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Abstract
A subset M ⊆ E of edges of a graph G = (V , E) is called a matching in G if no
two edges in M share a common vertex. A matching M in G is called an induced
matching if G[M], the subgraph of G induced by M , is the same as G[S], the sub-
graph of G induced by S = {v ∈ V | v is incident on an edge of M}. The Maximum

Induced Matching problem is to find an induced matching of maximum cardinal-
ity. Given a graph G and a positive integer k, the Induced Matching Decision

problem is to decide whether G has an induced matching of cardinality at least k. The
Maximum Weight Induced Matching problem in a weighted graph G = (V , E)

in which the weight of each edge is a positive real number, is to find an induced
matching such that the sum of the weights of its edges is maximum. It is known
that the Induced Matching Decision problem and hence theMaximum Weight

Induced Matching problem is known to be NP-complete for general graphs and
bipartite graphs. In this paper, we strengthened this result by showing that the Induced
Matching Decision problem isNP-complete for star-convex bipartite graphs, comb-
convex bipartite graphs, and perfect elimination bipartite graphs, the subclasses of the
class of bipartite graphs. On the positive side, we propose polynomial time algorithms
for theMaximum Weight Induced Matching problem for circular-convex bipar-
tite graphs and triad-convex bipartite graphs by making polynomial time reductions
from the Maximum Weight Induced Matching problem in these graph classes
to theMaximum Weight Induced Matching problem in convex bipartite graphs.
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1 Introduction

LetG = (V , E) be a graph. Let n andm denote the number of vertices and the number
of edges ofG, respectively. A set of edges M ⊆ E is called amatching if no two edges
of M are incident on a common vertex. Vertices incident to the edges of a matching M
are called saturated by M . TheMaximum Matching problem is to find a matching
of maximum cardinality in a given graph. The Maximum Matching problem and
its variations are extensively studied in literature. In this paper, we study an important
variant ofmatchings called inducedmatchings. AmatchingM inG is called an induced
matching ifG[M], the subgraph ofG induced byM , is the same asG[S], the subgraph
ofG induced by S = {v ∈ V | v is incident on an edge ofM}. A graphG with vertex set
V = {a, b, c, d, g, h} and edge set E = {ab, bc, cd, cg, gh, hd, ad, ac, bd, ch, gd}
is shown in Fig. 1. Let M1 = {ab, gh} and M2 = {ab, cd, gh}. Note that M1 is
a matching as well as an induced matching in G, but M2 is a matching but not an
induced matching in G.

For a graph G, theMaximum Induced Matching problem is to find an induced
matching of maximum cardinality in G. The maximum induced matching problem
and its decision version are defined as follows:
Maximum Induced Matching problem (MIMP)

Instance A graph G = (V , E).
Solution An induced matching M in G.
Measure Cardinality of the set M .

Induced Matching Decision problem (IMDP)

Instance A graph G = (V , E) and a positive integer k ≤ |V |.
Question Does there exist an induced matching M in G such that |M | ≥ k?

TheMaximum Induced Matching problem was introduced by Stockmeyer and
Vazirani as “Risk-free Marriage problem” in 1982 (Stockmeyer and Vazirani 1982).
The Induced Matching Decision problem is NP-complete for general graphs
(Stockmeyer and Vazirani 1982), and remains so even for bipartite graphs (Cameron
1989) and k-regular graphs for k ≥ 4 (Kobler and Rotics 2003; Zito 1999) (see
Duckworth et al. 2005 for a survey). The Induced Matching Decision problem
also remains NP-complete for bipartite graphs with maximum degree 3, and C4-free
bipartite graphs, which are two special subclasses of bipartite graphs (Lozin 2002).
On the other hand, theMaximum Induced Matching problem is polynomial time
solvable formany graph classes, for example, chordal graphs (Cameron 1989), chordal
bipartite graphs (Cameron et al. 2003), trapezoid graphs, interval-dimension graphs
and cocomparability graphs (Golumbic and Lewenstein 2000) etc.
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Recently, Klemz and Rote studied the weighted version of theMaximum Induced

Matching problem (Klemz and Rote 2017). The Maximum Weight Induced

Matching problem is defined as follows:
Maximum Weight Induced Matching problem (MWIMP)

Instance A graph G = (V , E) with positive real weights w(e) for each e ∈ E .
Solution An induced matching M in G.
Measure Weight of M , that is

∑

e∈M
w(e).

In this paper, we study the Maximum weight Induced Matching problem
for some subclasses of bipartite graphs: perfect elimination bipartite graphs, comb-
convex bipartite graphs, star-convex bipartite graphs, circular-convex bipartite graphs,
and triad-convex bipartite graphs. The class of circular-convex bipartite graphs was
introduced by Liang and Blum (1995) and has been studied recently by researchers
(see Liu 2014; Liu et al. 2015, 2014; Pandey and Panda 2019). The triad-convex
bipartite graphs, star-convex bipartite graphs, and comb-convex bipartite graphs are
studied in Chen et al. (2016), Jiang et al. (2013), Liu et al. (2015), Song et al. (2012),
Wang et al. (2014). The main contributions of the paper are summarized below.

