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Abstract
Generalized minimum spanning tree problem, which has several real-world appli-
cations like telecommunication network designing, is related to combinatorial
optimization problems. This problem belongs to the NP-hard class and is a mini-
mum tree on a clustered graph spanning one node from each cluster. Although exact
and metaheuristic algorithms have been applied to solve the problems successfully,
obtaining an optimal solution using these approaches and other optimization tools has
been a challenge. In this paper, an attempt is made to achieve a sub-optimal solution
using a network of learning automata (LA). This algorithm assigns an LA to every
cluster so that the number of actions is the same as that of nodes in the corresponding
cluster. At each iteration, LAs select one node from their clusters. Then, the weight of
the constructed generalized spanning tree is considered as a criterion for rewarding or
penalizing the selected actions. The experimental results on a set of 20 benchmarks of
TSPLIB demonstrate that the proposed approach is significantly faster than the other
mentioned algorithms. The results indicate that the new algorithm is competitive in
terms of solution quality.

Keywords Generalized minimum spanning tree · Induced subgraph · Learning
automata · Combinatorial optimization problems · Random search

1 Introduction

Generalized minimum spanning tree (GMST) was employed to support various prob-
lems in the field of graph optimization and has received much attention over the past
30 years (Dror andHaouari 2000). In a clustered graph, GMST aims to find aminimum
spanning tree in which every node belongs to only one cluster. Although GMST and
the minimum spanning tree (MST) have similar behavior, when the problem is solved
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Fig. 1 A clustered graph with 20 nodes

Fig. 2 An array of selected node
numbers

Fig. 3 A generalized spanning
tree 17

5 16 10

4

by well-known polynomial algorithms of Prim and Kruskal (Golden et al. 2005), the
inclusion of the concept of clustering and the selection of a node from each cluster,
turns GMST into an NP-hard problem (Myung and Lee 1995). A weighted, undirected
graph G in principle can be represented as G(V , E) where V is a set of nodes and E
is a set of edges connecting node pairs in V .

In a ’weighted graph’, each edge includes additional information called weights
and the Euclidean distance between two nodes can be considered as the weight of the
corresponding edge. Let R be an equivalence relation partitioning the node-set V into
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M equivalent classes called clusters. Figure 1 shows a clustered graph with 20 nodes.
After clustering, one node is selected from each cluster (Fig. 2). Next, a spanning
tree is constructed over the chosen nodes (Fig. 3). Such a tree is called generalized
spanning tree (GST), and the total weight of the GST is equal to the sum of all edges’
weight constructing this tree. There might be several GSTs possible. A GMST would
be one with the lowest total weight.

In the literature, some exact algorithms have been exposed in an attempt to find an
optimum solution for GMST (Pop et al. 2006). These methods are based on various
formulations of integer linear programming such as branch and bound, Lagrangian
relaxation, and network flow (Haouari andChaouachi 2006; Pop et al. 2006). However,
such approaches are limited by the size of the graph. Consequently, metaheuristic
algorithms have been explored to overcome this problem. These are typically problem-
independent techniques; therefore, they can be used as black boxes (BoussaïD et al.
2013). In the last 10 years, some metaheuristic methods have been developed to solve
the GMST problem.

Specifically, the common drawbacks in these methods are their high execution time
and complex parameter tuning. This problem is important in real-time environments.
One aspect of environments relevant to GMST problems is cluster head selection in
mobile ad-hoc networks (MANETS) (Park et al. 2017;Mukherjee et al. 2018;Dua et al.
2018). An ad-hoc network consists of mobile nodes communicating with each other
usingwireless links, in the absence of a fixed infrastructure. In the network, the cluster-
based topology can be used to reduce the overall network energy consumption (Reddy
and Babu 2019; Rao et al. 2017; Prabaharan and Jayashri 2019; Sengottuvelan and
Prasath 2017; Farman et al. 2018). In the topology, sensor nodes are grouped into
clusters and one node is selected as a cluster head (CH). The selection of an appropriate
CH is an optimization problem. This problem can be converted into a GMST problem
on a graph when data transmission between clusters is based on a minimum spanning
tree algorithm (Tang et al. 2011).

Despite recent researches, solving GMST in a time-sensitive environment is still
a major challenge. Therefore, in this paper, a rapid LA-based method is presented to
solve GMST.

