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Abstract
Acompatible spanning circuit in a (not necessarily properly) edge-colored graphG is a
closed trail containing all vertices ofG in which any two consecutively traversed edges
have distinct colors. Sufficient conditions for the existence of extremal compatible
spanning circuits (i.e., compatible Hamilton cycles and Euler tours), and polynomial-
time algorithms for finding compatible Euler tours have been considered in previous
literature. More recently, sufficient conditions for the existence of more general com-
patible spanning circuits in specific edge-colored graphs have been established. In this
paper, we consider the existence of (more general) compatible spanning circuits from
an algorithmic perspective. We first show that determining whether an edge-colored
connected graph contains a compatible spanning circuit is an NP-complete problem.
Next, we describe two polynomial-time algorithms for finding compatible spanning
circuits in edge-colored complete graphs. These results in some sense give partial sup-
port to a conjecture on the existence of compatible Hamilton cycles in edge-colored
complete graphs due to Bollobás and Erdős from the 1970s.
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1 Introduction

In this paper we consider only finite undirected simple graphs. For terminology and
notations not defined here, we refer the reader to the textbook of Bondy and Murty
(2008).

Let G be a graph. We use V (G) and E(G) to denote the vertex set and edge set
of G, respectively. For a vertex v of G, we denote by EG(v) the set of edges of G
incident with v, and we denote by NG(v) the set of neighbors of v in G. The degree of
a vertex v in a graph G, denoted by dG(v), is defined to be the cardinality of EG(v).
We write �(G) = max{dG(v) | v ∈ V (G)}. If no ambiguity can arise, we will denote
EG(v), NG(v) and dG(v) by E(v), N (v) and d(v), respectively.

A spanning circuit in a graph G is defined as a closed trail that visits (contains)
each vertex of G. A Hamilton cycle of G refers to a spanning circuit visiting each
vertex of G exactly once; an Euler tour of G refers to a spanning circuit traversing
each edge of G. Hence, a spanning circuit is a common relaxation of a Hamilton cycle
and an Euler tour. A graph is said to be hamiltonian if it contains a Hamilton cycle,
and a graph is said to be eulerian if it admits an Euler tour.

An edge-coloring of a graph G is defined as a mapping c : E(G) → N, where N
is the set of natural numbers. An edge-colored graph refers to a graph with a fixed
edge-coloring. Two edges of a graph are said to be consecutive with respect to a trail
(with a fixed orientation) if they are traversed consecutively along the trail. A compat-
ible spanning circuit in an edge-colored graph refers to a spanning circuit in which
any two consecutive edges have distinct colors. An edge-colored graph is said to be
properly colored if any two adjacent edges (i.e., edges sharing exactly one end ver-
tex) of the graph have distinct colors, and an edge-colored graph is rainbow if each
pair of edges of the graph has distinct colors. Thus, a compatible Hamilton cycle is
properly colored, and a properly colored spanning circuit is compatible. Conversely,
a compatible spanning circuit is obviously not necessarily properly colored. Thus, a
compatible spanning circuit can be viewed as a generalization of a properly colored
spanning circuit. Compatible spanning circuits are of interest in graph theory applica-
tions, for example, in genetic and molecular biology (Pevzner 2000; Szachniuk et al.
2014, 2009), in the design of printed circuits and wiring boards (Tseng et al. 2010),
and in channel assignment of wireless networks (Ahuja 2010; Sankararaman et al.
2014).

Let G be an edge-colored graph. We use c(e) to denote the color appearing on the
edge e of G, and we use C(G) to denote the set of colors appearing on the edges of
G. Let diG(v) denote the cardinality of the set {e ∈ EG(v) | c(e) = i} for a vertex
v ∈ V (G) and a color i ∈ C(G). We let �mon

G (v) = max{diG(v) | i ∈ C(G)} for
a vertex v ∈ V (G), and we let �mon(G) = max{�mon

G (v) | v ∈ V (G)}; these two
parameters are called the maximum monochromatic degree of a vertex v of G and
the maximum monochromatic degree of an edge-colored graph G, respectively. The
color degree of a vertex v of an edge-colored graph G, denoted by cdG(v), is defined
to be the number of colors appearing on the edges of G incident with v. When no
confusion can arise, we will use di (v), �mon(v) and cd(v) instead of diG(v), �mon

