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Abstract
The maximum duo-preservation string mapping (Max- Duo) problem is the comple-
ment of the well studied minimum common string partition problem, both of which
have applications in many fields including text compression and bioinformatics. k-
Max- Duo is the restricted version of Max- Duo, where every letter of the alphabet
occurs at most k times in each of the strings, which is readily reduced into the well
known maximum independent set (MIS) problem on a graph of maximum degree
� ≤ 6(k − 1). In particular, 2-Max- Duo can then be approximated arbitrarily
close to 1.8 using the state-of-the-art approximation algorithm for the MIS problem
on bounded-degree graphs. 2-Max- Duo was proved APX-hard and very recently a
(1.6 + ε)-approximation algorithm was claimed, for any ε > 0. In this paper, we
present a vertex-degree reduction technique, based on which, we show that 2-Max-
Duo can be approximated arbitrarily close to 1.4.

Keywords Approximation algorithm · Duo-preservation string mapping · String
partition · Independent set

Mathematics Subject Classification F.2.2 Pattern matching · G.2.1 Combinatorial
algorithms · G.4 Algorithm design and analysis

1 Introduction

The minimum common string partition (MCSP) problem is a well-studied string
comparison problem in computer science, with applications in fields such as text
compression and bioinformatics. In both text compression and bioinformatics, string
(or sequence) comparison is a routine work. For the similarity between two strings, a
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commonly used measure is the edit distance, which is the minimum number of edit
operations required to transform one string into the other. At the finest scale, the edit
operations involve a single character of a string, including insertion, deletion, and
substitution. When comparing two long strings such as the whole genomes of mul-
tiple species, long range operations become more interesting, leading to the genome
rearrangement problems (Chen et al. 2005; Swenson et al. 2008). In particular, a trans-
portation operation is to cut out a substring and insert it back at another position in the
string. The problem of partitioning one string into a minimum number of substrings
such that a reshuffle of them becomes the other string is referred to as the minimum
common string partition (MCSP) problem.

MCSPwas first introduced byGoldstein et al. (2004), and can be defined as follows:
Consider two length-n strings A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) over
some alphabet �, such that B is a re-ordering of A. Let PA be a partition of A, which
is a multi-set of substrings whose concatenation in a certain order becomes A. The
cardinality ofPA is the number of substrings inPA. TheMCSP problem asks to find a
minimum cardinality partitionPA of Awhich is also a partition of B. k-MCSP denotes
the restricted version of MCSP where every letter of the alphabet � occurs at most k
times in each of the two given strings.

Goldstein et al. (2004) have shown that the MCSP problem is NP-hard and APX-
hard, even when k = 2. There have been several approximation algorithms (Chen
et al. 2005; Chrobak et al. 2004; Cormode and Muthukrishnan 2007; Goldstein et al.
2004; Kolman andWaleń 2006, 2007) proposed since 2004, among which the current
best result is an O(log n log∗ n)-approximation algorithm for the general MCSP and
an O(k)-approximation algorithm for k-MCSP. On the other hand, MCSP is proved
to be fixed parameter tractable (FPT), with respect to the cardinalities of the parts in
an optimal partition and/or a combination of the cardinalities and k (Damaschke 2008;
Jiang et al. 2012; Bulteau et al. 2013; Bulteau and Komusiewicz 2014).

In a given string A, a pair of adjacent letters in A is called a duo of the string A
(Goldstein et al. 2004); a length-� substring in a partition of A preserves � − 1 duos
of A. The complementary objective to that of MCSP is to maximize the number of
duos preserved in a common partition of A and B, and such an optimization problem
is referred to as the maximum duo-preservation string mapping (MPSM) problem by
Chen et al. (2014). In this paper, we call this MPSM problem as Max- Duo, mostly
because the acronymMPSM looks too similar to the other acronyms. Analogously, k-
Max- Duo is the restricted version ofMax- Duowhere every letter of the alphabet�
occurs atmost k times in each given string.Max- Duowas proved to be FPTbyBeretta
et al. (2016a, b),with respect to the number of preservedduos in the optimal partition. In
this paper, we focus on 2-Max- Duo, to design an improved approximation algorithm.

Along with Max- Duo, Chen et al. (2014) introduced the constrained maximum
induced subgraph (CMIS) problem, in which one is given an m-partite graph G =
(V1, V2, . . . , Vm, E) with each Vi having n2i vertices arranged in an ni × ni matrix,
and the goal is to find ni vertices in each Vi from different rows and different columns
such that the number of edges in the induced subgraph is maximized. k-CMIS is the
restricted version of CMIS where ni ≤ k for all i . Given an instance of Max- Duo,
we may construct an instance ofCMIS by settingm to be the number of distinct letters
in the string A, and ni to be the number of occurrences of the i-th distinct letter; the
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vertex in the (s, t)-entry of the ni ×ni matrix “means” mapping the s-th occurrence of
the i-th distinct letter in the string A to its t-th occurrence in the string B; and there is
an edge between a vertex of Vi and a vertex of Vj if the two corresponding mappings
together preserve a duo. This way, Max- Duo becomes a special case of CMIS, and
furthermore k-Max- Duo is a special case of k-CMIS. Chen et al. (2014) presented
a k2-approximation algorithm for k-CMIS and a 2-approximation algorithm for 2-
CMIS, based on a linear programming and randomized rounding techniques. These
imply that k-Max- Duo can also be approximated within a ratio of k2 and 2-Max-
Duo can be approximated within a ratio of 2.

Alternatively, an instance of the k-Max- Duo problem with the two strings A =
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) can be viewed as a bipartite graph H =
(A, B, F), constructed as follows: The vertices in A and B are a1, a2, . . . , an in order
and b1, b2, . . . , bn in order, respectively, and there is an edge between ai and b j if
they are the same letter. The two edges (ai , b j ), (ai+1, b j+1) ∈ F are called a pair of
parallel edges. This way, a common partition of the strings A and B corresponds one-
to-one to a perfect matching in H , and the number of duos preserved by the partition
is exactly the number of pairs of parallel edges in the matching. (See for an illustration
in Fig. 1a, and more details in Sect. 2.)

