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Abstract
A two-stage flexible flow shop scheduling is a manufacturing infrastructure designed
to process a set of jobs, in which a single machine is available at the first stage and m
parallel machines are available at the second stage. At the second stage, each task can
be processed by multiple parallel machines. The objective is to minimize the maxi-
mum job completion time, i.e., the makespan. Sun et al. (J Softw 25:298–313, 2014)
presented an O(n log n)-time 3-approximation algorithm for F2(1, Pm) | si zei |Cmax
under some special conditions. Zhang et al. (J Comb Optim 39:1–14, 2020) presented
a 2.5-approximation algorithm for F2(1, P2) | linei |Cmax and a 2.67-approximation
algorithm for F2(1, P3) | linei | Cmax, which both run in linear time. In this paper,
we achieved following improved results: for F2(1, P2) | linei | Cmax, we present
an O(n log n)-time 2.25-approximation algorithm, for F2(1, P3) | linei | Cmax, we
present an O(n log n)-time 7/3-approximation algorithm, for F2(1, Pm) | si zei |Cmax
with the assumption min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }, we present a linear time opti-
mal algorithm.

Keywords Scheduling · Two-stage flow shop · Approximation algorithm · Optimal
algorithm

1 Introduction

We study the following two-stage flexible flow shop scheduling problem, denoted as
F2(1, Pm) | si zei | Cmax or F2(1, Pm) | linei | Cmax in the three field notation
(Graham et al. 1979). Given a job set J = {J1, J2, . . . , Jn} and a two-stage flow
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shop where there are a single machine at the first stage and m parallel machines at the
second stage. Each job has to be processed non-preemptively on the only one machine
of the first stage. After it has been finished in the first stage, it has to be processed
non-preemptively on one or multiple parallel machines of the second stage. Each job
Ji can be charactered as (p1i , p2i , si zei/linei ), where p1i means the processing time
at the first stage, p2i means the processing time at the second stage and si zei or linei
means the number of required parallel machines at the second stage, particularly, linei
represents the contiguous machine assignments at the second stage. The objective is
to minimize the maximum job completion time, i.e., the makespan. The scheduling
constraint is as usual, that is at every time point, a job can be processed by at most one
machine and a machine can process at most one job.

Flexible flow shop scheduling problems have many real-life applications: many
discrete manufacturing industries have a flow shop architecture where there is a multi-
stage production process with the property that all tasks have to be proceed through the
stages in the same order. Flexible flow shop scheduling problems have been studied
since the 1970’s (Arthanari and Ramamurthy 1971; Salvador 1973) and attract more
and more attention from all over the world. For the two-stage flexible flow shop under
the condition that each task requires only one machine, and multiple parallel machines
are available at every stage, Lee and Vairaktarakis (1994) developed a 2− 1

max{m1,m2}
approximation algorithm, where m1 and m2 are the numbers of machines at the first
and the second stage. Gupta et al. (2002) studied a generalization of the permutation
flow shop problem that combines the scheduling function with planning stage. They
presented iterative algorithms based on local search and constructive algorithms based
on job insertion techniques. Alisantoso et al. (2003) studied the scheduling of a flex-
ible flow shop for PCB (printed circuit board) manufacturing. They first presented
an overview of the flexible flow shop problem and the basic notions of an immune
algorithm. And then, they presented an immune algorithm in detail and implemented
it to compare with the well know evolutionary algorithms-genetic algorithms, which
showed that immune algorithm outperformed genetic algorithms. Lin and Liao (2003)
considered a two-stage hybrid flow shop with characteristics of sequence dependent
setup time at first stage, dedicated machines at the second stage, and two due dates.
They presented a heuristic algorithm to find the near-optimal schedule for the prob-
lem. He et al. (2008) considered the two-stage flexible flow shop scheduling problem
with m identical parallel machines in stage 1 and only one batch machine in stage 2.
They showed the problem is NP-hard in general and proposed corresponding approx-
imation algorithm. Moseley et al. (2011) presented a 12-approximation algorithm
for two-stage parallel machine scheduling problem and used it to solve the popular
Map-Reduce frame of big data circumstance. Almeder and Hartl (2013) considered a
scheduling problem of a real-world production process in the metal-working industry
which can be described as an offline stochastic flexible flow-shop problemwith limited
buffers. They first studied a simplified model and proposed a variable neighbourhood
search based solution approach. And then, they applied the solution approach to a real-
world case using a detailed discrete-event simulation to evaluate the production plans.
Choi and Lee (2013) proposed approximation algorithms for the two-stage flexible
flow shop problem with the condition that the processing times of each job are iden-
tical at both stages and with a single machine at one stage and m identical machines
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at the other stage. For m = 2, they presented a 5/4-approximation algorithm, and

