
Journal of Combinatorial Optimization (2022) 44:2195–2206
https://doi.org/10.1007/s10878-020-00593-1

A tight approximation algorithm for problem
P2 → D|v = 1, c = 1|Cmax

Yinling Wang1 · Yan Lan2 · Xin Chen3 · Xin Han1 · Yong Piao1

Published online: 5 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper focuses on the scheduling problem on two parallel machines with delivery
coordination. In particular, given a set of n jobs, we aim to find a schedule with a
minimal makespan such that all jobs are first executed on two parallel machines then
delivered at the destination with a transporter. This problem is known to be NP-hard
Chang and Lee (Eur J Oper Res 158(2):470–487, 2004), cannot be solved with an
approximation ratio strictly less than 3/2 unless P=NP. We close the gap by proposing
a polynomial time algorithmwhose approximation ratio is 3/2+εwith ε > 0, improve
the previous best ratio 14/9 + ε.

Keywords Scheduling with transportation · Bin packing · Approximation algorithm

1 Introduction

Over the past decades, supply chain management is one of the major concerns in oper-
ations research. Supply chain management is the series of activities required to plan,

B Xin Han
hanxin@dlut.edu.cn

Yinling Wang
yinling_wang@foxmail.com

Yan Lan
lanyan@dlnu.edu.cn

Xin Chen
chenxin.lut@hotmail.com

Yong Piao
piaoy@dlut.edu.cn

1 Dalian University of Technology, Dalian, China

2 School of Information and Communication Engineering, Dalian Minzu University, Dalian, China

3 School of Electronics and Information Engineering, Liaoning University of Technology,
121001 Jinzhou, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-020-00593-1&domain=pdf


2196 Journal of Combinatorial Optimization (2022) 44:2195–2206

control and execute a product’s flow, starting from raw materials to the final product
and finally the distribution to the final customer, in the most cost-effective way possi-
ble. This attracts the attention of researchers in designing methods for manufacturing
products efficiently according to the standards of the factory.

In recent years, scheduling problems with transportation have received much atten-
tion. This is due to the working environment where factories have to produce many
goods and need to deliver them to customers. It can be seen as a two-stage scheduling
problem in which the first stage is job production, and the second stage is job delivery.
Many approaches exist for single stage, and they can be solved efficiently. However,
by applying these techniques independently, the resulting solution may not be good.
Therefore, coordination is needed in order to improve the solution.

1.1 Problem definition

In this paper, we study the following scheduling problem. We are given a set of n jobs
J1, J2, . . . , Jn that need to be processed on two parallel machines M1, M2. Each job
Ji has a processing time pi and size si ∈ [0, 1]. Once a job is completed, it can be
transported to the destination. However, there is only a transporter in the system, and
the transporter can only carry jobs with a total size of 1 and needs T1 (resp. T2) time-
unit to arrive at the destination (resp. come back from the destination). To simplify
notation, we have T = T1 + T2 which corresponds to the round trip duration of the
transporter. Without loss of generality, we assume that the transporter is at the location
of the machines at the beginning.

The goal is to schedule all jobs and deliver all of them to the destination with
the minimum makespan, i.e., the shortest time such that all jobs are delivered to the
destination and the transporter goes back to the location of the machines.

The three-field notation scheme was introduced by Graham et al. (1979), which
is utilized to represent the scheduling problems. The problem in this paper can be
denoted as P2 → D|v = 1, c = 1|Cmax, which means that there are two identical
parallel machines and one transporter. Cmax is the objective function of the problem,
and we aim to minimize the makespan.