Moreover, from the bipartite graph H = (A, B, F), we can construct another graph
G = (V , E) in which a vertex of V one-to-one corresponds to a pair of parallel edges
of F , and there is an edge between two vertices of V if the two corresponding pairs
of parallel edges of F cannot co-exist in any perfect matching of H (such two pairs
of parallel edges are called conflicting, which can be determined in constant time;
see Sect. 2 for more details). This way, one easily sees that a set of duos that can
be preserved together, by a perfect matching of H , one-to-one corresponds to an
independent set of G (Goldstein et al. 2004; Boria et al. 2014). Therefore, the Max-
Duo problem can be cast as a special case of thewell-knownmaximum independent set
(MIS) problem (Garey and Johnson 1979); furthermore, Boria et al. (2014) showed that
in such a reduction, an instance of k-Max- Duo gives rise to a graph with a maximum
degree� ≤ 6(k−1). It follows that the state-of-the-art

(
(�+3)/5+ε

)
-approximation

algorithm for MIS (Berman and Fujito 1999), for any ε > 0, is a
(
(6k − 3)/5 + ε

)
-

approximation algorithm for k-Max- Duo. Especially, 2-Max- Duo can nowbe better
approximated within a ratio of 1.8 + ε. Boria et al. (2014) proved that 2-Max- Duo
is APX-hard, similar to 2-MCSP (Goldstein et al. 2004), via a linear reduction from
MIS on cubic graphs (denoted as 3- MIS), for which it is NP-hard to approximate
within 1.00719 (Berman and Karpinski 1999). Besides, Boria et al. (2014) claimed
that 2-Max- Duo can be approximated within 1.6 + ε, for any ε > 0, but their proof
is flawed (see Sect. 2 for a counterexample).

Recently, Boria et al. (2016) presented a local search 3.5-approximation algorithm
for the general Max- Duo problem. In the meantime, Brubach (2016) presented a
3.25-approximation algorithm using a novel combinatorial triplet matching. Most
recently, two new local search algorithms were independently designed for the general
Max- Duo problem at the same time, achieving approximation ratios of 2.917 (Xu
et al. 2017) and 2 + ε (Dudek et al. 2017) for any ε > 0, respectively. They both
beat the previously best

(
(6k − 3)/5+ ε

)
-approximation algorithm for k-Max- Duo,

when k ≥ 3. In this paper, we focus on the 2-Max- Duo problem; using the above
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reduction to theMIS problem,we present a vertex-degree reduction scheme and design
an improved (1.4 + ε)-approximation algorithm, for any ε > 0. The following chart
summarizes the approximation results for the 2-Max- Duo problem:

2 (Chen et al. 2014) −→ 1.8 + ε (Boria et al. 2014) (→ falsely claimed 1.6

+ ε (Boria et al. 2014)) −→ 1.4 + ε (Theorem 3.2).

The rest of the paper is organized as follows. We provide some preliminaries in
Sect. 2, including several important structural properties of the graph constructed
from the two given strings. The vertex-degree reduction scheme is also presented as a
separate subsection in Sect. 2. The new approximation algorithm, denoted asApprox,
is presented in Sect. 3, where we show that it is a (1.4 + ε)-approximation algorithm
for 2-Max- Duo. In Sect. 4, we review the APX-hardness reduction from 3- MIS to
2-Max- Duo and point out a direction for better approximating 2-Max- Duo. We
conclude the paper in Sect. 5.

2 Preliminaries

Consider an instance of the k-Max- Duo problem with two length-n strings A =
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) such that B is a re-ordering of A. Recall
that we can view the instance as a bipartite graph H = (A, B, F), where the vertices
in A and B are a1, a2, . . . , an in order and b1, b2, . . . , bn in order, respectively, and
there is an edge between ai ∈ A and b j ∈ B if they are the same letter, denoted
as ei, j . See Fig. 1a for an example, where A = (a, b, c, d, e, f , b, c, d, e) and B =
( f , b, c, d, e, a, b, c, d, e). Note that H can be constructed in O(n2) time, and |F | ≤
kn.

The two edges ei, j , ei+1, j+1 ∈ F are called a pair of parallel edges (and they are
said to be parallel to each other); when both are included in a perfect matching of H ,
the corresponding duo (ai , ai+1) of A is preserved. Two pairs of parallel edges are
conflicting if they cannot co-exist in any perfect matching of H . This motivates the
following reduction from the k-Max- Duo problem to the MIS problem: From the
bipartite graph H = (A, B, F), we construct another graph G = (V , E) in which a
vertex vi, j of V corresponds to the pair of parallel edges (ei, j , ei+1, j+1) of F ; two
vertices of V are conflicting if and only if the two corresponding pairs of parallel edges
are conflicting, and two conflicting vertices of V are adjacent in G. We remark that
in general the graph G is not bipartite. One can see that a set of duos of A that can be
preserved all together, a set of pairwise non-conflicting pairs of parallel edges of F ,
and an independent set in G, are equivalent to each other. See Fig. 1b for an example
of the graph G = (V , E) constructed from the bipartite graph H shown in Fig. 1a.
We note that |V | ≤ k(n − 1) and thus G can be constructed in O(k2n2) time from the
instance of the k-Max- Duo problem.

In the graph G, for any v ∈ V , we use N (v) to denote the set of its neighbors, that
is, the vertices adjacent to v. The two ordered letters in the duo corresponding to the
vertex v are referred to as the letter content of v. For example, in Fig. 1b, the letter
content of v1,6 is “ab” and the letter content of v6,1 is “ f b”.
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a c e b d

b c d ca b

A :

B :

b d f c e

f e d e

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
(a) The bipartite graph H = (A,B, F ), where
the ten edges in bold form a perfect matching,
containing eight pairs of parallel edges.

v1,6 v2,7 v3,8 v4,9

v2,2 v3,3 v4,4 v7,7 v8,8 v9,9

v6,1 v7,2 v8,3 v9,4

(b) The instance graph G = (V,E) of MIS, where the eight filled
vertices form an independent set.

Fig. 1 An instance of the k-Max- Duo problem with A = (a, b, c, d, e, f , b, c, d, e) and B =
( f , b, c, d, e, a, b, c, d, e). Figure 1a is the graphical view as a bipartite graph H = (A, B, F), where
a perfect matching consisting of the ten bold edges; these ten edges form into eight pairs of parallel edges,
corresponding to the eight preserved duos (a, b), (b, c), (c, d), (d, e), ( f , b), (b, c), (c, d) and (d, e). Fig-
ure 1b shows the instance graphG = (V , E) of theMIS problemconstructed from H , where the independent
set {v1,6, v2,7, v3,8, v4,9, v6,1, v7,2, v8,3, v9,4} corresponds to the eight pairs of parallel edges shown in
Fig. 1a, and consequently also corresponds to the eight preserved duos. In this instance, we have k = 2.
Any maximum independent set of G must contain some of the degree-6 vertices, invalidating the (1.6+ ε)-
approximation algorithm for 2-Max- Duo proposed in Boria et al. (2014)

Recall from the construction that there is an edge ei, j in the graph H = (A, B, F)

if ai = b j , (therefore the induced subgraph by a specific letter in H is a complete
bipartite graph), and there is a vertex vi, j in the graphG = (V , E) if the parallel edges
ei, j and ei+1, j+1 are in H = (A, B, F).

Lemma 2.1 The graph G = (V , E) has the following properties.

