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Abstract
For a given simple graph G = (V , E), a latency bound t and a threshold function
θ(v) = �ρd(v)�, where ρ ∈ (0, 1) and d(v) denotes the degree of the vertex v(∈ V ),
a subset S ⊆ V is called a strong target set if for each vertex v ∈ S, the number of
its neighborhood in S not including itself is at least θ(v), and all vertices in V can
be activated by S through a process with t rounds. Initially, all vertices in S become
activated. At the i th round of the process, each vertex is activated if the number of
active vertices in its neighbor after i − 1 rounds exceeds its threshold. The t-Latency
Bounded Strong Target Set Selection (t-LBSTSS) problem is to find such a strong
target set S with the minimum cardinality in G. In general graphs, the t-LBSTSS
problem is not only NP-hard, but also hard to be approximated. The aim of this paper
is to find an optimal t-latency bounded strong target set for some special family of
graphs. For a given simple graphG, a simple, tight but nontrivial inequality in terms of
the number of edges in G is proposed to obtain the lower bound of the sum of degrees
in a strong target set S to the t-LBSTSS problem.Moreover, a necessary and sufficient
condition is presented for equality to hold. Finally, we give the exact formulas for the
optimal solutions to the t-LBSTSS problem in two kinds of natural family of graphs,
while it seems difficult to tell without the inequality given in this paper.
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1 Introduction

Social networks, as a major scientific object, have attracted more attention from
researchers. One type of typical problems considered by many scholars is how to
spread influence through a social network, such as promoting novel ideas, marketing
new products, or spreading innovation. Domingos and Richardson (2001) initially
proposed the influential nodes selection problem in social networks. Kempe et al.
(2015, 2005) further formulated the influential nodes selection problem as an opti-
mization problem which is called influence maximization problem is how to select k
nodes in the network which generate the largest expected cascade based on a given
probabilistic diffusion model. They presented a natural greedy algorithm that achieves
a performance ratio of 1 − 1

e − ε for any ε > 0.
The target set selection (TSS) problem was considered by Chen (2009) that is how

to find a small set S of nodes to influence the entire network. He proved a strong
inapproachability result that there exists no algorithm for it with approximation factor
better than O(2log

1−ε |V |). Subsequently, Ben-Zwi et al. (2011) proved that the TSS
problem can be solved in time nO(ω), but not in no(

√
ω) unless all problems in SNP can

be solved in sub-exponential time, where ω is the treewidth of a graph. In addition, a
combinatorial lower andupper bounds on the size of theminimumperfect TSSproblem
was proposed by Ackerman et al. (2010). An improved bound was founded by Chang
and Lyuu (2010) for majority thresholds in directed graphs. The TSS problem and
it’s variants have also been studied in references Chopin et al. (2014); Chiang et al.
(2013, 2011, 2013); Flocchini et al. (2003); Khoshkhah et al. (2012); Karimi and
Holme (2013); Nichterlein et al. (2013); Zhang et al. (2012); Zaker (2012); Dinh et
al. (2012).

An important variant of TSS problem is the t-latency bounded target set selection
(t-LBTSS) problem which is how to find the smallest nodes to influence the entire
networks in t rounds. Peleg (2002) showed that this problem is aNP-hardness problem.
Zou et al. (2009) gave two heuristic algorithms in the case of t = 1. Dinh et al.
(2012) proved that any feasible solution to the t-LBTSS problem is a constant factor
approximation for power-law graphs. Cicalese et al. (2014) gave a polynomial time
exact algorithm for graphs with bounded clique-width and pointed out that Chen’s
inapproximability result still holds for the t-LBTSS problem. A tight lower bound
in terms of the sum degrees of any feasible solution to the t-LBTSS problem was
proposed by Liu et al. (2013).

In this paper, we consider a variant of the t-LBTSS problem named the t-Latency
BoundedStrongTarget Set Selection (t-LBSTSS) problemwhich is formally described
as follows.