1. We show that the Induced Matching Decision problem is NP-complete for
star-convexbipartite graphs, comb-convexbipartite graphs, andperfect elimination
bipartite graphs.

2. We propose an O(m2) time algorithm to solve theMaximum Weight Induced

Matching problem in circular-convex bipartite graphs.
3. We propose an O(mn6) time algorithm to solve theMaximum Weight Induced

Matching problem in triad-convex bipartite graphs.

Our algorithms for the Maximum Weight Induced Matching problem in
circular-convex bipartite graphs and triad-convex bipartite graphs are based on a poly-
nomial time reduction for the Maximum Weight Induced Matching problem
from these graph classes to convex bipartite graphs. The following result is already
known for theMaximum Weight Induced Matching problem in convex bipartite
graphs.

Theorem 1 (Klemz and Rote 2017) The Maximum Weight Induced Matching

problem can be solved in O(n + m) time in convex bipartite graphs.

A preliminary version of this paper for unweighted graphs appeared in Pandey et al.
(2017).

2 Preliminaries

We consider only simple, connected and undirected graphs. In a graph G = (V , E),
the sets NG(v) = {u ∈ V (G) | uv ∈ E} and NG [v] = NG(v) ∪ {v} denote the open
neighborhood and closed neighborhood of a vertex v, respectively. For a vertex v, the
degree of v is the cardinality of open neighborhood of v, and is denoted by dG(v).
A vertex v is called a pendant vertex if dG(v) = 1. For a set S ⊆ V of the graph
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G = (V , E), the subgraph of G induced by S is defined as G[S] = (S, ES), where
ES = {xy ∈ E |x, y ∈ S}. For a set E ′ ⊆ E of the graph G = (V , E), the subgraph of
G induced by E ′ is defined as G[E ′] = (VE ′ , E ′), where VE ′ = {x ∈ V |x is incident
on an edge of E ′}. A graph G is said to be chordal if every cycle in G of length at least
four has a chord, that is, an edge joining two non-consecutive vertices of the cycle. A
graph G = (V , E) is said to be bipartite if V can be partitioned into two disjoint sets
X and Y such that every edge of G joins a vertex in X to a vertex in Y , and such a
partition (X ,Y ) of V is called a bipartition. A bipartite graph with bipartition (X ,Y )

of V is denoted by G = (X ,Y , E). A bipartite graph G is said to be chordal bipartite
if every cycle of length at least 6 has a chord. A weighted graph is a graphG = (V , E)

together with a weight function w : E → R+ from the edge set to the set of positive
real numbers.

Let G = (X ,Y , E) be a bipartite graph with |X | = n1 and |Y | = n2. G is
called a convex bipartite graph if there exists a linear ordering < on X , say x1 <

x2 < · · · < xn1 , such that for every vertex y in Y , NG(y) = {xi , xi+1, . . . , x j } for
1 ≤ i ≤ j ≤ n1, that is, vertices in NG(y) are consecutive in the linear ordering <

on X . A set of consecutive vertices in the linear ordering < on X is called an interval.
G is called a circular-convex bipartite graph if there exists a circular ordering ≺ on
X , say x1 ≺ x2 ≺ · · · ≺ xn1 ≺ x(n1+1) = x1, such that for every vertex y in Y ,
either NG(y) = {xi , xi+1, . . . , x j } or NG(y) = {x j , x j+1, . . . , xn1 , x1, . . . , xi } for
1 ≤ i ≤ j ≤ n1, that is, vertices in NG(y) are consecutive in the circular ordering ≺
on X . A set of consecutive vertices in the clock-wise direction in the circular ordering
≺ on X is called a circular arc and the first vertex and the last vertex in the circular
arc are called the left end point and the right end point of the circular arc, respectively.

A tree with exactly one non-pendant vertex is a star. A comb is a graph obtained
by attaching a pendant vertex (tooth) to every vertex of a path (backbone). A bipartite
graph G = (X ,Y , E) is called a tree-convex bipartite graph, if a tree T = (X , EX )

can be defined such that for every vertex y in Y , the neighborhood of y induces a
subtree of T . Tree-convex bipartite graphs are recognizable in linear time, and the
associated tree T can also be constructed in linear-time (Bao and Zhang 2012). A
tree-convex bipartite graph with a corresponding tree is shown in Fig. 2. For T a star,
G is called a star-convex bipartite graph. For T a triad, that is, three paths with a
common end-vertex, G is called a triad-convex bipartite graph. For T a comb, G is
called a comb-convex bipartite graph. If T is a path, thenG is called a convex bipartite
graph. Note that both the definitions of convex bipartite graphs are equivalent.

For a bipartite graph G = (X ,Y , E), an edge uv ∈ E is a bisimplicial edge if
NG(u)∪NG(v) induces a complete bipartite subgraph inG. Let (e1, e2, . . . , ek) be an
ordering of pairwise non-adjacent edges (no two edges have a common end vertex) of
G (not necessarily all edges of E). Let Si be the set of endpoints of edges e1, e2, . . . , ei
and let S0 = ∅. Ordering (e1, e2, . . . , ek) is a perfect edge elimination ordering for G
ifG[(X∪Y )\Sk] has no edge and each edge ei is bisimplicial in the remaining induced
subgraphG[(X∪Y )\Si−1]. A graphG is called a perfect elimination bipartite graph if
G admits a perfect edge elimination ordering. The class of perfect elimination bipartite
graphs was introduced by Golumbic and Gauss (1978). The hierarchial relationship
between subclasses of bipartite graphs is shown in Fig. 3.

