uniform and non-uniform discounts
allocation. We offer selected users discounts changing from the lowest to highest in
the discount rate set until the users receive the discount and become seed users in non-
uniform discount allocation situation, which saves the cost of firms comparing with
the previous method that providing product to users for free. We present a theoretical
analysis with bounded approximation ratios for the algorithms. Extensive experiments
are conducted to evaluate the performance of the proposed online discount allocation
algorithms on real-world online social networks datasets and the results demonstrate
the effectiveness and efficiency of our methods.
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1 Introduction

In recent years, online social networks (OSNs) have gained popularity at a rapid pace
and become an important part in our daily lives. People use OSN sites such as Twitter,
Microblog, Facebook, and LinkedIn not only to stay in touch with friends but also to
generate, spread and share various social contents. OSNs enable government agencies
to post news and events as well as ordinary people to post contents from their own
perspectives and experience.

As an important application of OSNs, viral marketing has become a focus of atten-
tion by many firms. It is an effective marketing strategy based on person-to-person
recommendation within an OSN (Jurvetson 2000). More andmore firms promote their
products through OSNs. We consider a problem that a firm has a new product they
would like to advertise through OSNs. They want to offer some discounts to a set of
initial users who will potentially introduce the new product to their friends. Only a
limited number of users will get discounts because of the limited budget. So which set
of initial users should be selected to provide the discount and whether they are willing
to accept the discount to be active? How much discounts should be provided by the
firm?

The above questions have been addressed in many studies researches (Domingos
and Richardson 2001; Richardson and Domingos 2002). They formulate them as an
optimal selection problem in which a good set of initial adopters, called seed users,
is selected. A classical problem, called influence maximization (Kempe et al. 2003),
is to maximize the influence spread, i.e., the number (or expected number) of users
who finally adopt the target product under influence initiated by seed users. In this
paper, we study a minimization problem, i.e., to use the minimal cost for seeds to
reach a certain level of the influence spread. For seed user selection, we propose an
online discount allocation method, i.e., choosing seed users based on the observation
of the previous seeds propagation results until a certain level of the influence spread
is achieved.

Most of existing research on influencemaximization problem has strategies in three
categories: zero-feedback model (Kempe et al. 2003), full-feedback model (Golovin
and Krause 2011) and partial feedback model (Yuan and Tang 2016). The first one has
to commit all the seed users at once in advance. The second one selects one seed or
more seeds at a time and waits until the diffusion completes, then selects the next seed.
The third one selects one seed or a batch of seeds and wait several slots but not the end
of the propagating, which can balance the delay and performance tradeoff. Goyal et al.
(2011) show that most zero-feedback models may over-predict the actual spread. This
model has no delay but poorer performance. We focus on the full-feedback model in
discount allocation problem in online social networks. Instead of selecting all seeds at
once in the influence maximization problem, we use greedy discount allocation policy
to select one node at a time and offer him a discount, then we observe his state and
how he propagates through the social networks. Based on the historical observation,
we adaptively select the next seed user.

Currently, many influence diffusion models have been proposed, two most com-
monly used classical models are Independent Cascade (IC) and Linear Threshold (LT)
models, which are proposed byKempe et al. (2003). They prove that the expected num-
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ber of influenced users, called influence spread, is monotone and submodular. They
also propose a greedy algorithm to maximize the influence spread in the network.
The maximization of the influence spread, i.e., the influence maximization, is NP-
hard under IC and LT models. Tong et al. (2019) and Wang et al. (2016) showed
that in some networks, the influence maximization is NP-hard under IC model while
polynomial-time solvable in LT model. In this work, we adopt the Independent Cas-
cade (IC) model.

We summarize the main contributions in this paper as follows:

– We explore a new discount allocation scenario and use the online full-feedback
setting to the discount allocation problem in theOSNs scenario. Thenwe divide the
cascade into two stages: seed selection and information diffusion. Each selected
initial user has to give feedback about whether he adopted the discount and the
discount rate if he accepted the discount to become a seed. Each current decision
depends on all the previous feedbacks and cascades.

– We introduce a new utility function which is to influence at least a certain number
Q of people who adopt the product with the minimal cost in expectation, instead
of maximizing the active users at the end of the diffusion process.

– Wepresent two algorithms in uniformand non-uniformdiscount situations, respec-
tively. In non-uniform discount allocation situation, we offer discount to selected
users from lowest to highest in the discount rate set until the users become active,
which saves the cost of firms comparing with the previous method that provides
product to users for free.

– The performance guarantee is analyzed. An approximation ratio αln(
Q
β

) in
uniform discount situation and an approximation ratio of the worst-case cost
α(ln(

Q
β

+ 1)) in non-uniform discount are got.
– We numerically validate the effectiveness of the proposed algorithm on real-world
online social networks datasets.

The rest of this paper is organized as follows. In Sect. 2 we begin by recalling
some existing work. We introduce the problem description and influence diffusion
model and process in Sect. 3. In Sect. 4, we propose the online full-feedback policy
and present the greedy algorithm under uniform discount and non-uniform discount
conditions. We also give the theoretical proof of the algorithms in Sects. 5, and 6
presents the simulation results, while finally, the conclusion is presented in Sect. 7.