for m ≥ 3, they presented a
√
1+m2+1+m

2m -approximation algorithm. Sun et al. (2014)
considered the two-stage scheduling problem with multiple parallel machines at the
executing stage, which can be used to solve the transporting and executing stage of
massively parallel load tasks on GPU. Especially, they proposed an O(n log n)-time
3-approximation algorithm for F2(1, Pm) | si zei | Cmax with the assumptions that∑

Ji∈J p1i >
∑

Ji∈J {si zei × p2i } andmin1≤i≤n {p1i } ≥ max1≤i≤n {p2i }. Recently,
Zhang et al. (2020) studied the two-stage flexible flow shop scheduling problem with
m identical parallel machines at one stage and a singlemachine at the other stage. They
first presented a (2+ ε)-approximation algorithm for F2(1, Pm) | si zei | Cmax and a
(2.5+ε)-approximation algorithm for F2(1, Pm) | linei |Cmax. Then, they presented
a 2.5-approximation algorithm for F2(1, P2) | linei |Cmax and a 2.67-approximation
algorithm for F2(1, P3) | linei | Cmax, which both run in linear time.

In this paper, we consider the two-stage flow shop where there are a sin-
gle machine at the first stage and m parallel machines at the second stage. For
F2(1, P2) | linei | Cmax, we present an O(n log n)-time 2.25-approximation algo-
rithm, for F2(1, P3) | linei |Cmax, we present an O(n log n)-time 7/3-approximation
algorithm, which improved the approximation results presented in Zhang et al.
(2020). For F2(1, Pm) | si zei | Cmax with the assumption that min1≤i≤n {p1i } ≥
max1≤i≤n {p2i }, we present a linear time optimal algorithm, which improved the result
presented in Sun et al. (2014).

The rest of the paper is organized as follows. In Sect. 2, we present an O(n log n)-
time 2.25-approximation algorithm for F2(1, P2) | linei |Cmax.We present in Sect. 3
an O(n log n)-time 7/3-approximation algorithm for F2(1, P3) | linei |Cmax. Section
4 contains a linear time optimal algorithm for F2(1, Pm) | si zei | Cmax with the
assumption that min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }. We conclude the paper with some
remarks in Sect. 5.

2 A 2.25-approximation algorithm for F2(1,P2) | linei | Cmax

In this section, we consider F2(1, P2) | linei | Cmax: the two-stage flexible flow shop
scheduling problem with a machine at the first stage and two machines at the second
stage, the objective is to minimize the makespan. It is easy to see that the bounds of
linei case are also hold for the si zei case. Hence, the algorithm we present in this
section are applicable for F2(1, P2) | si zei | Cmax.

Now,weare ready topresent an approximation algorithm for F2(1, P2) | linei |Cmax.
In the first stage, we arrange all the jobs on the machine one by one in random order

non-preemptively.
In the second stage, we first group the jobs into two subsets: J1 denote the set of

jobs that requiring only one machine at the second stage and J2 denote the set of jobs
that requiring two machines at the second stage. Secondly, we sort the jobs in J1 in
non-increasing order according to p2i . At last, we first arrange the jobs in J2 on the
two parallel machines one by one non-preemptively, and then arrange the jobs in J1
according to list scheduling rule where the order of the jobs is priority.
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A high-level description of the approximation algorithm is showed in Algorithm 1.

Algorithm 1: Approximation algorithm for F2 (1, P2) |linei |Cmax

Input: The job list J = {J1, J2, . . . , Jn} and a two-stage flexible flow shop
scheduling problem, the first stage has only one machine and the second stage has
two machines.