123



Journal of Combinatorial Optimization (2020) 40:713–732 717

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

y1

y2

y3

G T

Fig. 2 A tree-convex bipartite graph G with a corresponding tree T

Fig. 3 The hierarchical relationship between subclasses of bipartite graphs

3 NP-completeness results

In this section, we study the NP-completeness of the Induced Matching Decision

problem. The Induced Matching Decision problem is NP-complete for bipartite
graphs. We strengthen the complexity result of the Induced Matching Decision

problem, by showing that it remains NP-complete for star-convex bipartite graphs,
comb-convexbipartite graphs, and perfect elimination bipartite graphs, three important
subclasses of the class of bipartite graphs.

3.1 Star-convex bipartite graphs

In this subsection,we prove the hardness result for the Induced Matching Decision

problem in star-convex bipartite graphs. Recall that a bipartite graphG = (X ,Y , E) is
called a star-convex bipartite graph, if a star T = (X , EX ) can be defined on partition
X such that for every vertex y in Y , the neighborhood of y induces a connected
subgraph of T . A star-convex bipartite graph with a corresponding star is shown in
Fig. 4.
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Fig. 4 A star-convex bipartite graph G with a corresponding star T

The following necessary and sufficient condition for a bipartite graph to be a star-
convex bipartite graph will be useful in the polynomial time reduction.

Lemma 1 (Pandey and Panda 2019) A bipartite graph G = (X ,Y , E) is a star-convex
bipartite graph if and only if there exists a vertex x in X such that every vertex y in Y
is either a pendant vertex or is adjacent to x.

Theorem 2 The Induced Matching Decision problem is NP-complete for star-
convex bipartite graphs.

Proof Clearly, the Induced Matching Decision problem is in NP for star-convex
bipartite graphs. To show the NP-completeness, we give a polynomial time reduc-
tion from the Induced Matching Decision problem for bipartite graphs, which is
already known to be NP-complete (Cameron 1989).

Given a bipartite graph G = (X ,Y , E), we construct a star-convex bipartite graph
H = (XH ,YH , EH ) in the following way: XH = X ∪ {u}, YH = Y , and EH =
E ∪ {uy | y ∈ YH }. The construction of H from G is shown in Fig. 5. By Lemma 1, it
is clear that the constructed graph H is a star-convex bipartite graph (as every vertex
in YH is adjacent to the vertex u ∈ XH ). Now, the following claim is sufficient to
complete the proof of the theorem. ��

Claim G has an induced matching of size at least k if and only if H has an induced
matching of size at least k.

Proof Let M be an induced matching in G and |M | ≥ k. Then M is also an induced
matching in H (As, in the construction of H from G, we have not added any edge
whose both endpoints are the vertices of G). Hence H contains an induced matching
of size at least k.

Conversely, let M ′ be an induced matching in H , and |M ′| ≥ k. If M ′ saturates u,
that is, M ′ contains an edge, say e = uyi , whose one endpoint is u, then |M ′| = 1.
If any other edge xr ys ∈ M ′, then M ′ will not be an induced matching in H (as
uys ∈ E(H)). In this case, G contains an induced matching with at least one edge.
Otherwise, if M ′ does not contain any edge whose one of the endpoints is u, then
M ′ ⊆ E(G). Also, since M ′ is an induced matching in H and G is a subgraph of H ,
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Fig. 5 An illustration of the construction of H from G
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Fig. 6 A comb-convex bipartite graph G with a corresponding comb T

M ′ is also an induced matching in G. Hence G contains an induced matching of size
at least k. ��
Hence, the theorem is proved. ��

3.2 Comb-convex bipartite graphs

In this subsection, we show that the Induced Matching Decision problem remains
NP-complete for comb-convex bipartite graphs, which is a subclass of tree-convex
bipartite graphs. Recall that a bipartite graph G = (X ,Y , E) is called a comb-convex
bipartite graph, if a comb T = (X , EX ) can be defined on partition X such that for
every vertex y in Y , the neighborhood of y induces a connected subgraph of T . A
comb-convex bipartite graph with a corresponding comb is shown in Fig. 6.

Theorem 3 The Induced Matching Decision problem is NP-complete for comb-
convex bipartite graphs.

Proof Clearly, the Induced Matching Decision problem is in NP for comb-convex
bipartite graphs. To show the NP-completeness, we give a polynomial time reduc-
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Fig. 7 An illustration of the construction of H from G

tion from the Induced Matching Decision problem for bipartite graphs, which is
already known to be NP-complete (Cameron 1989).

Given a bipartite graphG = (X ,Y , E), we construct a comb-convex bipartite graph
H = (XH ,YH , EH ) in the following way: XH = X ∪ X ′, where X ′ contains a copy
of x for each x ∈ X , YH = Y and EH = E ∪ {x ′y | x ′ ∈ X ′ and y ∈ Y }. Note that
H can be constructed from G in polynomial time. The construction of H from G is
shown in Fig. 7. It is easy to see that H is a comb convex bipartite graph if X ′ is taken
as the backbone and X is taken as the teeth of the comb. ��

Claim G has an induced matching of size at least k if and only if H has an induced
matching of size at least k, where k > 1.