2 Related work

In this paper, we focus on using online discount allocation policy to get aminimumcost
target with a certain number of market penetration of the product. Discount allocation
of viral marketing in OSNs has been studied in many scenarios. Below we discuss
recent related work on related topics.

Discount allocation inOSNsYang et al. (2016) study the problem thatwhat discount
should be offered to users so that the expected number of adopted users is maxi-
mized within a predefined budget. They develop a coordinate descent algorithm and
an engineering technology in practice. They illustrate that compared to the traditional
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influence maximization methods, continuous influence maximization can improve
influence spread significantly. Abebe et al. (2018) study how to make use of social
influence when there is a risk of overexposure in viral marketing. They present a seed-
ing cascademodel that has benefitswhen reaching positive inclined customers and cost
when reaching negative inclined customers. They show how it captures some qualita-
tive phenomena related to overexposure. They provide a polynomial-time algorithm to
optimally find a marketing strategy. Tang (2018) study the stochastic coupon probing
problem in social networks. They adaptively offer coupons to some users and those
users who accept the coupons will become seed users and then influence their friends.
There are two constraints that have to be satisfied for a coupon probing policy that
achieve the influence maximization: the set of coupons redeemed by users must meet
inner constraints; the set of probed users must meet outer constraints. The proposed
constant approximation policy for the stochastic coupon probing problem is suitable
for any monotone submodular utility function. Yuan and Tang (2017) study the influ-
ence maximization discount allocation problem under both non-adaptive and adaptive
policies. They provide a limited budget of B to a set of initial users, and the target is
to maximize the active users who adopt the product. They propose a greedy algorithm
with a constant approximation ratio. Han et al. (2018) study how to use influence
propagation to optimize the ‘pure gravy’ of a marketing strategy. They consider that
seed nodes only can be activated by the offered discounts probabilistically, and try
to find discount allocation strategy to maximize the expected difference of revenue.
They formulate this problem as a non-monotone and non-submodular optimization
problem. A novel ‘surrogate optimization’ method and two randomized algorithms
are presented. They prove the constant performance ratio for the proposed algorithms.

Feedback policy in OSNs Salha et al. (2018) introduce a myopic partial observation
policy in the influence maximization problem. The proposed optimal algorithm guar-
antees to provide an (1 − 1/e)-approximation ratio under a variant of the IC model.
Yuan and Tang (2016) also study the influence maximization problem under partial
feedback model. They propose an α-greedy policy to capture the trade-off between
delay and performance by adjusting the value of α. The algorithm guarantees a con-
stant approximation ratio. Tong et al. (2017) consider the uncertainty of the diffusion
process in real-world social networks because of high-speed data transmission and a
large population of participants. They introduce a seeding strategy that seed nodes are
only selected between spread rounds under the dynamic Independent Cascade model,
this solution has a provable performance guarantee. An efficient heuristic algorithm is
also provided for better scalability. Tang (2018) study the optimal social advertising
problem from the platform’s perspective. Their goal is to maximize the expected rev-
enue by finding the best ad sequence for each user. They integrate viral marketing into
existing ad sequencing model and use zero-feedback and full-feedback ad sequencing
policies to maximize the efficiency of viral marketing. Choi and Yi (2018) study the
problem that detecting the source of diffused information by the means of querying
individuals. Two paid queries are asked: whether the respondent is the source or not;
if not, which neighbor spreads the information to the respondent. The assumption
is that respondents may lie. They design two kinds of algorithms: full-feedback and
zero-feedback, which correspond to whether we adaptively select the next respon-
dents based on respondents’ previous answers. Their goal is to evaluate the budget
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to achieve the detection probability 1 − δ, ∀ 0 < δ < 1. Dhamal (2018) focus on
that selecting seed users in multiple phases based on the observed historical diffusion
under IC model. They present a negative result but do not guarantee a better spread
in more phases. They study the effect of diffusion in multiple phases on average and
the standard deviation of the extent of diffusion, and how to reduce the uncertainty
in diffusion with multiple phases. Singer (2016) survey the feedback based seeding
methods for influence maximization. They discuss the algorithmic approaches, the
friend paradox in random models and experiments on feedback based seeding. Han
et al. (2018) study the adaptive Influence Maximization (IM) problem, which selects
seed users in batches of size b. They use full feedback strategy that the i-th batch can be
selected after they observe the influence results of the (i −1)th batch seed users. They
propose two practical algorithms for b = 1 with an approximation ratio 1 − e(ξ−1)

and b > 1 with 1− e(ξ−1+1/e) approximation guarantee, where ξ ∈ (0, 1). Tong et al.
(2020) present a time-constrained adaptive influence maximization problem. They
provide a e2−2

e−1 lower bound on the adaptive gap for the time-constrained case. The
adaptive gap measures the ratio between full feedback and the zero-feedback.

