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Abstract
The quadratic travelling salesman problem (QTSP) is to find a least-cost Hamiltonian
cycle in an edge-weighted graph, where costs are defined on all pairs of edges such
that each edge in the pair is contained in the Hamiltonian cycle. This is a more gen-
eral version than the one that appears in the literature as the QTSP, denoted here as
the adjacent quadratic TSP, which only considers costs for pairs of adjacent edges.
Major directions of research work on the linear TSP include exact algorithms, heuris-
tics, approximation algorithms, polynomially solvable special cases and exponential
neighbourhoods (Gutin G, Punnen A (eds): The traveling salesman problem and its
variations, vol 12. Combinatorial optimization. Springer, NewYork, 2002) among oth-
ers. In this paper we explore the complexity of searching exponential neighbourhoods
for QTSP, the fixed-rank QTSP, and the adjacent quadratic TSP. The fixed-rank QTSP
is introduced as a restricted version of the QTSP where the cost matrix has fixed rank
p. It is shown that fixed-rank QTSP is solvable in pseudopolynomial time and admits
an FPTAS for each of the special cases studied, except for the case of matching edge
ejection tours. The adjacent quadratic TSP is shown to be polynomially-solvable in
many of the cases for which the linear TSP is polynomially-solvable. Interestingly,
optimizing over the matching edge ejection tour neighbourhood is shown to be pseu-
dopolynomial for the rank 1 case without a linear term in the objective function, but
NP-hard for the adjacent quadratic TSP case. We also show that the quadratic shortest
path problem on an acyclic digraph can be solved in pseudopolynomial time and by
an FPTAS when the rank of the associated cost matrix is fixed.
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1 Introduction

The travelling salesman problem (TSP) is to find a least-cost Hamiltonian cycle in an
edge-weighted graph. It is one of the most widely studied hard combinatorial opti-
mization problems. The TSP has been used tomodel awide variety of applications. For
details we refer the reader to the well-known books (Applegate et al. 2011; Cook 2012;
Gutin and Punnen 2002; Lawler et al. 1985; Reinelt 1994). For clarity of discussion,
we will refer to this problem as the linear TSP.

Let G = (V , E) be an undirected graph on the vertex set V = {1, . . . , n} and edge
set E = {1, 2, . . . ,m}. For each edge e ∈ E , a cost c(e) is given. Also, for each pair
of edges (e, f ), another cost q(e, f ) is prescribed. LetF be the set of all Hamiltonian
cycles (tours) in G. The cost q(τ ) of a tour τ ∈ F , where τ is represented by its edges,
is given by

q(τ ) =
∑

(e, f )∈τ×τ

q(e, f ) +
∑

e∈τ

c(e).

Then the quadratic travelling salesman problem (QTSP) is to find a least cost tour
τ ∈ F such that q(τ ) is as small as possible.

The problem QTSP has received only very limited attention in the literature. A
special case ofQTSPhas been studied by various authors recently (Fischer 2014, 2016;
Fischer et al. 2014; Fischer andHelmberg 2013; Jäger andMolitor 2008; Rostami et al.
2016) where q(i, j) is assumed to be zero if edges i and j are not adjacent. Although
this restricted problem is known as the quadratic TSP in the literature, to distinguish
it from the general problem, we refer to it as the adjacent quadratic TSP, which we
denote by QTSP(A). The k-neighbour TSP studied by Woods (2010) is also related
to QTSP. The linear TSP on Halin graphs was studied in Cornuéjols et al. (1983), and
an O(n) algorithm was given. In Woods and Punnen (2018b) it is shown that QTSP
on Halin graphs is strongly NP-hard, however, an O(n) algorithm solves QTSP(A)

on this class of graphs. The linear TSP is solvable in polynomial time when the set
of tours is restricted to pyramidal tours (Burkard et al. 1999). In Woods and Punnen
(2018a), it is shown that QTSP over the set of pyramidal tours in strongly NP-hard
but the corresponding QTSP(A) can be solved in O(n3) over this class of tours.

Let Q be the m by m matrix with (e, f )th element q(e, f ), for e, f ∈ E . If the
rank of Q is p, then by using the rank decomposition of Q, QTSP can be written in
another form as

Minimize q(τ ) =
p∑

r=1

[(
∑

e∈τ

are

)(
∑

e∈τ

bre

)]
+

∑

e∈τ

c(e)

Subject to τ ∈ F .

For the general QTSP, we can eliminate the linear term by adding c(e) to q(e, e).
However, for the rank-restricted case, we need to consider the linear term explicitly
since adding c(e) to q(e, e) could change the rank. The variation where the linear
term is absent is called homogeneous rank p QTSP which is denoted by QTSP(p, H)
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and the general rank p QTSP is denoted by QTSP(p, c). It is easy to verify that
QTSP(p, c) belongs to the class QTSP(p + 1, H). QTSP(p, c) and QTSP(p, H)

restricted to pyramidal tours are studied in Woods and Punnen (2018a), to Halin
graphs in Woods and Punnen (2018b), and is shown to be solvable in pseudopoly-
nomial time when p is fixed, and additionally, admit an FPTAS when the costs are
non-negative.

Since the TSP is a special case of QTSP(p, H), QTSP(p, c), QTSP(A) and QTSP,
all these problems are strongly NP-hard (Garey and Johnson 1979).

Combinatorial optimization problems with the objective function as the product of
two linear functions have been studied by Goyal et al. (2011) and Kern andWoeginger
(2007). Mittal and Schulz (2013) considered a further general class of problems that
subsumes the class of combinatorial optimization problems with objective functions
as fixed sum of products of linear terms. Thus, QTSP(1, H) falls under the general
class considered in Goyal et al. (2011), Kern and Woeginger (2007) and QTSP(p, c)
falls under the class considered in Mittal and Schulz (2013). However, the corre-
sponding results are not applicable to QTSP(p, c) because the conditions imposed in
Mittal and Schulz (2013) to derive their results are not applicable to QTSP(p, c), even
if p = 1.

An instance of QTSP with cost matrix Q is said to be linearizable if there exists an
instance of the linear TSP with cost matrix C such that for each tour, the QTSP and
linear TSP objective function values are identical. The corresponding QTSP lineariza-
tion problem is studied in Punnen et al. (2018) and necessary and sufficient conditions
are obtained for a cost matrix Q to be linearizable.

Major directions of research work on the linear TSP include exact algorithms,
heuristics, approximation algorithms, polynomially solvable special cases and expo-
nential neighbourhoods (Gutin and Punnen 2002) among others. In this paper we
explore the complexity of searching some specific exponential neighbourhoods for
QTSP, QTSP(p, H) and QTSP(A). Our focus is on exponential neighbourhoods that
are studied in literature for the linear TSP and are known to be polynomially search-
able. The study offers additional insights into the structure of QTSP, QTSP(p, H),
and QTSP(A) and enhance our understanding of the boundary between polynomially
solvable cases and NP-hard instances of these models. In particular, we consider the
following classes of exponential neighborhoods (which will be described in detail
later):

(1) Single edge ejection tours (SEE-tours) on a graphG∗ defined inGlover and Punnen
(1997),

(2) Double edge ejection tours (DEE-tours) on a graph G∗ defined in Glover and
Punnen (1997),

(3) Paired vertex graphs (PV-tours), and
(4) Matching edge ejection tours (MEE-tours) (Bentley 1992;Deı̆neko andWoeginger

2000; Gutin and Glover 2005; Glover and Rego 2018; Punnen 2001b).

Unlike the linear TSP, the QTSP is strongly NP-hard for all these classes of tours.
Interestingly, the special cases of the QTSP(A) are polynomially solvable for three
out of four of these classes while the QTSP(p, H) admits fully polynomial time
approximation schemes (FPTAS). Our complexity results are summarized in Table 1.
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Table 1 Summary of complexity results

Section Neighbourhood QTSP QTSP(1, H) QTSP(p, H) QTSP(A)

2 SEE-tours on G∗ Strongly NP-hard NP-hard NP-hard O(n2)

FPTAS FPTAS

3 DEE-tours on G∗ Strongly NP-hard NP-hard, NP-hard O(n3)

FPTAS FPTAS

4 Paired vertex graphs Strongly NP-hard NP-hard NP-hard O(n)

FPTAS FPTAS

5 MEE-tours Strongly NP-hard NP-hard NP-hard Strongly NP-hard

FPTAS FPTAS?

