
Journal of Combinatorial Optimization (2021) 41:12–27
https://doi.org/10.1007/s10878-020-00660-7

A randomized approximation algorithm for metric triangle
packing

Yong Chen1 · Zhi-Zhong Chen2 · Guohui Lin3 · Lusheng Wang4 · An Zhang1

Accepted: 7 October 2020 / Published online: 13 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Given an edge-weighted complete graph G on 3n vertices, the maximum-weight tri-
angle packing problem asks for a collection of n vertex-disjoint triangles in G such
that the total weight of edges in these n triangles is maximized. Although the problem
has been extensively studied in the literature, it is surprising that prior to this work,
no nontrivial approximation algorithm had been designed and analyzed for its metric
case, where the edge weights in the input graph satisfy the triangle inequality. In this
paper, we design the first nontrivial polynomial-time approximation algorithm for the
maximum-weight metric triangle packing problem. Our algorithm is randomized and
achieves an expected approximation ratio of 0.66768 − ε for any constant ε > 0.

Keywords Triangle packing · Metric · Approximation algorithm · Randomized
algorithm · Maximum cycle cover

An extended abstract appears in the Proceedings of COCOA 2019. LNCS 11949, pages 119–129.

B Zhi-Zhong Chen
zzchen@mail.dendai.ac.jp

B Guohui Lin
guohui@ualberta.ca

Yong Chen
chenyong@hdu.edu.cn ; anzhang@hdu.edu.cn

Lusheng Wang
cswangl@cityu.edu.hk

1 Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China

2 Division of Information System Design, Tokyo Denki University, Saitama, Japan

3 Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

4 Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-020-00660-7&domain=pdf
http://orcid.org/0000-0003-4283-3396

Journal of Combinatorial Optimization (2021) 41:12–27 13

1 Introduction

An instance of themaximum-weight triangle packing problem (MWTP for short) is an
edge-weighted complete graph G on 3n vertices, where n is a positive integer. Given
G, the objective of MWTP is to compute n vertex-disjoint triangles (a.k.a. cycles of
length 3) such that the total weight of edges in these n triangles is maximized.

The unweighted (i.e., edge uniformly weighted) variant (MTP for short) is to com-
pute the maximum number of vertex-disjoint triangles in the input graph, which is an
edge-unweighted but incomplete graph.

In their classic book, (Garey and Johnson 1979, GT11) show that MTP (in fact, a
special case called partition into triangles) is NP-hard. Kann (1991) and van Rooij
et al. (2013) show that MTP is APX-hard even restricted on graphs of maximum
degree 4. Chlebík and Chlebíková (2003) show that unless P = NP, no polynomial-
time approximation algorithm for MTP can achieve an approximation ratio of 0.9929.
Moreover, Guruswami et al. (1998) show that MTP remains NP-hard even restricted
on chordal, planar, line, or total graphs.

MTP can be easily cast as a special case of the unweighted 3-set packing problem
(U3SP for short). Recall that an instance of U3SP is a family F of sets each of size
at most 3 and the objective is to compute a maximum-sized family of disjoint sets
in F . On the positive approximation results, Hurkens and Schrijver (1989) (also see
Halldórsson 1995) present a nontrivial polynomial-time algorithm for U3SP which
achieves an approximation ratio of 2

3 − ε for any constant ε > 0. This ratio has been
improved to 3

4 − ε (Cygan 2013; Fürer and Yu 2014). Therefore, MTP can also be
approximated within 3

4 − ε. When restricted to graphs of maximum degree 4, Manic
and Wakabayashi (2008) present a polynomial-time 0.833-approximation algorithm
for MTP.

Analogously, MWTP can be cast as a special case of the weighted 3-set packing
problem (W3SP for short). Two different algorithms both based on local search have
been designed for W3SP (Arkin and Hassin 1998; Berman 2000) and they happen to
achieve the same approximation ratio of 1

2 − ε for any constant ε > 0. For MWTP
specifically, Hassin and Rubinstein (2006a, b) present a better randomized approxi-
mation algorithm with an expected approximation ratio of 43

83 − ε (≈ 0.518) for any
constant ε > 0. This ratio has been improved to roughly 0.523 by Chen et al. (2009,
2010) and van Zuylen (2013).

The current paper focuses on a common special case of MWTP, namely, the metric
MWTPproblem (MMWTP for short),where the edgeweights in the input graph satisfy
the triangle inequality. Note that both NP-hardness and APX-hardness of MMWTP
follow from a trivial reduction from the MTP problem (Garey and Johnson 1979;
Kann 1991; van Rooij et al. 2013), in which one assigns a weight of 2 to each edge
inside the instance graph or a weight of 1 otherwise. Also, one can easily (for example,
as in Sect. 2.1) design a polynomial-time approximation algorithm for MMWTP to
achieve an approximation ratio of 2

3 ; but surprisingly, prior to our work, no nontrivial
approximation algorithm had been designed and analyzed. In this paper, we design
the first nontrivial O(n3)-time approximation algorithm for MMWTP. Our algorithm
is randomized and achieves an expected ratio of 0.66768 − ε for any constant ε > 0.

123

14 Journal of Combinatorial Optimization (2021) 41:12–27

At thehigh level, given an instancegraphG and an assumedoptimal triangle packing
B, our algorithm first computes a triangle packing T1 based on two maximum-weight
matchings, which turns out a good (better than 2

3) approximation when there is a
non-trivial portion of unbalanced triangles (defined in Sect. 2.1) in B. Next, noting
that B is a cycle cover, our algorithm computes a maximum-weight cycle cover and
transforms it into another cycle cover C of almost the same weight but containing only
short cycles. Using C, our algorithm then constructs a partial triangle packing (defined
in Sect. 2.2) which has at least as many vertex-components as edge-components, and
augments it into a triangle packing T2 of weight greater than or equal to one subset of
edges in B with respect to C. Our algorithm lastly constructs another triangle packing
T3 based on a randommatching and a maximum-weight matching in C, and it is shown
that T1 and T3 together are able to pick up the weight of the rest of the edges in B
not picked up by T2. The computation of T1 and T2 is deterministic but that of T3 is
randomized. Our algorithm returns the best among the three triangle packings T1, T2
and T3, which has the desired quality by a performance ratio analysis using a simple
linear program.

The details of our algorithm and its performance analysis are presented in the next
section. We conclude the paper in the last Sect. 3, with some remarks.