3 Networkmodel and problem formulation

3.1 The networkmodel

In this model, the online social network is a directed graph G(V , E), where each
vertex in V is a person, and E is the set of social ties. In this model, the nodes and
edges in the graph are deterministic, the states of edges between nodes are unknown.
We can know the states of all the edges centered on that node through activating it.
Assuming that a marketer provides m discount rates D = {d1, . . . , dm} to each user
for a product and the marketer offers a user only one discount at a time. We assume
the discount as the amount taken off from the original price which are integers in
our problem. We denote cv = di as that we provide discount di to user v. So in
the graph, each user v ∈ V has m choices for the discount rates but he only can
accept one discount. We assume that each user v is independently associated with a
discount adoption probability function pvdi ∈ [0, 1], whichmodels the probability that
v accepts different discounts.Whether users would accept these discounts is uncertain.
We assume that the adoption probability of any initial user is monotonically increasing
with respect to discounts. So if d j ≥ di , pvd j ≥ pvdi . The incoming neighbor set and
the outgoing neighbor set of a node v are denoted as N−(v) and N+(v), respectively.
Each edge (u, v) ∈ E in the graph is associated with a probability puv ∈ [0, 1]
indicating the probability that node u independently influences node v once u has
been influenced. If u activates v, the edge is in ‘live’ state, if u does not activate v

successfully, the edge is in ‘blocked’ state. Influence can then spread from user u to
his outgoing neighbors and so on according to the same process.
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3.2 Diffusion process

We compose the cascade into two phases: seeds selection phase and information
diffusion phase.

In the seeds selection phase, we select some initial seed users to provide some
discounts to each of them. After receiving these discounts, every user will decide
whether to accept the discount or not. It is affected by factors such as users’ preference
for the products or the discount rates and so on. A user can only accept one discount
at a time. If a user has accepted a discount di , which means that any larger discount is
also acceptable for him. If a user rejects the highest discount, he will reject all offered
discounts. We use φ(v) to define the active state of a user v. If a user v accepts the
discount to become a seed, its state is active, and φ(v) = 1, otherwise φ(v) = 0.

In the information diffusion phase, every initial user who becomes the seed then
has to propagate the product information to her neighbors across the social network
under the Independent Cascade (IC) model. Independent Cascade (IC) model: each
active seed user has a single chance to influence his uninfluenced neighbors with
given probabilities. Each newly influenced user also has a single chance to influence
his uninfluenced outgoing neighbors in the next step. If a node v has multiple newly
activated incoming neighbors, their influences are sequenced in an arbitrary order. The
diffusion completes until there is no new user is influenced. The expected cascade of
U denoted as I (U ), is the expected number of users influenced by seed set U .

We select one seed at a time and wait until the diffusion completes before selecting
the next seed. We define the state ψ(uv) as the state of edge (u, v), if v is activated by
one of its incoming active neighbor u and edge(u, v) is ‘live’, ψ(uv) = 1, otherwise,
edge (u, v) is ‘dead’, ψ(uv) = 0. So we can see that activating u will reveal the status
of edge (u, v) (i.e., the value of ψ(uv)).

3.3 Problem formulation

In the model, each user has two states: φ and ψ . We represent the user’s state 〈φ,ψ〉
as an online realization. In the full feedback model, every initial user needs to give
feedback whether or not he adopted the discount. After activating u, we observe the
set of out-edges from node u that become active or ‘live’. These active nodes are those
who are successfully activated by node u. After each pick, our observations so far
can be represented as an online partial realization. We use the notation dom(φ,ψ) to
refer to the domain of 〈φ,ψ〉 (i.e., the set of states observed in 〈φ,ψ〉 ). In the online
seed selection policy, we choose the current user dynamically, it is up to the current
state of observation dom(φ,ψ).

We define our online discount allocation strategy for picking users as a policy
π (〈φ,ψ〉), which is a function from a set of partial realization to current observa-
tion, specifying which user to probe in the next step under the known online partial
realization and the resulting cascade. So we choose the next user to probe based on
what seeds we have detected so far, whether they accept the discount or not, and their
feedbacks about the network diffusions.
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Fig. 1 Illustration of a policy π

Let 	 and 
 denote a random realization of φ and ψ . We assume that there is a
known prior probability distribution p(φ) := P[	 = φ] (and p(ψ) := P[
 = ψ]
resp.) over online seeding realization (and online diffusion realization resp.). Given
a online realization 〈φ,ψ〉, let π(φ,ψ) denote all users picked by policy π under
online realization 〈φ,ψ〉. c(π) denotes the total amount of discounts that have been
delivered byπ under 〈φ,ψ〉. The policyπ terminates (stops probing users) upon online
observation 〈φ,ψ〉 until the resulting expected spread is above a given threshold.

We denote S(π,ψ) ⊆ V as the seed node set that has been selected by π under real-
ization ψ . The expected cascade of a policy π is defined as: f (π) = E[ f (π;	,
)].
Marketers want to get as many people as possible to buy the products at as low cost
as possible. We specify a threshold Q of the expected cascade that we would like to
obtain, and try to find the cheapest policy to achieve that spread goal. The policy π

is to minimize the expected cost of the marketer under all possible online realization,
and at least Q is achieved. We define the expected total cost c(π) = E[c(π;	,
)]
we would like. The problem we want to solve can be described as follows:

Online Minimal Cost Target Seed Selection Problem: Given a directed proba-
bilistic networkG = (V , E), the spread threshold is Q > 0, which is a certain fraction
of the size of the OSNs. Find the optimal policy π∗ that leads to the minimum cost,
i.e., π∗ = argmin{c(π∗)| f (π∗) ≥ Q}.