1. If vi, j , vi+2, j+2 ∈ V , then vi+1, j+1 ∈ V .
2. Given any subset of vertices V ′ ⊂ V , let F ′ = {ei, j |vi, j ∈ V ′}, A′ = {ai |ei, j ∈

F ′}, and B ′ = {b j |ei, j ∈ F ′}. If the subgraph H ′ = (A′, B ′, F ′) in H is connected,
then all the vertices of V ′ have the same letter content; and consequently for any
two vertices vi, j , vh,� ∈ V ′, we have both vh, j , vi,� ∈ V .

3. For any vi, j ∈ V , we have
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N (vi, j ) =
⋃

p=−1,0,1

{vi ′+p, j+p ∈ V | i ′ 	= i} ∪
⋃

p=−1,0,1

{vi+p, j ′+p ∈ V | j ′ 	= j}.

(1)

Proof By definition, vi, j ∈ V if and only if ei, j , ei+1, j+1 ∈ F .

1. If also vi+2, j+2 ∈ V , that is, ei+2, j+2, ei+3, j+3 ∈ F , then ei+1, j+1, ei+2, j+2 ∈ F
leading to vi+1, j+1 ∈ V .

2. Note that an edge ei, j ∈ F if and only if the two vertices ai and b j are the
same letter, and clearly each connected component in H is complete bipartite
and all the vertices are the same letter. It follows that if the induced subgraph
H ′ = (A′, B ′, F ′) in H is connected, then all its vertices are the same letter. Let
F ′′ = {ei+1, j+1|vi, j ∈ V ′}, A′′ = {ai |ei, j ∈ F ′′}, and B ′′ = {b j |ei, j ∈ F ′′}.
The subgraph H ′′ = (A′′, B ′′, F ′′) in H has exactly the same topology as H ′, and
thus it is also connected and all its vertices are the same letter. Therefore, all the
vertices of V ′ have the same letter content; and consequently for any two vertices
vi, j , vh,� ∈ V ′, both vh, j , vi,� ∈ V .

3. For any vertex vi, j , or equivalently the pair of parallel edges (ei, j , ei+1, j+1) in F ,
which are incident at four vertices ai , ai+1, b j , b j+1, a conflicting pair of parallel
edges can be one of the following six kinds: to share exactly one of ai and ai+1,
to share both ai and ai+1, to share exactly one of b j and b j+1, and to share both
b j and b j+1. The sets of these six kinds of conflicting pairs are as described in
Eq. (1), for example, {vi ′−1, j−1 ∈ V | i ′ 	= i} is the set of conflicting pairs each
sharing b j (but not b j+1) with the pair vi, j .

This proves the lemma. ��
From Lemma 2.1 and its proof, we see that for any vertex of V there are at most

k − 1 conflicting vertices of each kind (corresponding to a set in Eq. (1)). We thus
have the following corollary.

Corollary 2.2 (Boria et al. 2014) The maximum degree of the vertices in G = (V , E)

is � ≤ 6(k − 1).

2.1 When k = 2

We examine more properties for the graph G = (V , E) when k = 2. First, from
Corollary 2.2 we have � ≤ 6.

Berman and Fujito (1999) have presented an approximation algorithm with a per-
formance ratio arbitrarily close to (� + 3)/5 for the MIS problem, on graphs with
maximumdegree�. This immediately implies a (1.8+ε)-approximation algorithm for
2-Max- Duo. Our goal is to reduce the maximum degree of the graph G = (V , E) to
achieve a better approximation algorithm. To this purpose, we examine all the degree-6
and degree-5 vertices in the graph G, and show a scheme to safely remove them from
consideration when computing an independent set. This gives rise to a new graph
G2 with maximum degree at most 4, leading to a desired (1.4 + ε)-approximation
algorithm for 2-Max- Duo.
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We remark that, in our scheme we first remove the degree-6 vertices from G to
compute an independent set, and later we add half of these degree-6 vertices to the
computed independent set to become the final solution. Contrary to the claim that there
always exists a maximum independent set in G containing no degree-6 vertices (Boria
et al. 2014, Lemma 1), the instance in Fig. 1 shows that any maximum independent set
for the instance must contain some degree-6 vertices, thus invalidating the (1.6 + ε)-
approximation algorithm for 2-Max- Duo proposed in Boria et al. (2014).

In more details, the instance of 2-Max- Duo, illustrated in Fig. 1, consists of two
length-10 strings A = (a, b, c, d, e, f , b, c, d, e) and B = ( f , b, c, d, e, a, b, c, d, e).
The bipartite graph H = (A, B, F) is shown in Fig. 1a and the instance graph
G = (V , E) of the MIS problem is shown in Fig. 1b. In the graph G, we have six
degree-6 vertices: v2,2, v7,7, v3,3, v3,8, v8,3 and v8,8. One can check that {v1,6, v2,7,
v3,8, v4,9, v6,1, v7,2, v8,3, v9,4} is an independent 8-set in G. On the other hand, if
none of these degree-6 vertices is included in an independent set, then because the
four vertices v4,4, v4,9, v9,4, v9,9 form a square implying that at most two of them can
be included in the independent set, the independent set would be of size at most 6, and
thus can never be maximum in G.

Consider a duo (ai , ai+1) of the string A. If its letter content is “aa”, then either
there is no vertex of V with letter content “aa” or there is exactly one vertex of V with
letter content “aa” which is an isolated vertex in G. We thus assume without loss of
generality that the letter content is “ab”, where a 	= b.

If no duo of the string B has the same letter content “ab”, then this duo of the string
A can never be preserved (in fact, no vertex of V would have its letter content “ab”). If
there is exactly one duo (b j , b j+1) of the string B having the same letter content “ab”,
then these two duos make up a vertex vi, j ∈ V , and from Lemma 2.1 we know that the
degree of the vertex vi, j ∈ V is at most 5, since there is no such vertex vi, j ′ with j ′ 	= j
sharing both ai and ai+1 with vi, j . Therefore, if the degree of the vertex vi, j ∈ V is
six, then there must be two duos of the string A and two duos of the string B having
the same letter content “ab”. Assume the other duo of the string A and the other duo
of the string B having the same letter content “ab” are (ai ′ , ai ′+1) and (b j ′ , b j ′+1),
respectively. Then all four vertices vi, j , vi, j ′ , vi ′, j , vi ′, j ′ exist in V . We call the sub-
graph of G induced on these four vertices a square, and denote it as S(i, i ′; j, j ′) =
(V (i, i ′; j, j ′), E(i, i ′; j, j ′)), where V (i, i ′; j, j ′) = {vi, j , vi, j ′ , vi ′, j , vi ′, j ′ } and
E(i, i ′; j, j ′) = {(vi, j , vi, j ′), (vi, j , vi ′, j ), (vi ′, j ′, vi, j ′), (vi ′, j ′, vi ′, j )}due to their con-
flicting relationships. One clearly sees that every square has a unique letter content,
which is the letter content of its four member vertices.