2 The randomized approximation algorithm

Hereafter, let G be a given instance of the MMWTP problem. We fix an optimal
triangle packing B ofG for the following argument. Recall thatG is an edge-weighted
complete graph on 3n vertices and the edge weights satisfy the triangle inequality. Let
w(·) denote the edge weight function. We extend it to w(S) to denote the total weight
of edges in S, where S can be either an edge subset or a subgraph.

The algorithm starts by computing a maximum-weight cycle cover C ofG in O(n3)
time (Hartvigsen 1984). Obviously,w(C) ≥ w(B), because B is also a cycle cover. Let
ε be any constant such that 0 < ε < 1. A cycle C in C is short if its length (measured
as the number of edges therein) is at most � 1

ε
�; otherwise, it is long. It is easy to

transform each long cycle C in C into two or more short cycles whose total weight is
at least (1− ε) ·w(C). So, we hereafter assume that we have modified the long cycles
in C in this way. Then, C is a collection of short cycles and w(C) ≥ (1 − ε) · w(B).

We will compute below three triangle packings T1, T2, T3 in G. The computation
of T1 and T2 will be deterministic but that of T3 will be randomized. Our goal is to
prove that there is a constant ρ > 0.001, such that max{w(T1), w(T2), E[w(T3)]} ≥
(23 + ρ) · w(B), where E[X] denotes the expected value of a random variable X .

2.1 Computing T1

We first compute a maximum-weight matching M1 of size n (i.e., n edges) in G in
O(n3) time (Gabow 1976). We then construct an auxiliary complete bipartite graph
H1 as follows. One part of V (H1) is V \ V (M1), which consists of the vertices of
G that are not endpoints of M1; the vertices of the other part of V (H1), still denoted

123

Journal of Combinatorial Optimization (2021) 41:12–27 15

as M1, one-to-one correspond to the edges in M1. For each edge {x, e = {u, v}}
in the bipartite graph H1, where x ∈ V \ V (M1) and e ∈ M1, its weight is set to
w(u, x) + w(v, x). Next, we compute a maximum-weight matching M ′

1 in H1 in
another O(n3) time and transform it back into a triangle packing T1 of G with its
weight w(T1) = w(M1) + w(M ′

1).
To comparew(T1) againstw(B), we fix a constant δwith 0 ≤ δ < 1 and classify the

triangles in B into two types as follows. A triangle t in B is balanced if the minimum
weight of an edge in t is at least 1 − δ times the maximum weight of an edge in t ;
otherwise, t is unbalanced.

Lemma 1 Let Bb̄ be the set of unbalanced triangles in B, and γ = w(Bb̄)
w(B)

. Then,

w(T1) ≥
(
2
3 + 2γ δ

9−3δ

)
· w(B).

Proof For each t in B, letat (respectively,bt) be themaximum(respectively,minimum)
weight of an edge in t . Further let a = ∑

t∈B at and b = ∑
t∈B bt . If t ∈ Bb̄, then

bt < (1 − δ)at and in turn (3 − δ)at > w(t). Thus,

∑
t∈Bb̄

at ≥ 1

3 − δ
w(Bb̄) = γ

3 − δ
w(B).

When t is balanced, we still have bt ≤ at ; hence,

w(B) ≤ 2a + b ≤ 3a − δ
∑
t∈Bb̄

at ≤ 3a − δγ

3 − δ
w(B)

and in turn a ≥
(
1
3 + δγ

9−3δ

)
w(B). On the other hand, the triangle inequality implies

w(T1) ≥ 2a, and consequently,

w(T1) ≥
(
2

3
+ 2γ δ

9 − 3δ

)
· w(B).

This proves the lemma. 	

Weremark that byLemma1, the above algorithm for computing the triangle packing

T1 is an O(n3)-time 2
3 -approximation for the MMWTP problem.

2.2 Computing T2

We start with several definitions.
Apartial-triangle packing in a graph is a subgraph P of the graph such that each con-

nected component of P is a vertex, an edge, or a triangle. A connected componentC of
P is a vertex-component (respectively, an edge-component, or a triangle-component)
of P if C is a vertex (respectively, an edge, or a triangle). The augmented weight of P ,
denoted by ŵ(P), is

∑
t w(t) + 2

∑
e w(e), where t (respectively, e) ranges over all

123

16 Journal of Combinatorial Optimization (2021) 41:12–27

triangle-components (respectively, edge-components) of P . Intuitively speaking, if P
has at least as many vertex-components as edge-components, then we can augment P
into a triangle packing P ′, so that w(P ′) ≥ ŵ(P), as follows:

1. Fix an arbitrary injective function f (·) from the edge-components of P to the
vertex-components of P .

2. For each edge-component e of P , connect the endpoints of e to f (e) by adding
two new edges. (Comment: At the end of this step, P can have only vertex- or
triangle-components.)

3. Arbitrarily partition the set of vertex-components of P into disjoint subsets of size
3, and further connect the three vertex-components in each subset into a triangle
by adding the three edges. This constructs P ′.
Recall that B is the optimal triangle packing we fixed for discussion, and C is a

computed cycle cover consisting of short cycles only. We classify the triangles t in B
into three types as follows.

• t is completely internal if all its vertices fall on the same cycle in C.
• t is partially internal if exactly two of its vertices fall on the same cycle in C.
• t is external if no two of its vertices fall on the same cycle in C.
An edge e of B is external if the endpoints of e fall on different cycles inC; otherwise,

e is internal. In particular, an internal edge e of B is completely (respectively, partially)
internal if e appears in a completely (respectively, partially) internal triangle in B. A
vertex v of G is external if it is incident to no internal edges of B. See Fig. 1 for an
illustration. Let Bē be the partial-triangle packing in G obtained from B by deleting
all external edges.

Fig. 1 An illustration of the three types of triangles, the three types of edges, and two types of vertices.
The cycles of C are in ovals and the edges of B are straight lines. The triangle t1, t2, and t3 are completely
internal, partially internal, and external, respectively; the edges e1 (solid), e2 (dashed), and e3 (dotted) are
completely internal, partially internal, and external, respectively; the circled vertices such as v3 are external

123

Journal of Combinatorial Optimization (2021) 41:12–27 17

Now, we are ready to explain how to construct T2 so that w(T2) ≥ ŵ(Bē). Let C1,
…,C� be the cycles in C, and V1,…, V� be their vertex sets. For each i ∈ {1, . . . , �}, let
ni = |Vi |, pi be the number of partially internal edges e in B such that both endpoints
of e appear inCi , qi be the number of external vertices inCi , and Ei be the set of edges
{u, v} in G with {u, v} ⊆ Vi (i.e., the edge set of the subgraph G[Vi] induced on Vi).
Obviously, ni −2pi −qi is the number of vertices on the completely internal triangles
in G[Vi], and is hence a multiple of 3. For each i ∈ {1, 2, . . . , �}, let ñi = ∑i

h=1 nh ,
p̃i = ∑i

h=1 ph , and q̃i = ∑i
h=1 qh .