The proposed algorithm assigns an LA to every cluster, and the number of actions
is the same as that of the nodes in the corresponding cluster. At each iteration, each
LA selects one node from its cluster. Then, the spanning tree of the selected nodes is
constructed. Such a tree is called generalized spanning tree (GST). The total weight
of GST is used as a criterion for rewarding or penalizing the selected actions.

Owing to the simple computational complexity of LA and the small number of
required parameters, the proposed LA-based method can be applied to time-sensitive
environments. The remaining of the paper is outlined as follows: In Sect. 2, some pre-
vious metaheuristic-based algorithms are discussed to solve GMST problems. Then,
some preliminary materials are defined in Sect. 3. Next, Sect. 4 outlines the funda-
mentals of the proposed algorithm. Afterward, the experimental results are described
in Sect. 5. Finally, Sect. 6 contains conclusions from these experiments.
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2 Related work

Myung et al. (Myung and Lee 1995) first introduced the GMST problem, proving that
GMST is an NP-hard problem. The problem has been approached by exact methods
called integer programming, leading to several mathematical formulations (Pop et al.
2006). Since GMST is an NP-hard problem, it is impossible to solve large instances
optimally by exact algorithms. Hence, various metaheuristics have been proposed for
this problem.

Golden et al. (Golden et al. 2005) utilized a new genetic algorithm hybridized with
a local search using a new operator called tree separation. Their results indicated that
both local search and genetic algorithms rapidly generated near-optimal solutions for
the GMST problem.

Oncan et al. (Öncan et al. 2008) proposed an efficient tabu search (TS) basedmethod
employing innovative neighborhood techniques. Additionally, they developed a new
and large data set for the GMST problem called Extended TSPLIB. Their study results
demonstrated that the TS-based algorithm yielded the best solutions. Although the
performance of the technique compared to a genetic-based algorithm (Golden et al.
2005) is better, it requires long-termmemory during execution and high computational
time owing to the use of a local search approach.

In Hu’s study (Hu et al. 2008), a general variable neighborhood search (VNS)
algorithm was proposed to solve the GMST problem by employing three different
neighborhood types. Based on their study results, the VNS methodology produced
a significantly better solution for the GMST problem and improved other previously
proposed metaheuristic algorithms. Furthermore, the algorithm must be investigated
to scale up to large problems.

To achieve solutions better than the existing algorithms, Ferreira (Ferreira et al.
2012) proposed a greedy randomized adaptive search procedure (GRASP)-based
algorithm, including constructive heuristics and improvement techniques such as path-
relinking and iterated local search.

Contreras-Bolton et al. (Contreras-Bolton et al. 2016) introduced a new evolu-
tionary algorithm inspired by the genetic algorithm, named multi-operator genetic
algorithm (MOGA) in which two crossover and five mutation operators were utilized
for the optimization phase of GMST. MOGA outperforms a mono-operator genetic
algorithm. Thus, the use of multi-operators enhances the diversification of the algo-
rithm and allowsMOGA to avoid being trapped easily into a local minimum.Although
MOGA was an innovative method, it did not scale owing to the high required com-
putational time. The results demonstrate that MOGA outperforms GRASP-based and
TS-based algorithms.

Table 1 presents the features of some metaheuristic-based algorithms introduced to
solve GMST.

3 Preliminaries

In this section, the useful preliminaries about the GMST problem and LA will be
described.
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3.1 Problem definition

Definition 1 (Graph) A graph can be regarded as a 3-tuple G = (V (G), E(G), I (G))

where V (G) �= ∅, V (G)∩E(G) = ∅, and I (G) is a functionwhichmaps an unordered
pair (identical or distinct) of V (G) to every member of E(G). The members of V (G)

and E(G) are called vertices and edges, respectively. When there is IG(e) = {u, v}
for each e ∈ E(G), denoted by IG = uv , said to be u and v are the endpoints of edge
e.

Definition 2 (Subgraph) A subgraph of a graphG, H , is a graph when V (H) ⊆ V (G)

, E(H) ⊆ E(G), and I (H) has the same restrictions of I (G) on E(G).