Let a simple graph G = (V , E) be a social network, and a positive integer t be a
latency bound. For any vertex v, assume that the threshold θ(v) = �ρd(v)�, where
ρ ∈ (0, 1) is a rational number and d(v) is the degree of v. Initially, all vertices in V
are inactive. Then a vertex subset S(⊆ V ) is selected which satisfies that each vertex
v(∈ S) has at least �ρd(v)� neighbors in S and only the vertices in S is activated.
For convenience, the vertex subset S is usually denoted by A0. For any integer i(1 ≤
i ≤ t), assume that A1, A2, · · · , Ai−1 represent the subsets of vertices which have
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been activated at the rounds 1, 2, · · · , i − 1, respectively. A vertex v is activated at
the i th round if and only if v ∈ V \ ∪0≤ j<i A j and it has at least �ρd(v)� neighbors
in ∪0≤ j<i A j . The subset of all such vertices activated at the i th round is denoted by
Ai . The subset S(⊆ V ) is called a strong target set if all vertices in V are activated
after t rounds. The t-LBSTSS problem is to find a strong target set S with smallest
cardinality.

In what follows, the cardinality of an optimal solution to the t-LBSTSS problem is
denoted by min-LBSTSS(G, ρ, t). Moreover, the threshold θ(v) = �ρd(v)� is called
majority threshold if ρ = 1

2 . The main innovations and contributions of this work are
highlighted as follows:

(1) For any strong target set S to the t-LBSTSS problem, the sum of degrees of S
is lower bounded by some constant factor of the number of edges in any given
graph through a simple, tight and nontrivial inequality. In addition, a necessary
and sufficient condition for the equality to hold is given.

(2) Based on the inequality, we are able to give a method to construct families of
infinite number of graphs for which the optimal solution to the t-LBTSS problem
becomes apparent.

(3) The exact formulas for the optimal solutions to the t-LBSTSS problem in two
kinds of natural family of graphs are presented and proven using the inequality.

2 The inequality

For the t-LBSTSS problem, it is difficult to find its exact or even approximate opti-
mal solution in general graph. In this section, an important inequality is proposed to
measure it indirectly, namely, the sum of degrees of any strong target set S is lower
bounded by some constant factor of the number of edges in the given graph.

To simplify the description, it is necessary to give some notations in what follows.
For any given graphG = (V , E), denote by dA(v) the number of neighbors of a vertex
v in a vertex subset A, namely, dA(v) = |N (v) ∩ A|, where N (v) represents all the
neighbors of v in graph G. Let dA(B) be the sum of degrees of the vertex subset B
in the induced subgraph G[A]. It means that dA(B) = ∑

v∈B dA(v). Specially, the
notation d(B) indicates the sum of degrees of the subset B in the graphG, i.e., d(B) =∑

v∈B d(v). The subset of edges between two vertex subsets A and B is denoted by
E(A, B), namely, E(A, B) = {(u, v) ∈ E |u ∈ A and v ∈ B}. Let E(A) be the set of
edges in the induced subgraph G[A]. If there exists no confusion, the vertex subset A
represents the vertex set itself or its corresponding induced subgraphG[A]. According
to the above notations, it is not difficult to find that |E(A, B)| = dA(B) = dB(A).
Now, an important theorem is presented and proven as follows.

Theorem 1 For any graph G = (V , E), a latency bound t ∈ N
+ and active coefficient

ρ ∈ (0, 1), the sum of degrees of any strong target set S to the t-LBSTSS problem
satisfies the following inequality
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d(S) ≥ 2ρt

t∑

i=0

ρi (1 − ρ)t−i

· |E | =

⎧
⎪⎨

⎪⎩

2ρt (2ρ − 1)

ρt+1 − (1 − ρ)t+1 · |E |, ρ ∈ (0,
1

2
) ∪ (

1

2
, 1)

2

t + 1
· |E |, ρ = 1

2

where d(S) = ∑
v∈S d(v) and |E | is the number of edges in the graph G.

Proof Let Ai be the subset of vertices activated by S at the i th round, 1 ≤ i ≤ t .
For convenience, the strong target set S is also denoted by A0, i.e., A0 = S. For any
i = 0, 1, · · · , t , we define that Ui := ⋃i

j=0 A j and Ui := V \Ui in what follows.
According to the definition of the strong target set S to the t-LBSTSS problem, it

is not difficult to discover that

dS(v) ≥ �ρd(v)� ≥ ρd(v) (1)

for each vertex v ∈ S. Summing up Eq. (1) for all vertices v ∈ S, the inequality can
be obtained as follows:

2|E(S)| = |E(S, S)| ≥ ρd(S). (2)

In addition, according to the condition of the activation , it is not a tough work to
gain that

dUi−1(v) ≥ �ρd(v)� ≥ ρd(v) (3)

for any vertex v ∈ Ai . Similarly, summing up Eq. (3) for all vertices v ∈ Ai gives that

|E(Ui−1, Ai )| ≥ ρd(Ai ). (4)

for any i = 1, 2, · · · , t .
Next, for any i = 1, 2, · · · , t , it is easy to see by a counting argument that d(Ui−1)

satisfies the following equation:

d(Ui−1) = |E(Ui−1,Ui−1)| + |E(Ui−1, Ai )| + |E(Ui−1,Ui )| (5)