Although we do not know pi and qi , we easily see that 0 ≤ qi ≤ ni and 0 ≤
pi ≤ � ni−qi

2
. So, for every j ∈ {0, 1, . . . , ni } and every k ∈ {0, 1, . . . , � ni− j
2
}, we

compute the maximum-weight (under ŵ(·)) partial-triangle packing Pi (j, k) in G[Vi]
such that Pi (j, k) has exactly j vertex-components and exactly k edge-components
(and exactly 1

3 (ni − 2k − j) triangles). Since ni = |Vi | ≤ � 1
ε
�, the computation of

Pi (j, k) can be done by enumeration in O(1) time.
Similarly, although we do not know p̃i and q̃i , we easily see that 0 ≤ q̃i ≤ ñi and

0 ≤ p̃i ≤ � ñi−q̃i
2
. For every j ∈ {0, 1, . . . , ñi } and every k ∈ {0, 1, . . . , � ñi− j

2
}, we
want to compute a maximum-weight (under ŵ(·)) partial-triangle packing P̃i (j, k) in
G[⋃i

h=1 Vh] such that P̃i (j, k) has exactly j vertex-components and exactly k edge-
components. This can be done by dynamic programming in O(n3) time as follows:

1. In the boundary case, we clearly have P̃1(j, k) = P1(j, k) for every j ∈
{0, 1, . . . , ñ1} and every k ∈ {0, 1, . . . , � ñ1− j

2
}.
2. To develop the recurrence, suppose that 1 ≤ i < � and we have computed P̃i (j, k)

for every j ∈ {0, 1, . . . , ñi } and every k ∈ {0, 1, . . . , � ñi− j
2
}. For every j ∈

{0, 1, . . . , ñi+1} and every k ∈ {0, 1, . . ., � ñi+1− j
2
}, we can compute P̃i+1(j, k)

by finding a pair (j ′, k′) such that j ′ ∈ {0, 1, . . . , ni+1}, k′ ∈ {0, 1, . . ., � ni+1− j ′
2
},

and ŵ(Pi+1(j ′, k′)) + ŵ(P̃i (j − j ′, k − k′)) is maximized; and let P̃i+1(j, k) =
Pi+1(j ′, k′) ∪ P̃i (j − j ′, k − k′).
Note that ñ� = 3n. Finally, we have P̃�(j, k) for every j ∈ {0, 1, . . . , 3n} and every

k ∈ {0, 1, . . ., � 3n− j
2
}. We now find a pair (j ′, k′) such that j ′ ∈ {0, 1, . . . , 3n},

k′ ∈ {0, 1, . . ., � 3n− j ′
2
}, k′ ≤ j ′, and ŵ(P̃�(j ′, k′)) is maximized. It follows that

ŵ(P̃�(j ′, k′)) ≥ ŵ(Bē). Since P̃�(j ′, k′) is a partial-triangle packing containing at
least as many vertex-components as edge-components, we can transform P̃�(j ′, k′)
into a triangle packing T2 of G with w(T2) ≥ ŵ(P̃�(j ′, k′)) the same as before.

In summary, we have shown the following lemma:

Lemma 2 A triangle packing T2 of G with w(T2) ≥ ŵ(Bē) can be constructed out of
C in O(n3) time.

2.3 Computing a randommatching in C

We next compute a random matching M in C as follows, in O(n) time.

1. Initialize two sets L = ∅ and M = ∅.
2. For each even cycle Ci in C, perform the following three steps:

123

18 Journal of Combinatorial Optimization (2021) 41:12–27

(a) Partition E(Ci) into two matchings Mi,1 and Mi,2.
(b) Select a ji ∈ {1, 2} uniformly at random.
(c) Add the edges in Mi, ji to L .

3. For each odd cycle Ci in C, perform the following five steps:

(a) Select an edge ei ∈ E(Ci) uniformly at random.
(b) Partition E(Ci) \ {ei } into two matchings Mi,1 and Mi,2.
(c) Select a ji ∈ {1, 2} uniformly at random.
(d) Select an edge e′

i ∈ Mi, ji uniformly at random and add e′
i to M .

(e) Add the edges in Mi, ji \ {e′
i } to L .

4. Select two thirds of edges from L uniformly at random and add them to M .

In the sequel, unless otherwise explicitly stated, L and M mean the sets L and M
obtained at the end of Steps 3 and 4 , respectively.

Lemma 3 Let co be the number of odd cycles in C. Then, |L| = 3
2 · (n − co).

Proof Each even cycle Ci contributes 1
2 |Vi | edges to L , and each odd cycle Ci con-

tributes 1
2 (|Vi | − 1) − 1 = 1

2 (|Vi | − 3) edges to L , where Vi is the vertex set of Ci .
Hence |L| = 1

2 (3n − 3co) = 3
2 · (n − co). 	

Lemma 4 L ∪ M is a matching and |M | = n.

Proof One sees that for each cycleC in C, the edges ofC selected into L∪M in Step 2
or 3 form a matching, and thus L ∪ M is a matching of G.

At the end of Step 3, each odd cycle Ci contributes one edge to M and that is it;
that is, |M | = co. So, by Lemma 3, at the end |M | = co + (n − co) = n. 	

Lemma 5 For every vertex v of G, Pr[v /∈ V (M)] = 1

3 .

Proof First consider the case where v appears in an even cycle in C. In this case,
v ∈ V (L) at the end of Step 3. So, Pr[v /∈ V (M)] = 1

3 because the edge incident at v
is added to M with probability 2

3 in Step 4.
Next consider the case where v appears in an odd cycle Ci in C. There are two

subcases, depending on whether or not v is an endpoint of the edge ei selected in
Step 3a. If v is incident to ei , then Pr[v /∈ V (Mi, ji)] = 1

2 and Pr[v ∈ V (Mi, ji) ∧ v /∈
V (e′

i)] = 1
2 ·

(
1 − 2

ni−1

)
, where ni = |Vi |. Hence, the conditional probability Pr[v /∈

V (M) | v ∈ V (ei)] = Pr[v /∈ V (Mi, ji) | v ∈ V (ei)]+Pr[v ∈ V (Mi, ji)∧v /∈ V (e′
i) |

v ∈ V (ei)] · Pr[v /∈ V (M) | v ∈ V (Mi, ji) ∧ v /∈ V (e′
i)] = 1

2 + 1
2 ·

(
1 − 2

ni−1

)
· 1
3 =

2ni−3
3(ni−1) .