1.2 Related works

There are also other scheduling problems with transportation, such as problems
T F2|v = 1, c|Cmax etc, where there is one transporter between two machines,
any job is first processed on M1, then delivered to M2, finally processed on M2,
and each time the transporter can carry only c jobs. Kise (1991) proved problem
T F2|v = 1, c = 1|Cmax is NP-hard in an ordinary sense, In 2001 Hurink and Knust
(2001) proved the problem T F2|v = 1, c = 1|Cmax is strongly NP-hard. Lee and
Chen (2001) further proved that the problem T F2|v = 1, c ≥ 3|Cmax is also strongly
NP-hard and mentioned that the complexity of T F2|v = 1, c = 2|Cmax is open.
Recently Lan et.al proved that T F2|v = 1, c = 2|Cmax is strongly NP-hard Lan et al.
(2016). Chang and Lee (2004) were the first to consider the case in which each job
has a different size for delivery, while Li et al. (2005) focused on the problem where

123



Journal of Combinatorial Optimization (2022) 44:2195–2206 2197

customers may have a different location. Woeginger (1994); Potts (1980); Hall and
Shmoys (1992) studied the problem with a single machine and parallel machines;
each job has its arrival times and transport times. Meanwhile, they assumed that the
number of vehicles is unbounded such that a job can be delivered to the destination
once they are processed. For these models, they provided the heuristics and worst-case
analysis. More related works can be found in Potts and Kovalyov (2000); Potts and
Van Wassenhove (1992); Webster and Baker (1995).

For the problem P2 → D|v = 1, c = 1|Cmax, Chang and Lee (2004) first proposed
this model and gave a polynomial-time algorithm with an approximation ratio of 2.
Moreover, they proved that there is no approximation algorithm for the problem with
an approximation ratio better than 3/2 unless P = NP. Then, Zhong et al. (2007)
presented an improved algorithm with an approximation ratio of 5/3. Su et al. (2009)
presented an improved algorithm for the problem and reduced the worst-case ratio
to 8/5. Then Wang and Liu (2013) and Zhang et al. (2015) proposed (14/9 + ε)-
approximation algorithms.

1.3 Our contributions

In this paper, we provide an algorithm with an approximation ratio of 3/2+ ε, where
ε is a positive real and arbitrarily close to 0. This matches the lower bound of the
problem asymptotically. Observe that the previous approaches work for the case: the
total size in the input is at least seven. For the other case, we give a new batching
strategy: guessing the number of batches in an optimal solution, enumerating all the
possible cases for large jobs, and appending small jobs into the batches by solving a
linear programming with the guarantee that the total processing time in each batch is
almost the same as the one in the optimal solution, transferring the fractional solution
into integral solution with using at most one extra batch. Embedding the new batching
strategy, we can prove that the approximation ratio is close 1.5 for the case: there are
at most seven batches in an optimal solution.

2 Preliminary

In this section, we first introduce a bin packing problem then give some notations used
later.

2.1 Bin packing problem

there are n items x1, x2, . . . , xn , each has size si in (0, 1). There are also empty bins
with a capacity of 1. The goal is to pack all the items into a minimum number of bins
while each bin can pack any subset of items with total size at most 1. This problem is
known to be NP-hard Johnson (2008).

An approximation algorithm for the classical one-dimensional bin packing problem
called FFD (First Fit Decreasing) is provided in Johnson et al. (1974). The FFD
algorithm first sorts the list of items into non-increasing order of their size then places

123



2198 Journal of Combinatorial Optimization (2022) 44:2195–2206

each item one by one with this order into the first bin where it will fit. It requires
�(n log n) time, where n is the number of items to be packed. The following lemma
is from Dósa et al. (2013).

Lemma 1 For any bin packing input L, the number of bins used by FFD is at most
11OPT (L)/9 + 6/9, where OPT (L) is the optimal value.

2.2 Notations

Given a schedule, letC be itsmakespan, andC∗ be themakespanof anoptimal solution.
Let C(Bi ) be the completion time of batch Bi in a given schedule. Let C∗(B∗

i ) be the
completion time of batch B∗

i in an optimal schedule. Let the sum of the processing
times of jobs in batch Bi be p(Bi ). Let P be the total processing times of all jobs. Let
C∗
M be the completion time of jobs on machines by an optimal algorithm. Then we

have
vspace*-6pt

C∗
M ≥ P

2
.