In addition to their theoretical interest, exponential neighbourhoods are vital to
the development of efficient very large-scale neighbourhood search (VLSN search)
algorithms (Ahuja et al. 2002) and variable neighbourhood search algorithms (Mlade-
nović and Hansen 1997) for a variety of hard combinatorial optimization problems.
The success of a variable neighborhood search algorithm depends on the availability
of simple neighborhoods that can be searched using very fast algorithms and more
powerful neighborhoods, often of exponential size, that can be searched using ‘rea-
sonable algorithms’, if not polynomial, to get the search process out of entrapments
at local optima of simpler neighborhoods. In this sense, our study also contributes
to the design of effective metaheuristics for QTSP(p, c) and QTSP(A). Some areas
of applications of the QTSP model include modelling the permuted variable length
Markov model in bioinformatics (Jäger and Molitor 2008) as well as an optimal
routing problem for unmanned aerial vehicles (UAVs) (Woods et al. 2017). Orlin
et al. (2004) showed that for any linear combinatorial optimization problem with
every solution having non-negative cost, if a δ-optimum over a neighborhood can
be computed efficiently, then a (δ + ε)-local optimum for that neighborhood can be
obtained efficiently. In Punnen (2018), this result is extended to a more general class
of combinatorial optimization problems with some non-linear type objective func-
tions. Exploiting these results, the FPTAS we obtained for QTSP(p, H) over various
exponential neighborhoods can be utilized to construct fully-polynomial local opti-
mization schemes (Orlin et al. 2004) forQTSP(p, H)with respect to the corresponding
neighborhoods.

Throughout this paper, we use the following conventions. All matrices will be
denoted by capital letters, and all vectors with bold characters. The i th component of
a vector a is ai . Paths are represented by tuples of vertices, i.e. (v1, v2, v3) is a path
through vertices v1, v2 then v3. Similarly, cycles are sometimes represented as ordered
sets with the first and last elements the same, i.e. (v1, v2, v3, v1) is the cycle which
passes through v1, v2 and v3 (in that order). When more convenient, cycles may be
represented by its edges. For graph theoretic terminology and notations we refer to
Bondy et al. (1976).
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Fig. 1 A graph G∗ with n = 13
and m = 3

2 Single edge ejection tours onG∗

In this section we consider a special class of tours, called single edge ejection tours
(SEE-tours), introduced by Glover and Punnen (1997). We now present various com-
plexity results regarding QTSP and its variations, restricted to this class.

An SEE-tour is defined using a graph G∗ = (V , E) which is a spanning subgraph
of Kn . Partition the vertex set of Kn into a single vertex t , called the tip vertex and
sets V 1, V 2, . . . , Vm , m ≥ 2, such that V k = {vk1, vk2, . . . , vkrk } and |V k | = rk ≥
3, for all k = 1, 2, . . . ,m. Create a cycle C(k) = (vk1, v

k
2, . . . , v

k
rk , v

k
1), for each

k = 1, 2, . . . ,m and connect each vertex in V k to each vertex in V k+1 by edges, for
k = 1, 2, . . . ,m−1. Let Ek be the collection of edges obtained for k = 1, 2, . . . ,m−1.
Add all possible edges from t to each vertex in V 1 and Vm . Let E0 be the set of edges
joining t and V 1, and Em be the set of edges joining t to Vm . The resulting graph is
denoted by G∗ = (V , E) (see Fig. 1 for an example of a G∗ graph).

The travelling salesman problemonG∗ is known to beNP-hard (Glover and Punnen
1997) and it follows immediately that QTSP, QTSP(p, c), and QTSP(A) are all NP-
hard on G∗. Let us now consider a family of tours in G∗, called single edge ejection
tours (SEE-tours), which consists of all tours in G∗ which can be obtained by the
following steps (Glover and Punnen 1997).

(1) Choose an edge (t, v1j ) from t to the cycle C(1) and eject an edge (v1j , v
1
i ) from

C(1). The result creates a chain P(1) from t to v1i which includes all edges of
C(1) except for the ejected edge.

(2) For each k from 2 to m, introduce the edge (vk−1
i , vkj ) from the vertex vk−1

i which

is the end vertex of the chain P(k−1) to the cycleC(k), and eject an edge (vkj , v
k
i )

from C(k), where i = j +1 or j −1 modulo rk , to create chain P(k) from t to vki .
(3) Add the edge (vmi , t) to close the chain P(m) to create a tour in G∗ (see Fig. 2 for

an SEE-tour in the G∗ graph of Fig. 1).

Let F(SEE) be the collection of SEE-tours in G∗. As indicated in Glover and
Punnen (1997), |F(SEE)| = 2m

∏m
k=1 |V k |. If |V k | = 3 for all k, then |F(SEE)| =

6(n−1)/3 ≈ (1.817)n−1. If |V k | = 4 for all k, then |F(SEE)| = 8(n−1)/4 ≈ (1.68)n−1.

123



308 Journal of Combinatorial Optimization (2020) 40:303–332

Fig. 2 An SEE-tour in the graph
G∗ given in Fig. 1

Thusfinding a best TSP tour in F(SEE) is a non-trivial task.Glover andPunnen (1997)
proposed an O(n) algorithm to solve the linear TSP when restricted to SEE-tours on
G∗.

In the definition of QTSP, if the set of feasible solutions is restricted to the class of
SEE-tours in G∗, we have an instance of QTSP-SEE. Although the linear TSP over
SEE-tours can be solved in O(n) time, QTSP-SEE is a much more difficult problem.

Before discussing our complexity results, we present the definition of two well-
known NP-hard problems that are used in our reductions; the quadratic unconstrained
binary optimization problem (QUBO) and the partition problem (PARTITION).

QUBO Given a γ × γ cost matrix Q = (qi j )γ×γ , the problem QUBO is to
find an x ∈ {0, 1}γ such that xT Qx is minimized.

PARTITION Given η numbers α1, α2, . . . , αη, the PARTITION problem is to
determine if there exists subsets S1 and S2 of {1, 2, . . . , η} such that
S1 ∪ S2 = {1, 2, . . . , η}, S1 ∩ S2 = ∅, and ∑

j∈S1 α j = ∑
j∈S2 α j .

Theorem 2.1 QTSP-SEE is strongly NP-hard.

Proof We reduce QUBO to QTSP-SEE. From an instance of QUBO, we construct
an instance of QTSP-SEE as follows. For each variable xi , 1 ≤ i ≤ γ , of QUBO,
create a 3-cycle C(i). Choose an edge from each C(i) and label it i . Now construct
the graph G∗ using these cycles. Arbitrarily label the remaining unlabeled edges of
G∗ as γ + 1, γ + 2, . . . ,m. Consider an m × m matrix Q′ = (q ′

i j )m×m where

q ′
i j =

{
qi j , if 1 ≤ i, j ≤ γ

0, otherwise.

Thus, Q′ =
[

Q O
OT O′

]
where O and O′ are the zero matrices of size γ × (m − γ )

and (m − γ ) × (m − γ ), respectively. Given any solution x = (x1, x2, . . . , xγ ) of
QUBO, we can construct an SEE-tour, τ , in G∗ containing the edge i if xi = 1 and
not containing i if xi = 0, for 1 ≤ i ≤ γ . Note that τ contains other edges as well. It
can be verified that the cost of τ with cost matrix Q′ is precisely xT Qx (Fig. 3).

Conversely, given any SEE-tour τ in the G∗ obtained above, construct a vector
x = (x1, x2, . . . , xγ ) by assigning xi = 1 if and only if edge i is in τ , for 1 ≤ i ≤ γ .
The cost of the tour τ with cost matrix Q′ is precisely xT Qx. Since QUBO is strongly
NP-hard, the result follows. ��
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Fig. 3 Construction of the graph G∗ used in the proof of Theorem 2.1

Let us now examine the complexity of some special cases of QTSP-SEE. In the
definition of QTSP(p, c), if we restrict the solution set to SEE-tours inG∗, we have the
instance QTSP(p, c)-SEE. That is, QTSP(p, c)-SEE is precisely the special case of
QTSP-SEE where the rank of the associated cost matrix is p and a linear cost function
is added to the quadratic costs. If the linear part is zero (i.e. homogeneous case), we
denote the corresponding instance by QTSP(p, H)-SEE. Recall that there exist some
vectors ar and br for r = 1, . . . , p such that QTSP(p, c)-SEE can be stated as

Minimize q(τ ) =
p∑

r=1

[(
∑

e∈τ

are

)(
∑

e∈τ

bre

)]
+

∑

e∈τ

c(e)

Subject to τ ∈ F(SEE).

Theorem 2.2 QTSP(p, c)-SEE is NP-hard even if p = 1 and c(e) = 0 for all e ∈ E.

Proof We reduce the PARTITION problem to QTSP(1, H)-SEE. From an instance of
PARTITION with data α1, . . . , αη, we construct an instance of QTSP(1, H)-SEE as
follows.