G (v)

and cdG(v), respectively.
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From a sufficient condition perspective, the existence of two kinds of extremal com-
patible spanning circuits, i.e., compatible Hamilton cycles and compatible Euler tours
in specific edge-colored graphs has been studied extensively. For more details on the
topic, we refer the reader to Alon and Gutin (1997), Bollobás and Erdős (1976), Chen
and Daykin (1976), Daykin (1976), Fleischner and Fulmek (1990), Kotzig (1968),
Lo (2016) and Shearer (1979). On the other hand, Benkouar et al. (1996), from an
algorithmic perspective, considered the existence of compatible Euler tours in edge-
colored eulerian graphs. Benkouar et al. (1996) provided a polynomial-time algorithm
for finding a compatible Euler tour in an edge-colored eulerian graph G in which
�mon(v) ≤ d(v)/2 for each vertex v of G. Independently, Pevzner (1995) described
a similar algorithm for solving the same problem.

In recent work (Guo et al. 2020a, b), sufficient conditions for the existence of more
general compatible spanning circuits (i.e., not necessarily a compatibleHamilton cycle
or Euler tour) in specific edge-colored graphs have been established.

In this paper, we consider the existence of compatible spanning circuits in
edge-colored graphs from an algorithmic perspective. We first prove the following
complexity result by a simple reduction from a result due to Garey et al. (1974).

Theorem 1.1 The decision problem of determining whether an edge-colored con-
nected graph contains a compatible spanning circuit is NP-complete.

We postpone the proofs of all our results in order not to interrupt the flow of the
narrative. Motivated by the above NP-completeness result, we consider the existence
of compatible spanning circuits in specific classes of edge-colored graphs from an
algorithmic perspective, and we analyze the complexity of the associated algorithms.

Anumber of sufficient conditions for the existence of compatibleHamilton cycles in
edge-colored complete graphs have been obtained (see Alon andGutin 1997; Bollobás
and Erdős 1976; Chen and Daykin 1976; Daykin 1976; Lo 2016; Shearer 1979).
In particular, Bollobás and Erdős (1976) considered the problem and proposed the
following conjecture on the existence of compatible Hamilton cycles in edge-colored
complete graphs back in the 1970s (see Conjecture 1.1). Recently, Lo (2016) proved
that this conjecture is true asymptotically. Throughout the rest of this paper, we use
Kc
n to denote an edge-colored complete graph on n vertices, where n ≥ 3.

Conjecture 1.1 (Bollobás and Erdős 1976) If �mon(Kc
n) < �n/2�, then Kc

n contains
a compatible Hamilton cycle.

In the rest of this paper, we first deal with the existence of compatible spanning
circuits (with no restrictions) in graphs Kc

n with�mon(Kc
n) ≤ �(n−1)/2�, as follows.

Theorem 1.2 If �mon(Kc
n) ≤ �(n − 1)/2�, then K c

n contains a compatible spanning
circuit. Moreover, such a compatible spanning circuit can be found by an O(n4)
algorithm.

Remark 1.1 The following example, extended from a construction given by Fujita and
Magnant (2011), shows that the bound on �mon(Kc

n) in Theorem 1.2 is tight.
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Example 1.1 Let G be a complete graph on n (n ≥ 3) vertices, and let u be one of the
vertices of G. We label the remaining vertices with v1, . . . , vn−1, respectively, and we
color the edge uvi with color i for each vi , where 1 ≤ i ≤ n− 1. Let H = G − u, and
consider a decomposition of the edges of H into �(n−2)/2�Hamilton cycles (together
with one perfect matching M , if n is odd). We arbitrarily orient these Hamilton cycles
(andM , if n is odd) such that they becomedirected cycles (a directed perfectmatching).
We color the edge viv j with color j if the arc

−−→viv j is an arc of one of these Hamilton
cycles (perfect matching). This defines an edge-coloring of G, thus a Kc

n .