Let b∗ be the number of batches in the optimal algorithm. Then we have

C∗ ≥ C∗
M + T , C∗ ≥ C∗(B∗

1 ) + b∗ · T . (1)

3 Framework of old algorithms

We first introduce a framework of old algorithms Wang and Liu (2013) and prove
that it performs very well for the case where there are at least 8 batches in an optimal
solution, i.e., its worst performance ratio is 1.5. In the framework, we first partition
the input into batches, then schedule batches onto two machines and deliver them to
the destination.

Algorithm 1 : Framework based on a batching strategy A
Input: a set of batches of jobs
Output: schedule batches on machines, then deliver them to the destination
1: Assign jobs to batches by a strategy A. Let the total number of resulting batches be b.
2: Let the sum of the processing times of jobs in batch Bk be p(Bk ), for k = 1, 2 · · · , b. Re-index the

batches such that p(B1) ≤ p(B2) ≤ · · · ≤ p(Bb).
3: According to the order {B1, B2, . . . , Bb−1}, assign the batches one by one to machines by LS rule(List

Scheduling rule), where all the jobs in the same batch are assigned to the same machine. Within each
batch, the jobs are sequenced in an arbitrary order.

4: We assign the jobs of the last batch Bb one by one by LS rule to two machines.
5: Dispatch each completed but undelivered batchwhenever a vehicle becomes available. Ifmultiple batches

have been completed when a vehicle becomes available, dispatch the batch with the smallest index.

Given an algorithm A on input L , the makespan of A is denoted as CA(L). Then it
is not difficult to get the following result:

123



Journal of Combinatorial Optimization (2022) 44:2195–2206 2199

CA(L) = max{C(Bi ) + (b + 1 − i)T |1 ≤ i ≤ b},

where C(Bi ) is the completion time of batch Bi and b is the number of batches.
However by the following lemma from Chang and Lee (2004) Wang and Liu (2013)
we only need to consider the following five cases, i.e., i = 1, 2, 3, b − 1, b.

Lemma 2 For input L, CA(L) = max{C(Bi ) + (b + 1 − i)T |i = 1, 2, 3, b − 1, b},
where T is the time from machines to the destination and back to machines.

Lemma 3 Chang and Lee (2004) For i = 1, 2 and b ≥ 3 + i , if CA(L) = C(Bi ) +
(b + 1 − i) · T , we have p(Bi ) ≤ 2T .

Lemma 4 C(Bb) ≤ 3
2C

∗
M and C(Bb−1) ≤ C∗

M Wang and Liu (2013).

Proof For the sake of completeness, we give a detail proof here. In the above algorithm,
we actually run LS algorithm on two machines, so by Graham et al. (1979), we have

C(Bb) ≤ 3

2
C∗
M .

It is not difficult to see that except for the last batch, batches B1, B3, B5, . . . . are
assigned on one machine and B2, B4, B6, . . . on the other machine. Since p(B1) ≤
p(B2) ≤ · · · ≤ p(Bb), we have

C(Bb−1) = p(Bb−1) + p(Bb−3) + · · · + p(Bb−2k+1)

≤ p(Bb) + p(Bb−2) + · · · . + p(Bb−2k+2),

where 1 ≤ k ≤ b/2. Hence C(Bb−1) ≤ C∗
M . ��

Lemma 5 If b = 1, then CA(L) ≤ 3
2C

∗.

Proof When b = 1, we have CA(L) = C(B1) + T . By Lemma 4, we have C(B1) ≤
3
2C

∗
M . Then by (1), we have

CA(L)

C∗ ≤ C(B1) + T

C∗
M + T

≤ 3

2
.

Hence we have this lemma. ��
Using the techinques in Chang and Lee (2004) and Wang and Liu (2013), it is not

difficult to get the following result.