For each k = 1, 2, . . . , η, create a 3-cycle C(k) on the vertex set {vku, vky, vkw}.
Build the graph G∗ = (V , E) using these cycles. Define the weight for each edge
(i, j) ∈ E as follows: For k = 1, 2, . . . , η, assign weight αk to edge (vky, v

k
u) and

−αk to the edge (vky, v
k
w). For k = 1, 2, . . . , η − 1 assign weights −M for (vku, v

k+1
y )

and (vkw, vk+1
y ) where M = 1 + ∑η

k=1 |αk |. The weight of edge (t, v1y) is ηM , the
weights of edges (t, v1u) and (t, v1w) are ηM + 1, and the weights of edges (v

η
u , t) and

(v
η
w, t) are −M , where t is the tip vertex of G∗. All other edges have weight zero (see

Fig. 4 for a sample G∗ graph constructed.) Let ai j denote the weight of edge (i, j)
constructed above and choose another set of weights bi j for edge (i, j), i, j ∈ V such
that bi j = ai j . Then, the objective function ofQTSP(1, H)-SEE on theG∗ constructed

above becomes
(∑

(i, j)∈τ ai j
)2

where τ is an SEE-tour in this G∗. Note that zero is a
lower bound on the optimal objective function value of QTSP(1, H)-SEE constructed
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Fig. 4 Construction of the graph G∗ used in the proof of Theorem 2.2. Note that the dotted edges do not
belong to any optimal tour

above. It can be verified that the optimal objective function value of this QTSP(1, H)-
SEE is zero precisely when the required partition exists. The result follows from the
NP-completeness of PARTITION (Karp 1972). ��

Despite this negative result, we now show that when p is fixed, QTSP(p, H)-SEE
can be solved in pseudopolynomial time and when the edge weights are non-negative
it also admits an FPTAS. Recall that an instance of QTSP(p, H)-SEE is given by p
pairs of costs ari j , b

r
i j for r = 1, 2, . . . , p, for each edge (i, j) ∈ E . We formulate

QTSP(p, H)-SEE as a rank p quadratic shortest path problem (QSPP(p, H)) on a
directed acyclic graph. It is well-known that QSPP(p, H) on an acyclic digraph is NP-
hard even if p = 1 (Punnen 2001a). The definition of this specific quadratic shortest
path problem is given below.

Given the graph G∗, construct the acyclic digraph G ′ = (V ′, E ′) with arc weight
vectors αr , βr , for r = 1, . . . , p, as follows. Note that the vertex set V k of cycle
C(k) in G∗ is represented by V k = {vk1, vk2, . . . , vkrk }. Also, the edge set of C(k) is
E(k) = {ek1, ek2, . . . , ekrk } where eki = (vki , v

k
i+1) and the indices are taken modulo rk .

For k = 1, 2, . . . ,m, create V̂ k = {v̂k1, v̂k2, . . . , v̂krk }. V̂ k can be viewed as a copy of

V k . Introduce two new vertices s and t , and define V ′ = {s, t} ∪ ∪m
k=1(V

k ∪ V̂ k). For
each edge (vki , v

k
i+1) in C(k), introduce a directed arc (vki , v̂

k
i+1) and another directed

arc (vki+1, v̂
k
i ) in E ′, where the indices are takenmodulo rk . The directed arc (vki , v̂

k
i+1)

represents the event of ejecting edge eki fromC(k)where a Hamiltonian cycle “enters”
C(k) through vki and “leaves” C(k) through vki+1. For each i = 1, 2, . . . , rk and each
h = 1, 2, . . . , p, set αh

vki ,v̂
k
i+1

= C(ah, k) − ah
eki

and βh
vki ,v̂

k
i+1

= C(bh, k) − bh
eki
,

where C(ah, k) = ∑
e∈C(k) a

h
e and C(bh, k) = ∑

e∈C(k) b
h
e . Similarly, the directed

arc (vki+1, v̂
k
i ) corresponds to ejecting edge eki from C(k) and a Hamiltonian cycle

enters C(k) from vki+1, traverses vki+1, . . . , v
k
i , and leaves C(k) through vki . For h =

1, 2, . . . , p, set αh
vki+1,v̂

k
i

= αh
vki ,v̂

k
i+1

and βh
vki+1,v̂

k
i

= βh
vki ,v̂

k
i+1

. For each edge (vki , v
k+1
j )
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Fig. 5 G′ constructed from the graph G∗ given in Fig. 1

connecting vertices in V k and V k+1 introduce a directed arc (v̂ki , v
k+1
j ) in E ′. For

h = 1, 2 . . . , p, set αh
v̂ki ,v

k+1
j

= ah
vki ,v

k+1
j

and βh
v̂ki ,v

k+1
j

= bh
vki ,v

k+1
j

. The tip vertex s is

connected to v1i , for i = 1, 2, . . . , r1, and the weights for directed arcs (s, v1i ) in E ′
are set as αh

s,v1i
= ah

t,v1i
and βh

s,v1i
= bh

t,v1i
. These correspond to entering C(1) via the

edge (t, v1i ). Similarly, every vertex vmi is connected to t , for i = 1, 2, . . . , rm , with
weights set to αh

v̂mi ,t = ahi,t and βh
v̂mi ,t = bh

vmi ,t , and corresponds to leaving C(k) via the

edge (vm, t). The graph G ′ constructed from the graph G∗ in Fig. 1 is shown in Fig. 5.
Consider the homogeneous rank p quadratic shortest path problem on G ′,

QSPP(p, H ,G ′) : Minimize q(P) =
p∑

r=1

(
∑

e∈P

are

)(
∑

e∈P

bre

)

Subject to P ∈ Ps,t ,

where Ps,t is the set of all s − t paths in G ′.
Theorem 2.3 From an optimal (ε-optimal) solution of QSPP(p, H ,G ′), an optimal
(ε-optimal) solution to QTSP(p, H)-SEE can be recovered in linear time.

Proof From the construction of G ′, it can be verified that there is a one-to-one
correspondence between SEE-tours in G∗ and s − t paths in G ′. Moreover, the
objective function values of the corresponding solutions of QTSP(p, H)-SEE and
QSPP(p, H ,G ′) are identical, and the result follows. ��

In view of Theorem 2.3, to solve QTSP(p, H)-SEE (either by an exact algorithm or
by an approximation algorithm), it is enough to solve a quadratic shortest path problem
with cost matrix of rank p on an acyclic digraph (QSPP(p, H)). In QSPP(p, H), we
assume that the cost matrix is given in rank decomposition form as vectors ar and br

for r = 1, 2, . . . , p. For the computational complexity of the quadratic shortest path
problem and its various special cases, we refer to Rostami et al. (2018) and Hu and
Sotirov (2018).
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2.1 The QSPP(p,H)

We now present a labelling algorithm to solve QSPP(p, H) in pseudopolynomial time
on an acyclic multidigraph G = (V , E). Construct a distance function δ : (E, r) →
R
2p, which stores the values for ar and br for r = 1, 2, . . . , p. Our algorithm stores a

collection of distance label vectors, denoted 	 j , on each j ∈ V . A label d on vertex j
represents the existence of a unique path Pd

j from s to j such that the sums of the costs

of ar and br of edges in Pd
j , for each r = 1, 2, . . . , p, are equal to the entries of d.

Then, to solve QSPP(p, H), it suffices to find the distance label at t which minimizes
the sum of products of its stored values. We now give the details of our approach.

Note that only vertices of G that lie on some s − t path in G are relevant to
QSPP(p, H). Thus, we can remove all vertices of G that are not reachable from s and
those from which t is not reachable. Such vertices can be identified in O(|V | + |E |)
time by two applications of breadth-first search. Thus, without loss of generality, we
assume that each vertex of G lies on some s − t path in G, no incoming arcs to s, no
outgoing arcs from t , the vertex set V = {1, 2, . . . , n} and the vertex labels follow
topological order, s = 1 and t = n.

For each arc (i, j) ∈ E , let δi j ∈ R
2p be defined as

δi j (h) =
{
ahi j if h = 1, 2, . . . , p

bh−p
i j if h = p + 1, p + 2, . . . , 2p.

Our pseudopolynomial algorithm to solve QSPP(p, H) maintains a collection 	 j

of distance label vectors for all j ∈ V . Each distance label vector d ∈ 	 j belongs to
R
2p and represents a unique path Pd

j from 1 to j in G such that

d(h) =
⎧
⎨

⎩

∑
e∈Pd

j
are if h = 1, 2, . . . , p

∑
e∈Pd

j
br−p
e if h = p + 1, p + 2, . . . , 2p.