We use a toy social network in Fig. 1 to illustrate our online discount allocation
policy π . There are six users V = {a, b, c, d, e, f }. The propagation probabilities are
on the edges. The graph is unknown in advance, it can be partially revealed after some
nodes being active. Our expected spread Q is 5. Possible discount set is D = {1, 2}.
Assume that we select node a as the first seed node and setπ(∅) = a, whichmeans that
we probe (a, 1) firstly, i.e. offering discount 1 to user a, and we observe the realization
〈φ,ψ〉 of user a, φ(a, 1)=1, i.e., a accepts the offer and become a seed; ψ(ab) = 0,
ψ(ac) = 1, ψ(c f ) = 1, ψ(ad) = 1, i.e. node c, f , d are influenced by seed a, b
has not been influenced by a and e has not been influenced by d. In the graph, we use
solid line (dotted line) represent a node successfully (resp. unsuccessfully) influences
its outgoing neighbour nodes, that is to say, solid lines represent active edges and
dotted lines represent inactive edges. After observing the state of edges of the active
nodes, we can decide our policy in the next step: π(〈a, 1〉) = e. Because in this graph,
only nodes e and b are inactive. We firstly offer discount 1 to e. We observe that
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φ(e, 1) = 0, it means that e does not accept the discount and he is still inactive. As
π(〈e, 0〉) = b. In the third step, we can probe user b with discount 1, b accepts the
offer, i.e. φ(b, 1) = 1. When b is active, he can not influence his neighbors since
he does not have any outgoing neighbors, then the number of influenced users is 5
which achieved our threshold spread 5 and the cost is 2 eventually. But if we use the
zero-feedback setting, we may choose nodes a and d as seed users in advance since
these two nodes have the maximum outgoing neighbors, in which case we can only
influence 4 nodes at most.

4 The online discount allocation greedy policy

Before presenting our algorithms, we introduce the definition of the conditional
expected marginal benefit of a seed.

Definition 1 Given an online partial realization ψ and a user v, the conditional
expected marginal benefit of v conditioned on having observed ψ is denoted Δ(v|ψ)

as
Δ(v|ψ) := E[ f (dom(ψ) ∪ v) − f (dom(ψ)]

where the expectation is computed with respect to p(ψ) := [
 = ψ].

In our seeds selection condition, Δ(v|ψ) quantifies the expected amount of additional
increment by adding a seed user to the seed set to propagate the product information,
in expectation over the posterior distribution p(
) := P[
] of how many users he
will influence if he becomes a seed.

Definition 2 Function f is online monotone with respect to distribution p(ψ) if con-
ditional expected marginal benefit of any seed is non-negative, i.e., for all ψ with
P[
 ∼ ψ] > 0 and all v ∈ V we have

Δ(v|ψ) ≥ 0

Definition 3 A function f is online submodular with respect to distribution p(ψ) if
for all ψ , and ψ ′ such that ψ is a sub-realization of ψ ′, and for all v ∈ V \dom(ψ ′),
we have

Δ(v|ψ) ≥ Δ(v|ψ ′)

Assume πag is the online greedy policy which selects the node v ∈ V \dom(ψ) with
the largest expected marginal gain Δ(v|ψ) under the given partial realization ψ , πopt

is the online optimal policy. Golovin and Krause (2011) proved that, the expected
spread function f under edge level full feedback is monotone and submodular w.r.t.
p(ψ), and also prove that πag is an (1− 1/e)- approximation of the adaptive optimal
policy πopt , favg(πag) ≥ (1 − 1/e) favg(πopt ).
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4.1 Greedy policy under uniform discount

First, we focus on the case with uniform discount cv ≡ d, ∀v ∈ V in Algorithm 1.
When the cost is uniform, we just need to select minimal number of seeds that can
achieve theminimal sum cost while ensuring that a sufficient value f ≥ Q is obtained.

Algorithm 1 Uniform Discount Greedy Policy
Input: threshold Q, objective function f , prior distribution p(φ), p(ψ), uniform discount d.
Output: S
1: S = ∅
2: select v∗ = arg maxv∈V \SΔ(v|ψ);
3: offer discount d to v∗
4: if v∗ accept the discount then
5: S ← S ∪ v∗;
6: update the diffusion realization to ψt+1;
7: if f ≥ Q; then break;
8: else continue;
9: end if
10: else continue;
11: end if
12: return S

Given the observation of the current state dom(φ,ψ). We useΔ(v|ψ) to denote the
expected marginal benefit of v in V \dom(ψ) where the condition is that v has been
the seed. The greedy policy π myopically probes the seed which can get the maximal
expected marginal gain (v∗ = arg maxv∈V \dom(ψ)Δ(v|ψ)) at each iteration based on
dom(φ,ψ). If there are multiple users in an iteration at the same time to obtain the
maximal expected marginal gain, we just need to randomly choose one. If v∗ accepts
the discount, we remove v∗ from V in the following round and add v∗ to set S which
is the selected seed set. Otherwise, if v∗ rejects the discount, we put v∗ aside and
don’t consider it any more. We have to update the new diffusion realization when a
new seed is selected and completes his spread. This process iterates until reaching the
spread threshold of Q. Our online greedy algorithm under the uniform discount is as
Algorithm 1.