Output: A schedule L .
Step 1. Let J1 = φ,J2 = φ.

Step 2. For 1 ≤ i ≤ n,

if linei = 1 ,then add Ji to J1;
if linei = 2 ,then add Ji to J2;

Step 3. The jobs of J are processed on the machine of the first stage one by one in
random order non-preemptively.

Step 4. The jobs of J2 are processed on the two parallel machines of the second
stage one by one in random order non-preemptively.

Step 5. The jobs of J1 are processed on the two parallel machines of the second
stage in non-increasing order according to p2i by using the list scheduling rule.

Theorem 1 The Algorithm 1 is an O(n log n)-time 2.25-approximation algorithm for
F2 (1, P2) |linei |Cmax.

Proof Without loss of generality, we assume that the job set J1 = {J1, J2, . . . , Jk}
satisfies p21 ≥ p22 ≥ · · · ≥ p2k .

Let us consider the following two cases:

Case 1: p21 ≥
k∑

i=2
p2i .

From the feature of F2 (1, P2) |linei |Cmax,we have

C∗
max ≥

∑

Ji∈J
p1i , (1)

C∗
max ≥

∑

Ji∈J2

p2i + p21, (2)

where C∗
max denote the optimal value for F2 (1, P2) |linei |Cmax.

According to the Algorithm 1 we have (an illustration is showed in Fig. 1)

123



32 Journal of Combinatorial Optimization (2021) 41:28–42

J

J2 J1

J2 ... Jk

s1 s2 s3

Fig. 1 An illustration of the schedule produced by Algorithm 1 under case 1, where s1 is the processing
time of jobs in J on the first stage, s2 is the processing time of jobs in J2 on the second stage, s3 is the
processing time of job J1 on the second stage

Cmax (L) =
∑

Ji∈J
p1i +

∑

Ji∈J2

p2i + p21. (3)

Put (1), (2) and (3) together, we have

Cmax (L) ≤ 2C∗
max.

Case 2: p21 <
k∑

i=2
p2i .

In this case, (1) is also hold.
From the feature of F2 (1, P2) |linei |Cmax,we have

C∗
max ≥

∑

Ji∈J2

p2i + 1

2

∑

Ji∈J1

p2i . (4)

There are at least three jobs J1, J2, J3 in the job set J1 since p21 <
k∑

i=2
p2i . Hence

we have
C∗
max ≥ p22 + p23. (5)

According to the Algorithm 1 we have (an illustration is showed in Fig. 2)

Cmax (L) ≤
∑

Ji∈J
p1i +

∑

Ji∈J2

p2i + 1

2

∑

Ji∈J1

p2i + 1

2
p23. (6)

Put (1), (4), (5) and (6) together, we have

Cmax (L) ≤ 2C∗
max + 1

2 × 1
2 (p22 + p23)

≤ 2.25C∗
max.

Combining cases 1 and 2, we have showed the approximation ratio of Algorithm 1
is 2.25.

At last, the time complexity of the Algorithm 1 is O(n log n) which is obviously
from the algorithm. ��
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J

J2

J1

J2 J3

...

...

Jk−1

Jk

s1 s2 s3 s4

Fig. 2 An illustration of the schedule produced by Algorithm 1 under case 2, where s1 is the processing
time of jobs in J on the first stage, s2 is the processing time of jobs in J2 on the second stage, s3 is the
average processing time of jobs in J1 on the second stage, s4 is Cmax (L) − s1 − s2 − s3, and it’s easy to
know that s4 ≤ 1

2 p2k ≤ 1
2 p23

3 A 7/3-approximation algorithm for F2(1,P3) | linei | Cmax

In this section, we consider F2(1, P3) | linei | Cmax: the two-stage flexible flow shop
scheduling problem with a machine at the first stage and three machines (m1, m2 and
m3) at the second stage, the objective is to minimize the makespan. It is easy to see
that the bounds of linei case are also hold for the si zei case. Hence, the algorithm we
present in this section are applicable for F2(1, P3) | si zei | Cmax.