One can check that the edge-colored complete graph Kc
n of Example 1.1 satisfies

�mon(Kc
n) = �(n−1)/2�+1, but it contains no compatible spanning circuit, because

such a circuit cannot visit the vertex u compatibly.
We next deal with the existence of compatible spanning circuits visiting every

vertex, except for one specific vertex, exactly (n − 2)/2 times in graphs Kc
n , and we

obtain the following result.

Theorem 1.3 Let n be an even integer such that n ≥ 4. If �mon(Kc
n) ≤ (n − 2)/2

and cd(v0) ≥ n − �(√4n − 3 + 1)/2� for some vertex v0 of K c
n , then K c

n contains
a compatible spanning circuit visiting every vertex of K c

n , except for v0, exactly (n −
2)/2 times. Moreover, such a compatible spanning circuit can be found by an O(n4)
algorithm.

Remark 1.2 The edge-colored complete graphs on even n (n ≥ 4) vertices of Exam-
ple 1.1 also show that the bound on �mon(Kc

n) in Theorem 1.3 is tight. However, we
do not know whether the bound on cd(v0) in Theorem 1.3 is tight.

The rest of the paper deals with the proofs of our three results.

2 Proof of Theorem 1.1

Our proof is based on the NP-completeness of the following special case of the Hamil-
ton problem, an early complexity result due to Garey et al. (1974).

Problem 2.1 (Garey et al. 1974)

Instance: A connected graph G with �(G) = 3.
Question: Does G contain a Hamilton cycle?

The problem above can easily be reduced to the following special case of the
decision problem we stated in Theorem 1.1.

Problem 2.2 Instance: An edge-colored connected graph Gc with �(Gc) = 3.
Question: Does Gc contain a compatible spanning circuit?

First of all, Problem 2.2 clearly belongs to the class NP: for any candidate sub-
graph H corresponding to a compatible spanning circuit in Gc, it can be verified in
polynomial time whether the subgraph H contains all vertices of Gc, dH (v) = 2 and
�mon

H (v) = 1 for each vertex v of H .
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For any instance G of Problem 2.1, we construct a rainbow edge-colored graph
by coloring all edges of G with pairwise distinct colors, to obtain an instance Gc of
Problem 2.2. It is obvious that the graph G contains a Hamilton cycle if and only if
the edge-colored graph Gc contains a compatible spanning circuit.

It follows directly from our construction that the reduction above is polynomial.
This proves that Problem 2.2 is NP-complete. Since Problem 2.2 is a special case of
the decision problem we stated in Theorem 1.1, the result is immediate. 	


3 Proofs of Theorems 1.2 and 1.3

Before proceeding with our proofs, we first introduce some additional terminology.
For a given trail Ti = x1x2 · · · xi (i ≥ 2) of a graph H , we use Hi to denote the

(spanning) subgraph of H obtained from H by deleting all the edges of Ti . For a given
(compatible) trail Ti = x1x2 · · · xi (i ≥ 2) of an edge-colored graph H , an edge xi xi+1
of H is said to be suitable for Ti in H if xi xi+1 ∈ EHi (xi ) and c(xi xi+1) satisfies that
c(xi xi+1) �= c(xi−1xi ) and dc0Hi

(xi ) = max
c �=c(xi−1xi )

{dcHi
(xi )}, where c0 = c(xi xi+1).

We prove Theorem 1.2 by considering the following polynomial algorithm, and
proving its correctness. We use CSC as shorthand for compatible spanning circuit.

Algorithm 1 Finding a CSC in Kc
n with �mon(Kc

n) ≤ �(n − 1)/2�.
Input: A graph Kc

n with �mon(Kc
n ) ≤ �(n − 1)/2�;

Output: A CSC T of Kc
n ;

Step 1. If n is odd, then let H = Kc
n ; otherwise, choose an arbitrary perfect matching

M of Kc
n , and let H = Kc

n − M ;
Step 2. Choose an arbitrary vertex x1 of H , and put T1 = x1;

Choose the next vertex x2 such that c(x1x2) is (one of) the least frequent
colors among the edges of EH (x1), and put T2 = x1x2;