On the other hand, if v is not an endpoint of ei , then Pr[v ∈ V (Mi, ji)] = 1 and

Pr[v ∈ V (Mi, ji) ∧ v /∈ V (e′
i)] = 1 ·

(
1 − 2

ni−1

)
. Thus, the conditional probability

Pr[v /∈ V (M) | v /∈ V (ei)] = Pr[v ∈ V (Mi, ji) ∧ v /∈ V (e′
i) | v /∈ V (ei)] · Pr[v /∈

V (M) | v ∈ V (Mi, ji) ∧ v /∈ V (e′
i)] =

(
1 − 2

ni−1

)
· 1
3 = ni−3

3(ni−1) .

It follows from Pr[v ∈ V (ei)] = 2
ni

that Pr[v /∈ V (M)] = 2
ni

· 2ni−3
3(ni−1) +

(
1 − 2

ni

)
·

ni−3
3(ni−1) = 1

3 . 	

123

Journal of Combinatorial Optimization (2021) 41:12–27 19

Lemma 6 For every edge e of C, Pr[e ∈ M] = 1
3 .

Proof First consider the case where e appears in an even cycle in C. In this case,
Pr[e ∈ M] = 1

2 · 2
3 = 1

3 because the edge is added to L with probability 1
2 and then is

added to M with probability 2
3 .

Next consider the case where e appears in an odd cycle Ci in C. There are two
subcases, depending on whether or not e is the edge ei selected in Step 3a. If e = ei ,
then Pr[e /∈ M] = 1. Hence, the conditional probability Pr[e /∈ M | e = ei] = 1.
On the other hand, if e �= ei , then Pr[e /∈ Mi, ji] = 1

2 and Pr[e �= e′
i | e ∈ Mi, ji] =

1 − 2
ni−1 = ni−3

ni−1 . Thus, the conditional probability Pr[e /∈ M | e �= ei] = Pr[e /∈
Mi, ji | e �= ei] + Pr[e �= e′

i | e ∈ Mi, ji] · Pr[e ∈ Mi, ji | e �= ei] · Pr[e /∈ M | e ∈
Mi, ji ∧ e �= e′

i] = 1
2 + ni−3

ni−1 · 1
2 · 1

3 = 2ni−3
3(ni−1) .

It follows from Pr[e = ei] = 1
ni

that Pr[e /∈ M] = 1
ni

· 1+
(
1 − 1

ni

)
· 2ni−3
3(ni−1) = 2

3 ,

and therefore, Pr[e ∈ M] = 1
3 . 	

Lemma 7 For every vertex v of G and every edge e of C such that v and e appear in
different cycles in C, Pr[e ∈ M ∧ v /∈ V (M)] ≥ 1

9 .

Proof Suppose that v and e appear in Ci ′ and Ci ′′ , respectively. The two events e ∈ M
and v /∈ V (M) are not independent because it is possible that both e and at least one
edge incident to v in C are added to L in Step 2 or 3.

We distinguish four cases according to the parities of ni ′ and ni ′′ , as follows.
Case 1 Both ni ′and ni ′′are even. In this case, Pr[v ∈ V (Mi ′, ji ′)] = 1 and

Pr[e ∈ Mi ′′, ji ′′] = 1
2 . So, Pr[v ∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′] = 1

2 . Moreover, by

Lemma 3, Pr[e ∈ M ∧ v /∈ V (M) | v ∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′] =
(

|L|−2
2
3 |L|−1)

(
|L|
2
3 |L|)

=
(n−co)· 12 (n−co)

3
2 (n−co)·

(
3
2 (n−co)−1

) ≥ 2
9 . Thus, Pr[e ∈ M ∧ v /∈ V (M)] ≥ 2

9 · 1
2 = 1

9 .

Case 2 ni ′ is even but ni ′′ is odd. In this case, Pr[v ∈ V (Mi ′, ji ′)] = 1 and Pr[e ∈
Mi ′′, ji ′′] = 1

2 · ni ′′−1
ni ′′

= ni ′′−1
2ni ′′

. Moreover, Pr[e = e′
i ′′ | e ∈ Mi ′′, ji ′′] = 2

ni ′′−1 ,

Pr[e = e′
i ′′] = 1

ni ′′
, and Pr[e ∈ Mi ′′, ji ′′ \ {e′

i ′′ }] = ni ′′−1
2ni ′′

·
(
1 − 2

ni ′′−1

)
= ni ′′−3

2ni ′′
.

Furthermore, Pr[v /∈ V (M) | e = e′
i ′′] = 1

3 by Lemma 5, and Pr[v /∈ V (M)∧e ∈ M |

e ∈ Mi ′′, ji ′′ \ {e′
i ′′ }] =

(
|L|−2
2
3 |L|−1)

(
|L|
2
3 |L|)

= (n−co)· 12 (n−co)
3
2 (n−co)·

(
3
2 (n−co)−1

) ≥ 2
9 . Thus, Pr[e ∈ M ∧ v /∈

V (M)] ≥ 1
3 · 1

ni ′′
+ 2

9 · ni ′′−3
2ni ′′

= 1
9 .

Case 3 ni ′ is odd but ni ′′ is even. In this case, Pr[v ∈ V (Mi ′, ji ′)] = 2
ni ′

· 12+
(
1 − 2

ni ′

)
·

1 = ni ′−1
ni ′

and Pr[e ∈ Mi ′′, ji ′′] = 1
2 . So, Pr[v ∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′] = ni ′−1

2ni ′
and

Pr[v /∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′] = 1
2ni ′

. Moreover, by Lemma 3, Pr[e ∈ M ∧ v /∈

V (M) | v ∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′] =
(

|L|−2
2
3 |L|−1)

(
|L|
2
3 |L|)

= (n−co)· 12 (n−co)
3
2 (n−co)·

(
3
2 (n−co)−1

) ≥ 2
9 and

123

20 Journal of Combinatorial Optimization (2021) 41:12–27

Pr[e ∈ M ∧ v /∈ V (M) | v /∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′] = 2
3 . Thus, Pr[e ∈ M ∧ v /∈

V (M)] ≥ ni ′−1
2ni ′

· 2
9 + 1

2ni ′
· 2
3 ≥ 1

9 .