For each j ∈ V , let I ( j) = {i : (i, j) ∈ E}. Then, given 	i for i ∈ I ( j), the set 	 j

can be constructed by choosing distinct elements of the multiset

{d + δi j : d ∈ 	i , i ∈ I ( j)}. (1)

Starting with 	1 consisting of the zero vector in R
2p, the sets 	2, . . . , 	n can be

generated using the formula (1). Let d∗ ∈ 	n be such that

p∑

i=1

d∗(i)d∗(p + i) = min
d∈	n

{ p∑

i=1

d(i)d(p + i)

}
.

Then
∑p

i=1 d
∗(i)d∗(p+ i) gives the optimal objective function value of QSPP(p, H)

on G with s = 1, t = n and each vertex in G lies on some path from 1 to n in G.
The validity of this follows from the recursion defined by (1). Note that each distance
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label vector d ∈ 	 j is such that d = u + δi j for some i ∈ I ( j) and u ∈ 	i . For each
distance label d ∈ 	 j , we maintain pred(d) = i which stores the predecessor vertex
of distance label d, and pointer(d) which is a pointer to an appropriate distance label
in 	i . A formal description of the algorithm is given below.

Algorithm 1 Fixed-rank QSPP
Input: Directed acyclic multigraph G = (V , E) with costs are , b

r
e for r = 1, . . . , p and e ∈ E , specified

vertices s and t .
Output: A shortest path from s to t .
Remove each vertex not reachable from s and each vertex from which t cannot be reached
Label vertices in topological order with s = 1 and t = n.
Construct distance function δ from ar , br for r = 1, . . . , p
	1 = {0} ∈ R

2p � The set of distance labels at vertex 1 contains only the zero vector.
for j = 2, 3, . . . , n do

	̄ = ∅ � Begin with the empty set.
for i ∈ I ( j) do

for w ∈ 	i do
d = w + δi j � Compute distance label vector.
pred(d) = i � Store the predecessor vertex of d.
pointer(d) = vectw � Store a pointer to the predecessor distance label.
	̄ = 	̄ ∪ {d} � Add distance label to set.

end for
end for
	 j = distinct elements of 	̄ � Remove duplicate vectors.

end for
Choose u ∈ 	(n) such that

∑p
i=1 u(i)u(p + i) = mind∈	n

{∑p
i=1 d(i)d(p + i)

}
.

Trace the path Pu
n determined by u using pred(u) and pointer(u).

return Pu
n

Lemma 2.4 |	n| ≥ |	 j | for j = 1, 2, . . . , n.

Proof Let P = (π(1), π(2), . . . , π(r)) be any path from vertex 1 to n in G. Consider
a vertex π(i), i ∈ {1, 2, . . . , r − 1}. Since the elements of 	π(i) are distinct vectors,
the vectors that belong to {d+ δπ(i)π(i+1) : d ∈ 	π(i)} are distinct. Thus, |	π(i+1)| ≥
|	π(i)|. Since each vertex in G belongs to some path joining vertex 1 to vertex n, the
result follows. ��
Theorem 2.5 QSPP(p, H) can be solved on an acyclic multidigraph G in O(mn2p+1

U ) time, where U = ∏p
h=1 maxe∈E |ahe |maxe∈E |bhe |, for any fixed p.

Proof A topological order of the vertices in multidigraph G can be obtained in O(n+
m) time. For each h = 1, 2, . . . , p, the number of possible distinct values of ah for a
label at any vertex is bounded by 2(n−1) ·maxe |ahe |. Similarly, the number of distinct
values for bh is bounded by 2(n−1) ·maxe |bhe |. That is, |	 j | ≤ n2pU for any j ∈ V ,
where U = ∏p

h=1 maxe |ahe |maxe |bhe |. To generate each 	 j , we consider each 	i

such that i ∈ I ( j), and |	̄| ≤ mn2pU . The distinct elements of 	̄ can be found in
O(mn2pU ) time, and hence, all	 j can be constructed inO(mn2p+1U ) time. Selecting

a minimum u ∈ 	(n) such that
∑p

i=1 u(i)u(p + i) = mind∈	n {
∑2p

i=1 d(i)d(p + i)}
can be done in O(p|	n|) time, and the result follows. ��
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From Theorem 2.5, it follows that QSPP(p, H) on an acyclic digraph can be solved
in pseudopolynomial time when p is fixed. As a consequence, QTSP(p, H)-SEE can
be solved in pseudopolynomial time for fixed p.

Corollary 2.6 QTSP(p, H)-SEE can be solved in O(mn2p+1U ) time, where U =∏p
h=1 maxe∈E |ahe |maxe |bhe |.
Let us now observe that the QSPP(p, H) can be solved as a sequence of equality

type resource-constrained shortest path problems (ECSPP) (Turner 2012). The average
performance of this approach is likely to be weaker than that of the labelling algorithm
when restricted to acyclic digraphs; this approach does not require the graph to be
acyclic. However, the complexity of the procedure depends on that of solving ECSPP.
Let η1, η2, . . . , ηp be a set of parameters. Introduce the constraints

∑
e∈P bre = ηr

for r = 1, 2, . . . , p and consider the cost vector ā where āe = ∑p
r=1 ηr are . Solve the

resulting ECSPP and let P(η) be the resulting optimal solution. Repeating this for all
possible values of η = (η1, η2, . . . , ηp) and choosing the best solution amongst the
solutions of these ECSPPs provides an optimal solution to QSPP(p, H). A variation
of this solution approach can be extended to construct an FPTAS for QSPP(p, H)

with non-negative weights.
We now turn our attention to establishing that QSPP(p, H) admits an FPTAS, and

hence QTSP(p, H)-SEE also admits an FPTAS.

Theorem 2.7 (Mittal and Schulz 2013) For fixedm and X ⊆ {0, 1}n, let fi : X → R+
for i = 1, 2, . . . ,m. Let h : Rm+ → R+ be any function that satisfies:

(1) h(y) ≤ h(y′) for all y, y′ ∈ R
m+ such that yi ≤ y′

i for all i = 1, 2, . . . ,m; and
(2) h(λy) ≤ λdh(y′) for all y, y′ ∈ R

m+ and λ > 1 for some fixed d > 0.

There is an FPTAS for solving the general optimization problem: Minimize g(x) =
h( f1(x), f2(x), . . . , fm(x)), x ∈ X if the following exact problem can be solved in
pseudopolynomial time: Given k ∈ Z, (c1, c2, . . . , cn) ∈ Z

n+, does there exist x ∈ X
such that

∑n
i=1 ci xi = k?

Consider the homogenous fixed-rank quadratic optimization problem (rank-QOP),
with rank p:

Minimize q(x) = ∑p
r=1 a

T
r x · bTr x

Subject to x ∈ X ,

where ar ,br ∈ Z
n+ and X ⊆ {0, 1}n . By setting g = q, m = 2p, fr (x) = aTr x,

f p+r (x) = bTr x, for r = 1, 2, . . . , p and h(y) =
p∑

r=1
yr · yp+r , it is clear that the

conditions of Theorem 2.7 are satisfied with d = 2. We have the following corollary.

Corollary 2.8 There exists an FPTAS for solving (rank-QOP) if the following exact
problem can be solved in pseudopolynomial time:Given k ∈ Z, (c1, c2, . . . , cn) ∈ Z

n+,
does there exist x ∈ X such that

∑n
i=1 ci xi = k?

Note that the exact shortest path problem is NP-hard. We relax the problem to
that of finding a shortest walk that minimizes the QSPP(p, H) objective function.
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An optimal solution to the relaxed problem will have the same value as the optimal
solution to the original problem since removing all cycles from any s − t walk gives
an s − t path. Assuming that the weights are nonnegative, the exact problem can be
solved in O(nmk) time by dynamic programming (Mittal and Schulz 2013). We now
have the following corollaries which result from this discussion and the construction
given above.

Corollary 2.9 QSPP(p, H) and QTSP(p, H)-SEE both admit an FPTAS when a,b ≥
0.

The instance of QTSP(A) when the family of tours is restricted to F(SEE) is
denoted by QTSP(A)-SEE. Our reduction of QTSP(p, H)-SEE to QSPP(p, H) dis-
cussed above cannot be applied directly to solve QTSP(A)-SEE. The reduction,
however, can be modified to take into consideration the cost arising from adjacent
pairs of edges to get an equivalent instance of adjacent QSPP(p, H) on an acyclic
graph. Since the adjacent QSPP on an acyclic graph can be solved in polynomial time
(Rostami et al. 2015), QTSP(A)-SEE can be solved in polynomial time. We present
below a simple O(n2) algorithm to solve QTSP(A)-SEE directly.