Lemma 6 In the above algorithm, if we run FFD algorithm for batching, then C ≤
3
2C

∗ if b∗ ≥ 8.

Proof By Lemma 2, at least one of the following equations holds.

• C = C(Bb) + T
• C = C(Bb−1) + 2T

123



2200 Journal of Combinatorial Optimization (2022) 44:2195–2206

• C = C(Bb−2) + 3T
• C = C(B2) + (b − 1)T
• C = C(B1) + b · T
Case 1: C = C(Bb) + T . By Lemma 4, since C(Bb) ≤ 3

2C
∗
M , we have

C(Bb) + T

C∗ ≤
3
2C

∗
M + T

C∗
M + T

≤ 3

2

Case 2: C = C(Bb−1) + 2T .
By Lemma 4, we have C(Bb−1) ≤ C∗

M .
Thus we can obtain:

C(Bb−1) + 2T

C∗ ≤ C(Bb−1) + 2T

max{b∗T ,C∗
M + T } ≤ T

b∗T
+ C∗

M + T

C∗
M + T

<
3

2

Case 3: C = C(Bb−2) + 3T .
By Lemma 4 and the above algorithm, C(Bb−2) ≤ C(Bb−1) ≤ C∗. Hence we

have:

C(Bb−2) + 3T

C∗ ≤ C∗
M + T

C∗
M + T

+ 2T

b∗T
≤ 1 + 2T

b∗T
<

3

2
,

since b∗ ≥ 4.
Case 4: C = C(B2) + (b − 1) · T .
In this case we have b ≥ 5, otherwise at least one of the three cases holds. By

Lemme 3, we have p(B2) ≤ 2T .
By Lemma 1, we can get:

C(B2) + (b − 1)T

C∗ ≤ (b + 1)T

b∗T
≤

11
9 b

∗ + 6

9
+ 1

b∗ ≤ 11

9
+ 15

9b∗ ≤ 3

2
,

where b∗ ≥ 6.
Case 5: C = C(B1) + b · T .
In this case we have b ≥ 4, otherwise at least one of Case 1, Case 2 and Case 3

holds. By Lemea 3, we have C(B1) = p(B1) ≤ 2T .
Then we can get:

C(B1) + b · T
C∗ ≤ (b + 2)T

b∗T
.

• When b∗ = 8, by Lemma 1, b ≤ 10, we have:
(b + 2)T

b∗T
≤ 12T

8T = 3
2 .

• When b∗ = 9, by Lemma 1, b ≤ 11, thus we have:
(b + 2)T

b∗T
≤ 13T

9T < 3
2 .

• When b∗ ≥ 10, we have
C(B1) + b · T

C∗ ≤ 11b∗/9 + 6/9 + 2

b∗ ≤ 11

9
+ 24

9b∗ ≤ 3
2 .

123



Journal of Combinatorial Optimization (2022) 44:2195–2206 2201

From the previous analysis, we can see that the lemma holds. ��

4 (32 + ")-Algorithm for problem P2 → D

We first give a new batching strategy to tackle the case where there are at most seven
batches in an optimal solution, then embed the strategy into the old framework and
prove that the approximation ratio is close to 1.5, finally combine the old algorithm
and our algorithm, we prove that there is a (1.5+ ε)-approximation algorithm for the
problem.

4.1 New batching strategy for small b∗ ≤ 7

In this subsection, we give a new batching strategy for the case where there are at most
seven batches in an optimal solution. Normally we cannot know the exact assignment
of jobs in an optimal solution. However if a configuration of batches in a feasible
assignment is known, then we can guess a feasible assignment of jobs into batches
such that the processing time in each batch is similar with each other and the number
of batches is also similar with each other.