Case 4 Both ni ′and ni ′′are odd. In this case, Pr[v ∈ V (Mi ′, ji ′)] = ni ′−1
ni ′

and

Pr[e ∈ Mi ′′, ji ′′] = 1
2 · ni ′′−1

ni ′′
= ni ′′−1

2ni ′′
. Moreover, Pr[e = e′

i ′′ | e ∈ Mi ′′, ji ′′] = 2
ni ′′−1 ,

Pr[e = e′
i ′′] = 1

ni ′′
, and Pr[e ∈ Mi ′′, ji ′′ \ {e′

i ′′ }] = ni ′′−1
2ni ′′

·
(
1 − 2

ni ′′−1

)
= ni ′′−3

2ni ′′
. So,

Pr[v /∈ V (Mi ′, ji ′)∧e = e′
i ′] = 1

ni ′ni ′′
, Pr[v /∈ V (Mi ′, ji ′)∧e ∈ Mi ′′, ji ′′ \{e′

i ′′ }] = ni ′′−3
2ni ′ni ′′

,

Pr[v ∈ V (Mi ′, ji ′) ∧ e = e′
i ′] = ni ′−1

ni ′ni ′′
, Pr[v ∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′ \ {e′

i ′′ }] =
(ni ′−1)(ni ′′−3)

2ni ′ni ′′
. Obviously, Pr[e ∈ M ∧ v /∈ V (M) | v ∈ V (Mi ′, ji ′) ∧ e = e′

i ′′] = 1
3 ,

Pr[e ∈ M ∧ v /∈ V (M) | v /∈ V (Mi ′, ji ′) ∧ e = e′
i ′′] = 1, and Pr[e ∈ M ∧ v /∈ V (M) |

v /∈ V (Mi ′, ji ′)∧ e ∈ Mi ′′, ji ′′ \ {e′
i ′′ }] = 2

3 . Furthermore, by Lemma 3, Pr[e ∈ M ∧v /∈

V (M) | v ∈ V (Mi ′, ji ′) ∧ e ∈ Mi ′′, ji ′′ \ {e′
i ′′ }] =

(
|L|−2
2
3 |L|−1)

(
|L|
2
3 |L|)

= (n−co)· 12 (n−co)
3
2 (n−co)·

(
3
2 (n−co)−1

) ≥ 2
9 .

Thus, Pr[e ∈ M∧v /∈ V (M)] ≥ 1
3 · ni ′−1

ni ′ni ′′
+1· 1

ni ′ni ′′
+ 2

3 · ni ′′−3
2ni ′ni ′′

+ 2
9 · (ni ′−1)(ni ′′−3)

2ni ′ni ′′
≥ 1

9 .	

2.4 Computing T3

Fix a constant τ with 0 < τ < 1. A good triplet is a triplet (x, y; z), where {x, y} is
an edge of some cycle Ci in C and z is a vertex of some other cycle C j in C with i �= j
such that w(x, y) ≤ (1 − τ) · (w(x, z) + w(y, z)).

To compute T3, we initialize T3 = ∅ and proceed as follows. One sees that the total
running time for computing T3 is in O(n3), dominated by computing a maximum-
weight matching.

1. Construct an auxiliary edge-weighted and edge-labeled multi-digraph H3 as fol-
lows. The vertex set of H3 is V (G). For each good triplet (x, y; z), H3 contains the
two arcs (z, x) and (z, y), each of these two arcs has a weight ofw(x, z)+w(y, z)
in H3, the label of (z, x) is y, and the label of (z, y) is x .

2. Compute a maximum-weight matching M3 in H3 (by ignoring the direction of
each arc).

3. Compute a random matching M in C as in Sect. 2.3.
4. Let N3 be the set of all arcs (z, x) ∈ M3 such that z /∈ V (M) and {x, y} ∈ M ,

where y is the label of (z, x).
(Comment: Since both M and N3 are matchings, no two arcs in N3 can share a
label. Moreover, the endpoints of each edge e ∈ M can be the heads of at most
two arcs in N3 because e has only two endpoints and N3 is a matching.)

5. Initialize N ′
3 = N3. For every two arcs (z, x) and (z′, y) in N ′

3 such that {x, y} ∈ M ,
select one of (z, x) and (z′, y) uniformly at random and delete it from N ′

3.
6. For each (z, x) ∈ N ′

3, let T3 include the triangle t with V (t) = {x, y, z}, where y
is the label of (z, x).

123

Journal of Combinatorial Optimization (2021) 41:12–27 21

(Comment: By Step 5 and the comment on Step 4, the triangles included in T3 in
this step are vertex-disjoint.)

7. Let M ′ be the set of edges (x, y) in M such that neither x nor y is the head or the
label of an arc in N ′

3. Further let Z be the set of vertices z in G such that z /∈ V (M)

and z is not the tail of an edge in N ′
3.

(Comment: Since |M | = n by Lemma 4, the comment on Step 6 implies |Z | =
|M ′|.)

8. Select an arbitrary one-to-one correspondence between the edges in M ′ and the
vertices in Z . For each z ∈ Z and its corresponding edge (x, y) in M ′, let T3
include the triangle t with V (t) = {x, y, z}.
We classify the external balanced triangles in B into two types as follows. An

external balanced triangle t in B is of Type 1 if for every vertex v of t , the weight of
each edge incident to v in C is at least 1

2 (1 − 1
2δ)(1 − τ)w(t); otherwise, t is of Type

2. We use Be
1 and Be

2 to denote these two types of external balanced triangles in B,
respectively.

Similarly, we classify the partially internal balanced triangles in B into two types
as follows. A partially internal balanced triangle t in B is of Type 1 if the weight of
each edge incident to the external vertex of t in C is at least 1

2 (1 − 1
2δ)(1 − τ)w(t);

otherwise, t is of Type 2. We use B p
1 and B p

2 to denote these two types of partially
internal balanced triangles in B, respectively.

Lemma 8 w(T1) ≥ 2
3w(B) + 2−3δ−6τ+3δτ

54 w(Be
1) + 2−3δ−6τ+3δτ

162 w(B p
1).

Proof For the analysis, we use the triangles in Be
1∪B p

1 to construct a randommatching
N in C as follows.