= 2|E(Ui−1)| + |E(Ui−1, Ai )| + |E(Ui−1,Ui )|

where

|E(Ui−1)| =
i−1∑

j=0

|E(A j )| +
i−1∑

j=1

|E(Uj−1, A j )|. (6)

It follows from Eqs. (4)–(6) that

d(Ui−1) ≥ 2
i−1∑

j=0

|E(A j )| + 2ρ
i−1∑

j=1

d(A j ) + ρd(Ai ) + |E(Ui−1,Ui )|,

123



Journal of Combinatorial Optimization (2021) 41:105–117 109

where
i−1∑

j=0

|E(A j )| ≥ |E(S)| (7)

and
|E(Ui−1,Ui )| ≥ 0. (8)

Hence,

d(Ui−1) ≥2|E(S)| + 2ρ
i−1∑

j=1

d(A j ) + ρd(Ai )

≥ ρd(S) + 2ρ(d(Ui−1) − d(U0)) + ρ(d(Ui ) − d(Ui−1))

= ρd(Ui ) + ρd(Ui−1) − ρd(S).

Namely,
ρd(S) ≥ ρd(Ui ) − (1 − ρ)d(Ui−1) (9)

for any i = 1, 2, · · · , t .
Multiplying by ρi−1(1 − ρ)t−i (> 0) on both sides of Eq. (9) and summing up all

inequalities for i = 1, 2, · · · , t , it is not difficult to discover that most of the terms on
the right side cancel out. Thus, the following inequality can be obtained:

(

(1 − ρ)t +
t∑

i=1

ρi (1 − ρ)t−i
)

d(S) ≥ ρt d(Ut ) = ρt d(V ) = 2ρt |E |.

Therefore, it yields that

d(S) ≥ 2ρt |E |
t∑

i=0

ρi (1 − ρ)t−i

.

Due to the following equality holds:

t∑

i=0

ρi (1 − ρ)t−i =

⎧
⎪⎨

⎪⎩

ρt+1 − (1 − ρ)t+1

2ρ − 1
, ρ ∈ (0, 1)\

{1

2

}

t + 1

2t
, ρ = 1

2

,

the sum of degrees of the strong target set S satisfies the following inequality:

d(S) ≥

⎧
⎪⎨

⎪⎩

2ρt (2ρ − 1)

ρt+1 − (1 − ρ)t+1 · |E |, ρ ∈ (0,
1

2
) ∪ (

1

2
, 1)

2

t + 1
· |E |, ρ = 1

2

.
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This completes the proof. ��
In fact, the inequality in Theorem 1 is tight. In the following, the conditions are

considered for which the equality in Theorem 1 holds.

Theorem 2 For any graph G = (V , E), a subset S of V is a strong target set to the
t-LBSTSS problem and the equality in Theorem 1 holds if and only if the following
conditions hold simultaneously:

(i) A0, A1, · · · , At is a vertex division of V . All edges of graph G are either between
A j and A j ( j ∈ {0, t}) or between Ai−1 and Ai (i = 1, 2, · · · , t). Namely,

E = ( ∪ j=0,t E(A j )
) ⋃( ∪t

i=1 E(Ai−1, Ai )
)
. (10)

(ii) dS(v) = ρd(v), ∀v ∈ S and dAi−1(v) = ρd(v), ∀v ∈ Ai , i = 1, 2, · · · , t .

Proof First, let’s verify the sufficient part of the theorem. According to condition (ii),
it is easy to see that S = A0 must be a feasible solution to the t-LBSTSS problem. The
next task is only to show that the equality in Theorem 1must hold under the conditions
(i) and (ii).

Summing up all the equations in condition (ii), one has

2|E(S)| = ρd(S) and |E(Ai−1, Ai )| = ρd(Ai ), ∀i = 1, 2, · · · , t .

Thus, by the condition (i), the following equations is established:

d(A0) = 2|E(A0)| + |E(A0, A1)| = ρ · d(A0) + ρ · d(A1),

and

d(Ai−1) = |E(Ai−2, Ai−1)| + |E(Ai−1, Ai )| = ρ · d(Ai−1) + ρ · d(Ai )

for i = 2, 3, · · · , t .
It follows that

(1 − ρ) · d(Ai−1) = ρ · d(Ai ), ∀ i = 1, 2, · · · , t .