In Fig. 1b, there are three squares S(2, 7; 2, 7), S(3, 8; 3, 8) and S(4, 9; 4, 9), with
their letter contents “bc”, “cd” and “de”, respectively. The above argument says that
every degree-6 vertex of V must belong to a square, but the converse is not necessar-
ily true, for example, all vertices of the square S(4, 9; 4, 9) have degree 4. We next
characterize several properties of a square.

The following lemma is a direct consequence of how the graph G is constructed
and k = 2.

Lemma 2.3 In the graph G = (V , E) constructed from an instance of 2-Max- Duo,

1. For each index i , there are at most two distinct j and j ′ such that vi, j , vi, j ′ ∈ V ;
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2. If vi, j , vi, j ′ ∈ V where j ′ 	= j , and vi+1, j ′′+1 ∈ V (or symmetrically, vi−1, j ′′−1 ∈
V ), then either j ′′ = j or j ′′ = j ′.

Lemma 2.4 For any square S(i, i ′; j, j ′) in the graph G = (V , E), N (vi, j ) =
N (vi ′, j ′), N (vi, j ′) = N (vi ′, j ), and N (vi, j ) ∩ N (vi, j ′) = ∅. (Together, these imply
that every vertex of V is adjacent to either none or exactly two of the four member
vertices of a square.)

Proof Consider the two vertices vi, j and vi ′, j ′ , which have common neighbors vi, j ′
and vi ′, j in the square.

Note that vi, j ′ and vi, j share both ai and ai+1. If there is a vertex adjacent to vi, j
by sharing ai+1 but not ai , then this vertex is vi+1, j ′′+1 with j ′′ 	= j , and thus it
has to be vi+1, j ′+1 (by Lemma 2.3). We consider two subcases: If i + 1 = i ′ − 1
(i.e., (ai , ai+1, ai ′ , ai ′+1) = “abab” is a substring of A), then j ′ + 1 = j − 1 (i.e.,
(b j ′, b j ′+1, b j , b j+1) = “abab” is a substring of B) due to k = 2. Thus, this vertex
vi+1, j ′+1 is adjacent to vi ′, j ′ too, but not adjacent to vi, j ′ or vi ′, j .

If i +1 	= i ′ −1, then we conclude that ai+2 /∈ {a, b} and thus this vertex vi+1, j ′+1
shares only a j+1 with the vertex vi, j , shares only b j ′+1 with vi ′, j ′ , shares exactly
ai+1 and b j ′+1 with vi, j ′ , and shares none of {ai ′ , ai ′+1, b j , b j+1} with vi ′, j . That is,
vi+1, j ′+1 is adjacent to vi ′, j ′ too, but not adjacent to vi, j ′ or vi ′, j .

The other three symmetric cases can be discussed exactly the same and the lemma
is proved. ��
Corollary 2.5 In the graph G = (V , E), the degree-6 vertices can be partitioned into
pairs, where each pair of degree-6 vertices belong to a square in G and they are
adjacent to the same six other vertices, two inside the square and four outside of the
square.

Proof We have seen that every degree-6 vertex in the graph G must be in a square.
The above Lemma 2.4 states that the four vertices of a square S(i, i ′; j, j ′) can be
partitioned into two pairs, {vi, j , vi ′, j ′ } and {vi, j ′ , vi ′, j }, and the two vertices inside
each pair are non-adjacent to each other and have the same neighbors. In particular, if
the vertex vi, j in the square S(i, i ′; j, j ′) has degree 6, then Lemma 2.1 states that it
is adjacent to the six vertices vi−1, j ′−1, vi, j ′ , vi+1, j ′+1, vi ′−1, j−1, vi ′, j , vi ′+1, j+1 (see
an illustration in Fig. 2). ��

Corollary 2.6 If there is no square in the graph G = (V , E), then every degree-5
vertex is adjacent to a degree-1 vertex.

Proof Assume the vertex vi, j has degree 5. Due to the non-existence of any square in
the graph G and Lemma 2.1, either there is no vertex sharing both ai and ai+1 with
vi, j , or there is no vertex sharing both b j and b j+1 with vi, j , but not both. We assume
without loss of generality that there is no vertex sharing both ai and ai+1 with vi, j ,
and furthermore assume vi ′, j , i ′ 	= i , is the vertex sharing both b j and b j+1 with vi, j .

It follows that N (vi, j ) = {vi−1, j ′′−1, vi+1, j ′′′+1, vi ′−1, j−1, vi ′, j , vi ′+1, j+1}, for
some j ′′ 	= j and j ′′′ 	= j . Due to k = 2, this implies that ai−1 	= b j−1 = ai ′−1 and
ai+2 	= b j+2 = ai ′+2. Therefore, if a vertex of V shares ai ′ but not ai ′+1 (ai ′+1 but
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vi,j

v

vi−1,j′−1 vi,j′ vi+1,j′+1 vi′−1,j−1 vi′,j vi′+1,j+1

Fig. 2 The square S(i, i ′; j, j ′) shown in bold lines. The two non-adjacent vertices vi, j and vi ′, j ′ of the
square form a pair stated in Corollary 2.5; they have 6 common neighbors, of which two are inside the
square and four are outside of the square

not ai ′ , b j but not b j+1, b j+1 but not b j , respectively) with the vertex vi ′, j , then it also
shares b j (b j+1, ai ′ , ai ′+1, respectively) with the vertex vi ′, j ; no vertex of V shares
both ai ′ and ai ′+1 with the vertex vi ′, j . That is, the vertex vi ′, j is adjacent to only vi, j
in the graph G. ��

We say the two vertices vi, j and vi+1, j+1 of V are consecutive; and we say the two
squares S(i, i ′; j, j ′) and S(i + 1, i ′ + 1; j + 1, j ′ + 1) in G are consecutive. Clearly,
two consecutive squares contain four pairs of consecutive vertices. The following
Lemma 2.7 summarizes the fact that when two consecutive vertices belong to two
different squares, then these two squares are also consecutive (and thus contain the
other three pairs of consecutive vertices).

Lemma 2.7 In the graph G, if there are two consecutive vertices vi, j and vi+1, j+1
belonging to two different squares S(i1, i ′1; j1, j ′1) and S(i2, i ′2; j2, j ′2) respectively,
then i2 = i1 + 1, i ′2 = i ′1 + 1, j2 = j1 + 1, j ′2 = j ′1 + 1, i.e., these two squares are
consecutive.