1. Initialize N ′ = ∅. For each triangle t in B, select one edge et of t uniformly at
random and add it to N ′.

2. For each triangle t in Be
1, choose one neighbor v′

t of vt in C uniformly at random,
where vt is the vertex of t not incident to et .

3. For each triangle t in B p
1 such that et is internal, choose one neighbor v′

t of vt in
C uniformly at random, where vt is the external vertex of t .

4. Initialize X = ∅. For each t ∈ Be
1 ∪ B p

1 , if v′
t /∈ V (N ′), then add the (ordered)

pair (vt , v
′
t) to X .

(Comment: Suppose that t1 and t2 are different triangles in Be
1∪B p

1 with {v′
t1, v

′
t2}∩

V (N ′) = ∅. Then, it holds that (vt1, v′
t1) �= (vt2 , v

′
t2) because vt1 �= vt2 . However,

it is possible that (vt1 , v
′
t1) = (v′

t2 , vt2) or (v′
t1 , vt1) = (vt2 , v

′
t2).)

5. Let D be the digraph with vertex set V (G) \V (N ′) and arc set X . Partition X into
three matchings X1, X2, X3 in D.
(Comment: We will later show that this step can be done.)

6. Select a set Y among X1, X2, X3 uniformly at random.
7. Initialize N = {et | t ∈ B \ (Be

1 ∪ B p
1)}. For each t ∈ Be

1, if (vt , v
′
t) /∈ Y , then add

et to N ; otherwise add {vt , v′
t } to N . Similarly, for each t ∈ B p

1 , if et is external
or (vt , v

′
t) /∈ Y , then add et to N ; otherwise add {vt , v′

t } to N .

In this paragraph, we show that Step 5 can be done. By the comment on Step 4, we
see that for each vertex v in D, there is at most one arc leaving v in D. Moreover, since

123

22 Journal of Combinatorial Optimization (2021) 41:12–27

(a) (b)

Fig. 2 Triangles t, t ′′ ∈ Be
1 and t ′ ∈ B p

1 for the proof of Lemma 8, and the subgraph D induced by
{vt , vt ′ , vt ′′ } when v′

t = vt ′ , v′
t ′ = vt and v′

t ′′ = vt ′

v is incident to only two edges in C, there are at most two arcs entering v in D (see
Fig. 2b for an illustration). Thus, if we ignore the direction of each edge in D, then
we obtain an undirected multigraph GD in which each vertex is incident to at most
three edges and there are at most two parallel edges between each pair of vertices. Let
C be a connected component of GD , and C ′ be the simple graph obtained from C by
deleting exactly one edge from each pair of parallel edges. If C has no parallel edges,
then C is a subgraph of a cycle in C and in turn its edges can be trivially partitioned
into three disjoint matchings; otherwise, we can claim that C ′ is not a cycle. By the
claim, C ′ is a collection of vertex-disjoint paths; this together with the fact that each
vertex is incident to at most three edges inC implies that the edges ofC can be trivially
partitioned into three disjoint matchings as well. To see the claim, we assume, on the
contrary, that C has at least one pair of parallel edges and C ′ is a cycle. Recall that
each edge of C ′ has a direction in D. If we restore the directions of the edges in C ′,
then we must obtain a directed cycle C ′′ because C ′ is a cycle and there is at most one
arc leaving each vertex of C ′ in D. Now, since there is already one arc leaving each
vertex in C ′′, we have no way to restore the direction of each arc in C \ C ′ without
violating the condition that there is at most one arc leaving each vertex of C in D.

We next analyze E[w(N)]. For each triangle t ∈ Be
1 (see Fig. 2a for illustrations

of the triangles), let Et be the set of edges e in C such that e is incident to a vertex of
t . Similarly, for each triangle t ∈ B p

1 , let Et be the set of edges e in C such that e is
incident to the external vertex of t . Consider a t ∈ Be

1 ∪ B p
1 and an e = {x, y} ∈ Et

with x ∈ V (t). Since vt takes on any of the vertices of t with equal probability,
Pr[x = vt] = 1

3 . Similarly, since v′
t takes on any of the two neighbors of vt in C with

equal probability, Pr[y = v′
t | x = vt] = 1

2 . Hence, Pr[{vt , v′
t } = e] = 1

6 . Moreover,
Pr[v′

t /∈ V (N ′)] = 1
3 because v′

t appears in a triangle t
′ in B and vt ′ takes on any of the

vertices in t ′ with equal probability. Thus, Pr[{vt , v′
t } = e∧v′

t /∈ V (N ′)] = 1
6 · 13 = 1

18 .
Furthermore, Pr[e ∈ N | {vt , v′

t } = e∧ v′
t /∈ V (N ′)] = Pr[e ∈ Y | {vt , v′

t } = e∧ v′
t /∈

V (N ′)] = 1
3 . So, Pr[e ∈ N] = 1

3 · 1
18 = 1

54 . Now, if t ∈ Be
1, then |Et | = 6 and in turn

123

Journal of Combinatorial Optimization (2021) 41:12–27 23

Pr[et /∈ N] = 6 · 1
54 = 1

9 . On the other hand, if t ∈ B p
1 , then |Et | = 2 and in turn

Pr[et /∈ N] = 2 · 1
54 = 1

27 .
By the discussions in the last paragraph, E[w(N)] ≥ 1

3

∑
t∈B\(Be

1∪B p
1) w(t) + 8

9 ·
1
3

∑
t∈Be

1
w(t) + 1

9 · 1
2 (1− 1

2δ)(1− τ)
∑

t∈Be
1
w(t) + 26

27 · 1
3

∑
t∈B p

1
w(t) + 1

27 · 1
2 (1−

1
2δ)(1 − τ)

∑
t∈B p

1
w(t) = 1

3w(B) + 2−3δ−6τ+3δτ
108 w(Be

1) + 2−3δ−6τ+3δτ
324 w(B p

1). So,

w(T1) ≥ 2 · E[w(N)] ≥ 2
3w(B) + 2−3δ−6τ+3δτ

54 w(Be
1) + 2−3δ−6τ+3δτ

162 w(B p
1). 	

Lemma 9 Let t be a balanced triangle in B, and e1 and e2 be any two edges in t . Then
we have w(e1)+0.5w(e2)

w(t) ≥ 3(1−δ)
6−4δ .