Definition 3 (Vertex-Induced Subgraph) A subgraph of a graph G, H , is called a
vertex-induced subgraph if any edge of G whose endpoints are in V (H), is also an
edge in H . The induced subgraph of G with the set of vertices S ⊆ V (G) is called
the induced subgraph of G by S; it is denoted by G[S] .
Definition 4 (Edge-Induced Subgraph) Let É and S be a subset of E and V , respec-
tively; let S consist of all endpoints in set É . Then, the subgraph (S, É, IG(é)|é ∈ É)

is induced by the set of edges É from G; it is denoted by G[É].
Definition 5 (Graph with Weighted Edges) If W is a function that assigns a non-
negative integer W (e) to every edge e ∈ E , then the resulting graph is called a graph
with weighted edges. Let H be a subgraph of G, W (H) denotes the weight of H and
equal to the total weights of the edges in this set (Nettleton 2013).

Definition 6 (Generalized Spanning Tree) Let R be an equivalence relation partition-
ing the vertex set R into m equivalent classes called clusters, where k = 1, 2, ...,m is

the set of cluster indices. Then, V =
m⋃

i=1
Vi and ∀i �= f ∈k : Vi ∩ V f = ∅. It is assumed

that the edges are defined between pairs of nodes belonging to different clusters. In
other words, {ei j ∈ E |i ∈ Vt , j ∈ Vs, t �= s} . A tree spanning all clusters and con-
taining a node from each cluster is called a GST. The total weight of the GST(τ ) is
denoted by W (τ ) = ∑

ei j∈τ

w(i, j).

Definition 7 (Generalized Minimum Spanning Tree) Let TG = {τ1, τ2, ..., τr } be the
set of all GSTs of G and W (τi ) be the weight of τi . Then, the GMST of G is defined
by τ ∗ = argminτi W (τi ) .

In other words, GMST is the generalized spanning tree having the lowest weight
among all GSTs. The GMST problem consists of finding a subset of nodes including
one node from each cluster. Therefore, the minimum spanning tree of the vertex-
induced subgraph G[S] has the lowest weight among all vertex-induced subgraphs.

3.2 Learning automata

Learning automata have long been regarded as a field of artificial intelligence and have
been studied extensively in the computer science and engineering problems (Jiang
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Fig. 4 Relationship between LA and the random environment (Mollakhalili Meybodi and Meybodi 2014)

et al. 2016; Di et al. 2019). For example, covering problem (Rezvanian and Meybodi
2015), wireless network (Mostafaei 2015; Shojafar et al. 2015; Mostafaei et al. 2017;
Mostafaei and Meybodi 2013), task offloading in mobile cloud (Krishna et al. 2016),
image segmentation (Sang et al. 2016), fuzzy recommender system (Ghavipour and
Meybodi 2016), social networks (Ghavipour andMeybodi 2018;Daliri Khomami et al.
2018; Moradabadi and Meybodi 2018; Rezvanian and Meybodi 2017; Moradabadi
and Meybodi 2017), spectrum management problem (Fahimi and Ghasemi 2017),
autonomous unmanned vehicle (Misra et al. 2017), cloud computing (Ranjbari and
Akbari Torkestani 2018; Misra et al. 2014), MST problem (Akbari Torkestani and
Meybodi 2011), Cyber-physical system(Ren et al. 2018), clustering (Hasanzadeh-
Mofrad and Rezvanian 2018),Wireless mobile Ad-hoc networks (Akbari Torkestani
and Meybodi 2010b, a), and vehicular sensor networks (Kumar et al. 2015) are a wide
range of research areas for learning automata.

Stochastic learning automata (SLA) as a reinforcement learning method includes a
finite set of available actionswhich is obtained through repeated interactionswith a ran-
dom environment. Therefore, it called adaptive decision-making unit. In this method,
how to select an optimal action has an important role in improving the performance
of SLA.

At each instant, the automaton chooses an action from its available actions basedona
probability distribution over the action set. Indeed, the input to the randomenvironment
is the selected action. The environment replies to the actionwith a reinforcement signal.
Therefore, the probability vector of the action is updated by a learning algorithm with
the objective of minimizing the average penalty received from the environment. On
the other hand, SLA consists of two parts:

1. A stochastic automatonwith a limited number of actions and a randomenvironment
associated with it.

2. The learning algorithm used by the automata to learn the optimal action.

SLA can be divided into fixed structure SLA (FSLA) and variable structure
SLA (VSLA). In the former case, the probability vector of the actions is constant,
while in the latter case, the probability vector is updated in each iteration. Figure 4
shows, the relation betweenVSLA and the random environment. VSLA can be defined
by a quadric {α,β,P, T , c} where:
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α ≡ {α1, α2, ..., αr } is a set of actions of the automation/inputs of the environment
and β ≡ {β1, β2, ..., βr } represents a set of inputs of the automation/outputs of the
environment;P ≡ {p1, p2, ..., pr } is the probability vector of actions and T ≡ P → α

is a learning automata algorithm; P is the internal state of VSLA which can be con-
sidered by the probability vector. A set of penalized probabilities, c ≡ {c1, c2, ..., cr },
represents the environment (Mollakhalili Meybodi and Meybodi 2014).