Proof This is a direct result of the fact that no two distinct squares have any member
vertex in common, due to each square having its unique letter content. ��

Aseries of p consecutive squares {S(i+q, i ′+q; j+q, j ′+q), q = 0, 1, . . . , p−1}
in the graphG, where p ≥ 1, ismaximal if none of the square S(i−1, i ′−1; j−1, j ′−
1) and the square S(i+ p, i ′+ p; j+ p, j ′+ p) exists in the graphG. Note that the non-
existence of the square S(i−1, i ′−1; j−1, j ′−1) inG does not rule out the existence
of some of the four vertices vi−1, j−1, vi ′−1, j ′−1, vi−1, j ′−1, vi ′−1, j−1 in V ; in fact by
Lemma 2.1 there can be as many as two of these four vertices existing in V (however,
more than two would imply the existence of the square). Similarly, there can be as
many as two of the four vertices vi+p, j+p, vi ′+p, j ′+p, vi+p, j ′+p, vi ′+p, j+p existing in
V . In the sequel, a maximal series of p consecutive squares starting with S(i, i ′; j, j ′)
is denoted as S p(i, i ′; j, j ′), where p ≥ 1. See for an example in Fig. 3b where there
is a maximal series of 2 consecutive squares S2(2, 8; 2, 8), where the instance of the
2-Max- Duo is expanded slightly from the instance shown in Fig. 1.

Lemma 2.8 Suppose S p(i, i ′; j, j ′), where p ≥ 1, exists in the graph G. Then,
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A :

B :
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c d x y e f
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(a) The bipartite graphH = (A,B, F ).

v2,2 v3,3 v4,4

v10,4v1,7 v2,8 v3,9 v7,1 v8,2 v9,3

v8,8 v9,9

v11,5

v5,13

(b) The instance graphG = (V,E).

a d e f g

g d e h a

A :

B :

1 4 5 6 7

1 4 5 6 7

10
d

11
e

12
h

13
y

14
x

d x y e f
10 11 12 13 14

(c) The bipartite graphH ′ = (A′, B′, F ′) after
removal of four substrings “bc”.

v4,4

v10,4v1,7 v7,1 v11,5

v5,13

(d) The updated instance graphG′ = (V ′, E′) after
removal of S2(2, 8; 2, 8).

Fig. 3 An instance of the 2-Max- Duo problem with A = (a, b, c, d, e, f , g, b, c, d, e, h, y, x) and B =
(g, b, c, d, e, h, a, b, c, d, x, y, e, f ). The bipartite graph H = (A, B, F) is shown in Fig. 3a and the
constructed instance graph G = (V , E) of theMIS problem is shown in Fig. 3b. There is a maximal series
of 2 squares S2(2, 8; 2, 8) in G, associated with the four substrings “bcd”. After the removal of the four
substrings “bc”, we achieve A′ = (a, d, e, f , g, d, e, h, y, x) and B′ = (g, d, e, h, a, d, x, y, e, f ), for
which the bipartite graph H ′ = (A′, B′, F ′) is shown in Fig. 3c and the corresponding graphG′ = (V ′, E ′)
is shown in Fig. 3d

1. The two substrings (ai , ai+1, . . . , ai+p) and (ai ′ , ai ′+1, . . . , ai ′+p) of the string
A are identical and do not overlap; the two substrings (b j , b j+1, . . . , b j+p) and
(b j ′ , b j ′+1, . . . , b j ′+p) of the string B are identical and do not overlap;

2. If a maximum independent set I ∗ of G contains less than 2p vertices from
S p(i, i ′; j, j ′), then it must contain either the four vertices vi−1, j−1, vi ′−1, j ′−1,

vi ′+p, j+p, vi+p, j ′+p or the four verticesvi ′−1, j−1, vi−1, j ′−1, vi+p, j+p, vi ′+p, j ′+p.

Proof By the definition of the square S(i + q, i ′ + q; j + q, j ′ + q), for each q =
0, 1, . . . , p − 1, we have ai+q = ai ′+q and ai+q+1 = ai ′+q+1; we thus conclude
that the two substrings (ai , ai+1, . . . , ai+p) and (ai ′ , ai ′+1, . . . , ai ′+p) are identical.
In Fig. 3b, for S2(2, 8; 2, 8) the two substrings are “bcd”. If these two substrings
overlap, then there would be three occurrences of at least one letter, contradicting the
fact that k = 2. This proves the first item.

Next, for the square S(i + q, i ′ + q; j + q, j ′ + q), if one vertex, say vi+q, j+q ,
is in the maximum independent set I ∗, then due to maximality of I ∗ and Lemma 2.4
another vertex, vi ′+q, j ′+q in this case, is also in I ∗. That is, either none or exactly two
vertices of the square S(i + q, i ′ + q; j + q, j ′ + q) are in I ∗. It follows that if I ∗
contains less than 2p vertices from S p(i, i ′; j, j ′), then there is at least one square of
which no vertex is in I ∗. Assume r is the least index such that no vertex of the square
S(i + r , i ′ + r; j + r , j ′ + r) is in I ∗, and assume without loss of generality that at
least one of the vertices vi+r+1, j+r+1 and vi ′+r+1, j ′+r+1 is in I ∗.

Note that the square S(i − 1, i ′ − 1; j − 1, j ′ − 1) does not exist in the graph
G, and thus at most two of its four vertices (which are vi−1, j−1, vi ′−1, j−1, vi−1, j ′−1,
vi ′−1, j ′−1) exist in V . We claim that there are exactly two of these four vertices
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vi−1, j−1, vi ′−1, j−1, vi−1, j ′−1, vi ′−1, j ′−1 exist in V and they both are in I ∗. Suppose
otherwise there is at most one of these four vertices in I ∗, say vi−1, j−1; we may
increase the size of I ∗ by removing vi−1, j−1 together with the two vertices of the
square S(i + q, i ′ + q; j + q, j ′ + q), for each q = 0, 1, . . . , r − 1, while adding
the two vertices vi+q, j+q and vi ′+q, j ′+q of the square S(i + q, i ′ + q; j + q, j ′ + q),
for each q = 0, 1, . . . , r , that is, removing 2r + 1 while adding 2r + 2 vertices,
a contradiction. Again from Lemma 2.4, these two vertices existing in V are either
vi−1, j−1, vi ′−1, j ′−1, or vi ′−1, j−1, vi−1, j ′−1.