Step 3. Based on Ti = x1x2 · · · xi (i ≥ 2), build up Ti+1 = x1x2 · · · xi xi+1 according
to the following rules:

if V (H)\V (Ti ) = ∅ and xi x1 ∈ EHi (xi ), as well as c(xi−1xi ) �= c(xi x1) and c(xi x1) �=
c(x1x2) then

put T = Ti+1 = x1x2 · · · xi x1, and go to Step 5;
else

if there exists a vertex xi+1 ∈ V (H) \ V (Ti ) such that xi xi+1 is suitable for Ti in H
then

choose such a vertex xi+1 and preferentially choose the vertex xi+1 such that
c(xi xi+1) = c(x1x2) when xi = x1, and put Ti+1 = x1x2 · · · xi xi+1;

else
choose a vertex xi+1 ∈ V (Ti ) such that xi xi+1 is suitable for Ti in H , and prefer-
entially choose the vertex xi+1 such that c(xi xi+1) = c(x1x2) when xi = x1, and
put Ti+1 = x1x2 · · · xi xi+1;

end if
end if

Step 4. i ← i + 1, and go to Step 3;
Step 5. T is a CSC of Kc

n ; terminate the process;
return T .
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The ideas behind Algorithm 1 were inspired by similar ideas due to Pevzner (1995)
for an efficient algorithm to construct a compatible Euler tour in an edge-colored
eulerian graph G in which �mon(v) ≤ d(v)/2 for each vertex v of G.

Next, we show the correctness of Algorithm 1 by proving the following lemmas,
with the notations Hi , Ti , H and T defined as above.

Lemma 3.1 We have �mon
Hi

(v) ≤ dHi (v)/2 for each integer i with i ≥ 2 such that
Ti �= T , and each vertex v of Hi , excluding possibly x1 and xi .

Proof Suppose, to the contrary, that the statement of Lemma 3.1 does not hold. Let i0
be the minimum integer such that Lemma 3.1 fails. Clearly, we have i0 > 2. Thus, for
some color c and some vertex v distinct from x1 and xi0 , we have d

c
Hi0

(v) > dHi0
(v)/2.

It is not difficult to see that v = xi0−1; otherwise Lemma 3.1 would already fail for the
integer i0 − 1. It follows from dcHi0

(xi0−1) > dHi0
(xi0−1)/2 and dHi0

(xi0−1) is even

that dcHi0
(xi0−1) ≥ dHi0

(xi0−1)/2 + 1.

Obviously, we have dcHi0−1
(xi0−1) ≥ dcHi0

(xi0−1) ≥ dHi0
(xi0−1)/2 + 1 =

(dHi0−1(xi0−1) − 1)/2 + 1 = (dHi0−1(xi0−1) + 1)/2.
We first prove the following claim in order to complete the proof of Lemma 3.1.

Claim 1 c(xi0−1xi0) = c.

Proof Suppose, to the contrary, that c(xi0−1xi0) �= c. Recall that dcHi0−1
(xi0−1) ≥

(dHi0−1(xi0−1) + 1)/2 and Ti0 �= T . It follows that c(xi0−2xi0−1) = c by the rules
of Step 3 of Algorithm 1. Thus, we have dcHi0−2

(xi0−1) = dcHi0−1
(xi0−1) + 1 ≥

(dHi0−1(xi0−1) + 1)/2 + 1 = dHi0−2(xi0−1)/2 + 1, contradicting the minimality of
i0. This confirms our claim. 	


By Claim 1, we have c(xi0−2xi0−1) �= c and c(xi0−1xi0) = c. Hence, we have
dcHi0−2

(xi0−1) = dcHi0
(xi0−1)+ 1 ≥ dHi0

(xi0−1)/2+ 1+ 1 = (dHi0−2(xi0−1)− 2)/2+
1 + 1 = dHi0−2(xi0−1)/2 + 1, contradicting the minimality of i0. This completes the
proof of Lemma 3.1. 	

Lemma 3.2 We have �mon

Hi
(x1) ≤ �dHi (x1)/2� for each integer i with i ≥ 2 such that

xi �= x1.