Now,weare ready topresent an approximation algorithm for F2(1, P3) | linei |Cmax.
In the first stage, we arrange all the jobs on the machine one by one in random order

non-preemptively.
In the second stage, we first group the jobs into three subsets: J1 denote the set of

jobs that requiring only one machine at the second stage, J2 denote the set of jobs
that requiring two machines at the second stage, and J3 denote the set of jobs that
requiring three machines at the second stage. Secondly, we sort the jobs in J1 in non-
increasing order according to p2i . At last, we first arrange the jobs in J3 on the three
parallel machines one by one non-preemptively, and then arrange the jobs in J2 on
machine m1 and machine m2, arrange the jobs in J1 on machine m3. Here we discuss
the following two cases:
Case 1:

∑
Ji∈J2

p2i ≥ ∑
Ji∈J1

p2i , i.e., machine m3 is idle after processing the jobs
in J1. In this case, we continue processing the jobs in J2 on machinem1 and machine
m2.
Case 2:

∑
Ji∈J2

p2i <
∑

Ji∈J1
p2i . In this case, after processing all the jobs in J2 on

machine m1 and machine m2, we process the remaining jobs of J1 on machine m1,
machine m2 and machine m3 according to list scheduling rule.

A high-level description of the approximation algorithm is showed in Algorithm 2.

Algorithm 2: Approximation algorithm for F2 (1, P3) |linei |Cmax

Input: The job set J = {J1, J2, . . . , Jn} and a two-stage flexible flow shop
scheduling problem,the first stage has only one machine and the second stage has
three machines.

Output: A schedule L .
Step 1. Let J1 = φ,J2 = φ,J3 = φ.

Step 2. For 1 ≤ i ≤ n,
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if linei = 1 ,then add Ji to J1,
if linei = 2 ,then add Ji to J2,
if linei = 3 ,then add Ji to J3.

Step 3. The jobs of J are processed on the machine of the first stage one by one in
random order non-preemptively.

Step 4. The jobs of J3 are processed on the three parallel machines of second stage
one by one non-preemptively.

Step 5. The jobs of J2 are processed on machinem1 and machinem2 of the second
stage one by one non-preemptively. The jobs of J1 are processed on machine m3 of
second stage in non-increasing order according to p2i . Here we discuss the following
two cases:

Case 1:
∑

Ji∈J2
p2i ≥ ∑

Ji∈J1
p2i , i.e., machine m3 is idle after processing the

jobs in J1. In this case, we continue processing the jobs in J2 on machine m1 and
machine m2.

Case 2:
∑

Ji∈J2
p2i <

∑
Ji∈J1

p2i . In this case, after processing all the jobs in J2
on machine m1 and machine m2, we process the remaining jobs of J1 on machine
m1, machine m2 and machine m3 in non-increasing order according to p2i by using
list scheduling rule.

Theorem 2 The Algorithm 2 is an O(n log n)-time 7/3-approximation algorithm
F2 (1, P3) |linei |Cmax.

Proof Without loss of generality, we assume that the job set J1 = {J1, J2, . . . , Jk}
satisfies p21 ≥ p22 ≥ · · · ≥ p2k .

Let us consider the following three cases.
Case 1:

∑

Ji∈J2

p2i ≥ ∑

Ji∈J1

p2i .

From the feature of F2 (1, P3) |linei |Cmax, we have

C∗
max ≥

∑

Ji∈J
p1i , (7)

C∗
max ≥

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i . (8)

According to the Algorithm 2, we have (an illustration is showed in Fig. 3)

Cmax (L) =
∑

Ji∈J
p1i +

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i . (9)

Put (7), (8) and (9) together, we have

Cmax (L) ≤ 2C∗
max.

Case 2:
∑

Ji∈J2

p2i <
∑

Ji∈J1

p2i and p21 ≤ ∑

Ji∈J2

p2i .
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Fig. 3 An illustration of the
schedule produced by
Algorithm 2 under case 1, where
s1 is the processing time of jobs
in J on the first stage, s2 is the
processing time of jobs in J3 on
the second stage, s3 is the
processing time of jobs in J2 on
the second stage

J

J3
J2

J1

s1 s2 s3

J

J3
J2

J1 J2

J3

J4

...