Proof LetM be an inducedmatching inG of size at least k. Then,M is also an induced
matching in H . Hence, H has an induced matching of size at least k.

Conversely, assume that M is an induced matching in H of size at least k, k > 1.
Observe that if a vertex x ′ ∈ X ′ is saturated by M , that is x ′y ∈ M for some y ∈ Y ,
then M does not contain any other edge of H . Since x ′ is adjacent to every vertex
y ∈ Y , for any edge xi yi , where xi ∈ XH and yi ∈ Y , x ′yi is also an edge in H .
Hence, the edge xi yi can not be present in M and |M | should be 1.

As |M | ≥ k > 1, any vertex x ′ ∈ X ′ is not saturated by M , that is, M does not have
any edge from E ′. In this case, M is also an induced matching in G, and |M | ≥ k. ��
Hence, the theorem is proved. ��

3.3 Perfect elimination bipartite graphs

In this subsection,we prove the hardness result for the Induced Matching Decision

problem in perfect elimination bipartite graphs. Since the class of perfect elimination
bipartite graphs is a subclass of bipartite graphs, and a superclass of chordal bipartite
graphs, our result reduces the complexity gap between bipartite graphs and chordal
bipartite graphs.
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Fig. 8 A perfect elimination
bipartite graph
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Fig. 9 An illustration of the construction of H from G

A perfect elimination bipartite graph with a perfect edge elimination ordering σ =
(x4y2, x2y1) is shown in Fig. 8.

Theorem 4 The Induced Matching Decision problem is NP-complete for perfect
elimination bipartite graphs.

Proof Clearly, the Induced Matching Decision problem is in NP for perfect elim-
ination bipartite graphs. To show the NP-completeness, we give a polynomial time
reduction from the Induced Matching Decision problem for bipartite graphs,
which is already known to be NP-complete (Cameron 1989).

Given a bipartite graph G = (X ,Y , E) where X = {x1, x2, . . . , xn1} and Y =
{y1, y2, . . . , yn2}, we construct a bipartite graph H = (XH ,YH , EH ) in the following
way: For each xi ∈ X , add a path Pi = xi , wi , zi , ti of length 3. Formally XH = X ∪
{zi | 1 ≤ i ≤ n1}, YH = Y ∪ {wi , ti | 1 ≤ i ≤ n1}, and EH = E ∪ {xiwi , wi zi , zi ti |
1 ≤ i ≤ n1}. ��

Figure 9 illustrates the construction of H fromG. Clearly H is a perfect elimination
bipartite graph and (z1t1, z2t2, . . . , zn1 tn1, x1w1, x2w2, . . . , xn1wn1) is a perfect edge
elimination ordering for H . Now, the following claim is sufficient to complete the
proof of the theorem.

Claim G has an induced matching of size at least k if and only if H has an induced
matching of size at least k + n1.
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Fig. 10 A circular-convex bipartite graph

Proof Let M be an induced matching in G, and |M | ≥ k. Then M ′ = M ∪ {zi ti | 1 ≤
i ≤ n1} is an induced matching in H , and |M ′| ≥ k + n1. Hence H has an induced
matching of size at least k + n1.

Conversely, letM ′ be an inducedmatching in H , and |M ′| ≥ k+n1. Then for each i ,
1 ≤ i ≤ n1, |M ′ ∩ {xiwi , wi zi , zi ti | 1 ≤ i ≤ n1}| ≤ 1, that is, at most one edge from
the set {xiwi , wi zi , zi ti } belongs to M ′. Define S = {xiwi , wi zi , zi ti | 1 ≤ i ≤ n1}.
Also define M = M ′\S. Then |M | ≥ k. Since M ⊆ M ′, M is also an induced
matching in H . Also, G is a subgraph of H , and M ⊆ EG . Hence M is also an
induced matching in G. Hence G contains an induced matching of size at least k. ��

Hence, the theorem is proved. ��

4 Circular-convex bipartite graph

In this section, we propose a polynomial time algorithm to compute a maximum
weight induced matching in a weighted circular-convex bipartite graph. Recall that
a circular-convex bipartite graph is a bipartite graph that exhibits a circular ordering
≺ on X , say x1 ≺ x2 ≺ · · · ≺ xn1 ≺ x(n1+1) = x1, such that for every vertex y in
Y , either NG(y) = {xi , xi+1, . . . , x j } or NG(y) = {x j , x j+1, . . . , xn1 , x1, . . . , xi } for
1 ≤ i ≤ j ≤ n1, that is, vertices in NG(y) are consecutive in the circular ordering
≺ on X . A circular-convex bipartite graph with a corresponding circular ordering
x1 ≺ x2 ≺ · · · ≺ x8 ≺ x1 is shown in Fig. 10.