Proof By Step 2 of Algorithm 1, we have �mon
H2

(x1) = �mon
H1

(x1) = �mon
H (x1). For

the case that n is odd, we have �mon
H (x1) = �mon

Kc
n

(x1) ≤ (n − 1)/2 = �(n − 2)/2� =
�dH2(x1)/2�. For the case that n is even, we have �mon

H (x1) ≤ �mon
Kc
n

(x1) ≤ (n −
2)/2 = �(n − 3)/2� = �dH2(x1)/2�. Thus, Lemma 3.2 holds for i = 2.

Next, we assume that i ≥ 3. Suppose, to the contrary, that the statement of
Lemma 3.2 does not hold. Let i0 be the minimum integer such that Lemma 3.2
fails. Since xi0 �= x1, we conclude that xi0−1 = x1; otherwise Lemma 3.2 would
already fail for some integer less than i0. Thus, for some color c, we have dcHi0

(x1) ≥
�dHi0

(x1)/2�+1. Note that dHi0
(x1) is odd. Let dHi0

(x1) = 2k−1 (k ≥ 1). Obviously,
we have dcHi0−1

(x1) ≥ dcHi0
(x1) ≥ �dHi0

(x1)/2� + 1 = �(2k − 1)/2� + 1 = k + 1 =
dHi0−1(x1)/2 + 1.

We first prove the following claim in order to complete the proof of Lemma 3.2.	
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Claim 2 c(x1xi0) = c.

Proof Suppose, to the contrary, that c(x1xi0) �= c. Recall that xi0−1 = x1 and
dcHi0−1

(x1) ≥ dHi0−1(x1)/2+1. It follows that c(xi0−2x1) = c by the rules of Step 3 of

Algorithm 1. Thus, we have dcHi0−2
(x1) = dcHi0−1

(x1) + 1 ≥ dHi0−1(x1)/2 + 1 + 1 =
k + 1 + 1 = �dGi0−2(x1)/2� + 1, contradicting the minimality of i0. This confirms
our claim. 	


By Claim 2, we have c(xi0−2x1) �= c and c(x1xi0) = c. Hence, we have
dcHi0−2

(x1) = dcHi0
(x1)+1 ≥ �dHi0

(x1)/2�+1+1 = k+1+1 = �dHi0−2(x1)/2�+1,
contradicting the minimality of i0. This completes the proof of Lemma 3.2. 	


From Lemmas 3.1 and 3.2, we obtain the following lemma immediately.

Lemma 3.3 For each integer i with i ≥ 2 such that Ti �= T , we have

�mon
Hi−1

(xi ) ≤
{
dHi−1(xi )/2, if xi �= x1;
(dHi−1(xi ) + 1)/2, if xi = x1.

Lemma 3.3 implies that for each trail Ti �= T , there always exists an edge xi xi+1
that is suitable for Ti in H .

Next, we show that Algorithm 1 will terminate, by proving the following lemma.

Lemma 3.4 For an integer i with i ≥ 3 such that xi �= x1 and EHi (xi ) = EHi (x1) =
{xi x1}, we have V (Ti ) = V (H), as well as c(xi−1xi ) �= c(xi x1) and c(xi x1) �=
c(x1x2).

Proof Let i be an integer with i ≥ 3 such that xi �= x1 and EHi (xi ) = EHi (x1) =
{xi x1}.

Wefirst claim thatV (Ti ) = V (H). Suppose, to the contrary, that there exists a vertex
v ∈ V (H)\V (Ti ). Obviously, we have v /∈ {x1, xi }. Recall that Kc

n is a complete graph
on n vertices, where n ≥ 3. It follows from the construction of H that at least one of
vxi and vx1 is an edge of Hi , contradicting the fact that EHi (xi ) = EHi (x1) = {xi x1}.
Thus as we claimed, we have V (Ti ) = V (H).

Recall that EHi (xi ) = {xi x1}. It follows that �mon
Hi−1

(xi ) = 1 by Lemma 3.3. There-
fore, we conclude that c(xi−1xi ) �= c(xi x1).