The role of the learning algorithm is to modify the probability vector of the actions
in VSLA. The algorithm, which has a significant impact on the performance of VSLA,
is explained as follows:

1. If VSLA selects an action αi (t) from the action set in time t and receives a
desired response, then the probability vector of the action pi (t) is increased and
the probability vector of other actions is decreased.

2. If VSLA selects an action αi (t) and receives an undesired response, then the
probability vector of the action pi (t) is decreased and, the probability vector of
other actions is increased. Therefore, the probabilities change as follows:

p j=1,...,r (t + 1) =
{

(1 − a) p j (t) + a j = i
(1 − a) p j (t) ∀ j �= i

(1)

p j=1,...,r (t + 1) =
⎧
⎨

⎩

(1 − b) p j (t) j = i

(1 − b) p j (t) + b

r − 1
∀ j �= i

(2)

Where a is a reward parameter, b is a penalty parameter, and r is the number of
actions that can be taken by VSLA. Learning algorithms can be divided into three
classes based on the relative values of the learning parameters (namely a and b ):

– linear reward-penalty method(LR−P ): a = b.
– linear reward-penalty method(LR−εP ):a � b.
– linear reward-inaction(LR−I ): b = 0. This strategy means the probability vector
remains unchanged when the taken action is penalized by the environment.

4 Proposed algorithm

In all cases of the GMST problem, there is a preprocessing phase in which the graph
is partitioned into a set of meaningful sub-classes called clusters. In the proposed
algorithm, the partitional clustering (Tarabalka et al. 2009) method is considered for
the clustering phase, including center clustering and grid clustering, which commonly
exist in GMST (Golden et al. 2005; Öncan et al. 2008; Contreras-Bolton et al. 2016).
Algorithm 1 and 2 outline both approaches, respectively.

Figure 5 illustrates an example of a grid clustering approach. After the clustering
procedure, the optimization phase must be performed to solve the GMST problem. In
this article, we propose a novel strategy based on LA to obtain a near-optimal GMST
in a graph. Algorithm 3 presents the pseudo-code of the LA-based proposed algorithm.
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Algorithm 1: Center clustering procedure
Input:

• V : A set of nodes; |V | = n.
• Kmax : An upper bound of the number of clusters; Kmax = n/5�

Output: A set of non-empty clusters; C1,C2, ...,Ck
1 Let k = Kmax .
2 begin
3 Choose k nodes from the set V randomly to serve as cluster centers C1,C2, ...,Ck .
4 Assign the remaining nodes to the clusters on the basis of the nearest Euclidean distance to the

cluster center.
5 Eliminate cluster Ck if includes less than one point.
6 end

Algorithm 2: Grid clustering procedure
Input:

• V : A set of nodes with the known geographical coordinates; V = {(xi , yi )|i = 1, ..., n}.
• g: An integer number used to create a grid; g � n/μ.

• μ: A parameter for tuning the number of the non-empty clusters; It is defined experimentally.

Output: A set of non-empty clusters;C1,C2, ...,Ck
1 Let xmin , ymin and xmax , ymax denote the minimum and maximum coordinates of the x and y ,
respectively.

2 Let R be a rectangle bounded xmin , ymin and xmax , ymax .
3 begin
4 Subdivide R into g × g grids with coordinates.
5 Consider each cell of grid as a cluster C1,C2, ...,Cg×g .
6 foreach v ∈ V do
7 Assign v to Cg×g which is bounded to that.
8 end
9 Eliminate cluster Cg×g if it includes less than one point.

10 end

Each iteration of the proposed algorithm embodies three steps. The following parts
describes the steps of one iteration.