A symmetric argument shows that either vi+p, j+p, vi ′+p, j ′+p ∈ I ∗, or vi ′+p, j+p,

vi+p, j ′+p ∈ I ∗.
Lastly, if vi−1, j−1, vi ′−1, j ′−1 ∈ I ∗ and vi+p, j+p, vi ′+p, j ′+p ∈ I ∗ (vi ′−1, j−1,

vi−1, j ′−1 ∈ I ∗ and vi ′+p, j+p, vi+p, j ′+p ∈ I ∗, respectively), then I ∗ can be expanded
to include the two vertices vi+q, j+q and vi ′+q, j ′+q (vi ′+q, j+q and vi+q, j ′+q , respec-
tively) of the square S(i + q, i ′ + q; j + q, j ′ + q), for each q = 0, 1, . . . , p − 1, a
contradiction to the maximality of I ∗. This proves the second item of the lemma. ��

Suppose S p(i, i ′; j, j ′), where p ≥ 1, exists in the graph G. Let A′ denote the
string obtained from A by removing the two substrings (ai , ai+1, . . . , ai+p−1) and
(ai ′ , ai ′+1, . . . , ai ′+p−1) and concatenating the remainder together, and B ′ denote
the string obtained from B by removing the two substrings (b j , b j+1, . . . , b j+p−1)

and (b j ′ , b j ′+1, . . . , b j ′+p−1) and concatenating the remainder. Let the graph G ′ =
(V ′, E ′) denote the instance graph of the MIS problem constructed from the two
strings A′ and B ′. See for an example G ′ in Fig. 3d, where there is a maximal series
of 2 consecutive squares S2(2, 8; 2, 8) in the graph G.

Corollary 2.9 Suppose S p(i, i ′; j, j ′), where p ≥ 1, exists in the graph G. Then,
the union of a maximum independent set I ′ in the graph G ′ = (V ′, E ′) and cer-
tain 2p vertices from S p(i, i ′; j, j ′) becomes a maximum independent set in the
graph G = (V , E), where these certain 2p vertices are {vi+q, j+q , vi ′+q, j ′+q | q =
0, 1, . . . , p − 1} if vi−1, j−1 ∈ I ′ or vi+p, j+p ∈ I ′, or they are {vi ′+q, j+q , vi+q, j ′+q |
q = 0, 1, . . . , p − 1} if vi ′−1, j−1 ∈ I ′ or vi ′+p, j+p ∈ I ′.

Proof Consider the construction of the graph G ′ = (V ′, E ′) from the two strings A′
and B ′. Equivalently, starting with the graph G = (V , E), if we

• Contract the p vertices {vi+q, j+q | q = 0, 1, . . . , p − 1} into the vertex vi+p, j+p

if it exists or otherwise into a void vertex,
• Contract the p vertices {vi ′+q, j ′+q | q = 0, 1, . . . , p−1} into the vertex vi ′+p, j ′+p
if it exists or otherwise into a void vertex,

• Contract the p vertices {vi ′+q, j+q | q = 0, 1, . . . , p−1} into the vertex vi ′+p, j+p
if it exists or otherwise into a void vertex, and

• Contract the p vertices {vi+q, j ′+q | q = 0, 1, . . . , p−1} into the vertex vi+p, j ′+p
if it exists or otherwise into a void vertex,

then we obtain a graph that is exactly G ′. In the graph G ′, the vertices vi−1, j−1 and
vi ′+p, j+p, if both exist inV , become adjacent to each other; so are the vertices vi ′−1, j−1
and vi+p, j+p , if both exist in V . It follows that the maximum independent set I ′ in the
graph G ′ = (V ′, E ′) does not contain both vertices vi−1, j−1 and vi ′+p, j+p, or both

123

Journal of Combinatorial Optimization (2020) 40:806–824816



Algorithm Approx
1: Construct the graph G = (V, E) from the two input strings A and B;
2: while (there is a square in the graph) do
3: find a maximal series of squares;
4: locate the four identical substrings of A and B as stated in Lemma 2.8;
5: remove these four substrings and accordingly update the graph;
6: end while
7: denote the resultant graph as G1 = (V1, E1);
8: set L1 to contain all degree-0 and degree-1 vertices of G1;
9: set N [L1] to be the closed neighborhood of L1 in G1, i.e. N [L1] = L1 ∪ N(L1);

10: set G2 = G1[V1 − N [L1]], the subgraph of G1 induced on V1 − N [L1];
11: compute an independent set I2 in G2 by the ((Δ + 3)/5 + ε)-approximation algorithm in [3];
12: set I1 = I2 ∪ L1, an independent set in G1;
13: return an independent set I in G using I1 and Corollary 2.9.

Fig. 4 A high-level description of the approximation algorithm for 2-Max- Duo

vertices vi ′−1, j−1 and vi+p, j+p. Therefore, starting with I ′, we can add exactly 2p
vertices from S p(i, i ′; j, j ′) to form an independent set inG, of which the maximality
can be proved by a simple contradiction.

We remark that in the extreme case where none of the vertices of S(i−1, i ′ −1; j−
1, j ′ − 1) and none of the vertices of S(i + p, i ′ + p; j + p, j ′ + p) are in I ′, we
may add either of the two sets of 2p vertices from S p(i, i ′; j, j ′) to form a maximum
independent set in G. ��

Iteratively applying the above string shrinkage process, or equivalently the vertex
contracting process, associatedwith the elimination of amaximal series of consecutive
squares. In O(n) iterations, we achieve the final graph containing no squares, which
we denote as G1 = (V1, E1).

3 An approximation algorithm for 2-Max- Duo

A high-level description of the approximation algorithm, denoted as Approx, for the
2-Max- Duo problem is depicted in Fig. 4.

In more details, given an instance of the 2-Max- Duo problem with two length-n
strings A and B, the first step of our algorithm is to construct the graph G = (V , E),
which is done in O(n2) time. In the second step (Lines 2–7 in Fig. 4), it iteratively
applies the vertex contracting process presented in Sect. 2 at the existence of amaximal
series of consecutive squares, and at the end it achieves the final graph G1 = (V1, E1)

which does not contain any square. This second step can be done in O(n2) time too
since each iteration of the vertex contracting process is done in O(n) time and there
are O(n) iterations. In the third step (Lines 8–10 in Fig. 4), let L1 denote the set
of singletons (degree-0 vertices) and leaves (degree-1 vertices) in the graph G1; our
algorithm removes all the vertices of L1 and their neighbors from the graph G1 to
obtain the remainder graph G2 = (V2, E2). This step can be done in O(n2) time too
due to |V1| ≤ |V | ≤ 2n, and the resultant graph G2 has maximum degree � ≤ 4
by Corollaries 2.5 and 2.6 . (See for an example illustrated in Fig. 5a.) In the fourth
step (Lines 11–12 in Fig. 4), our algorithm calls the state-of-the-art approximation
algorithm for the MIS problem (Berman and Fujito 1999) on the graph G2 to obtain
an independent set I2 in G2; and returns I1 = L1 ∪ I2 as an independent set in the
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v4,4

v10,4v1,7 v7,1 v11,5

v5,13

(a) I1 = {v1,7, v7,1, v10,4, v11,5, v5,13} is an inde-
pendent set in G1, consisting of all the five leaves
of G1 = G′ shown in Figure 2.3d.

v2,2 v3,3 v4,4

v10,4v1,7 v2,8 v3,9 v7,1 v8,2 v9,3

v8,8 v9,9

v11,5

v5,13

(b) Using I1, since v10,4 ∈ I1, the four vertices v2,8, v3,9,
v8,2, v9,3 are added to form an independent set I in the
original graph G shown in Figure 2.3b.
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(c) The parallel edges ofH corresponding to the independent set
I shown in Figure 3.2b, also correspond to the 9 preserved duos
(a, b), (b, c), (c, d), (e, f), (g, b), (b, c), (c, d), (d, e), (e, h) for the in-
stance shown in Figure 2.3a.