Our algorithm is based on the reduction from circular-convex bipartite graphs to
convex bipartite graphs. Below we first give a construction of a convex bipartite graph
from a given circular-convex bipartite graph.
Construction 1 Let G = (X ,Y , E) be a weighted circular-convex bipartite graph
with positive edge weights w(e) for each e ∈ E . Let |X | = n1 and |Y | = n2. Let
e = xi y j ∈ E . Without loss of generality, we can always assume a circular ordering
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≺ on X , say x1 ≺ x2 ≺ · · · ≺ xn1 ≺ x(n1+1) = x1, such that for every vertex y in
Y , NG(y) is a circular arc. Now, construct the graph Ge = (Xe,Ye, Ee) as follows:
Xe = X\NG(y j ), Ye = Y\NG(xi ), and Ee = {xy ∈ E | x ∈ Xe, y ∈ Ye}.
Lemma 2 Ge is a convex bipartite graph.

Proof Let G ′ = (X ′,Y ′, E ′) be the graph constructed from G by removing xi and all
its neighbors. Now, we define a linear ordering < on the vertices of X ′ as follows,
xi+1 < xi+2 < · · · < xn1 < x1 < · · · < xi−1. Since we have removed all the
neighbors of xi , none of the vertex in Y ′ is adjacent to both xi−1 and xi+1. Therefore
for every vertex y ∈ Y ′, NG ′(y) is an interval on X ′. Hence G ′ is a convex bipartite
graph. Also, observe that Ge is a subgraph ofG ′. Since, G ′ is a convex bipartite graph,
Ge is also a convex bipartite graph. ��
Lemma 3 Let M be a maximum weight induced matching in G and e ∈ M. Let Me be
a maximum weight induced matching in Ge. Then M ′ = Me ∪ {e} is also a weighted
induced matching in G andw(M) = w(M ′). In other words, M ′ is a maximum weight
induced matching in G.

Proof Note that Ge is constructed from G by removing some of its vertices. Hence
every weighted induced matching in Ge is also a weighted induced matching in G.
Therefore Me is also a weighted induced matching in G. Also, there is no edge in G,
which joins an endpoint of e and an endpoint of some edge of Ge, which implies that
there is no edge in G which joins an endpoint of e and an endpoint of some edge in
Me. Hence M ′ = Me ∪ {e} is also a weighted induced matching in G. Since M is a
maximum weight induced matching in G, w(M) ≥ w(M ′). To complete the proof,
we need to show that w(M) ≤ w(M ′).

Let xi , y j are the end points of the edge e, and S = NG(xi ) ∪ NG(y j ). Then
M\{e} does not contain any edge incident on any vertex in S, otherwise M is not
a weighted induced matching in G. Hence M\{e} is a weighted induced matching
in G[(X ∪ Y )\(NG(xi ) ∪ NG(y j ))], which is exactly the graph Ge. Since Me is
a maximum weight induce matching in Ge, w(Me) ≥ w(M) − w(e). Therefore
w(M) ≤ w(Me) + w(e) = w(M ′).

Hence w(M) = w(M ′), and M ′ is also a maximum weight induced matching in
G. ��
The detailed algorithm for finding a maximumweight induced matching in a weighted
circular-convex bipartite graph G is given in Fig. 11.

The following theorem directly follows from the Lemma 3 and the algorithm
Weighted- Induced- M- Circular- Convex.

Theorem 5 Amaximumweight inducedmatching in aweighted circular-convex bipar-
tite graph can be computed in O(m2) time.

Proof Since for each edge e ∈ E , we are computing a maximum weight induced
matching in graph Ge. The time taken by algorithm is atmost O(m × g(n)), where
g(n) is the time complexity of computing a maximum weight induced matching in a
convex bipartite graph. By Theorem 1, it is clear that g(n) = O(m). So, the overall
time complexity of Weighted- Induced- M- Circular- Convex is at most O(m2).

��
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Fig. 11 Algorithm to compute a maximum weight induced matching in a circular-convex bipartite graph
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Fig. 12 A triad-convex bipartite graph G with a corresponding triad T

5 Triad-convex bipartite graph

In this section,we propose a polynomial time algorithm to compute amaximumweight
induced matching in a weighted triad-convex bipartite graph.

Let G = (X ,Y , E) be a weighted triad-convex bipartite graph with positive edge
weights w(e) for each e ∈ E and T = (X , EX ) be a triad defined on X , such
that for every vertex y ∈ Y , T [NG(y)] is a connected subgraph of T . Let X =
{x0} ∪ X1 ∪ X2 ∪ X3 be such that for each i , 1 ≤ i ≤ 3, Xi = {xi,1, xi,2, . . . , xi,ni }.
Also suppose that xi,0 = x0 for all i , 1 ≤ i ≤ 3. For each i , 1 ≤ i ≤ 3, let
Pi = x0, xi,1, xi,2, . . . , xi,ni be a path in T = (X , EX ). Note that x0 is a common
vertex in all the three paths P1, P2, and P3. A triad-convex bipartite graph with a
corresponding triad is shown in Fig. 12.