That is to say, the following equations hold:

d(Ai ) = 1 − ρ

ρ
· d(Ai−1) = · · · = (

1 − ρ

ρ
)i · d(A0)

for i = 1, 2, · · · , t .
Note that 2|E | = d(Ut ) = ∑

0≤i≤t d(Ai ), i.e.,

2|E | =
t∑

i=0

(
1 − ρ

ρ
)i · d(A0)
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= ρt + (1 − ρ)ρt−1 + (1 − ρ)2ρt−2 + · · · + (1 − ρ)t

ρt
· d(A0).

Thus, the sufficiency part is true.
Next, we illustrate that the necessary part of the theorem is also true. Obviously,

A0, A1, · · · , At is a vertex division of V because S is a strong target set of G. Accord-
ing to the Proof of Theorem 1, the equality holds in the conclusion of Theorem 1 if
and only if all equalities hold in the Proof of Theorem 1. Therefore, the equalities also
hold in Eqs.(7) and (8) for i = 1, 2, · · · , t . Thus, it yields that

E(Ai ) = ∅, ∀i = 1, 2, · · · , t − 1,

and
E(Ai , A j ) = ∅, ∀0 ≤ i ≤ t, i + 2 ≤ j ≤ t .

That is to say, Eq. (10) holds in condition (i).
Similarly, the left sides are exact equal to the right sides in both Eqs. (2) and (4) (

also in Eqs. (1) and (3)). Namely,

dS(v) = ρd(v), ∀v ∈ S

and
dUi−1(v) = ρd(v), ∀v ∈ Ai , i = 1, 2, · · · , t,

which implies that the condition (ii) holds. This completes the proof. ��
In the next section, some applications are exhibited for which the optimal solutions

to the t-LBSTSS problem can be perfectly obtained in some natural family of graphs
according to Theorems 1 and 2.

3 Some applications

In this section, the main task is to present the optimal solutions to the t-LBSTSS
problem in two kinds of natural family of graph by the above theorems.

Based on the inequality in Theorem 1, in the following Theorem 3, we give an
explicit construction of infinite number of graphs for which the equality holds, and
hence the optimal solutions to the t-LBSTSSproblembecomeobvious on these graphs.

Theorem 3 Let ρ ∈ (0, 1) be a rational number and t be a positive integer. Assume
that d0, d1, · · · , dt are positive integers such that ρdi are integers for i = 0, 1, · · · , t
and d0 is the largest. If G = (V , E) is a graph with vertex division V = ∪t

i=0Vi and
satisfies the following properties:

• All edges in G are either between Vj and Vj ( j ∈ {0, t}) or between Vi−1 and Vi
(i = 1, 2, · · · , t). Namely,

E = E(V0) ∪ E(Vt ) ∪
t⋃

i=1

E(Vi−1, Vi ).
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• G is partitioned regular, i.e., all the vertices in Vi have the same degree:

d(v) = di ,∀v ∈ Vi , i = 0, 1, · · · , t .

• The degrees of vertices in Vi (i = 0, 1, · · · , t) satisfy that

dV0(v) = ρd0,∀v ∈ V0 and dVi−1(v) = ρdi ,∀v ∈ Vi , i = 1, 2, · · · , t .

Then V0 is an optimal solution to the t-LBSTSS problem for graph G.

Proof Obviously, if V0 is selected and only the vertices in V0 become activated, then
all the vertices in Vi can be activated at the i th round for i = 0, 1, · · · , t . Therefore,
V0 is a strong target set of graph G.

Owing to the following equation holds:

(1 − ρ)di−1|Vi−1| = |E(Vi−1, Vi )| = ρdi |Vi |

for i = 1, 2, · · · , t , it follows that

d(Vi ) = di |Vi | =
(1 − ρ

ρ

)i
d0|V0| = (1 − ρ)i

ρi
· d(V0), i = 0, 1, · · · , t .

In addition, we have

2|E | = d(V ) =
t∑

i=0

d(Vi ) =
t∑

i=0

(1 − ρ)i

ρi
· d(V0).

It yields that

min-LBSTSS(G, ρ, t) ≥ ρt

t∑

i=0

ρi (1 − ρ)t−i

· 2|E |
�(G)

= d(V0)

d0
= |V0|.