Assume that some partial information of a feasible assignment is known:

• the makespan value C̄ ,
• the number of batches in the assignment b̄,
• and a vector ( p̄(B

′
1), p̄(B

′
2), . . . , p̄(B

′
b̄
)), where p̄(B

′
i ) is the total processing time

in batch B
′
i .

We will assign all jobs into batches of B1, . . . , Bb, where b ≤ b̄ + 1 such that the
total processing time p(Bi ) in Bi is at most as p̄(B

′
i ) and the total size s(Bi ) is at most

one for all 1 ≤ i ≤ b̄ and p(Bb) = �(εC̄
32 ) if b = b̄ + 1, where ε > 0 is a given

parameter. The details are given in the following algorithm.
Linear Programming for assigning jobs into b̄ batches: after assigning large jobs

into b̄ batches, assume the total size of large jobs in Bi is Si , the total processing time
in Bi is Pi . Given n′ small jobs, the following linear programming is used to assign
small jobs to b̄ batches.

b̄∑

j=1

xi j = 1, i = 1, 2, . . . , n
′

(2)

n′∑

i=1

xi j pi + Pj ≤ p̄(B
′
j ), j = 1, 2, . . . , b̄ (3)

n′∑

i=1

xi j si + S j ≤ 1, j = 1, 2, . . . , b̄

xi j ≥ 0 ∀i, j ≥ 1 (4)

123



2202 Journal of Combinatorial Optimization (2022) 44:2195–2206

Algorithm 2 : Assign all jobs into batches

Input: C̄, b̄ and ( p̄(B
′
1), p̄(B

′
2), . . . , p̄(B

′
b̄
)).

Output: another feasible assignment such that the processing time in each batch is similar if possible.
1: Divide all jobs into large jobs and small jobs. Job j is large if its size s ≥ 1

16 or its processing time

p ≥ εC̄
32 for a given small ε and 1/ε is integer; other it is called small.

2: Guess all possible assignments of large jobs into b̄ batches, i.e., exhaust all the possible cases.
3: Check the feasibility for each case, i.e., the total size in each batch is at most 1 and the total processing

time in batch Bi is at most p̄(B
′
i ).

4: Ignore all infeasible cases and keep all feasible cases. For each feasible case, we run the following steps
to get a feasible assignment for small jobs.

5: Fractionally assign all small jobs into b̄ batches by solving a linear programming which will be defined
later.

6: If there is a basic feasible solution, then we stop and output an assignment as follows: for large jobs, we
assign them into batches as we guess; for small jobs with the integral assignment, we assign them by
the solution of linear programming; the left jobs with the fractional assignment are packed in an extra
batch. We will prove that one batch is enough later.

7: Otherwise output there is no feasible solution.

Variable xi j = 1 if job i is assigned into batch j .
The equations (2) show that each small job must be assigned on some machine.

The equations (3) show that the total processing time of jobs assigned in batch j is
bounded by p̄(B

′
j ) respectively. The equations (4) show that the total size of the jobs

assigned in each batch is bounded by 1 respectively.

Lemma 7 If b̄ ≤ 7 there are at most 64/ε + 112 large jobs.

Proof If there are more than 112 large jobs with size at least 1/16, then b̄ would have
been larger than 7. If there are more than 64/ε large jobs with processing time at least
εC̄/32, then the makespan of an optimal solution would have been larger than C̄ . ��
Lemma 8 In a basic feasible solution of the above LP, there are at most 2b̄ small jobs
such that 0 < xi j < 1 for some j .

Proof In a basic feasible solution, let x be the number of small jobs such that xi j = 1
and let y be the number of small jobs such that 0 < xi j < 1 for some j . It is not
difficult to see that

x + y = n
′
.

On the other side, the linear program contains at most n
′ + 2b̄ constraints and b̄n

′

variables. So in a basic feasible solution, there are at most n
′ + 2b̄ no-zero variables,

i.e.,

x + 2y ≤ n
′ + 2b̄.