Let G = (X ,Y , E) be a weighted triad-convex bipartite graph with x0 as the
common vertex of the three paths of a triad. Note that a maximum weight induced
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matching ofG may saturate x0 ormay not saturate x0. Among all theweighted induced
matchings of G not saturating x0, let M1 be a maximum weight induced matching.
Similarly, among all the weighted induced matchings of G saturating x0, let M2 be a
maximumweight induced matching. If weight of M1 is at least the weight of M2, then
M1 is amaximumweight inducedmatching ofG. Otherwise,M2 is amaximumweight
induced matching of G. So, it is enough to find a maximum weight induced matching
of G saturating x0 and a maximum weight induced matching of G not saturating x0.
We first find a maximum weight induced matching M of G not saturating x0. We
first show that in this case, M can saturate at most 3 neighbors of x0. This allows
us to consider only four cases: M does not saturate any neighbor of x0, M saturates
exactly one neighbor of x0, M saturates exactly two neighbors of x0 and M saturates
exactly three neighbors of x0. In each of these cases, we construct a convex bipartite
graph G ′ from G and we compute a maximum weight induced matching of G ′ using
the known algorithm given in Klemz and Rote (2017). We then use this matching to
find a maximum weight induced matching of G. Similarly, we solve the case when
M saturates x0. So, in each of these cases, we first construct a convex bipartite graph
G ′ from G and we find a maximum weight induced matching M ′ of G ′ using the
known algorithm given in Klemz and Rote (2017). We then construct a maximum
weight induced matching of G by suitably adding some edges which depends on the
corresponding case. The details are given below through a series of lemmas.

Lemma 4 Let M beamaximumweight inducedmatching inG. Let M does not saturate
x0, but M saturates some of the neighbors of x0. Then M saturates at most 3 neighbors
of x0.

Proof We prove it by contradiction. Suppose M saturates 4 neighbors of x0, say y j1 ,
y j2 , y j3 , and y j4 . Also suppose that {x j1 y j1 , x j2 y j2 , x j3 y j3 , x j4 y j4} ⊆ M . Then at
least two vertices of the set {x j1, x j2 , x j3 , x j4} belong to the same path Pi for some i ,
1 ≤ i ≤ 3 (see Fig. 13). Without loss of generality, we may assume that x j1 , x j2 ∈ P1.
Also assume that the distance between x0 and x j1 is less than the distance between
x0 and x j2 in path P1. Notice that y j2 is adjacent to x0 as well as x j2 . Also, by the
definition of triad-convex bipartite graph, T [NG(y j2)] is a subtree of T . Hence y j2
must be adjacent to x j1 . But by the definition of induced matching, if x j1 y j1 and x j2 y j2
are edges in an induced matching, then x j1 y j2 /∈ E . So, we arrive at a contradiction. ��

Now let M be a maximumweight induced matching inG, then one of the following
possibilities must occur:

(a) M does not saturate any vertex in NG [x0].
(b) x0 is saturated by M .
(c) M does not saturate x0 but M saturates at most 3 neighbors of x0. In this case,

again three possibilities arise.

– M saturates exactly one neighbor of x0.
– M saturates exactly two neighbors of x0.
– M saturates exactly three neighbors of x0.

Now we discuss in detail that how to find a maximum weight induced matching M
in G in each of the above cases:
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Fig. 13 A triad-convex bipartite graph

Case 1 M does not saturate any vertex in NG [x0].
We construct a weighted convex bipartite graph G0 = (X0,Y0, E0) in the following
way:

Construction 2 G0 = G[V \NG [x0]].
Lemma 5 G0 is a convex bipartite graph.

Proof G0 is constructed by removing the vertex x0 and all its neighbors from G. Now,
we define a linear ordering < on the vertices of X0 as follows, x1,1 < x1,2 < · · · <

x1,n1 < x2,1 < x2,2 < · · · < x2,n2 < x3,1 < x3,2 < · · · < x3,n3 . Then for every
vertex y ∈ Y0, NG0(y) is an interval on X0. Hence G0 is a convex bipartite graph. ��
Lemma 6 Let M0 be a maximum weight induced matching in G0. Then M0 is a
weighted induced matching in G. Moreover, if there exists a maximum weight induced
matching M in G which does not saturate any vertex in NG[x0] thenw(M) = w(M0).
In other words, M0 is a maximum weight induced matching in G.

Proof Note that G0 is a subgraph of G, and there does not exist any edge e ∈
E(G)\E(G0) such that both the end points of e are in G0. Hence every induced
matching in G0 is also an induced matching in G. So, M0 is an induced matching in
G.

Now, if M is a maximum weight induced matching in G and M does not saturate
any vertex in NG [x0], then M is also a maximum weight induced matching in the
graph obtained from G by removing x0 and all its neighbors, which is exactly G0.
Hence w(M) = w(M0), and M0 is also a maximum weight induced matching in G. ��
Case 2 x0 is saturated by M , that is x0y ∈ M for some y ∈ NG(x0).
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We construct a weighted convex bipartite graph Gy
0 in the following way:

Construction 3 Gy
0 = G[V \(NG(x0) ∪ NG(y))].

Lemma 7 Gy
0 is a weighted convex bipartite graph.

Proof SinceGy
0 is a subgraph ofG0, andG0 is a convex bipartite graph (by Lemma 5),

Gy
0 is also a convex bipartite graph. ��

Lemma 8 Let M0 be a maximum weight induced matching in Gy
0 . Then M0 ∪ {x0y}

is a weighted induced matching in G. Moreover, if there exists a maximum weight
induced matching M in G containing the edge x0y then w(M) = w(M0) + w(x0y).