We note that the QTSP(A) objective function only depends on consecutive edges
in a tour. Moreover, since SEE-tours visit the cycles in G∗ sequentially, a dynamic
programming algorithm naturally emerges. Refer to any chain P(k) that may be pro-
duced in the construction of an SEE-tour in G∗ as an SEE-Hamiltonian path of length
k. A minimum cost SEE-Hamiltonian path of length k from t to vki can be expressed
as a minimum of the SEE-Hamiltonian paths of length k − 1 plus the costs induced
by connecting each path to vki . We now give the details of the procedure.

Without loss of generality, assume that the input for QTSP(A)-SEE is given as
the costs of paths of length two in G∗. That is, for any 2-path (u, v, w) with v as
the middle vertex, a cost q(u, v, w) is given. Note that q(u, v, w) = q(w, v, u). Let
f
(
vki , v

k
i+1

)
be the length of a smallest SEE-Hamiltonian path in G∗ from t to vki

when edge
(
vki , v

k
i+1

)
is ejected (assuming it contains edge (t, v1i+1) or (vk−1

j , vki+1))
and let

g
(
vki

)
=

rk∑

s=1

q
(
vks , v

k
s+1, v

k
s+2

)
− q

(
vki , v

k
i+1, v

k
i+2

)
− q

(
vki−1, v

k
i , v

k
i+1

)
.

In the above expression and that follows,we assume that the indices rk+1 ≡ 1, rk+2 ≡
2, and 0 ≡ rk . Then for k = 2, 3, . . .m,

f (vki , v
k
i+1) = min

1≤ j≤rk−1

{
f
(
vk−1
j , vk−1

j−1

)
+ q

(
vk−1
j+1, v

k−1
j , vki+1

)

+ q
(
vk−1
j , vki+1, v

k
i+2

)
+ g

(
vki

)
,

f
(
vk−1
j , vk−1

j+1

)
+ q

(
vk−1
j−1, v

k−1
j , vki+1

)

+ q
(
vk−1
j , vki+1, v

k
i+2

)
+ g

(
vki

)}
,

123



316 Journal of Combinatorial Optimization (2020) 40:303–332

and

f (vki , v
k
i−1) = min

1≤ j≤rk−1

{
f
(
vk−1
j , vk−1

j−1

)
+ q

(
vk−1
j+1, v

k−1
j , vki−1

)

+ q
(
vk−1
j , vki−1, v

k
i−2

)
+ g

(
vki−1

)
,

f
(
vk−1
j , vk−1

j+1

)
+ q

(
vk−1
j−1, v

k−1
j , vki−1

)

+ q
(
vk−1
j , vki−1, v

k
i−2

)
+ g

(
vki−1

)}
.

The values of f
(
v1i , v

1
i+1

)
and f

(
v1i , v

1
i−1

)
for 1 ≤ i ≤ r1 can be calculated directly

to initiate the above recursion. Thuswe can compute the value of the SEE-Hamiltonian
path from t to vmi for each i = 1, 2, . . . , rm . Adding the arc (vmi , t) for i = 1, 2, . . . , rm
yields a corresponding SEE-tour and a best such tour gives an optimal solution to
QTSP(A)-SEE. The foregoing discussions can be summarized in the theorem below.

Theorem 2.10 QTSP(A)-SEE can be solved in O(n2) time.

3 Double edge ejection tours onG∗

In this section we consider a special class of tours, called double edge ejection tours
(DEE-tours), introduced byGlover and Punnen (1997).We present various complexity
results regarding QTSP and its variations restricted to this class.

The family of double edge ejection (DEE) tours in G∗ consists of all tours which
can be obtained by the following steps.

(1) Begin by extending two edges (t, v1i ) and (t, v1i+1) from t to the cycle C(1) and
ejecting an edge (v1i , v

1
i+1) from C(1). The result creates an expanded cycle D(1)

which includes all vertices of C(1) and t .
(2) For each k from 1 to m − 1, in that order, select an edge (vkj , v

k
j+1) of C(k) where

i �= j , and any edge (vk+1
s , vk+1

s+1 ) of C(k+1). Eject these two edges and add

either the two edges (vkj , v
k+1
j ) and (vkj+1, v

k+1
s+1 ) or the two edges (vkj , v

k+1
s+1 ) and

(vkj+1, v
k+1
s ), creating the expanded cycle D(k+1) containing the vertices of D(k)

and C(k + 1).
(3) The cycle D(m) is a DEE-tour in G∗ (see Fig. 6 for a DEE-tour in the G∗ graph

of Fig. 1).

The variation of QTSP when the family of feasible solutions are restricted to
DEE-tours in G∗ is denoted by QTSP-DEE. Let F(DEE) be the collection of
all DEE-tours in G∗. As indicated in Glover and Punnen (1997), |F(DEE)| =
2m−1 ∏m

k=1 |V k | ∏m−1
k=1 |V k−1|. If |V k | = 3 for all k, then |F(DEE)| = 2m−132m−1 ≈

(1.26)n−4 · (1.44)2n−7 ≈ (2.61)n−4. If |V k | = 4 for all k, then |F(DEE)| =
2m−142m−1 ≈ (1.19)n−5 · 2n−3. Despite the fact that this is an exponential class
of tours, when the feasible solutions are restricted to DEE-tours in G∗, the linear TSP
can be solved in O(n) time (Glover and Punnen 1997). This simplicity however does
not extend to QTSP-DEE.
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Fig. 6 A DEE-tour in the graph
G∗ given in Fig. 1

Theorem 3.1 QTSP-DEE is strongly NP-hard.

Proof We reduceQUBO toQTSP-DEE.Without loss of generality, from an instance of
QUBO on 2γ +1 variables, we construct an instance of QTSP-DEE as follows. Create
a 3-cycle C(i) for i = 1, . . . , γ . Choose two edges from each C(i), i = 1, . . . , γ − 1
and a single edge from C(γ ) and label these 1, 2, . . . , 2γ + 1. Now construct the
graph G∗ using these cycles. Arbitrarily label the remaining unlabelled edges of G∗
as 2γ + 2, 2γ + 3, . . . ,m. Consider an m × m matrix Q′ = (q ′

i j )m×m where

q ′
i j =

{
qi j , if 1 ≤ i, j ≤ 2γ + 1

0, otherwise.

Thus, Q′ =
[

Q O
OT O′

]
where O, and O′ are the zero matrices of size 2γ + 1 ×

(m − 2γ − 1) and (m − 2γ − 1) × (m − 2γ − 1), respectively. Given any solution
x = (x1, x2, . . . , x2γ+1) of QUBO, we can construct a DEE-tour, τ , in G∗ containing
the edge i if xi = 1 and not containing i if xi = 0, for 1 ≤ i ≤ 2γ + 1. Note that τ

contains other edges as well. It can be verified that the cost of τ with cost matrix Q′
is precisely xT Qx.

Conversely, given any DEE-tour τ in the G∗ obtained above, construct a vector
x = (x1, x2, . . . , x2γ+1) by assigning xi = 1 if and only if edge i is in τ , for 1 ≤ i ≤
2γ + 1. The cost of the tour τ with cost matrix Q′ is precisely xT Qx. Since QUBO
is strongly NP-hard, the result follows. ��

Let us now examine the complexity of some special cases of QTSP restricted
to DEE-tours. The problem QTSP(p, H) where the family of feasible solutions is
restricted to DEE-tours on G∗ is called double edge ejection QTSP with rank p, and is
denoted by QTSP(p, H)-DEE.We have the analogous definition for QTSP-DEE(p,c).

Theorem 3.2 QTSP(p, c)-DEE is NP-hard even if p = 1 and c(e) = 0 for all e ∈ E.

Proof We reduce the PARTITION problem to QTSP(1, H)-DEE. From an instance
of PARTITION with the given data α1, . . . , αη, construct an instance of QTSP(1, H)-
DEE as follows.

For each k = 1, 2, . . . , η create a 3-cycle C(k) on the vertex set {uk, vk, wk}. Build
the graphG∗ = (V , E) using these cycles. Introduce aweight for each edge (i, j) ∈ E
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Fig. 7 Construction of the graph G∗ used in the proof of Theorem 3.2. Note that the dashed edges have
weight − (∑n

k=1 αk
)
/4

as follows: For k = 1, 2, . . . , η, assign weight αk to edge (vk, uk), −αk to the edge
(vk, wk), and M to (wk, uk), where M = 1+η

(∑η
k=1 |αk |

)
. The weights of the edges

(t, v1), (t, u1) and (t, w1) are − (∑n
k=1 αk

)
/4. All other edges have weight zero. Let

ai j denote theweight of edge (i, j) constructed above and choose another set of weight
bi j which is the same as ai j . Then the objective function of QTSP(1, H)-DEE on the

G∗ constructed above becomes
(∑

(i, j)∈τ ai j
)2
, where τ is a DEE-tour in this G∗. It

may be noted that from each 3-cycle C(k), two edges are to be ejected. In any optimal
solution to the constructed instance of QTSP(1, H)-DEE, one of the ejected edges
from each cycle must be the one with weight M . Thus for the other ejected edge, one
needs to choose an edge with weight αk or −αk . It can be verified that the optimal
objective function value of this QTSP(1, H)-DEE is zero precisely when the required
partition exists. The result follows from the NP-completeness of PARTITION (Karp
1972). ��

We now show that the QTSP(p, c)-DEE (and hence the QTSP(p, H)-DEE) can
be solved in pseudopolynomial time and the problems admit FPTAS when the edge
weights are non-negative. Our proof technique is to reduce QTSP(p, H)-DEE to
QSPP(p, H) on a specially-constructed acyclic multigraph which we now describe
(Fig. 7).