Next, we prove the assertion that c(xi x1) �= c(x1x2). Suppose, to the contrary, that
c(xi x1) = c(x1x2) = c0. Let us consider Ti as the oriented trail in the direction from
x1 to x2 (see Fig. 1). Note that dH (x1) = n − 1, if n is odd, and dH (x1) = n − 2,
otherwise. We use y1, y2, . . . , yn−3, yn−2 (and yn−1, if n is odd) to denote the vertices
of H adjacent to the vertex x1 according to the order in which they are visited by the
oriented trail Ti (see Fig. 1a, b).

We prove the following claim in order to complete the proof of Lemma 3.4.

Claim 3 There exists an integer j with 2 ≤ j ≤ n − 4 (2 ≤ j ≤ n − 3, if n is odd)
such that c(−−→y j x1) �= c0 and c(−−−−→x1y j+1) �= c0.
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x1

y1(x2)

y2

y3
yj0

yj0+1

yj0+2

yn−2

yn−1(xi)

(a)

x1

y1(x2)

y2

y3
yj0

yj0+1

yj0+2

yn−3

yn−2(xi)

(b)

Fig. 1 a The oriented trail Ti for n odd; b the oriented trail Ti for n even

Proof Suppose, to the contrary, that at least one of c(−−→y j x1) and c(−−−−→x1y j+1) is c0 for
every integer j with 2 ≤ j ≤ n − 4 (2 ≤ j ≤ n − 3, if n is odd). It follows that
dc0H (x1) ≥ (n − 4)/2 + 2 > (n − 2)/2 (dc0H (x1) ≥ (n − 3)/2 + 2 > (n − 1)/2, if n is
odd), contradicting the fact that �mon(Kc

n) ≤ �(n − 1)/2�. This confirms our claim.	


Let j0 = max{ j | c(−−→y j x1) �= c0 and c(−−−−→x1y j+1) �= c0}. We suppose that y j0 = xk .
Thus, we have xk+1 = x1. We conclude that dc0Hk+1

(x1) ≥ (n − 3− j0 − 1)/2+ 1 and

dHk+1(x1) = n−2− j0 (d
c0
Hk+1

(x1) ≥ (n−2− j0−1)/2+1 and dHk+1(x1) = n−1− j0,

if n is odd), implying that dc0Hk+1
(x1) ≥ dHk+1(x1)/2. Recall that c(

−−→y j0x1) �= c0. By
definition, the edge of EHk+1(x1) with color c0 is suitable for Tk+1 in H . It follows
that c(−−−−→x1y j0+1) = c0 by the rules of Step 3 of Algorithm 1. However, as supposed, we
have c(−−−−→x1y j0+1) �= c0, a contradiction. This completes the proof of Lemma 3.4. 	


Lemma 3.4 implies that Algorithm 1 will terminate in the case that EHi (xi ) =
EHi (x1) = {xi x1} for some integer i with i ≥ 3 such that xi �= x1. However, it is
possible that Algorithm 1 terminates earlier. It is not difficult to check that in all cases
the output T of Algorithm 1 is a compatible spanning circuit of Kc

n .
Now,we analyze the time complexity ofAlgorithm1. It is obvious from the structure

of the algorithm that the combination of Step 4 and Step 3 dominates and determines its
time complexity. Since each edge of H is traversed at most once, Step 3 is performed
at most |E(H)| = O(n2) times according to Step 4 of Algorithm 1. In Step 3 of
Algorithm 1, it requires at most O(n2) time to choose a vertex xi+1 such that xi xi+1 is
suitable for Ti in H : this requires checking and comparing these colors that appear on
xi−1xi and the at most O(n2) edges of EH (xi ). Thus, Step 3 takes at most O(n2) time,
yielding an overall time complexity O(n4). This completes the proof of Theorem 1.2.

	


Proof of Theorem 1.3

We prove Theorem 1.3 by using a known algorithm due to Pevzner (1995) as a sub-
routine to construct an O(n4) algorithm, and proving its correctness.

Pevzner (1995) provided a polynomial algorithm for constructing a compatible
Euler tour (CET for short) in an edge-colored eulerian graph G in which �mon(v) ≤
d(v)/2 for each vertex v of G (see Algorithm 2 below). Benkouar et al. (1996) inde-
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pendently described a different algorithm for solving the same problem, requiring
solving a perfect matching problem for a specific class of complete k-partite graphs.