Fig. 5 Illustration of the execution of our algorithmApproxon the instance shown inFig. 3. The independent
set I1 in the graph G1 is shown in Fig. 5a in filled circles, for which we did not apply the state-of-the-art
approximation algorithm for theMIS problem. The independent set I in the graph G is shown in Fig. 5b in
filled circles, according to Corollary 2.9 the four vertices v2,8, v3,9, v8,2, v9,3 are added due to v10,4 ∈ I1.
The parallel edges of H corresponding to the vertices of I are shown in Fig. 5c, representing a feasible
solution to the 2-Max- Duo instance shown in Fig. 3

graph G1. The running time of this step is dominated by the running time of the state-
of-the-art approximation algorithm for theMIS problem, which is a high polynomial
in n and 1/ε. In the last step (Line 13 in Fig. 4), using the independent set I1 in G1,
our algorithm adds 2p vertices from each maximal series of p consecutive squares
according to Corollary 2.9, to produce an independent set I in the graph G. (For an
illustrated example see Fig. 5b.) The last step can be done in O(n) time.

The state-of-the-art approximation algorithm for theMIS problem on a graph with
maximum degree � has a performance ratio of (�+3)/5+ ε, for any ε > 0 (Berman
and Fujito 1999).

Lemma 3.1 In thegraphG1 = (V1, E1), letOPT1 denote the cardinality of amaximum
independent set in G1, and let SOL1 denote the cardinality of the independent set I
returned by the algorithm Approx. Then, OPT1 ≤ (1.4 + ε)SOL1, for any ε > 0.

Proof Recall that L1 denotes the set of singletons (degree-0 vertices) and leaves
(degree-1 vertices) in the graph G1; our algorithm Approx removes all the ver-
tices of L1 and their neighbors from the graph G1 to obtain the remainder graph
G2 = (V2, E2). The graph G2 has maximum degree � ≤ 4 by Corollaries 2.5 and
2.6 . Let OPT2 denote the cardinality of a maximum independent set in G2, and let
SOL2 denote the cardinality of the independent set I2 returned by the state-of-the-art
approximation algorithm for the MIS problem. We have OPT1 = |L1| + OPT2 and
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OPT2 ≤ (1.4 + ε)SOL2, for any ε > 0. Therefore,

OPT1 ≤ |L1| + (1.4 + ε)SOL2 ≤ (1.4 + ε)(|L1| + SOL2) = (1.4 + ε)SOL1.

This proves the lemma. ��
Theorem 3.2 The 2-Max- Duo problem can be approximated within a ratio arbitrar-
ily close to 1.4, by a linear reduction to theMIS problem on degree-4 graphs.

Proof We prove by induction. At the presence of maximal series of p consecutive
squares, we perform the vertex contracting process iteratively. In each iteration to
handle one maximal series of p consecutive squares, let G and G ′ denote the graph
before and after the contracting step, respectively. LetOPT′ denote the cardinality of a
maximum independent set inG ′, and letSOL′ denote the cardinality of the independent
set I ′ returned by the algorithm Approx. Given any ε > 0, from Lemma 3.1, we may
assume that OPT′ ≤ (1.4 + ε)SOL′.

Let OPT denote the cardinality of a maximum independent set in G, and let SOL
denote the cardinality of the independent set returned by the algorithmApprox, which
adds 2p vertices from the maximal series of p consecutive squares to the independent
set I ′ in G ′, according to Corollary 2.9, to produce an independent set I in the graph
G. Lemma 2.8 states that OPT = OPT′ + 2p. Therefore,

OPT=OPT′ + 2p ≤ (1.4+ε)SOL′+2p ≤ (1.4+ε)(SOL′ + 2p) = (1.4 + ε)SOL.

This proves that for the original graphG = (V , E)we also haveOPT ≤ (1.4+ε)SOL
accordingly. That is, the worst-case performance ratio of our algorithm Approx is
1.4 + ε, for any ε > 0. The time complexity of the algorithm Approx has been
determined to be polynomial at the beginning of the section, and it is dominated
by the time complexity of the state-of-the-art approximation algorithm for the MIS
problem on degree-4 graphs. The theorem is thus proved. ��

4 The APX-hardness reduction from 3- MIS to 2- Max- Duo

In the above approximation algorithm Approx for 2- Max- Duo, we apply a vertex-
degree reduction scheme on the constructed instance graph of the MIS problem, to
remove all the degree-6 vertices and all the degree-5 vertices. This scheme essentially
reduces the 2- Max- Duo problem to computing a maximum independent set in a
graph of maximum degree� ≤ 4. Onemight wonder whether all the degree-4 vertices
can be similarly removed.

Goldstein et al. (2004) proved that the 2-MCSP problem is APX-hard via a linear
reduction from theMIS problem on cubic graphs (3- MIS); Boria et al. (2014) showed
that the same reduction could also be applied to prove that 2-Max- Duo is APX-hard.
In this section, we review this APX-hardness reduction from 3-MIS to 2-Max- Duo,
to point out that it is unlikely possible to further reduce the maximum degree � from
4 to 3 by removing all the degree-4 vertices.
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du · · au bu · · cu du eu · · bu eu fu gu · · fu hu ku · · gu lu · · hu

bu · · cu du · · au bu eu · · du eu fu hu · · fu gu lu · · hu ku · · gu

Au :

Bu :
Fig. 6 The instance Iu = (Au , Bu) defined for each vertex u ∈ V ′. The two dots between a pair of two
consecutive main substrings represent xiu y

i
u in Au and yiu x

i
u in Bu , respectively, for i = 1, 2, . . . , 6. Each

solid or dashed line connects a pair of common duos between Au and Bu . The set of five duos connecting
by solid lines is a unique optimal solution to Iu

Fig. 7 The gadget subgraph
associated with the instance
Iu = (Au , Bu), in which there
are nine vertices corresponding
to the nine common duos
between Au and Bu

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

Given a cubic graphG ′ = (V ′, E ′), an instance of 2-Max- Duo can be constructed
in the following three steps.

1. For each vertex u ∈ V ′, define a small 2-Max- Duo instance Iu = (Au, Bu)

as shown in Fig. 6, where both Au and Bu are length-28 strings with seven main
substrings, and each pair of two consecutivemain substrings are separated by a sub-
string of two letters xiu y

i
u in Au and by yiux

i
u in Bu , respectively, for i = 1, 2, . . . , 6.