Hence we have y ≤ 2b̄. ��
Lemma 9 If there are some fractional jobs in a feasible solution of the linear pro-

gramming, then an extra batch is enough and p(Bb) ≤ εC̄
2 .

123



Journal of Combinatorial Optimization (2022) 44:2195–2206 2203

Proof By Lemma 8, we have at most 2b̄ small jobs with 0 < xi j < 1 for some j . Since
each small job has size at most 1/16 and b̄ ≤ 7, all such small jobs can be packed into
one batch. Hence an extra bin for fractional small items is enough.

By the definition of small jobs and Lemma 8, b̄ ≤ 7, we have

p(Bb) ≤ 2b̄ · εC̄

32
<

εC̄

2
.

Hence we have this lemma. ��

4.2 A new upper bound 1.5 + �

Algorithm 3 : new framework for scheduling jobs for small b∗
Input: the number b∗ of batches in an optimal solution.
Output: a feasible schedule with at most (b∗ + 1) batches and the makespan at most (1.5 + O(ε))C∗.
1: Find an upper bound of C∗ by running a 2-approximation algorithm and setting C̄ as the value of the

makespan.

2: Set p̄(B
′
i ) = k · εC̄

32 for all 1 ≤ k ≤ 64/ε and 1 ≤ i ≤ b∗.
3: For each possible vector p̄ = ( p̄(B

′
1), p̄(B

′
2), . . .), we call Algorithm A2(C̄, b∗, p̄). If there is a feasible

assignment by Algorithm A2, then call Algorithm A1 to schedule all the batches.
4: Output the assignment with the minimal makespan.

Lemma 10 There is at least one feasible solution returned by the above algorithm.

Proof It is not difficult to see that an optimal solution with b∗ batches and
(p(B∗

1 ), p(B∗
2 ), . . . , p(B∗

b∗)) is one of feasible solutions of LP(C̄, b∗, p̄ ), where p̄
is vector and its i-th component value is (k + 1) ε

32 C̄ , where k · ε
32 C̄ < p(B∗

i ) ≤
(k + 1) ε

32 C̄ . Since in our algorithm, we try all possible values for each component of
p̄, the optimal solution must be included in feasible solutions of LP(*,*,*) defined in
the last subsection. ��
Lemma 11 The above algorithm is run in polynomial time if b∗ ≤ 7.

Proof By Lemma 7, the number of large jobs is upper bounded by O(1/ε). Given
a vector p̄, the number of enumerating all possible cases for large jobs is at most
(b∗)O(1/ε) ≤ 7O(1/ε). The number of all possible vectors p̄ is at most O((1/ε)b

∗
) ≤

O(1/ε7). And it takes time O(nc) to solve a linear program for some constant c. Hence
we have this lemma. ��
Lemma 12 If 2 ≤ b∗ ≤ 7, then the makespan by the above algorithm is at most
(1.5 + ε)C∗.

Proof Given an optimal solution with batching vector (p(B∗
1 ), p(B∗

2 ), . . . , p(B∗
b∗)),

we can consider the linear programm LP(C̄, b∗, p̄), where C̄ ≤ 2C∗ and the i-th

123



2204 Journal of Combinatorial Optimization (2022) 44:2195–2206

component p̄i is at least p(B∗
i ) and at most p(B∗

i ) + εC̄/32. Then we consider a
feasible solution associated with the above LP(C̄, b∗, p̄). Let C be the makespan
generated by the feasible solution. By Lemma 2, at least one of the following equations
holds.