Proof Let e3 be the edge in t other than e1 and e2. Since w(t) is independent of the
choice of e1 and e2, one can easily see that in order to prove the lemma, it suffices
to consider the case where e1 is the lightest edge and e2 is the second lightest edge
in T . So, we may assume w(e1) ≤ w(e2) ≤ w(e3). Since B is balanced, w(e1) ≥
(1 − δ)w(e3). An easy inspection shows that the ratio w(e1)+0.5w(e2)

w(t) is minimized

when w(e1) = w(e2) = (1− δ)w(e3). Thus, the ratio is at least
1.5(1−δ)
1+2(1−δ)

= 3(1−δ)
6−4δ . 	

Lemma 10 E[w(T3)] ≥ 2(1−ε)
3 w(B) + (1−δ)τ

36−24δ · w(Be
2) + (1−δ)τ

36−24δ · w(B p
2).

Proof For a set F of edges in H3, let w̃(F) denote the total weight of edges of F in
H3. Further let W2 be the total weight of triangles in Be

2 ∪ B p
2 .

Consider an arbitrary t ∈ Be
2 ∪ B p

2 (see Fig. 3 for illustrations of the triangles).
Since t is of Type 2, t has a vertex vt such that some neighbor v′

t of vt in C satis-
fies w(vt , v

′
t) < 1

2 (1 − 1
2δ)(1 − τ)w(t). Let zt and z′t be the vertices in V (t) \ {vt }.

By the triangle inequality, w(zt , v′
t) ≥ 1

2w(zt , z′t) or w(z′t , v′
t) ≥ 1

2w(zt , z′t). With-
out loss of generality, we may assume that w(zt , v′

t) ≥ 1
2w(zt , z′t). We claim

that (vt , v
′
t ; zt) is a good triplet. To see this, first recall that (1 − δ)w(z′t , vt) ≤

w(zt , vt) because t is balanced. Moreover, by the triangle inequality, 1
2δw(z′t , vt) ≤

Fig. 3 Triangles t ∈ Be
2 and t ′ ∈ B p

2 for the proof of Lemma 10

123

24 Journal of Combinatorial Optimization (2021) 41:12–27

1
2δw(zt , vt)+ 1

2δw(zt , z′t). So, (1− 1
2δ)w(z′t , vt) ≤ (1+ 1

2δ)w(zt , vt)+ 1
2δw(zt , z′t).

Thus, (1 − 1
2δ)

(
w(zt , vt) + w(zt , z′t) + w(z′t , vt)

) ≤ 2w(zt , vt) + w(zt , z′t) ≤
2w(zt , vt) + 2w(zt , v′

t). Hence,
1
2 (1 − 1

2δ)w(t) ≤ w(zt , vt) + w(zt , v′
t). Therefore,

w(vt , v
′
t) < 1

2 (1− 1
2δ)(1− τ)w(t) ≤ (1− τ)

(
w(zt , vt) + w(zt , v′

t)
)
. Consequently,

the claim holds.
By the claim in the last paragraph, the set X of all {zt , vt } with t ∈ Be

2 ∪ B p
2

is a matching in H3. Moreover, w̃(M3) ≥ w̃(X) = ∑
t∈Be

2∪B p
2

w̃(zt , vt) ≥
3(1−δ)
6−4δ

∑
t∈Be

2∪B p
2

w(t) = 3(1−δ)
6−4δ W2, where the second inequality holds by Lemma 9.

Now, by Lemma 7, E[w̃(N3)] ≥ 1
9 w̃(M3) ≥ 1−δ

18−12δW2 and in turn E[w̃(N ′
3)] ≥

1−δ
36−24δW2. Obviously,w(T3) ≥ 2w(M ′)+w(M\M ′)+w̃(N ′

3) ≥ 2w(M)+τ ·w̃(N ′
3),

where the first inequality holds by the triangle inequality and the second inequality
holds because each edge in N ′

3 corresponds to a good triplet. Therefore, by Lemma 6,
E[w(T3)] ≥ 2

3 · w(C) + (1−δ)τ
36−24δW2 ≥ 2(1−ε)

3 · w(B) + (1−δ)τ
36−24δW2. 	

2.5 Analyzing the approximation ratio

Let Bi be the set of completely internal balanced triangles in B, and let α1 = w(Bi)
w(B)

.
Recall that Be

1 (Be
2, respectively) is the set of Type 1 (Type 2, respectively) external

balanced triangles in B, and B p
1 (B p

2 , respectively) is the set of Type 1 (Type 2,
respectively) partially internal balanced triangles in B. For convenience, let α2 =
w(Be

1)

w(B)
, α3 = w(Be

2)

w(B)
, α4 = w(B p

1)

w(B)
, and α5 = w(B p

2)

w(B)
. Recall from Lemma 1 that Bb̄ is the

set of unbalanced triangles in B and γ = w(Bb̄)
w(B)

. Therefore, γ +α1+α2+α3+α4+α5 =
1.

Suppose that we have fixed δ and τ to certain constants, respectively. Then, to use
Lemmas 1, 2, 8 and 10 to obtain the best lower bound on the approximation ratio
achieved by our algorithm, it suffices to solve the following linear program (denoted
by LPδ,τ):

Minimize b;
Subject to b ≥ 2

3
+ 2δ

9 − 3δ
γ,

b ≥ α1 + 2

3
α4 + 2

3
α5,

b ≥ 2

3
+ 2 − 3δ − 6τ + 3δτ

54
α2 + 2 − 3δ − 6τ + 3δτ

162
α4,

b ≥ 2

3
+ (1 − δ)τ

36 − 24δ
α3 + (1 − δ)τ

36 − 24δ
α5,

γ + α1 + α2 + α3 + α4 + α5 = 1,

γ, α1, α2, α3, α4, α5 ≥ 0.

For each pair (δ, τ) with 0 ≤ δ ≤ 1 and 0 ≤ τ ≤ 1, let bδ,τ be the optimal value of
the objective function of LPδ,τ . Since we can freely choose δ and τ , we can find the

123

Journal of Combinatorial Optimization (2021) 41:12–27 25

pair (δ, τ) by a (100 × 100)-grid search such that bδ,τ is maximized among the pairs
(δ, τ) with δ ∈ {0.01 · k | k = 0, 1, . . . , 100} and τ ∈ {0.01 · � | � = 0, 1, . . . , 100}.
It turns out the best bδ,τ is at least 0.66768. So, we can conclude that the expected
approximation ratio achieved by our randomized approximation algorithm is at least
0.66768 − ε.