– Step1. After associating an LA with each cluster, one action is selected from the
action sets of the corresponding cluster. Every LA and its corresponding cluster
have the same number of members. The applied selection mechanism is similar to
the roulette wheel selection depending on the probability vector of LA. In Line 13,
the notation αi

Rnd means that action with index Rnd is selected from i th cluster.
The chosen actions determine a subset of nodes, each node of which is picked only
from one cluster {S|S ⊂ V } (Lines 16,17). Figure 6, represents this subset.

– Step2. A spanning tree is derived on the vertex-induced subgraph Gs called GST.
Then, a MST is constructed by a greedy algorithm like Kruskal (Golden et al.
2005). Next, the weight of MST, which is equal to the total weight of edges of this
tree, is computed (Lines 18,19).

– Step3. The weight of the pre-constructed MST is considered a criterion for the
reward or penalty of the actions taken by the automata. Let wk denote the weight
of MST in the kth iteration of the algorithm. If wk is less than a defined threshold,

123



Journal of Combinatorial Optimization (2020) 40:636–659 645

Fig. 5 An example of a grid clustering method

the subset of chosen vertices is rewarded in the first step, otherwise it is penal-
ized (Lines 20–24).

Afterward, the threshold value is updated based on the weight of the resulting MST
in the previous step. Let T Hk represent the threshold value in the kth iteration of the
algorithm (Line 25). Then, T Hk is updated according to the following formula:

T Hk = (k − 1)T Hk−1 + wk

k

= T Hk−1 + wk − T Hk−1

k

(3)

Finally, the LA-GMST algorithm performs the above steps until a specified number
of iterations is exceeded, or alternatively the probability vector of the selected GMST
reaches a predefined value (near to one). After stopping the algorithm, the last MST
is introduced as GMST (Line 27).

5 Experimental result and discussion

This section aims to analyze the behavior of LA-GMST experimentally. In the LA-
GMST algorithm, for stopping criteria, the number of iterations and the threshold of
probability are set 10, 000 and 0.95, respectively. The results of the LA-GMST algo-
rithm are compared to those of two famous metaheuristic-based algorithms, including
MOGA (Contreras-Bolton et al. 2016) and TS (Öncan et al. 2008). These algorithms
have been tested on a standard benchmark instance-sets (extended TSPLIB ) including
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Algorithm 3: LA-based proposed algorithm(LA-GMST)
Input:

• G: A graph: G = (V , E,W ); |V | = n.

• V́ : Disjointed clusters; V́ =
m⋃

i=1
Vi |∀i, j and Vi ∩ Vj = ∅, i �= j

• Imax : Maximum of iteration.
• Pmax : Maximum of probability.

Output: GMST: A generalized minimum spanning tree with near-optimal weight on graph G.
1 Let Ni be the size of cluster Vi ;|Vi | = Ni ,n = ∑m

i=1 Ni .
2 begin
3 Let T Hk be the dynamic threshold at stage k and initially set to ∞.
4 Let k denotes the stage number and is initially set to 0.
5 Assign a learning automata L Ai to each cluster Vi .

6 Let i = {αi1, αi2, ..., αiNi } and Pi = {pi1, pi2, ..., piNi } denote the action-set and
action-probability of learning automata L Ai and initially ∀ j ∈ {1..Ni } pij ← 1

Ni
.

7 Let mstk denotes the minimum spanning tree constructed at stage k and is initially set to null.
8 Let wk denotes the weight of the minimum spanning tree constructed and is initially set to ∞.
9 Let GS denotes a vertex induced subgraph of G at stage k, and is initially set to null.

10 while p(k) < Pmax and k < Imax do
11 k ← k + 1 and p(k) ← 1.
12 forall the the clusters Vi (G) in parallel do
13 L Ai selects randomly one of its action (αiRnd ).

14 p(k) ← p(k) × piRnd .
15 end
16 Selected actions define subset S = ⋃m

i=1 Vi (α
i
Rnd ).

17 According to S, vertex induced sub-graph is constructed GS .
18 The minimum spanning tree of GS is constructed (mstk ).
19 The weight of mstk is computed by wk = ∑

∀ei j∈mstk
w(ei j ).