Proof Clearly M0 is a induced matching in G, as Gy
0 is a subgraph of G, and no edge

e ∈ E(G)\E(Gy
0) contains both end points inG

y
0 . Also, notice that the distance of any

vertex, say v saturated by M0 is at least 2 from x0 as well as y in G. Hence M0 ∪{x0y}
is also a weighted induced matching in G.

Next, if M is a maximum weight induced matching in G and x0y ∈ M . Then
M\{x0y} must be maximum weight induced matching in G[V \(NG(x0) ∪ NG(y))],
which is exactly Gy

0 . Hence w(M0) = w(M) − w(x0y), that is, w(M) = w(M0) +
w(x0y). Hence M0 ∪ {x0y} is also a maximum weight induced matching in G. ��
Case 3 M does not saturate x0 but M saturates at most 3 neighbors of x0.
Again the following three cases arise:
Subcase 3.1 M saturates exactly one neighbor yi of x0, that is, xyi ∈ M for some
x ∈ NG(yi )\{x0}.
We construct a weighted convex bipartite graph Gyi

x in the following way:

Construction 4 First remove all the neighbors of x0 other than yi from G. Let us call
the resultant graph G ′. Now define Gyi

x = G ′[V (G ′)\(NG ′(x) ∪ NG ′(yi ))].
Lemma 9 Gyi

x is a weighted convex bipartite graph.

Proof SinceGyi
x is a subgraph ofG0, andG0 is a convex bipartite graph (by Lemma 5),

Gyi
x is also a convex bipartite graph. ��

Lemma 10 Let Mi be a maximum weight induced matching in Gyi
x . Then Mi ∪ {xyi }

is a weighted induced matching in G. Moreover, if there exists a maximum weight
induced matching M in G such that M does not saturate x0, and M saturates exactly
one neighbor yi of x0, and xyi ∈ M, then w(M) = w(Mi ) + w(xyi ). In otherwords,
Mi ∪ {xyi } is a maximum weight induced matching in G.

Proof Clearly, Mi is also a weighted induced matching in G. Also every vertex of Gyi
x

is at distance at least two from x as well as yi . Hence every vertex which is saturated
by Mi is at distance at least two from both x and yi . Hence Mi ∪ {xyi } is a weighted
induced matching in G.

Now, if M is a maximum weight induced matching in G, and M does not saturate
x0, and M saturates exactly one neighbor yi of x0, and xyi ∈ M , then M is also a
maximum weight induced matching in G ′ = G[V \(NG(x0)\{yi })]. Also, M\{xyi }
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is a maximum weight induced matching in G ′[V (G ′)\(NG ′(x) ∪ NG ′(yi ))], which is
exactly Gyi

x . Hence w(Mi ) = w(M) − w(xyi ), that is, w(M) = w(Mi ) + w(xyi ).
Therefore, Mi ∪ {xyi } is a maximum weight induced matching in G. ��
Subcase 3.2 M saturates exactly two neighbors yi , y j of x0, that is, xr yi , xs y j ∈ M
where xr ∈ NG(yi )\NG(y j ), and xs ∈ NG(y j )\NG(yi ).
We construct a weighted convex bipartite graph G

yi y j
xr xs in the following way:

Construction 5 First remove all the neighbors of x0 other than yi , y j from G. Let us
call the resultant graph G ′. Now define G

yi y j
xr xs = G ′[V (G ′)\(NG ′(xr ) ∪ NG ′(xs) ∪

NG ′(yi ) ∪ NG ′(y j ))].
Lemma 11 G

yi y j
xr xs is a weighted convex bipartite graph.

Proof Since G
yi y j
xr xs is a subgraph of G0, and G0 is a convex bipartite graph (by

Lemma 5), G
yi y j
xr xs is also a convex bipartite graph. ��

Lemma 12 Let Mi j be a maximum weight induced matching in G
yi y j
xr xs . Then Mi j ∪

{xr yi , xs y j } is a weighted induced matching in G.Moreover, if there exists a maximum
weight induced matching M in G such that M does not saturate x0, and M saturates
exactly two neighbors yi , y j of x0, and xr yi , xs y j ∈ M, then w(M) = w(Mi j ) +
w(xr yi )+w(xs y j ). In other words, Mi j ∪ {xr yi , xs y j } is a maximum weight induced
matching in G.

Proof Since G
yi y j
xr xs is constructed from G by removing some of its vertices, Mi j is also

a weighted induced matching in G. Observe that there is no edge in G joining the two
edges xr yi and xs y j . Also, in graph G every vertex saturated by Mi j is at distance at
least 2 from every vertex in {xr , xs, yi , y j }. Hence Mi j ∪ {xr yi , xs y j } is a weighted
induced matching in G.