Given a G∗ graph construct the acyclic digraph G ′ as follows. Note that the vertex
set V k of cycle C(k) in G∗ is represented by V k = {vk1, vk2, . . . , vkrk }. Also, the
edge set of C(k) is E(k) = {ek1, ek2, . . . , ekrk }, where eki = (vki , v

k
i+1) and the indices

are taken modulo rk . For k = 1, 2, . . . ,m − 1, create Ê(k) = {êk1, êk2, . . . , êkrk }.
Ê(k) can be viewed as a copy of E(k). Construct a graph G ′ = (V ′, E ′) where

V ′ = {t1, t2} ∪ E(m) ∪
{
m−1⋃
k=1

(E(k) ∪ Ê(k))

}
. For each k = 1, 2, . . . ,m − 1 and

i, j = 1, 2, . . . , rk , introduce a directed arc e = (eki , ê
k
j ), i �= j and set 2p weights

αh
e = C(ah, k) − ah

eki
− ah

ekj
and βh

e = C(bh, k) − bh
eki

− bh
ekj

for h = 1, 2, . . . , p,
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Fig. 8 G′ constructed from the graph G∗ given in Fig. 1

where C(ah, k) = ∑
e∈C(k) a

h
e and C(bh, k) = ∑

e∈C(k) b
h
e . The arc e = (eki , ê

k
j ),

i �= j , represents the events of ejecting edges eki and ekj from cycle C(k) where

a Hamiltonian cycle “enters” C(k) through eki and “leaves” C(k) through ekj . For
every k = 1, 2, . . . ,m − 1, i = 1, 2, . . . , rk , and j = 1, 2, . . . , rk+1, introduce two
directed arcs e1 = (êki , e

k+1
j ) and e2 = (êki , e

k+1
j ). Note that e1 and e2 are parallel

arcs in G ′ in the same direction. Let u1 and u2 be the endpoints of eki in G∗ and
v1, v2 be the endpoints of ek+1

j in G∗. Now set the weights αh
e1 = ahu1v1 + ahu2v2

and βh
e = bhu1v2 + bhu2v1 for h = 1, 2, . . . , p. The arc e1 represents ejecting eki from

C(k) and ek+1
j from C(k + 1) in G∗ and patching cycles using “non-cross edges”.

The edge e2 represents the same event but the patching is done using “cross edges”
instead. The tip vertex t1 is connected to e1i for i = 1, 2, . . . , r1. Set 2p weights for
the arcs ei = (t, eki ) in G ′ as αh(ei ) = ah(t,vi ) + ah(t,vi+1)

, βh(ei ) = bh(t,vi ) + bh(t,vi+1)
,

h = 1, 2, . . . , p, where ei = (vi , vi+1) in G∗. Finally, connect all the nodes emi for
i = 1, 2, . . . , rm , to t2 and all the α and β weights of these arcs are zero. The graph
G ′ constructed from the G∗ in Fig. 1 is shown in Fig. 8.

Theorem 3.3 From an optimal (ε-optimal) solution of QSPP(p,H,G′), an optimal (ε-
optimal) solution to QTSP(p, H)-DEE can be recovered in linear time.

Proof From the construction of G ′, it can be verified that there is a one-to-one cor-
respondence between SEE-tours in G∗ and t1 − t2 paths in G ′ that preserves the
objective function values of the corresponding solutions of QTSP(p, H)-DEE and
QSPP(p, H). Note that G ′ is an acyclic multigraph with at most two multiples of each
edge. It is possible to use our algorithm for QSPP(p, H) (Algorithm 1) on an acyclic
digraph for the multigraph case as well, and the result follows. ��

Now, from the construction above, and the results from the previous section, we
immediately have the following.
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Corollary 3.4 QTSP(p, H)-DEE can be solved in O(mn2p+1U ) time, where U =∏p
h=1 maxe∈E |ahe |maxe |bhe |, for any fixed p. Moreover, QTSP(p, H)-DEE admits

an FPTAS when a,b ≥ 0.

The instance of QTSP(A) when the family of tours is restricted to F(DEE) is
denoted by QTSP(A)-DEE. Our reduction of QTSP(p, H)-DEE to QSPP(p, H) dis-
cussed above cannot be applied directly to solve QTSP(A)-DEE. As before, the
reduction can be modified to take into consideration the cost arising from adjacent
pairs of edges to get an instance of adjacent QSPP(p, H) on an acyclic graph, and
hence QTSP(A)-DEE can be solved in polynomial time. We present a simple O(n3)
algorithm to solve QTSP(A)-DEE directly.

Every DEE-tour in G∗ is defined by the edges which are removed upon entering
and exiting each cycle C(i), the edge which is removed from C(m), and the choice
of matching between the endpoints of the edge removed when exiting C(i) and the
edge removed when entering C(i + 1) for i = 1, . . . ,m − 1. When two consecutive
edges are removed from cycle C(i) (the edges which are removed from cycle C(i)
share an endpoint v), the DEE-tour contains a path (u, v, w) where u ∈ C(i − 1) and
w ∈ C(i+1). That is, the quadratic costswhich are incurred depend on the edgeswhich
are removed from C(i − 1) and C(i + 1) (as in the tour in Fig. 6). This prevents the
approach used by Glover and Punnen (1997) for the linear TSP from being extended to
QTSP(p, H)-DEE. This also complicates any dynamic programming approach which
attempts to construct an optimal solution by considering one cycle in each iteration,
however, we show that it still can be done by considering two consecutive cycles
instead of one in a dynamic programming recursion.

Let f 1(vki , v
k−1
j ) and f 2(vki , v

k−1
j ) be the lengths of a smallest expanded cycle

D(k) in G∗ containing edges (vki , v
k−1
j ), (vki+1, v

k−1
j+1), and (vki , v

k−1
j+1), (v

k
i+1, v

k−1
j ),

respectively, and let

g
(
vki

)
=

rk∑

s=1

q
(
vks , v

k
s+1, v

k
s+2

)
− q

(
vki , v

k
i+1, v

k
i+2

)
− q

(
vki−1, v

k
i , v

k
i+1

)
.

In the above expression and that follows,we assume that the indices rk+1 ≡ 1, rk+2 ≡
2, and 0 ≡ rk . Let h11

(
vki , v

k−1
j

)
represent the length of a smallest expanded cycle

D(k) in G∗ containing edges (vki , v
k−1
j ) and (vki+1, v

k−1
j+1), that was not constructed by

selecting two adjacent edges to eject from C(k − 1). That is,

h11

(
vki , v

k−1
j

)
= q

(
vki , v

k−1
j , vk−1

j−1

)
+ q

(
vki+1, v

k−1
j+1, v

k−1
j+2

)

− q
(
vk−1
j−1, v

k−1
j , vk−1

j+1

)
− q

(
vk−1
j , vk−1

j+1, v
k−1
j+2

)

+ min
1≤s≤rk−1,

s /∈{ j−1, j, j+1}
1≤t≤rk−2

{
f 1(vk−1

s , vk−2
t ), f 2(vk−1

s , vk−2
t )

}
.
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Let h12

(
vki , v

k−1
j

)
represent the length of a smallest expanded cycle D(k) containing

edges (vki , v
k−1
j ) and (vki+1, v

k−1
j+1), thatwas constructed by selecting edge (vk−1

j+1, v
k−1
j+2)

when constructing D(k − 1) and (vk−1
j , vk−1

j+1) when constructing D(k). That is,

h12

(
vki , v

k−1
j

)
= q

(
vki , v

k−1
j , vk−1

j−1

)
− q

(
vk−1
j−1, v

k−1
j , vk−1

j+1

)

+ min
1≤t≤rk−2

{ f 1(vk−1
j+1, v

k−2
t ) + q(vki+1, v

k−1
j+1, v

k−2
t )

− q(vk−1
j , vk−1

j+1, v
k−2
t ),

f 2(vk−1
j+1, v

k−2
t ) + q(vki+1, v

k−1
j+1, v

k−2
t+1 ) − q(vk−1

j , vk−1
j+1, v

k−2
t+1 )}.