20 if wk ≤ T Hk−1 then
21 The chosen actions by L Ai , i = 1, ...,m are rewarded.
22 else
23 The chosen actions byL Ai , i = 1, ...,m are penalized.
24 end

25 T Hk ← T Hk−1 + wk−T Hk−1
k

26 end
27 The last induced subgraph (GS ) represents the GST and the last minimum spanning tree (mstk )

denotes the GMST of the G.
28 end

the twenty large-scale instances described in (Öncan et al. 2008). Each of the instances
is solved by any of LA-GMST, MOGA and TS for 35 times. The Euclidean distance
among nodes has been used as the weight of edges. However, comparison of the run-
ning times among various metaheuristics is difficult owning to different computing
environments. Therefore, to ensure a fair comparison to other algorithms, the same
platform is employed. The LA-GMST algorithm and the compared metaheuristics
are implemented in MATLAB2016a, and the computational platform is based on PC
running on a 2.70 GHz Intel Ci5 processor and 8 GB RAM.

– Experiment 1. In the proposed LA-based algorithm, the parameter a (namely
learning rate) should be chosen correctly. Depending on the type of problem, a
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Fig. 6 An example of the vertex-induced subgraph

tuning stage might be needed for this parameter. In this experiment, the learning
rate decreases linearly from 0.1 to 0.008.
Table 2 presents the results of the proposed algorithm using four different learning
rates. The first column consists of two parts, namely the graph name from TSPLIB
benchmarks and the number of nodes. Moreover, the second column denotes the
number of clusters. For each learning rate, two columns are considered as Avg.w
and Avg.t . The columns denote the average weight of the obtained GMST (based
on Euclidean distance) and the average CPU time( in seconds), respectively.Mean-
while, the best results are shown in bold. As Table 2 shows, the learning rates 0.1
and 0.06 converge faster than the other two in all of the graph instances. Thereby,
the algorithm falls into the trap of the local minimum. It seems that the learning
rate of 0.01 and 0.008 have similar performance in some instances. To evaluate
the results above, a statistical analysis of the proposed algorithm is investigated
for four learning rates.
Table 3 compares the ranking of the learning rates in multi problems. The rankings
are obtained based on a non-parametric test (namely Friedman’s test). Owning to
the dissimilarities in the results and the small size of the analyzed sample, the
parametric test may result in unpredictable conclusions (García et al. 2009). As
Table 3 shows, it can be observed that the average rank of a = 0.01 is smaller than
other learning rates.
The p value (0.000) obtained from Friedman’s test indicates the existence of a sig-
nificant difference among results. For this reason, a two-tailedWilcoxon rank-sum
test for the learning rates compared is conducted. The results confirm that the per-
formance of the proposed algorithmwith the learning rate 0.01 is statistically better
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than learning rates 0.1 (p = 0.000), 0.06 (p = 0.000), and 0.008 (p = 0.049),
since the p values were all zero at the α = 0.05 level. Thus, a = 0.01 is used in
all experiments reported in the remainder of this section.

– Experiment 2. After tuning the parameters, the effects of clustering on the
LA-GMST algorithm are assessed with the selected learning rate and some per-
formance measures. As previously mentioned, two ways of clustering exist for
the GMST problem. One possibility is to select k center nodes to be located with
each other as far as possible. Another possibility is to determine the g × g grids
in which clusters are constructed based on these grids, and a parameter called μ.
Similar to the kinds of literature on GMST, it takes their values in {3, 5, 7, 10}
in grid clustering. To make an accurate comparison, the best available weight of
GMST in the unlimited computational time was recorded.
Tables 4, 5, 6, 7 and 8 present the results of running the proposed method and other
metaheuristics for different clustering modes. Results are averaged over 35 runs.
In these tables, for all algorithms, two columns need to be considered including the
average weight of the obtained GMST (Ave.weight), and the average CPU time
value in seconds (CPU Time).
AsTable 4 shows, in all cases, the performance of theLA-GMSTalgorithm is better
than that of TS. Compared to MOGA, LA-GMST outperforms for 16 instances
of 20 instances, which are shown in bold. For the average computation time, the
proposed algorithm is faster than others.
The TS-based algorithm fails to achieve the best results for different values of μ.
When LA-GMST and the MOGA algorithms are compared to each other in terms
of the bestweights ofGMST, L A−GMSTμ=3 finds 9best values, L A−GMSTμ=5
finds 10, L A − GMSTμ=7 finds 13, and L A − GMSTμ=10 obtains 13. As the
results report, it appears that the performance of the proposed algorithm with
MOGA is competitive. However, it is worth mentioning that the running time of
LA-GMST is considerably shorter than that of MOGA.
To identify statistical differences among compared algorithms, the two-tailed
Wilcoxon rank-sum test is conducted at a significant level of α = 0.05. Table 9
summarizes the results of the pairwise comparisons of algorithms. The p val-
ues indicate that there is either no difference between the weight of the GMST
obtained by the first algorithm and the weight of the GMST obtained by the sec-
ond algorithm (null hypothesis H0) or the weight of the GMST obtained by the
first algorithm better than the weight of the GMST obtained by the second algo-
rithm (alternative hypothesis H1).