Now, if M is a maximum weight induced matching in G, and M does not saturate
x0, and M saturates exactly two neighbors yi , y j of x0, and xr yi , xs y j ∈ M , then M
is also a maximumweight induced matching in G ′ = G[V \(NG(x0)\{yi , y j })]. Also,
M\{xr yi , xs y j } is a maximum weight induced matching in G ′[V (G ′)\(NG ′(xr ) ∪
NG ′(xs) ∪ NG ′(yi ) ∪ NG ′(y j ))], which is exactly G

yi y j
xr xs . Hence w(Mi j ) = w(M) −

w(xr yi )−w(xs y j ), that is, w(M) = w(Mi j )+w(xr yi )+w(xs y j ). Therefore, Mi j ∪
{xr yi , xs y j } is a maximum weight induced matching in G. ��
Subcase3.3 M saturates exactly three neighbors yi , y j , yk of x0, that is, xr yi , xs y j , xt yk
∈ M where xr ∈ NG(yi )\(NG(y j )∪NG(yk)), and xs ∈ NG(y j )\(NG(yi )∪NG(yk)),
and and xt ∈ NG(yk)\(NG(yi ) ∪ NG(y j )).
We construct a weighted convex bipartite graph G

yi y j yk
xr xs xt in the following way:

Construction 6 First remove all the neighbors of x0 other than yi , y j , yk from G. Let
us call the resultant graphG ′. Now defineG

yi y j yk
xr xs xt = G ′[V (G ′)\(NG ′(xr )∪NG ′(xs)∪

NG ′(xt ) ∪ NG ′(yi ) ∪ NG ′(y j ) ∪ NG ′(yk))].
Lemma 13 G

yi y j yk
xr xs xt is a weighted convex bipartite graph.
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Fig. 14 Algorithm to compute a maximum weight induced matching in a triad-convex bipartite graph

Proof Since G
yi y j yk
xr xs xt is a subgraph of G0, and G0 is a convex bipartite graph (by

Lemma 5), G
yi y j yk
xr xs xt is also a convex bipartite graph. ��

Lemma 14 Let Mi jk be a maximum weight induced matching in G
yi y j yk
xr xs xt . Then Mi jk ∪

{xr yi , xs y j , xt yk} is a weighted induced matching in G. Moreover, if there exists a
maximum weight induced matching M in G such that M does not saturate x0, and
M saturates exactly three neighbors yi , y j , yk of x0, and {xr yi , xs y j , xt yk} ⊆ M,
then w(M) = w(Mi jk) + w(xr yi ) + w(xs y j ) + w(xt yk). In other words, Mi jk ∪
{xr yi , xs y j , xt yk} is a maximum weight induced matching in G.
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Proof Since G
yi y j yk
xr xs xt is constructed from G by removing some of its vertices, Mi jk is

also a weighted induced matching in G. Observe that there is no edge in G joining
any two edges in the set {xr yi , xs y j , xt yk}. Also, in graph G every vertex saturated
by Mi jk is at distance at least 2 from every vertex in {xr , xs, xt , yi , y j , yk}. Hence
Mi jk ∪ {xr yi , xs y j , xt yk} is a weighted induced matching in G.

Now, if M is a maximum weight induced matching in G, and M does
not saturate x0, and M saturates exactly three neighbors yi , y j , yk of x0, and
xr yi , xs y j , xt yk ∈ M , then M is also a maximum weight induced matching in
G ′ = G[V \(NG(x0)\{yi , y j , yk})]. Also,M\{xr yi , xs y j , xt yk} is a maximumweight
induced matching in G ′[V (G ′)\(NG ′(xr )∪NG ′(xs)∪NG ′(xt )∪NG ′(yi )∪NG ′(y j )∪
NG ′(yk))], which is exactlyGyi y j yk

xr xs xt . Hencew(Mi jk) = w(M)−w(xr yi )−w(xs y j )−
w(xt yk), that is, w(M) = w(Mi jk) + w(xr yi ) + w(xs y j ) + w(xt yk). Therefore,
Mi jk ∪ {xr yi , xs y j , xt yk} is a maximum weight induced matching in G. ��
Based on the above discussion, the detailed algorithm for finding a maximum weight
induced matching in a weighted triad-convex bipartite graph G is given in Fig. 14.

The following theorem directly follows from Lemmas 6, 8, 10, 12, 14 and the
algorithm Weighted- Induced- M- Triad- Convex.

Theorem 6 Amaximumweight induced matching in a weighted triad-convex bipartite
graph can be computed in O(mn6) time.

Proof The time taken by algorithm is atmost O(Δ6 × g(n)), where g(n) is the time
complexity of computing a maximum weight induced matching in a convex bipartite
graph. By Theorem 1, it is clear that g(n) = O(m). So, the overall time complexity
of Weighted- Induced- M- Triad- Convex is at most O(mn6). ��

6 Conclusion

In this paper, we prove the NP-completeness result for the Induced Matching

Decision problem in the following subclasses of bipartite graphs: star-convex bipartite
graphs, comb-convex bipartite graphs and perfect elimination bipartite graphs. On
the positive side, we propose an O(m2)-time algorithm for the Maximum Weight

Induced Matching problem in circular-convex bipartite graphs.We also propose an
O(mn6)-time algorithm for the Maximum Weight Induced Matching problem
in triad-convex bipartite graphs. Further, it will be interesting to study algorithms with
better time complexity for theMaximum Weight Induced Matching problem in
these graph classes.
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