These 12 letters xiu’s and yiu’s are distinct, each appears only once in Au and is
represented by a dot in Fig. 6.
One can easily check that there are nine common duos between Au and Bu , and
the set of five duos connected by solid lines in Fig. 6 is the unique optimal solu-
tion to the instance Iu . Equivalently, this constructs a gadget subgraph of theMIS
problem, as shown in Fig. 6a, in which there are nine vertices one-to-one corre-
sponding to the nine common duos and two vertices are adjacent if and only if
they are conflicting. The vertex subset {aubu, cudu, eu fu, gulu, huku} is the unique
maximum independent set in this subgraph.

2. Orient each edge in E ′ such that every vertex of V ′ has at most two incoming
edges and at most two outgoing edges. This can be done by partitioning G ′ into a
set of edge-disjoint cycles and a forest, followed by orienting the edges of a cycle
to form a directed cycle, and rooting a tree at a leaf and then orienting the edges
away from the root.

3. Let A = ⋃
u∈V ′ Au , B = ⋃

u∈V ′ Bu , and the whole instance I = (A, B). For each
directed edge (u, v) ∈ E ′, modify the instances Iu and Iv such that an optimal
solution to I coincideswith atmost one of the optimal solutions to Iu and Iv . To this
purpose, either the common duo avbv is revised into lubv (kubv , respectively) to be
in conflict with only the common duo gulu (huku , respectively), or the common duo
cvdv is revised into ludv (kudv , respectively) to be in conflict with only the common
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· · fu hu ku · · gu lu bv · · hu · · · dv · · lu · · cv dv ev · ·

· · fu gu lu · · hu ku · · gu · · · bv · · cv dv · · lu bv ev · ·
(a) The common duoavbv is revised into lubv to be
in conflict with only the common duo gulu.

· · fu hu ku · · gu lu dv ev · · hu · · · dv · · av bv · · lu · ·

· · fu gu lu · · hu ku · · gu · · · bv · · lu dv · · av bv ev · ·
(b) The common duocvdv is revised into ludv to be
in conflict with only the common duo gulu.

· · fu hu ku bv · · gu lu · · hu · · · dv · · ku · · cv dv ev · ·

· · fu gu lu · · hu ku · · gu · · · bv · · cv dv · · ku bv ev · ·
(c) The common duoavbv is revised into kubv to be
in conflict with only the common duo huku.

· · fu hu ku dv ev · · gu lu · · hu · · · dv · · av bv · · ku · ·

· · fu gu lu · · hu ku · · gu · · · bv · · ku dv · · av bv ev · ·
(d) The common duocvdv is revised into kudv to be
in conflict with only the common duo huku

Fig. 8 Four options of modifying the instances Iu and Iv by only modifying the right side of Au and the
left sides of Av, Bv such that an optimal solution to I coincides with at most one of the optimal solutions
to Iu and Iv

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

lubv bvev fvgv gvlv

cvdv dvev fvhv hvkv

evfv

(a) When the modification is done as in Figure 4.3a,
the vertex lubv connects the two gadget subgraphs.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

avbv bvev fvgv gvlv

ludv dvev fvhv hvkv

evfv

(b) When the modification is done as in Figure 4.3b,
the vertex ludv connects the two gadget subgraphs.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

kubv bvev fvgv gvlv

cvdv dvev fvhv hvkv

evfv

(c) When the modification is done as in Figure 4.3c,
the vertex kubv connects the two gadget subgraphs.

aubu bueu fugu gulu

cudu dueu fuhu huku

eufu

avbv bvev fvgv gvlv

kudv dvev fvhv hvkv

evfv

(d) When the modification is done as in Figure 4.3d,
the vertex kudv connects the two gadget subgraphs.

Fig. 9 Four different configurations for joining the two gadget subgraphs for the vertices u, v ∈ V ′, in each
of which a common duo is revised for the directed edge (u, v) ∈ E ′

duo gulu (huku , respectively). These four options of modification (Goldstein et al.
2004; Boria et al. 2014) are shown in Fig. 8. Since every vertex of V ′ has at most
two incoming edges and at most two outgoing edges, the revision process for the
directed edge (u, v) ∈ E ′ can be independently done with respect to all the other
edges of E ′.

One can check (or refer to the detailed proofs in Goldstein et al. (2004); Boria et al.
(2014)) that there exists an independent set of size α in G ′ if and only if 4n + α duos
can be preserved in IG ′ , where n = |V ′|.

The above common duo modification process for each directed edge (u, v) ∈ E ′ is
equivalent to joining the two gadget subgraphs for the vertices u, v ∈ V ′ by connecting
one of gulu and huku to one of avbv and cvdv , but additionally revising the letter content
of the common duo of Iv . Corresponding to the four options of modification shown
in Fig. 8, the two gadget subgraphs are joined as shown in Fig. 9, respectively.

Since each directed edge (u, v) ∈ E ′ gives rise to exactly one of the four possible
configurations shown in Fig. 9, we conclude from G ′ being cubic that exactly three
of the four degree-1 vertices {aubu, cudu, gulu, huku} in the gadget subgraph for the
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vertex u ∈ V ′ increase their degree to 2. It follows that however the edge orientation
scheme is, all the vertices in the final graph G have degrees 1, 2, or 4. Therefore, it is
impossible to determine in polynomial time which subset of all the degree-4 vertices
is in the maximum independent set of G.

5 Conclusion

In this paper, we examined the 2- Max- Duo problem to design an improved approxi-
mation algorithm. Based on an existing linear reduction to theMIS problem (Goldstein
et al. 2004; Boria et al. 2014), we presented a vertex-degree reduction scheme to reduce
the maximum degree of the constructed instance graph from 6 to 4. Along the way, we
uncovered several interesting structural properties of the constructed instance graph.
Our main contribution is a (1.4 + ε)-approximation algorithm for 2-Max- Duo, for
any ε > 0.

It isworthmentioning that our vertex-degree reduction technique can also be applied
for k-Max- Duowhen k ≥ 3. For example, we hadworked out the details for k = 3, to
reduce the maximum degree of the constructed instance graph from 12 to 10, leading
to a (2.6 + ε)-approximation algorithm. Nevertheless, the (2.6 + ε)-approximation
algorithm is superseded by the (2+ε)-approximation algorithm for the generalMax-
Duo (Dudek et al. 2017).

For 2- Max- Duo, it would be interesting to investigate whether the maximum
degree can be further reduced to 3, but not by determining in polynomial time which
subset of all the degree-4 vertices is in the maximum independent set. On the other
hand, one could examine whether certain structural properties of the 2- Max- Duo
instance support a direct better-than-1.4 approximation algorithm, that is, not by calling
the existing (1.4 + ε)-approximation algorithm for the MIS problem, or not even by
reducing to theMIS problem.
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