...

... Jk

s1 s2 s3 s4 s5

Fig. 4 An illustration of the schedule produced by Algorithm 2 under case 2, where s1 is the processing
time of jobs in J on the first stage, s2 is the processing time of jobs in J3 on the second stage, s3 is the
processing time of jobs inJ2 on the second stage, s4 is the average processing time of the processing time of
jobs inJ1 subtract the processing time of jobs inJ2 on the second stage, s5 isCmax (L)−s1−s2−s3−s4,

and it’s easy to know that s5 ≤ 2
3 p2k ≤ 2

3 p22

In this case, (7) is also hold.
From the feature of F2 (1, P3) |linei |Cmax, we have

C∗
max ≥

∑

Ji∈J3

p2i + 2

3

∑

Ji∈J2

p2i + 1

3

∑

Ji∈J1

p2i . (10)

There are at least two jobs in J1 since
∑

Ji∈J2

p2i <
∑

Ji∈J1

p2i and p21 ≤ ∑

Ji∈J2

p2i .

Hence, we have

C∗
max ≥ p21 + p22. (11)

According to the Algorithm 2, we have (an illustration is showed in Fig. 4)

Cmax (L) ≤
∑

Ji∈J
p1i +

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i

+1

3

⎛

⎝
∑

Ji∈J1

p2i −
∑

Ji∈J2

p2i

⎞

⎠ + 2

3
p22. (12)

Put (7), (10), (11) and (12) together, we have
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J

J3
J2

J1

J2

J3

s1 s2 s3

J3

J2

J1

J2

J3

C2

C1

Fig. 5 An illustration of the schedule produced by Algorithm 2 under case 3 with k < 3, where s1 is the
processing time of jobs inJ on the first stage, s2 is the processing time of jobs inJ3 on the second stage, s3
isCmax (L)−s1−s2,C1 is the case that p21 ≥ ∑

Ji∈J2

p2i + p22,C2 is the case that p21 <
∑

Ji∈J2

p2i + p22

Cmax (L) ≤ 2C∗
max + 2

3 × 1
2 (p21 + p22)

≤ 7
3C

∗
max.

Case 3: p21 >
∑

Ji∈J2

p2i .

In this case, (7) and (10) are also hold.
If the number of the jobs in J1 satisfies k < 4, then from the feature of

F2 (1, P3) |linei |Cmax,we have

C∗
max ≥ max

⎧
⎨

⎩

∑

Ji∈J3

p2i + p21,
∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i + p22

⎫
⎬

⎭
. (13)

According to the Algorithm 2, we have (an illustration is showed in Fig. 5)

Cmax (L) =
∑

Ji∈J
p1i +max

⎧
⎨

⎩

∑

Ji∈J3

p2i + p21,
∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i + p22

⎫
⎬

⎭
. (14)

Put (7), (13) and (14) together, we have

Cmax (L) ≤ 2C∗
max.

Otherwise, the number of the jobs in J1 satisfies k ≥ 4, i.e., there exists at least
four jobs J1, J2, J3 and J4 inJ1, which means one of the machines at the second stage
must process at least two jobs of {J1, J2, J3, J4} since there are only three machines.
Hence, we have
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C∗
max ≥ p23 + p24. (15)

From the feature of F2 (1, P3) |linei |Cmax, we have

C∗
max ≥

∑

Ji∈J3

p2i + p21, (16)

C∗
max ≥

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i + p22. (17)

According to the Algorithm 2, we know that at the second stage, the job J1 is
processed on the machine m3, the job J2 is processed on the machine m1, the job J3
is processed on the machine m2.

Let us consider the following two subcases.
Case 3.1: p21 <

∑

Ji∈J2

p2i + p22.

According to theAlgorithm2,we first process the remaining jobs inJ1 onmachines
m2 and m3.

If machines m2 and m3 are idle after finish processing the remaining jobs in J1
when the job J2 are still processed on machinem1, then, according to the Algorithm 2,
we have (an illustration is showed in Fig. 6)

Cmax (L) =
∑

Ji∈J
p1i +

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i + p22. (18)

Put (7), (17) and (18) together, we have

Cmax (L) ≤ 2C∗
max.