• C = C(Bb) + T
• C = C(Bb−1) + 2T
• C = C(B1) + b · T
• C = C(Bb−2) + 3T
• C = C(B2) + (b − 1) · T
Case 1: C = C(Bb)+ T . We can prove C = 3

2C
∗ using the way similar with Case

1 in Lemma 6.
Case 2: C = C(Bb−1) + 2T . We can also prove C = 3

2C
∗ using the way similar

with Case 2 in Lemma 6.
Case 3: C = C(B1) + b · T . In this case, we can assume b ≥ 3, otherwise Case 1

or Case 2 will occur. Then we have

C(B1) = p(B1) ≤ P

3
≤ 2C∗

M

3
≤ 2C∗

3

and C∗ ≥ p(B∗
1 )

2 + b∗ · T since C∗(B∗
1 ) ≥ p(B∗

1 )

2 . If b = b∗, it means that we don’t
use an extra batch in Algorithm A2. Due to C̄ ≤ 2C∗,

C(B1) = p(B1) ≤ p(B∗
1 ) + εC̄/32 < p(B∗

1 ) + εC∗,

due to C∗ ≥ p(B∗
1 )

2 + b∗ · T , we have

C(B1) + b∗T
C∗ ≤ p(B1)/2 − εC∗ + b∗T

p(B∗
1 )

2 + b∗ · T
+ p(B1)/2 + εC∗

C∗ = 1 + ε + 1/3.

Otherwise by Lemma 9, we have b = b∗ + 1. By Lemma 9 and Algorithm A1,
C̄ ≤ 2C∗, we have

C(B1) = p(B1) ≤ εC∗.

Due to b∗ ≥ 2 and C∗ ≥ b∗T , we have

C(B1) + (b∗ + 1)T

C∗ ≤ ε + 1.5.

Case 4: C = C(Bb−2) + 3T . In this case, we have b ≥ 4, otherwise one of the
above three cases will happen. If b∗ ≥ 4, then we can prove C/C∗ ≤ 1.5 using the
way similar with Case 3 in Lemma 6. Otherwise b∗ = 3. By Lemma 9, we have b = 4.

123



Journal of Combinatorial Optimization (2022) 44:2195–2206 2205

By the algorithm we use, C(B2) = p(B2) ≤ 2C∗
M
3 . Hence we have:

C(B2) + 3T

C∗ ≤ 2C∗
M/3 + 2T /3

C∗
M + T

+ 7T /3

b∗T
≤ 2/3 + 7/9 = 3

2
,

since b∗ = 3.
Case 5: C = C(B2) + (b − 1) · T . In this case we have b ≥ 5, otherwise one of

Case 1, Case 2 and Case 4 will happen. By Lemma 3, we have p(B2) ≤ 2T .
By Lemma 9, we can get:

C(B2) + (b − 1)T

C∗ ≤ (b + 1)T

b∗T
≤ b∗ + 2

b∗ ≤ 3

2
,

where b∗ ≥ b − 1 ≥ 4.
From the previous analysis, we can see that the lemma holds. ��

Theorem 1 There is a polynomial algorithm with makespan at most (1.5 + ε)C∗,
where ε > 0 is sufficient small real.

Proof Consider the following algorithm.

Input: a set of n jobs and a parameter ε.
Output: a feasible schedule with makespan (1.5 + ε)C∗.
1: Run Algorithm A1(FFD) and get a schedule δ1.
2: If the total size of jobs is at most 7, run Algorithm A3 with b∗ varying from 2 to 7, get the corresponding

schedule δi for 2 ≤ i ≤ 7. (If some schedule δi does not exist, its makespan is ∞)
3: Output schedule δi for 1 ≤ i ≤ 7 with the minimal makespan.

To get schedule δ1, it takes O(n log n) time steps. ByLemma 11, it takes polynomial
time to get δi for 2 ≤ i ≤ 7. So the above algorithm takes polynomial time.

By Lemmas 5, 6, and 12, we have the makespan by the above algorithm is at most
(1.5 + ε)C∗. ��

5 Concluding remarks

In this paper, we find that the approximation ratio of old algorithms is 1.5 for the case
where there are at least eight batches, thenwe give a new algorithmwith approximation
ratio 1.5+ε for the other case. We know that there is no algorithmwith approximation
ratio less than 1.5 unless P=NP. Whether there is 1.5-approximation algorithm for the
case where there are at most seven batches in an optimal solution leaves as an open
question.