Similarly, let h13

(
vki , v

k−1
j

)
represent the length of a smallest expanded cycle D(k)

containing edges (vki , v
k−1
j ) and (vki+1, v

k−1
j+1), that was constructed by selecting edge

(vk−1
j−1, v

k−1
j ) when constructing D(k − 1) and (vk−1

j , vk−1
j+1) when constructing D(k).

That is,

h13

(
vki , v

k−1
j

)

= q
(
vki+1, v

k−1
j+1, v

k−1
j+2

)
− q

(
vk−1
j , vk−1

j+1, v
k−1
j+2

)

+ min
1≤t≤rk−2

{ f 1(vk−1
j−1, v

k−2
t ) + q(vki , v

k−1
j , vk−2

t+1 ) − q(vk−1
j+1, v

k−1
j , vk−2

t+1 ),

f 2(vk−1
j−1, v

k−2
t ) + q(vki , v

k−1
j , vk−2

t ) − q(vk−1
j+1, v

k−1
j , vk−2

t )}.

Then for k = 3, 4, . . . ,m,

f 1
(
vki , v

k−1
j

)
= g(vki ) + q(vki−1, v

k
i , v

k−1
j ) + q(vki+2, v

k
i+1, v

k−1
j+1)

+ min{h11
(
vki , v

k−1
j

)
, h12

(
vki , v

k−1
j

)
, h13

(
vki , v

k−1
j

)
}.

Similar expressions follow for h21

(
vki , v

k−1
j

)
, h22

(
vki , v

k−1
j

)
, h23

(
vki , v

k−1
j

)
and

f 2
(
vki , v

k−1
j

)
using the cross-edges instead.Thevalues of f 1

(
v2i , v

1
j

)
and f 2

(
v2i , v

1
j

)

for 1 ≤ i ≤ r2 and 1 ≤ j ≤ r1 can be calculated directly to initiate the above
recursion. Thus, we can compute the value of a smallest expanded cycle D(i) for
i = 1, 2, . . . , rm . Note that the values for the expressions for h11(v

k
i , v

k−1
j ) and

h21(v
k
i , v

k−1
j ) can be computed in O(n2) time for any k. The values for h12

(
vki , v

k−1
j

)
,

h13

(
vki , v

k−1
j

)
, h22

(
vki , v

k−1
j

)
and h23

(
vki , v

k−1
j

)
can be computed in O(n). The val-

ues for f 1
(
vki , v

k−1
j

)
and f 2

(
vki , v

k−1
j

)
can then be computed in constant time, for

each k. That is, the value of D(m) can be computed in O(n3) time. The foregoing
discussions can be summarized in the theorem below (Figs. 9, 10, 11).
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Fig. 9 An example of an optimal expanded cycle D(3). The cost can be computed as f 2(v32 , v21) =
f 1(v22 , v12) + g(v32) + q(v32 , v22 , v12) + q(v31 , v32 , v22) + q(v34 , v33 , v21) + q(v33 , v21 , v23) − q(v21 , v22 , v23) −
q(v22 , v21 , v23). Note that some of the quadratic costs may contain vertices in 3 consecutive partitions of G∗,
such as q(v12 , v22 , v32)

Theorem 3.5 QTSP(A)-DEE can be solved in O(n3) time.

4 Paired vertex graphs

We now consider a class of undirected graphs which contains an exponential number
of tours but on which the linear TSP is solvable in O(n) time. Let Gp = (V , E)

be constructed as follows. Consider the sets V 1, V 2, . . . , V
n
2 of pairs of vertices.

For each vertex in V k , add an edge connecting it to every vertex in V k+1, for all
k = 1, 2, . . . , n

2 −1. Add an edge connecting the two vertices in V 1 to each other, and

the two vertices in V
n
2 to each other. For Gp with an odd number of vertices, a vertex

can be added on the edge contained in V 1 and all following results hold. We note that
although this graph class is similar to the graph G∗, it is not a special case of G∗ and,
to the best of our knowledge, has not been previously studied in connection with the
linear TSP.

Let F(PV ) be the family of all tours which belong to Gp. It can be verified that
|F(PV )| = 2n/2−1.

Theorem 4.1 The linear TSP on G p can be solved in O(n) time.

Proof LetGp be a paired vertex graph on 2r = n vertices. Every tour τ inGp contains
the edges (v1, v

′
1) and (vr , v

′
r ). To connect V

k to V k+1, τ must either contain pairs of
edges (vk, vk+1) and (v′

k, v
′
k+1), or (vk, v

′
k+1) and (v′

k, vk+1). It is now clear that τ ∗
can be constructed greedily by adding pairs of edges joining vertices in V k to vertices
in V k+1 which minimize {c(vk, vk+1) + c(v′

k, v
′
k+1), c(vk, v

′
k+1) + c(v′

k, vk+1)} for
each k = 1, . . . , r − 1. ��
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Fig. 10 Example of Gp on 12 vertices

Interestingly, the convex hull of the incidence vectors of tours in F(PV ) has a
compact representation. We give a linear description of the polytope P(Gp) defined
by the convex hull of the incidence vectors of tours of Gp.

Theorem 4.2

P(Gp) = {x ∈ R
E : 0 ≤ xe ≤ 1 for all e ∈ E, (2)

xu1,v + xu2,v = 1 : u1, u2 ∈ V k−1, v ∈ V k, for all k = 2, . . . ,
n

2
, (3)

xu1,v + xu2,v = 1 : v ∈ V k, u1, u2 ∈ V k+1, for all k = 1, . . . ,
n

2
− 1,(4)

xu,v = 1 : u, v ∈ V 1, (5)

xu,v = 1 : u, v ∈ V
n
2 }. (6)

Proof Let A be the coefficient matrix for P(Gp) and τ be the tour with characteristic
vector x. Adding (3) and (4) implies that every vertex in V 2, V 3, . . . , V n/2−1 has
degree 2 in τ . Since every edge in Gp other than the edges contained in V 1 and V n/2

connects vertices in successive partitions, a solution that contains a subtour must also
include both edges incident with v ∈ V k and the vertices in V k+1 (or V k−1). This
contradicts either (3) or (4), and thus, τ is a tour in Gp.

A is a binary matrix with exactly two ones in each row.Moreover, since the variable
for every edge is in exactly two constraints, there are exactly two 1’s in each column.
It follows that the coefficient matrix is totally unimodular, and hence P(Gp) is a linear
description of the polytope. ��
The variant of QTSP when the tours are restricted to PV-tours is denoted QTSP-PV.

Theorem 4.3 QTSP-PV is strongly NP-hard.

Proof We reduce QUBO to QTSP-PV. From an instance of QUBO on γ variables, we
construct an instance of QTSP-PV as follows. Let Gp be a graph on γ + 1 pairs of

vertices, V (Gp) =
γ+1⋃
k=1

V k , where V k = {vk, v′
k}. Gp contains edges connecting each

vertex in V k to each vertex in V k+1 for each k = 1, 2, . . . , γ , an edge connecting
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Fig. 11 Example of a tour τ in Gp which corresponds to the solution x = (1, 0, 0, 1, 1) in the proof of
Theorem 4.3

the vertices in V 1, as well as an edge connecting the vertices of V n+1. Assign costs
q((vi , vi+1), (v j , v j+1)) = Qi j for all i, j= 1, 2, . . . , γ . For all other pairs of edges
(e, f ) in Gp, assign q(e, f ) = 0.

Given any solution x = (x1, x2, . . . , xγ ) of QUBO, we can construct a tour τ in
Gp containing the edges (vi , vi+1) and (v′

i , v
′
i+1) if xi = 1 and the edges (vi , v

′
i+1)

and (v′
i , vi+1) if xi = 0, for 1 ≤ i ≤ γ , as well as the edges contained in V 1 and

V n+1. It can be verified that the cost of τ is precisely xT Qx.
Conversely, given any tour τ in the graph Gp obtained above, construct a vector x

as xi = 1 if and only if edge (vi , vi+1) belongs to τ . The cost of the tour τ is precisely
xT Qx. Since QUBO is strongly NP-hard, the result follows. ��

The problemQTSP(p, H)where the family of feasible solutions is restricted to PV-
tours is called the paired vertex QTSP with rank p and is denoted by QTSP(p, H)-PV.
We have the analogous definition for QTSP(p, c).

Theorem 4.4 QTSP(p, c)-PV is NP-hard even when p = 1 and c(e) = 0 for all
e ∈ E.