We use Algorithm 2 as a subroutine to construct an O(n4) algorithm for finding a
compatible spanning circuit visiting every vertex of Kc

n , except for one specific vertex,
exactly (n − 2)/2 times (SCSC for short), subject to the conditions that n is an even
integer and n ≥ 4, as well as the graph Kc

n satisfies �mon(Kc
n) ≤ (n − 2)/2 and

cd(v0) ≥ n − �(√4n − 3+ 1)/2� for some vertex v0 of Kc
n (see Algorithm 3 below).

In Algorithm 3, we denote G ′ = Kc
n − v0, where v0 is a specific vertex of Kc

n
with cd(v0) ≥ n − �(√4n − 3 + 1)/2�. It is not difficult to see that �mon

G ′ (v) ≤
�mon(Kc

n) ≤ (n − 2)/2 = dG ′(v)/2 for each vertex v of G ′. Thus, the graph G ′
satisfies the conditions of Algorithm 2. This implies that we can use Algorithm 2 as a
subroutine in Step 2 of Algorithm 3 to construct a compatible Euler tour T ′ of G ′.

After presenting the pseudocode of the two algorithms, we show the correctness of
Algorithm 3 by stating and proving Lemma 3.5. This is followed by a short analysis
of the time complexity and some concluding remarks.

Algorithm 2 (Pevzner 1995) Finding a CET in an edge-colored eulerian graph G with
�mon(v) ≤ d(v)/2 for each vertex v.
Input: An edge-colored eulerian graph G with �mon(v) ≤ d(v)/2 for each vertex v;
Output: A CET T of G;

Step 1. i ← 1;
C ← ∅;

Step 2. Choose an arbitrary vertex x1 of G, and put T1 = x1;
Choose the next vertex x2 such that c(x1x2) is the most frequent color among
the edges of E(x1), and put T2 = x1x2;

while there exists an edge x j x j+1 suitable for Tj in G do
Based on Tj = x1x2 · · · x j ( j ≥ 2), build up Tj+1 = x1x2 · · · x j x j+1 by choosing a
vertex x j+1 such that x j x j+1 is suitable for Tj in G, and preferentially choosing the
vertex x j+1 such that c(x j x j+1) = c(x1x2) when x j = x1;
j ← j + 1;

end while
Ci ← Tj (note that Tj is a closed trail);
C ← C ∪ {Ci };
G ← G − E(Ci );

Step 3. if E(G) �= ∅ then
i ← i + 1, and go to Step 2;
end if

Step 4. To construct T , if C \ {C1} �= ∅, then start walking along C1, until an
intersection vertex with another closed trail Cp of C is found;

Continue walking along Cp while preserving the compatibility
on the intersection vertex in the case of walking into Cp and
walking out of Cp , until Cp is entirely walked out;

Then continue walking along the remaining part of C1, until C1 is entirely
walked out;

We use C1 to denote the new closed trail that is the combination of C1
and Cp , and continue to combine the remaining elements of C, if any, in this
way, until all elements of C have been combined into the closed trail T ;

return T .
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Algorithm 3 Finding a SCSC in Kc
n (even n ≥ 4) with �mon(Kc

n) ≤ (n − 2)/2 and
cd(v0) ≥ n − �(√4n − 3 + 1)/2� for some vertex v0.
Input: An edge-colored graph Kc

n (even n ≥ 4) with �mon(Kc
n ) ≤ (n − 2)/2 and

cd(v0) ≥ n − �(√4n − 3 + 1)/2� for some vertex v0;
Output: A compatible spanning circuit T of Kc

n visiting every vertex of Kc
n , except for

one specific vertex, exactly (n − 2)/2 times;
Step 1. Choose a specific vertex v0 of Kc

n with cd(v0) ≥ n − �(√4n − 3 + 1)/2�, and
let G′ = Kc

n − v0;
Step 2. Perform Algorithm 2 on G′ to produce a compatible Euler tour of G′,

denoted by T ′ = x1x2 · · · x1;
Step 3. Choose an edge xi xi+1 of T ′ such that c(xi−1xi ) �= c(xiv0) and c(xiv0) �=

c(v0xi+1), as well as c(v0xi+1) �= c(xi+1xi+2), where the subscripts are taken

modulo
(n−1

2
)
;

Step 4. Let T = T ′ ∪ {xiv0, v0xi+1} \ {xi xi+1};
return T .