Acknowledgements This research was partially supported by NSFC(11971091,11701062), Liaoning Nat-
ural Science Foundation(2019-MS-062).

123



2206 Journal of Combinatorial Optimization (2022) 44:2195–2206

References

ChangY-C,LeeC-Y (2004)Machine schedulingwith job delivery coordination. Eur JOperRes 158(2):470–
487

Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. Ann Discrete Math 5(1):287–326

Dósa G, Li R, Han X, Tuza Z (2013) The tight bound of first fit decreasing bin-packing algorithm is FFD(I)
< = 11/9OPT (I ) + 6/9. Theo Comput Sci 510:13–61

Hall LA, Shmoys DB (1992) Jackson’s rule for single-machine scheduling: making a good heuristic better.
Math Oper Res 17(1):22–35

Hurink J, Knust S (2001) Makespan minimization for flow-shop problems with transportation times and a
single robot. Discrete Appl Math 112(1–3):199–216

Johnson DS (2008) Bin packing. Springer, Boston, pp 1–99
Johnson DS, Demers AJ, Ullman JD, Garey MR, Graham RL (1974) Worst-case performance bounds for

simple one-dimensional packing algorithms. SIAM J Comput 3(4):299–325
Kise H (1991) On an automated two-machine flowshop scheduling problem with infinite buffer. J Oper Res

Soc Jpn 34:354–361
Lan Y, Han X, Zongtao W, Guo H, Chen X (2016) Complexity of problem TF2 |v = 1, c = 2|cmax. Inf

Process Lett 116(1):65–69
Lee C-Y, Chen Z-L (2001) Machine scheduling with transportation considerations. J Sched 4(1):3–24
Li C-L, Vairaktarakis G, Lee C-Y (2005)Machine schedulingwith deliveries tomultiple customer locations.

Eur J Oper Res 164(1):39–51
Potts CN (1980) Analysis of a heuristic for one machine sequencing with release dates and delivery times.

Oper Res 28(6):1436–1441
Potts CN, Kovalyov MY (2000) Scheduling with batching: a review. Eur J Oper Res 120(2):228–249
Potts CN, Van Wassenhove LN (1992) Integrating scheduling with batching and lot-sizing: a review of

algorithms and complexity. J Oper Res Soc 43(5):395–406
Su CS, Pan CH, Hsu TS (2009) A new heuristic algorithm for the machine scheduling problem with job

delivery coordination. Theor Comput Sci 410(27):2581–2591
Wang L, Liu Z (2013) An improved algorithm for scheduling two identical machines with batch delivery

consideration. Oper Res Trans 17(1):38–43
Webster S, Baker KR (1995) Scheduling groups of jobs on a single machine. Oper Res 43(4):692–703
Woeginger GJ (1994) Heuristics for parallel machine scheduling with delivery times. Acta Inf 31(6):503–

512
Zhang Y, Zheng Q, Ren J, Zhang L (2015) An improved algorithm for the machine scheduling problemwith

job delivery coordination. In 12th International symposium on operations research and its applications
in engineering, technology and management (ISORA 2015), pp 167–172

Zhong W, Dósa G, Tan Z (2007) On the machine scheduling problem with job delivery coordination. Eur
J Oper Res 182(3):1057–1072

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A tight approximation algorithm for problem P2toD|v=1,c=1|Cmax
	Abstract
	1 Introduction
	1.1 Problem definition
	1.2 Related works
	1.3 Our contributions

	2 Preliminary
	2.1 Bin packing problem
	2.2 Notations

	3 Framework of old algorithms
	4 (32+ε)-Algorithm for problem P2toD 
	4.1  New batching strategy for small b* le7
	4.2 A new upper bound 1.5 + ε

	5 Concluding remarks
	Acknowledgements
	References