4.2 Greedy policy under non-uniform discount

In Algorithm 2, we consider the case when the cost is not uniform, and assume that
the discounts are sorted in ascending order: ∀0 < i < j < |D|: di < d j . First, we
probe user v∗ who has the largest ratio of conditional expected marginal benefit to
cost (v∗ = arg maxv∈V \SΔ(v|ψ)/di ) when offering him the lowest discount to each
user. If there are multiple users in an iteration at the same time to obtain the maximal
ratio of conditional expected marginal benefit to cost, we just randomly choose one. If
he accepts this discount, we add v∗ to selected seed set S. Then updating the diffusion
realization. If the influence can reach Q, we can terminate the selection of the seed. If
f < Q, we have to go on selecting seeds. If v∗ rejects the discount d1, we can increase
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the discount rate. If the maximal discount can not be accepted by v∗, we simply don’t
consider it any more. The entire procedure will be repeated until function f obtains
the value of Q.

Algorithm 2 Non-uniform Discount Greedy Policy
Input: threshold Q, objective function f , prior distribution p(φ), p(ψ), the discount rates D =

{d1, · · · , dm }.
Output: S
1: S = ∅
2: i = 1;
3: while i ≤ |D| do
4: select v∗ = arg maxv∈V \SΔ(v|ψ)/di ;
5: offer discount di to v∗
6: if v∗ accept discount di then
7: S ← S ∪ v∗;
8: update the diffusion realization to ψt+1;
9: if f ≥ Q; then break;
10: else continue;
11: end if
12: else
13: if i = |D| then
14: remove v∗ from V ;
15: else i + +;
16: end if
17: end if
18: end while
19: return S

5 Performance analysis

Theorem 1 When the discount is uniform and cv ≡ d. Let β > 0 be the spread
shortfall for the online greedy discount allocation policy over its optimal discount
allocation spread. The optimal discount allocation policy π∗ achieves a target spread
Q. The online greedy discount allocation policy π which is an α-approximate greedy
policy and can achieve Q − β. Then we have the following relation between the cost
of online greedy discount allocation policy cavg(π) and the cost of optimal discount
allocation policy cavg(π

∗)

cavg(π) ≤ αcavg(π
∗)ln

(
Q

β

)

Theorem 2 When the discount in non-uniform. Letβ > 0 be the spread shortfall for the
online discount allocation greedy policy over its optimal discount allocation spread.
Let π∗

wc be the optimal policy minimizing the worst-case cost cwc while guaranteeing
themaximumpossible expected spread f (π∗) = Q. Letπ be anα-approximate greedy
policy, run until it achieves f (π) ≥ Q − β. Then

cwc(π) ≤ αcwc(π
∗
wc)

(
ln

(
Q

β

)
+ 1

)
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Definition 4 A policy π is an α-approximate greedy policy if Δ(v|ψ) > 0, ∃v ∈ V
under online partial realization ψ ,

π(ψ) ∈
{
v : Δ(v|ψ)

c(v)

}
≥ 1

α
max

v′

(
Δ(v′|ψ)

c(v′)

)

π will terminate when observing a ψ has a negative conditional expected marginal
benefit, that is Δ(v|ψ) ≤ 0 for and v ∈ V . An α-approximate greedy policy always
obtains at least (1/α) of the maximal possible ratio of conditional expected marginal
benefit to cost. It terminates when no more benefits can be obtained in expectation.

Lemma 1 Suppose we have made online observations 〈φ,ψ〉. Let π∗ be any policy.
Then for online greedy monotone submodular f :

Δ(π∗, ψ) ≤ c(π∗|ψ)max
v

(
Δ(v|ψ)

c(v)

)

Proof Consider policy π that attempts to select v ∈ dom(ψ), terminating if 
(v) �=
ψ(v), and then executing policy π∗. pvdi is the probability that v accept discount
di and become a seed when running π , the online partial realization ψ ′ contains ψ

as a online subrealization. By submodularity it implies Δ(v|ψ ′) ≤ Δ(v|ψ). So the
total contribution of v to Δ(π∗|ψ) is upper bounded by pvdiΔ(v|ψ). By summing all
v ∈ V \dom(ψ), we can get bound that

Δ(π∗|ψ) ≤
∑

v∈V \dom(ψ)

pvdiΔ(v|ψ)

For each v ∈ V \dom(ψ) contributes pvdi c(v) cost to c(π∗|ψ). So we have,

∑
v∈V \dom(ψ)

pvdi c(v) ≤ c(π∗|ψ)

Therefore,

Δ(π∗|ψ) ≤
∑
v∈V

pvdiΔ(v|ψ) ≤
∑
v∈V

pvdi c(v)max
v∈V

Δ(v|ψ)

c(v)

≤ c(π∗|ψ)max
v∈V

Δ(v|ψ)

c(v)

��
Theorem 3 Fixanyα ≥ 1and thediscount thatv accepts. Letπ∗ ∈ argmax

π
favg(π[k]),

where k is the number of selected seeds. If f is monotone and submodular with respect
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to the distribution p(ψ), and π is an α-approximate greedy policy, then for all policy
π∗, and positive integers h and l, we have

favg(π[h]) > (1 − e−h/αl) favg(π
∗[l])