The discussion in the last paragraph may not look rigorous. So, we next rigorously
prove that the expected approximation ratio achieved by our randomized approxima-
tion algorithm is at least 0.66768 − ε. We choose δ = 0.1 and τ = 0.2. Then, by
Lemmas 1, 2, 8 and 10 , we have the following inequalities:

w(T1)

w(B)
≥ 2

3
+ 0.2

8.7
γ (1)

w(T2)

w(B)
≥ α1 + 2

3
α4 + 2

3
α5 (2)

w(T1)

w(B)
≥ 2

3
+ 0.56

54
α2 + 0.56

162
α4 (3)

E[w(T3)]
w(B)

≥ 2(1 − ε)

3
+ 0.18

33.6
α3 + 0.18

33.6
α5. (4)

Suppose that we multiply both sides of Inequalities (1), (2), (3) and (4) by 0.1327,
0.00305, 0.2943 and 0.5698, respectively. Then, one can easily verify that the sum-
mation of the left-hand sides of the resulting inequalities is

0.1327 · w(T1)

w(B)
+ 0.00305 · w(T2)

w(B)
+ 0.2943 · w(T1)

w(B)
+ 0.5698 · E[w(T3)]

w(B)
,

while the summation of the right-hand sides is at least

1.9936

3
− 1.1396

3
ε + 0.00305(γ + α1 + α2 + α3 + α4 + α5).

Now, using γ + α1 + α2 + α3 + α4 + α5 = 1, we finally have

(0.1327 + 0.00305 + 0.2943 + 0.5698) · max

{
w(T1)

w(B)
,
w(T2)

w(B)
,
E[w(T3)]

w(B)

}

≥ 2.00275

3
− 1.1396

3
ε,

which can be simplified as

max {w(T1), w(T2), E[w(T3)]} ≥ (0.66768 − 0.38ε) · w(B).

In summary, we have proven the following theorem, stating that the MMWTP
problem admits a better approximation algorithm than the trivial 2

3 -approximation if
ε is sufficiently small. Note that each of the three triangle packings T1, T2 and T3 is
computed in O(n3) time.

123

26 Journal of Combinatorial Optimization (2021) 41:12–27

Theorem 1 For any constant ε > 0, the expected approximation ratio achieved by our
O(n3)-time randomized approximation algorithm is at least 0.66768 − ε.

3 Conclusions

We studied the maximum-weight triangle packing problem on an edge-weighted com-
plete graph G, in which the edge weights satisfy the triangle inequality. Although
the non-metric variant has been extensively studied in the literature, it is surpris-
ing that prior to our work, no nontrivial approximation algorithm had been designed
and analyzed for this common metric case. We designed the first nontrivial cubic-time
approximation algorithm forMMWTP, which is randomized and achieves an expected
approximation ratio of 0.66768 − ε for any positive constant ε > 0. This improves
the almost trivial deterministic 2

3 -approximation. It seems that completely new ideas
are needed to improve our approximation ratio.

Acknowledgements YC and AZ are supported by the NSFC Grants 11971139, 11771114 and 11571252;
and supported by the CSCGrants 201508330054 and 201908330090, respectively. ZZC is supported by the
Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports and Culture of Japan,
under Grant No. 18K11183. GL is supported by the NSERC Canada. LW is supported by a Grant for Hong
Kong Special Administrative Region, China (CityU 11210119).

References

Arkin EM, Hassin R (1998) On local search for weighted packing problems. Math Oper Res 23:640–648
Berman P (2000) A d/2 approximation for maximum weight independent set in d-claw free graphs. In:

Proceedings of the 7th scandinavian workshop on algebraic theory (SWAT’00), LNCS 1851, p 214–
219,

Chen Z-Z, Tanahashi R, Wang L (2009) An improved randomized approximation algorithm for maximum
triangle packing. Discrete Appl Math 157:1640–1646

Chen Z-Z, Tanahashi R, Wang L (2010) Erratum to an improved randomized approximation algorithm for
maximum triangle packing. Discrete Appl Math 158:1045–1047

Chlebík M, Chlebíková J (2003) Approximation hardness for small occurrence instances of NP-hard prob-
lems. Proc ISAAC 2003:152–164

CyganM (2013) Improved approximation for 3-dimensional matching via bounded pathwidth local search.
Proc FOCS 2013:509–518

Fürer M, Yu H (2014) Approximating the k-set packing problem by local improvements. Proc ISCO
2014:408–420

Gabow HN (1976) An efficient implementation of Edmonds’ algorithm for maximum matching on graphs.
J ACM 23:221–234

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.
H. Freeman and Company, San Francisco

Guruswami V, Rangan CP, Chang MS, Chang GJ, Wong CK (1998) The vertex disjoint triangles problem.
Proc WG 1998:26–37

Halldórsson MM (1995) Approximating discrete collections via local improvement. In: ACM-SIAM Pro-
ceedings of the 6th annual symposium on discrete algorithms (SODA’95), pp 160–169

Hartvigsen D (1984) Extensions of matching theory. PhD thesis, Department of Mathematics, Carnegie-
Mellon University

Hassin R, Rubinstein S (2006a) An approximation algorithm for maximum triangle packing. Discrete Appl
Math 154:971–979

Hassin R, Rubinstein S (2006b) Erratum to an approximation algorithm for maximum triangle packing.
Discrete Appl Math 154:2620

123

Journal of Combinatorial Optimization (2021) 41:12–27 27

Hurkens CAJ, Schrijver A (1989) On the size of systems of sets every t of which have an SDR, with an
application to the worst-case ratio of heuristics for packing problems. SIAM J Discrete Math 2:68–72

Kann V (1991) Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf Process Lett
37:27–35

Manic G, Wakabayashi Y (2008) Packing triangles in low degree graphs and indifference graphs. Discrete
Math 308:1455–1471

van Rooij JMM, van Kooten NiekerkME, Bodlaender HL (2013) Partition into triangles on bounded degree
graphs. Theory Comput Syst 52:687–718

van Zuylen A (2013) Deterministic approximation algorithms for the maximum traveling salesman and
maximum triangle packing problems. Discrete Appl Math 161:2142–2157

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A randomized approximation algorithm for metric triangle packing
	Abstract
	1 Introduction
	2 The randomized approximation algorithm
	2.1 Computing T1
	2.2 Computing T2
	2.3 Computing a random matching in mathcalC
	2.4 Computing T3
	2.5 Analyzing the approximation ratio

	3 Conclusions
	Acknowledgements
	References