That is to say, V0 must be an optimal solution to the t-LBSTSS problem for
graph G. ��

In the following, we give the optimal solutions to the t-LBSTSS problem in two
kinds of natural family of graphs, which seems difficult to tell what the optimal solu-
tions are for these graphs without using the equality given in Theorem 1.

The toroidal mesh of size m × n denoted by Cm�Cn is defined as the Cartesian
product of two cyclesCm andCn . An exampleC10�C5 is shown inFig. 1. Furthermore,
p dimensional toroidalmeshCL1�CL2� · · · �CL p (L1, L2, · · · , L p ∈ N

+) is defined
as the Cartesian product of p cycles and can also be rewritten as �p

i=1CLi . It is
noteworthy that the treewidth of toroidal mesh is unbounded by literature Diestel
(2005); Kaminski et al. (2009).
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Fig. 1 Toroidal Mesh C10�C5

Theorem 4 (Toroidal Mesh) Let G = Cm�Cn be a toroidal mesh with (2t +
2)| gcd(m, n), where t, m, n are positive integers. Then

min-LBSTSS(G,
1

2
, t) = mn

t + 1
.

Proof Denote the vertices in two cycles Cm and Cn by u1, u2, · · · , um = u0 and
v1, v2, · · · , vn = v0, respectively. For convenience, let ui−1ui and v j−1v j be the
edges in Cm and Cn for i = 1, 2, · · · ,m; j = 1, 2, · · · , n, respectively. According to
the definition of Cartesian product, we have

V (G) =
{
(ui , v j )

∣
∣
∣1 ≤ i ≤ m, 1 ≤ j ≤ n

}
,

and

E(G) =
{
(ui1 , v j1)(ui2 , v j2)

∣
∣
∣ui1 = ui2 ∈ V (Cm) and v j1v j2 ∈ E(Cn)

or v j1 = v j2 ∈ V (Cn) and ui1ui2 ∈ E(Cm)
}
.

Obviously, G is a 4-regular graph. Therefore, a vertex subset S can be selected as
follows:

S =
{
(ui , v j )

∣
∣
∣(2t + 2)|(i + j) or (2t + 2)|(i + j + 1)

}

0≤i≤m,0≤ j≤n
.

Then, the following characters can be checked one by one:

• S satisfies the condition: dS(v) = ρd(v), ∀v ∈ S.
• The activated vertex subset at the lth round

Al =
{
(ui , v j )

∣
∣
∣(2t + 2)|(i + j − l) or (2t + 2)|(i + j + l + 1)

}
, l = 1, 2, · · · , t .
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• A0 = S, A1, · · · , At is a division of the vertex set V .

• The equality holds in Theorem 1. Namely, d(S) = 4mn

t + 1
.

The above characters show that the vertex subset S is an optimal solution to the t-
LBSTSS problem by Theorem 3. Therefore, it follows that

min-LBSTSS(G,
1

2
, t) = d(S)

4
= mn

t + 1
.

��
Actually, the conclusion is also true in the cycle and high dimensional toroidal

mesh.

Theorem 5 (p Dimensional Toroidal Mesh) Let p be a positive integers and G =
�p

i=1CLi be a p dimensional toroidal mesh with (2t + 2)
∣
∣Li (i = 1, 2, · · · , p), then

we have

min-LBSTSS(G,
1

2
, t) =

∏p
i=1 Li

t + 1
.

Proof Denote the vertices in cycle CLi by v1i , v
2
i , · · · , v

Li
i = v0i (i = 1, 2, · · · , p).

For convenience, assume that the edges in CLi are v
ji
i v

ji+1
i for ji = 0, 1, · · · , Li − 1.

According to the definition of Cartesian product, we have

V (G) =
{
(v

j1
1 , v

j2
2 , · · · , v

jp
p )

∣
∣
∣ jk = 1, 2, · · · , Lk, k = 1, 2, · · · , p

}
,

and

E(G) =
{
(x1, x2, · · · , xp)(y1, y2, · · · , yp)

∣
∣
∣∃r ∈ {1, 2, · · · , p},

s.t. xr yr ∈ E(Cr ),∀q ∈ {1, 2, · · · , p}\{r}, xq = yq ∈ V (Cq)
}
.