Proof The proof goes along the lines of the performance analysis is an extension
analysis for theα- approximate greedy algorithm.Weassumewithout loss of generality
that π = π[h] and π∗ = π∗[l]. Then for any 0 < i < l, we can derive that:

favg(π
∗) ≤ favg(π[i]) + αl( favg(π[i+1]) − favg(π[i])) (1)

This inequation follows from the monotonicity of f and Lemma 1. From Lemma 1
we also can get that

E[Δ(π∗|ψ)] ≤ E[c(π∗|ψ)]max
v

(
Δ(v|ψ)

c(v)

)
,

Since π∗ has the form π[k] and k is the number of selected seeds. We have
E[c(π∗|ψ)] ≤ l for all ψ . It follows that E[Δ(π∗|ψ)] ≤ l max

v
(
Δ(v|ψ)
c(v)

). By the

definition of an α-approximate greedy policy, π obtains at least 1
α
max

v
(
Δ(v|ψ)
c(v)

) ≥
E[Δ(π∗|ψ)]/αl expected marginal benefit per unit cost in a step immediately follow-
ing its observation of ψ .

Based on the monotonicity equivalence property in Golovin and Krause (2011),
given two policies π1 and π2, π1@π2 defined as the policy that after running π1 then
running policy π2 ignoring the information gathered during the running of π1. We can
get that favg(π1) ≤ favg(π1@π2)

Then, for a random partial realization 
, we can get following inequality:

favg(π[i+1]) − favg(π[i]) ≥ E

[
1

α
max

v
(
Δ(v|
)

c(v)
)

]

≥ E

[
E[Δ(π∗|
)]

αl

]

= favg(π[i]@π∗) − favg(π[i])
αl

Now define Δi := favg(π
∗)− favg(π[i]), so that in equation 1 implies Δi ≤ αl(Δi −

Δi+1), we can infer thatΔi+1 ≤ (1− 1
αl )Δi and henceΔh ≤ (1− 1

αl )
hΔ0 ≤ e−h/αlΔ0,

where for the second inequality we used the fact that 1 − x < e−x for all x > 0.
Hence favg(π

∗)− favg(π[h]) < e−h/αl( favg(π
∗)− favg(π[0])) ≤ e−h/αl favg(π

∗) so
favg(π) > (1 − e−h/αl) favg(π

∗). ��
Proof of Theorem 2 Let β > 0. Assume that l is the least seeds number that adaptive
optimal policy π∗ selected to achieve influence spread favg(π

∗) ≥ Q. Then running
adaptive greedy policy π for h seeds, as favg(π) ≥ Q−β, apply these two parameters
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to Theorem 3, we can get h = αl(lnQ/β). Let l = cwc(π
∗
wc), and apply parameters

h and l to Theorem 3 we can get the following inequation

favg(π[h]) ≥
(
1 − β

Q

)
favg(π

∗[wc]) (2)

As π∗
wc can cover all the realization, favg(π

∗
wc) = E[ f (V (π,ψ),
)] = Q.

The inequation 2 can denote as Q − favg(π[h]) ≤ β. Since f is monotonicity,
favg(π[h]) ≤ favg(π[h→]), we can get that Q − favg(π[h→]) ≤ β, this can infer
that Q − favg(π[h→]) = 0, so π[h→] covers every realization. It is known that π is an
α-approximate greedy policy and π∗

wc covers all the online realizations at most l cost.
From Lemma 1, we have:

max
v∈V

Δ(v|ψ)

c(v)
≥ Δ(π∗

wc|ψ)

c(π∗
wc|ψ)

≥ Δ(π∗
wc|ψ)

l
(3)

We suppose that ψ ∈ dom(π), we have maxvΔ(v|ψ) ≤ Δ(π∗
wc|ψ) as f is mono-

tone submodular. Any user v with cost c(v) > αl also has maxvΔ(v|ψ)/c(v) ≤
Δ(π∗

wc|ψ)/αl, it can not be selected by any α-approximate greedy policy after observ-
ing ψ by inequation 3. The final user executed by π[h→] has cost at most αl for any
realization. So that π[h→] has worst-case cost at most h + αl, where l = c∗

wc. This
completes the proof. ��
Proof of Theorem 1 When the cost cv = d for all seeds, the the number of seeds
multiplies d equals the sum cost. So we conduct some algebraic manipulation in
Theorem 3 to set favg(π[h]) = Q − β, favg(π

∗[l]) = Q, we can get the conclusion of
Theorem 1. ��

6 Performance evaluation

In this section, we will show the simulation of our proposed algorithms. The prepara-
tion of the experiment will be discussed in Sect. 6.1 with the datasets and parameter
settings.