The correctness of Algorithm 3 follows directly from the following lemma (and the
correctness of Algorithm 2 due to Pevzner (1995)).

Lemma 3.5 There exists an edge xi xi+1 of T ′ such that c(xi−1xi ) �= c(xiv0) and
c(xiv0) �= c(v0xi+1), as well as c(v0xi+1) �= c(xi+1xi+2), where the subscripts are
taken modulo

(n−1
2

)
.

Proof Suppose, to the contrary, that for each integer i such that c(xiv0) �= c(v0xi+1),
either c(xi−1xi ) = c(xiv0), or c(v0xi+1) = c(xi+1xi+2).

Let cd(v0) = n−� ≥ n−�(√4n − 3+1)/2�. Thus, we have � ≤ (
√
4n − 3+1)/2.

Let P = {{v0xi , v0xi+1} ⊂ EKc
n
(v0) | c(v0xi ) �= c(v0xi+1)}. We can conclude that

|P| ≥ (n−1
2

) − (
�
2

) = ((n − 1)(n − 2))/2− (�(� − 1))/2 = (n2 − 3n + 2− �2 + �)/2.
As supposed, we have either c(xi−1xi ) = c(xiv0), or c(v0xi+1) = c(xi+1xi+2) for

each pair {v0xi , v0xi+1} of P . Note that the graph G ′ is a complete graph on n − 1
vertices. It follows from � ≤ (

√
4n − 3 + 1)/2 that |P|

n−1 ≥ n2−3n+2−�2+�
2(n−1) ≥ n−3

2 >
n−4
2 . Therefore, there exists a vertex v of G ′ such that dc0Kc

n
(v) ≥ (n − 4)/2+ 1+ 1 >

(n − 2)/2, where c0 = c(v0v), contradicting that �mon(Kc
n) ≤ (n − 2)/2. This

completes the proof of Lemma 3.5. 	


Lemma 3.5 clearly shows that we can always find an edge satisfying the requested
conditions at Step 3 of Algorithm 3.

It is not difficult to check that the closed trail returned by Algorithm 3 is a desired
compatible spanning circuit of Kc

n .
In order to analyze the time complexity of Algorithm 3, we first need to analyze

the time complexity of Algorithm 2 due to Pevzner, since we use it as a subroutine. In
fact, it is clear that Algorithm 2 is the dominating factor regarding the time complexity
of Algorithm 3. Due to the similarity with Algorithm 1, it is not difficult to see that
Algorithm 2 has time complexity O(n4) (in case the graph G is a complete graph
on n vertices). Therefore, the whole time complexity of Algorithm 3 is O(n4). This
completes the proof of Theorem 1.3. 	
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4 Conclusions and final remarks

In this work, we considered the existence of more general compatible spanning cir-
cuits in edge-colored graphs from an algorithmic perspective. We first proved that the
decision problem of determining whether an edge-colored connected graph contains
a compatible spanning circuit is NP-complete, even within graphs with maximum
degree 3. We then developed two polynomial-time algorithms for finding compatible
spanning circuits (with certain properties) in specific edge-colored complete graphs. In
particular, our Algorithm 1 returns a compatible spanning circuit (with no restrictions)
directly. In previouswork from literature, this was done in two steps.We also presented
Algorithm 3 for finding compatible spanning circuits visiting every vertex, except for
one specific vertex, exactly (n−2)/2 times in edge-colored complete graphsG on even
n (n ≥ 4) vertices with �mon(G) ≤ (n − 2)/2 and cd(v0) ≥ n − �(√4n − 3+ 1)/2�
for some vertex v0 of G.

In futurework,we look forward to establishingpolynomial-time algorithms forfind-
ing compatible spanning circuits in other classes of edge-colored graphs. As another
future direction, amore challenging problem is to develop polynomial-time algorithms
for finding compatible spanning circuits visiting every vertex exactly (or at least) a
specified number of times in some specific classes of edge-colored graphs.
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