Otherwise, the job J2 is finished first onmachinem1, then we process the remaining
jobs in J1 on machines m1, m2 and m3 according to list scheduling rule, so we have
(an illustration is showed in Fig. 7)

Cmax (L) ≤
∑

Ji∈J
p1i +

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i

+1

3

⎛

⎝
∑

Ji∈J1

p2i −
∑

Ji∈J2

p2i

⎞

⎠ + 2

3
p24. (19)

Put (7), (10), (15) and (19) together, we have

Cmax (L) ≤ 2C∗
max + 2

3
× 1

2
(p23 + p24) ≤ 7

3
C∗
max.
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J

J3
J2

J1

J2

J3 ...

...

s1 s2 s3 s4

Fig. 6 An illustration of the schedule produced by Algorithm 2 under case 3.1 with machines m2 and m3
are idle after finish processing the remaining jobs in J1 when the job J2 are still processed on machinem1,
where s1 is the processing time of jobs in J on the first stage, s2 is the processing time of jobs in J3 on
the second stage, s3 is the processing time of jobs in J2 on the second stage, s4 is the processing time of
job J2 on the second stage

J

J3
J2

J1

J2

J3

J4

...

...

... Jk

s1 s2 s3 s4 s5

Fig. 7 An illustration of the schedule produced by Algorithm 2 under case 3.1 with the job J2 is finished
first on machine m1, where s1 is the processing time of jobs in J on the first stage, s2 is the processing
time of jobs in J3 on the second stage, s3 is the processing time of jobs in J2 on the second stage, s4 is the
average processing time of the processing time of jobs in J1 subtract the processing time of jobs in J2 on
the second stage, s5 is Cmax (L) − s1 − s2 − s3 − s4, and it’s easy to know that s5 ≤ 2

3 p2k ≤ 2
3 p24

Case 3.2: p21 ≥ ∑

Ji∈J2

p2i + p22.

According to theAlgorithm2,we first process the remaining jobs inJ1 onmachines
m1 and m2.

If machines m1 and m2 are idle after finishing all the jobs in J1 when the job J1
is still processed on machine m3, then, according to the Algorithm 2, we have (an
illustration is showed in Fig. 8)

Cmax (L) =
∑

Ji∈J
p1i +

∑

Ji∈J3

p2i + p21. (20)

Put (7), (16) and (20) together, we have

Cmax (L) ≤ 2C∗
max.

Otherwise, the job J1 is finished first onmachinem3, then we process the remaining
jobs in J1 on machines m1, m2 and m3 according to list scheduling rule, so we have
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J

J3
J2

J1

J2

J3 ...

...

s1 s2 s3

Fig. 8 An illustration of the schedule produced by Algorithm 2 under case 3.2 with machines m1 and m2
are idle after finishing all the jobs in J1 when the job J1 is still processed on machine m3, where s1 is the
processing time of jobs in J on the first stage, s2 is the processing time of jobs in J3 on the second stage,
s3 is the processing time of job J1 on the second stage
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Fig. 9 An illustration of the schedule produced by Algorithm 2 under case 3.2 with the job J1 is finished
first on machine m3, where s1 is the processing time of jobs in J on the first stage, s2 is the processing
time of jobs in J3 on the second stage, s3 is the processing time of jobs in J2 on the second stage, s4 is the
average processing time of the processing time of jobs in J1 subtract the processing time of jobs in J2 on
the second stage, s5 is Cmax (L) − s1 − s2 − s3 − s4, and it’s easy to know that s5 ≤ 2

3 p2k ≤ 2
3 p24

(an illustration is showed in Fig. 9)

Cmax (L) ≤
∑

Ji∈J
p1i +

∑

Ji∈J3

p2i +
∑

Ji∈J2

p2i

+1

3

⎛

⎝
∑

Ji∈J1

p2i −
∑

Ji∈J2

p2i

⎞

⎠ + 2

3
p24. (21)

Put (7), (10), (15) and (21) together, we have

Cmax (L) ≤ 2C∗
max + 2

3 × 1
2 (p23 + p24)

≤ 7
3C

∗
max.