6.1 Experimental setup

Datasets: In this paper, we have used two datasets from Opsahl (2013), Newman
(2001). One of the dataset is a Forum Network which was collected from an online
community very similar to the Facebook online social network. This dataset contained
records of users activities in the forum. It is a collection of nodes and edges that depict
the relationship among the 899 users. The other dataset is the Newmans scientific
collaboration network which represents the co-authorship network based on preprints
posted to CondensedMatter section of arXiv E-Print Archive between 1995 and 1999.
This data represents the relationship among the co-authors.The details about the data
is mentioned in the Table 1.
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Table 1 Statistics of two
datasets

Dateset Nodes Edges Type

Dataset 1 899 142,760 Directed

Dataset 2 16,726 95,188 Directed

Propagation Probability: In both the datasets, the file containing the information
about the node relation is used to build the graphs. The influence probability is assigned
as 1/N where N is the number of in-degree of a given node, this method is widely used
in previous literatures (Wang et al. 2012; Tang et al. 2014; Yang et al. 2016). We use
random numbers between 0 and 1 as the propagation probability threshold to find
how many nodes are activated by each seed node. The generated random number
is compared with the influence probabilities on the edges to count the number of
nodes that can activate in each iteration. If the probability on the edge is greater than
the random number it will influence its neighbor; otherwise, it can not influence its
neighbor.

Adoption Probability: We use x ∈ [0, 1] to denote the percentage of the offered
discount in the product price. The adoption probability pv,x of each node v for the
discount rate x is set as: for the graph G = (V , E), we randomly choose 85% nodes
of to assign pv,x = 3

√
x , these users are sensitive to discount, and 10% nodes to assign

pv,x = x , and 5% nodes to assign pv,x = x2 as their seed probability function, which
means that those users are insensitive to discount, this setting is also used in some
previous literatures (Tang 2018).

Also, the random number between 0 and 1 is generated as the adoption probability
threshold each time to determine if a node accepts the discount. If the probability of
the node accepting the discount is greater than the random number it is assumed that
it will accept the discount; otherwise, it will reject the discount.

6.2 Comparisonmethod

Zero-feedback greedymethod. It selects seed node set which has the largest expected
influence at once in advance, and probes these nodeswith discounts in increasing order.
We should make sure that these selected seed users can spread a target influence value
Q.

We use theMonte Carlo sampling to get themean of the expected influence function
f for our problem and the Zero-feedback greedy method as well as the ±1 standard
deviation intervals over 100 runs of each node.

6.3 Result analysis

Comparison with zero-feedback greedy method on dataset 1. This experiment is
done on dataset 1 and the discount is uniform. In Fig. 2, we show the variation of the
number of seeds selected by changing the value of Q with the zero-feedback greedy
method. The five different curves are in different discounts changing from 100 to 500.
We can see that the smaller the discount is, the more the seeds are needed. But when
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Fig. 2 Results with zero-feedback greedy method on dataset 1

Fig. 3 Results with online greedy method on dataset 1

the value of Q is less than 200, the number of seed users required is the same, as we
can find influential users easily since just a small influence is needed. As the spread
threshold of Q increases, we need to findmore influential seeds, so larger discount will
be more attractive for these users to be active. We can see in Fig. 2, when the discount
equals 100 and Q is over 200, it needs the most seeds in the five different discounts
situations.When the discount equals 400 and 500, we can see the curves increase more
slowly when the Q exceeds 400. It is because the larger discount can attract more high
influential nodes, which can activate more nodes with fewer seed nodes. Although
providing larger discount is more attractive, it can activate more influential seeds so
that it just needs fewer seeds to reach the expected spread threshold Q, but it also has
an obvious drawback of being expensive. We can calculate that when D = 100 and
Q = 600, we need choose 70 seed nodes, it costs 7000, while when D = 500 and
Q = 600, we need choose 25 seed nodes, it costs 12,500, which the cost is far greater
than the uniform discount 100 situation, so bigger discount costs more.
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Fig. 4 Results with online greedy method in non-uniform discount situation on dataset 1

In Fig. 3, we do the experiment in online greedy method, we also set the uniform
discount in five different values. We can see from the lines that the tendency of change
is the similar to Fig. 2, they are also monotone increasing and the larger discounts
need a smaller number of seeds. We can see that when the discount is 100, we need
more seed users but when we calculate the cost, we can find that it takes the least cost.
The reason is the same with zero-feedback greedy method above.

From Figs. 2 and 3, we can see that every curve is a gradient rise. And the growth
ratio is larger when the discount is smaller. Because when the discount is smaller,
many influential users would not accept the discounts to become seeds, we need to
find some less influential users to accept the discounts. It can also be noted that the lines
of the algorithms clearly illustrate the phenomenon of diminishing marginal returns,
empirically illustrating monotonicity and submodularity. Comparing Fig. 2 with 3, for
a certain value of Q and the same discount offered, the online greedy method needs
fewer seeds, because the online greedy algorithm can choose the next seed wisely
based on real spread triggered by existing seeds. Although the larger discount can
activate more influential users to become the seeds, it also needs a larger cost. On the
contrary, the smaller discount needs to choose some less influential seeds but it saves
the cost. So using a smaller discount, it can achieve our expected spread threshold Q
and save cost at the same time.

Varying the discount rate set with proposed method. We do the experiment
with the online greedy method in the non-uniform discount situation firstly, the results
shows in Fig. 4. The number of discount changes from three kinds to seven kinds, and
we can see from the changes of lines that when the discounts are a combination of
D = {100, 200, 300}, it needs the most seeds, and greater the discount combination
is, the fewer the seeds we will select. The reason is the same as the results in Figs. 2
and 3, because a greater discount is more attractive to the influential users. So for
the combination D = {100 ∼ 700}, it selects the least number of seeds. But based
on the experimental results, we know that it cost the least with the combination of
D = {100, 200, 300}, but it cost the most as the high influential seed would like to
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Fig. 5 Results with online greedy method in uniform discount situation on dataset 2

accept larger discount. So the smaller discount combination can achieve larger spread
with minimum cost.