Clearly, p dimensional toroidal mesh G is a regular graph with all vertices degree
2p. Thus, a vertex subset S of V can be selected as follows:

S =
{
(v

j1
1 , v

j2
2 , · · · , v

jp
p )

∣
∣
∣(2t + 2)

∣
∣

p∑

i=1

ji or (2t + 2)
∣
∣

p∑

i=1

ji + 1
}

0≤ jk≤Lk , k=1,2,··· ,p

Set

Al =
{
(v

j1
1 , v

j2
2 , · · · , v

jp
p )

∣
∣
∣(2t + 2)

∣
∣(

p∑

i=1

ji − l) or (2t + 2)
∣
∣(

p∑

i=1

ji + l + 1)
}
,

then Al is the activated vertex subset by S at the lth round, where l = 0, 1, · · · , t .
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Fig. 2 Toriadal cross C6 × C4

Similarly, it can be proven that S is an optimal solution to the t-LBSTSS problem
with

|S| =
∏p

i=1 Li

t + 1
.

This completes the proof. ��
Besides toriadalmesh generated by theCartesian product of finite cycles, Theorem1

can help us to find the optimal solutions in lots of graphs. In the following, we show
that there does exist other natural family of graphs in which the optimal solutions to
the t-LBSTSS problem can be obtained using the equality given in Theorem 1.

Definition 1 (Tensor Product) The tensor product of two graphs G and H denoted by
G × H refers to the graph whose vertex set is the Cartesian product of V (G) and
V (H), and the edge set consists of (u1, v1)(u2, v2) which u1u2 and v1v2 are edges in
G and H , respectively. Namely,

• V (G × H) = V (G) × V (H);
• E(G × H) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1v2 ∈ E(H)}.
According to the definition, it is not difficult to discover that the tensor product of

two graphs satisfies the communication law and the association law. Thus, it is proper
to define tensor product of finite graphs as×p

i=1Gi = G1×G2×· · ·×Gp, where G1,
G2, · · · , Gp are graphs. The toriadal cross is exact the graph generated by the tensor
product of finite cycles. An example of the toriadal cross C6 × C4 is shown in Fig. 2.

The following theorems can provide a method to find the optimal solutions to the
t-LBSTSS problem in toriadal crosses.

Theorem 6 Let G = ×p
i=1CLi be a p dimensional toriadal cross with (2t+2)

∣
∣Li (i =

1, 2, · · · , p). Then

min-LBSTSS(G,
1

2
, t) =

∏p
i=1 Li

t + 1
.

Proof Denote the vertices in cycle CLi by v1i , v
2
i , · · · , v

Li
i = v0i (i = 1, 2, · · · , p).

For convenience, assume that the edges in CLi are v
ji
i v

ji+1
i ( ji = 0, 1, · · · , Li − 1).
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According to the definition of tensor product, the vertex set V (G) and the edge set
E(G) of G can be expressed, respectively as

V (G) =
{
(v

j1
1 , v

j2
2 , · · · , v

jp
p )

∣
∣
∣ jk = 1, 2, · · · , Lk, k = 1, 2, · · · , p

}
,

and

E(G) =
{
(x1, x2, · · · , xp)(y1, y2, · · · , yp)

∣
∣
∣xk yk ∈ E(Ck), k = 1, 2, · · · , p

}
.

Obviously, G is a regular graph with all vertices degree 2p. Thus, a vertex subset S of
V (G) is selected as follows:

S =
{
(v

j1
1 , v

j2
2 , · · · , v

jp
p )

∣
∣
∣(2t + 2)

∣
∣ jp or (2t + 2)

∣
∣ jp + 1

}

0≤ jk≤Lk , k=1,2,··· ,p.

Set

Al =
{
(v

j1
1 , v

j2
2 , · · · , v

jp
p )

∣
∣
∣(2t + 2)

∣
∣( jp − l) or (2t + 2)

∣
∣( jp + l + 1)

}
,

then Al is the activated vertex subset by S at the lth round, where l = 0, 1, · · · , t .
According to the symmetry of the tensor product, it can also be proven that S is an

optimal solution to the t-LBSTSS problem with

|S| =
∏p

i=1 Li

t + 1
.

This completes the proof. ��

4 Conclusion and future work

In this paper, a simple, tight but nontrivial inequality is proposed that the sum of
degrees of any strong target set to the t-LBSTSS problem is lower bounded by some
constant factor of the number of edges in the given graph. Based on the inequality, we
give a method to construct families of infinite number of graphs for which the optimal
solution to the t-LBTSS problem becomes apparent. The exact formulas are presented
for the optimal solutions to the t-LBSTSS problem in two kinds of natural family of
graphs.

In the future, the optimal solutions to the t-LBSTSS problem will be further inves-
tigated in more kinds of natural families of graphs.
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