Table 9 confirms that the difference between the LA-GMST algorithm and the TS-
based algorithm is statistically significant since the p values were all zero at the
α = 0.05 level. When the proposed and MOGA algorithms are compared to each
other in terms of the p values, LA-GMST significantly yielded better results than
MOGA did for instances in generating in the center clustering and grid clustering
with μ = 10. While for the grid clustering with μ = 3, μ = 5, and μ = 7,
there is no difference between the weight of the GMST obtained by the proposed
algorithm and the weight of the GMST obtained by the MOGA algorithm, since
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Table 9 The result of the Wilcoxon test based on the solution quality

Algorithms compared p value Significant1 Decision

LAc versus TSc 0.000 Yes Reject H0

LAc versus MOGAc 0.017 Yes Reject H0

LA¯=3 versus TS¯=3 0.000 Yes Reject H0

LA¯=3 versus MOGA¯=3 0.455 No Fail to reject H0

LA¯=5 versus TS¯=5 0.000 Yes Reject H0

LA¯=5 versus MOGA¯=5 0.654 No Fail to reject H0

LA¯=7 versus TS¯=7 0.000 Yes Reject H0

LA¯=7 versus MOGA¯=7 0.211 No Fail to reject H0

LA¯=10 versus TS¯=10 0.000 Yes Reject H0

LA¯=10 versusMOGA¯=10 0.0384 Yes Reject H0

1 p value ≤ 0.05

Table 10 The result of the
Wilcoxon test based on the
running time

Algorithms compared p value Significant1

LAc versus TSc 0.000 Yes

LAc versus MOGAc 0.000 Yes

LA¯=3 versus TS¯=3 0.350 No

LA¯=3 versus MOGA¯=3 0.000 Yes

LA¯=5 versus TS¯=5 0.000 Yes

LA¯=5 versus MOGA¯=5 0.000 Yes

LA¯=7 versus TS¯=7 0.000 Yes

LA¯=7 versus MOGA¯=7 0.000 Yes

LA¯=10 versus TS¯=10 0.000 Yes

LA¯=10 versus MOGA¯=10 0.000 Yes

1 p value ≤ 0.05

the p values were higher than the α = 0.05 level. Therefore, the performance of
the algorithms is similar in terms of the quality of the solution.
As the statistical results in Table 10 show, it can be concluded that the performance
of the proposed algorithm is remarkable in terms of running time.

6 Conclusions

In this paper, an algorithm based on the learning automata is introduced to solve the
GMST problem, which is denoted as LA-GMST. In the proposed algorithm, an LA
is considered for each cluster. The number of LA actions is the same as the number
of nodes in the corresponding cluster. All LAs select an action from their action-
sets. The selected actions are used to determine one node from each cluster. Then,
a MST is constructed on the selected nodes and its weight is taken into account for
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a reinforcement signal to LAs. This process continues until the desired GMST is
obtained. The selection of a proper learning rate plays a crucial role in the efficiency
of the algorithm. Therefore, its influence on the algorithm result is investigated. The
results indicate that a high value for the learning rate conduces to a few repetitions to
explore the best actions. It is worth mentioning that low value results in focusing on
a few regions of the search space and will miss other potential regions. To evaluate
the quality of the results returned by the proposed algorithm, it was compared to
the two best existing algorithms, the TS-based and MOGA algorithm. The numerical
experiments are performed on a large set of extended TSPLIB. The results indicate
that the proposed algorithm performs better than the TS-based algorithm both in terms
of both solution quality and running time. Although in terms of solution quality,
the performance of the proposed and MOGA algorithms is highly competitive, the
proposed algorithmdominates the compared algorithm regarding the running time.The
difference between the running time of our algorithm and other algorithms becomes
much more remarkable in a time-sensitive environment like cluster head selection in
ad-hoc networks.
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