Hence, the approximation ratio of the Algorithm 2 is 7/3.
At last, it is easy to know that the time complexity of the Algorithm 2 is O(n log n).
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4 An optimal algorithm for F2(1,Pm) | sizei | Cmax under some special
conditions

In this section, we consider F2(1, Pm) | si zei | Cmax under some special condi-
tions: the two-stage flexible flow shop scheduling problem with a machine at the first
stage and m machines at the second stage, the processing time of the jobs satisfies:
min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }, the objective is to minimize the makespan.

Now, we are ready to present an optimal algorithm for the problem.
Firstly, for the given job setJ = {J1, J2, . . . , Jn}, find out the job with the smallest

processing time on the second stage, if there are more than one job with the smallest
processing time on the second stage, then arbitrarily choose one of them. Without loss
of generality, we assume Jn is the job with the smallest processing time on the second
stage, i.e., p2n = min

1≤i≤n
{p2i }.

Secondly, process the jobs with the order {J1, J2, . . . , Jn} non-preemptively in the
first stage.

Lastly, for each job Ji , process it in the second stage immediately when it has been
finished in the first stage.

A high-level description of the algorithm is showed in Algorithm 3.

Algorithm 3

Input:The job setJ = {J1, J2, . . . , Jn} and a two-stage flexible flow shop schedul-
ing problem, the first stage has only onemachine and the second stage hasmmachines,
and the processing time of the jobs satisfies: min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }.

Output: A schedule L .
Step 1. Find out the job with the smallest processing time on the second stage,

without loss of generality, denoted it as Jn .
Step 2. Process the jobs with the order {J1, J2, . . . , Jn} non-preemptively in the

first stage.
Step 3. For each job Ji , process it in the second stage immediately when it has been

finished in the first stage.

Theorem 3 The Algorithm 3 is a linear time optimal algorithm for F2(1, Pm) | si zei |
Cmax with the assumption that min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }.

Proof From the feature of F2(1, Pm) | si zei | Cmax with the assumption that
min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }, we have

C∗
max ≥

∑

Ji∈J
p1i + min

1≤i≤n
{p2i } . (22)

According toAlgorithm3with the assumption thatmin1≤i≤n {p1i } ≥ max1≤i≤n {p2i },
we have (an illustration is showed in Fig. 10)
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J1
J2 . . . JnJn−1

s1 s2

J1 J2 . . . JnJn−1

P2

P1

Fig. 10 An illustration of the schedule produced by Algorithm 3, where s1 is the processing time of jobs
in J on the first stage, s2 is the minimal processing time of jobs in J on the second stage, P1 is the first
stage, P2 is the second stage

Cmax (L) =
∑

Ji∈J
p1i + p2n =

∑

Ji∈J
p1i + min

1≤i≤n
{p2i } . (23)

Put (22) and (23) together, we have

Cmax (L) ≤ C∗
max.

Combining with the fact that C∗
max is the optimal value, we have

Cmax (L) = C∗
max.

Hence, the Algorithm 3 is an optimal algorithm for F2(1, Pm) | si zei | Cmax with
the assumption that min1≤i≤n {p1i } ≥ max1≤i≤n {p2i }.

At last, it is easy to know that the Algorithm 3 can be finished in linear time. ��

5 Concluding remarks

In this paper, we studied the two-stage flexible flow shop scheduling prob-
lems. We first presented an O(n log n)-time 2.25-approximation algorithm for
F2(1, P2) | linei | Cmax, and then proposed an O(n log n)-time 7/3-approximation
algorithm for F2(1, P3) | linei | Cmax. Lastly we proposed a linear time optimal
algorithm for F2(1, Pm) | si zei | Cmax with the assumption that min1≤i≤n {p1i } ≥
max1≤i≤n {p2i }.

As a future research topic, firstly, it will bemeaningful to consider themore efficient
approximation algorithms for the problem discussed in this paper. Secondly, design
optimal algorithms or approximation algorithms for other type of two-stage flexible
flow shop scheduling problems are also very interesting.

Data Availibility Statement Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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