Comparing Fig. 4 with Figs. 2 and 3, we can see that for a certain value Q, the non-
uniform discount requires less seeds. Based on the experiment results in these three
situations, non-uniform discount needs less cost than the uniform discount with the
online greedy method as well as the uniform discount with the zero-feedback greedy
method for the same Q. As in non-uniform cost, we have more discount choice, we
would choose some high influential nodes who would accept low discounts.

In Fig. 5, we use a dataset 2 to continue our experiments with the online greedy
method under the uniform discount situation. Because the dataset 2 is larger than
dataset 1, and the indegree of every node is larger than dataset 1, too, the influence
probabilities are smaller than that in dataset 1. We can observe the change of the lines
in Fig. 5, for the same discount and Q, it needs more seeds than that in Fig. 3, as
the influence of the seed is smaller than that of dataset 1. But in the larger dataset 2,
we can still get the result which is got in the Fig. 3 with dataset 1 that the smallest
discount 100 can save the most cost to get the spread threshold Q. So the results in 5
with dataset 2 are consistent with the results with dataset 1, which further confirms
the correctness of the previous results .

Changes of running time with two proposed methods. The unit of the runtime is
in seconds. The y-axis in Figs. 6 and 7 is the total runtime when the expected spread
threshold Q increases from 100 to 800 in two different datasets with Online greedy
uniform discount and non-uniform discount methods, respectively. In Fig. 6, we set the
uniform discount as 100, 200, 300 to do different simulations in dataset 1 and dataset
2 respectively, we can observe that the running time decreases with the increasing of
uniform discount when the spread threshold is the same, its because that when the
discount increases, it is easier to find a seed users and more time saving. This results
is verified in both dataset 1 and dataset 2. In non-uniform discount situation, we set
discount combination as D = {100 ∼ 300}, D = {100 ∼ 500}, D = {100 ∼ 700},
the results in Fig. 7 show that when we increase the number of discount in the discount
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Fig. 6 The runtime of different expected spread threshold Q with uniform discount method in two datasets

combination, the running time decreases, which is because the larger discount in the
combination is easier to accept by a high influential seed node, this can save time to find
a suitable seed node. This result is also shown in two different datasets. From the above
results in Figs. 3 and 4, we know that it costs less when the uniform discount D = 100
than that in other larger uniform discount and the non-uniform discount situation with
the online greedy method. From Figs. 6 and 7, we can see that the uniform discount
takes more running time when the dataset and spread threshold are same. Although
the uniform discount with online greedymethod saves more cost than the non-uniform
discount with online greedy method, the non-uniform discount method is more time
saving. Because when we choose a node with the maximal marginal gain, it may not
accept the lower discount, and we can increase the discount as it has several discount
choices in non-uniform discount method. The greater discount has a larger probability
to be accepted by a user. It is more time saving than the uniform discount method as we
have to find another seed again in the uniform situation once a node rejects a discount.
And we also find that the dataset 2 need more time to reach the same expected spread
threshold with the same method, which is easy to understand since dataset 2 has much
more nodes than dataset 1.

Results on sampling graph from dataset 1. At last, we take samples from the
dataset 1. The graphs are sampled to give various subsets of the original graph. For
building the sample graph, a random number is generated and if the edge probability
is less than the generated number, that edge will be removed from the original graph
to give a resulting sample sub-graph. The Algorithm 1 is applied to each of the sample
graphs to obtain the average results. We generate 100 sample graphs and iterate over
all these sample graphs to obtain the results. Each time due to some random parameters
in the algorithm, the solution is approximately the same thus the simulation converges.
We observe that the trend of the lines in Fig. 8 are also in accordance with previous
experimental results. When the uniform discount is 300, it needs to selects least seed
users but cost the most to achieve the spread threshold Q.
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Fig. 7 The runtime of different expected spread threshold Q with non-uniform method in two datasets

Fig. 8 Results on sampling graph from dataset 1

From the above experimental results, we can get that the online greedy method is
superior to the zero-feedback greedymethod, and the lower uniform discount situation
is more cost saving than the non-uniform discount situation. But the non-uniform
discount situation is more time saving than the uniform discount situation.

7 Conclusion

We propose an online full-feedback setting model to solve the discount allocation
problem in OSNs and divide the cascade into seed selection and information diffusion
stages. Our goal is to minimize the cost that marketer spends while ensuring that the
number of people who adopted the target product should not be less than a spread
threshold of Q. We present two algorithms under uniform and non-uniform discount
conditions and analyze the approximation ratios in these two situations. Finally, we use
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experiments on real-world OSNs to illustrate the empirical superiority of the proposed
strategy.

In future, we intend to study a problem which evaluates a suitable discount for each
seed but without using stochastic discount probing as used in this paper. We also want
to study another problem that the marketer has multiple products to advertise at the
same time and different products have their specific features which are suitable for
user group with different needs. How should we allocate the budget to each product
to achieve influence maximization or profit maximization.
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