Proof We reduce the PARTITION problem to QTSP(1, H)-PV. From an instance of
PARTITIONwith the given data α1, . . . , αη, we construct an instance of QTSP(1, H)-

PV as follows. Let Gp be a graph on η + 1 pairs of vertices, V (Gp) =
η+1⋃
k=1

V k , where

V k = {vk, v′
k}. Gp contains edges connecting each vertex in V k to each vertex in

V k+1 for each k = 1, 2, . . . , η, an edge connecting the vertices in V 1, as well as an
edge connecting the vertices of V η+1. Assign costs a(vi , vi+1) = b(vi , vi+1) = αi

and a(vi , v
′
i+1) = b(vi , v′

i+1) = −αi for each i = 1, 2, . . . , η. The objective function
of QTSP(1, H)-PV on the Gp constructed above becomes (

∑
e∈τ ae)

2 ≥ 0, where τ

is a tour in this Gp. It can be verified that the optimal objective function value of this
QTSP(1, H)-PV is zero precisely when the required PARTITION exists. We refer the
reader to Fig. 12. The result follows from the NP-completeness of PARTITION (Karp
1972). ��

Despite this negative result, we now show that when p is fixed, QTSP(p, H)-PV
can be solved in pseudopolynomial time and in this case it also admits an FPTAS
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Fig. 12 Example of a tour τ in Gp which corresponds to the solution S = {1, 4, 5} in the proof of
Theorem 4.4

Fig. 13 G′ constructed from the graph Gp given in Fig. 12

when the edge weights are nonnegative. Recall that an instance of QTSP(p, H)-PV
is given by p pairs of costs ari j , b

r
i j for r = 1, 2, . . . , p, for each edge (i, j) ∈ Gp.

We formulate QTSP(p, H) as a rank p quadratic shortest path problem in an acyclic
directed graph.

Given a graph Gp, construct the acyclic digraph G ′ as follows. Note that the vertex
sets in Gp are V k = {vk, v′

k} for k = 1, 2, . . . , n
2 . Construct graph G ′ = (V ′, E ′)

where V ′ = {v̂1, v̂2 . . . , v̂n/2}. For each pair of edges (vk, vk+1) and (v′
k, v

′
k+1) in G

p,
introduce a directed arc ek = (v̂k, v̂k+1) which represents the edges (vk, vk+1) and
(v′

k, v
′
k+1) being included in a Hamiltonian cycle, and similarly, for each pair of edges

(vk, v
′
k+1) and (v′

k, vk+1) in Gp, introduce a directed arc ēk = (v̂k, v̂k+1). For h =
1, 2, . . . , p, set αh

e1 = ah
v1,v

′
1
+ahv1,v2 +ah

v′
1,v

′
2
+ah

vk ,v
′
k
, αh

ē1
= ah

v1,v
′
1
+ah

v1,v
′
2
+ah

v′
1,v2

+
ah
vk ,v

′
k
, βh

e1 = bh
v1,v

′
1
+bhv1,v2 +bh

v′
1,v

′
2
+bh

vk ,v
′
k
, and βh

ē1
= bh

v1,v
′
1
+bh

v1,v
′
2
+bh

v′
1,v2

+bh
vk ,v

′
k
.

For k = 2, 3 . . . , n/2 − 1, and h = 1, 2, . . . , p we set αh
ek = ahvk ,vk+1

+ ah
v′
k ,v

′
k+1

,

αh
ēk

= ah
vk ,v

′
k+1

+ ah
v′
k ,vk+1

, βh
ek = bhvk ,vk+1

+ bh
v′
k ,v

′
k+1

and βh
ēk

= bh
vk ,v

′
k+1

+ bh
v′
k ,vk+1

. The

graph G ′ constructed from the Gp in Fig. 12 is shown in Fig. 13.
Let� be the collection of a paths from v̂1 to v̂n/2 inG ′. From the construction given

above, it can be verified that there is a one-to-one correspondence between elements of
� and elements of F(PV ) where the corresponding elements have the same weight.
Further, given an element of �, we can construct a corresponding element in F(PV )

in polynomial time. Note that the graph G ′ is an acyclic multigraph with exactly two
multiples of each edge. Thus, QTSP(p, H)-PV can be solved in pseudopolynomial
time, and a minor modification of the analysis in the proof of Theorem 2.5 yields the
following theorem. Although the number of edges doubles, this does not change the
worst-case complexity.
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Corollary 4.5 QTSP(p, H)-PV can be solved in O(n2p+1U ) time, where U =∏p
h=1(maxe∈E |ahe |maxe |bhe |), for any fixed p. Moreover, QTSP(p, H)-PV admits

an FPTAS when a,b ≥ 0.

We now show that the adjacent quadratic TSP restricted to the set of paired ver-
tex tours, denoted QTSP(A)-PV, can be solved in polynomial time using dynamic
programming. The input for QTSP(A)-PV is given as the costs of paths of length
two in Gp. That is, for any 2-path u − v − w with v as the middle vertex, a cost
q(u, v, w) is given. Note that q(u, v, w) = q(w, v, u). Let f (k) be the length of a
smallest PV-Hamiltonian path in Gp from vk to v′

k containing the edges (vk−1, vk)

and (v′
k−1, v

′
k). Similarly, let g(k) be the length of a smallest PV-Hamiltonian path

containing (vk−1, v
′
k) and (v′

k−1, vk). Then for k = 2, 3, . . . , n
2 − 1,

f (k + 1) = min{ f (k) + q(vk−1, vk, vk+1) + q(v′
k−1, v

′
k, v

′
k+1),

g(k) + q(vk−1, v
′
k, v

′
k+1) + q(v′

k−1, vk, vk+1)}},

and

g(k + 1) = min{ f (k) + q(vk−1, vk, v
′
k+1) + q(v′

k−1, v
′
k, vk+1),

g(k) + q(vk−1, v
′
k, vk+1) + q(v′

k−1, vk, v
′
k+1)}}.

The values of f (2) and g(2) can be calculated directly to initiate the recursion. Adding
the edge (v n

2
, v′

n
2
) completes the tour and the better of the two tours gives an optimal

solution to QTSP(A) on Gp. The foregoing discussion can be summarized in the
theorem below.

Theorem 4.6 QTSP(A)-PV can be solved in O(n) time.

The results discussed in this section can easily be modified to obtain corresponding
results when n is odd by adding a single vertex v′′

1 along the edge (v1, v
′
1). Then, every

tour which contains (v1, v
′
1) will contain edges (v1, v

′′
1 ) and (v′

1, v
′′
1 ) in the modified

graph, and the results for the case when n is odd follow immediately.

5 Matching edge ejection tours

In this section we consider a special class of tours considered by Punnen (2001b).
Consider a special spanning subgraph GM of the complete graph Kn obtained as
follows. Partition the vertices of Kn into two sets, U = {u1, u2, . . . , ur } and V =
{v1, v2, . . . , vs}. Let Eu = {(ui , ui+1) : 1 ≤ i ≤ r}, where r + 1 ≡ 1 and Euv =
{(ui , v j ) : 1 ≤ i ≤ r , 1 ≤ j ≤ s}. Hereafter, we assume that s ≤ r . The edge
set of GM is defined as E(GM ) = Eu ∪ Euv . The resulting graph is denoted by
GM = (V M , EM ) (see Fig. 14 for an example of a GM graph), where V M = U ∪ V .

Since the TSP is NP-hard on a complete bipartite graph and GM has a spanning
subgraph which is a complete bipartite graph, the TSP is NP-hard on GM as well.
Let us now consider a family of tours in GM , called matching edge ejection tours
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Fig. 14 A graph GM with r = 6
and s = 4

Fig. 15 An MEE-tour in the
graph GM given in Fig. 14

(MEE-tours) which consists of all tours in GM that can be obtained by the following
process.

(1) Eject s edges eπ(1), eπ(2), . . . , eπ(s) from the cycle Eu ≡ (u1, u2, . . . , ur , u1), and
let Eu(s) = Eu−{eπ(1), eπ(2), . . . , eπ(s)} be the edge set of the resulting subgraph.

(2) Insert the vertices vi ∈ V into Eu(s) by connecting it by edges to the endpoints
of eπ(i), 1 ≤ i ≤ s to construct a tour in GM (see Fig. 15 for an MEE-tour in the
GM graph of Fig. 14).

Let F(MEE)be the collectionof allMEE-tours inGM . It has been shown inPunnen
(2001b) that |F(MEE)| = r !

(r−s)! . If n is even and r = n/2, then |F(MEE)| = ( n2 )!,
and if n is odd and r = (n+1)/2, then |F(MEE)| = ( n+1

2 )!. In fact, |F(MEE)| could
be even larger than ( n2 )! for an appropriate choice of r and s. Gutin (1999) showed that
|F(MEE)| could be as large as ( n2 + p0)!/(2p0)!where p0 =

√
1
8 (n + 9

8 )+ 3
8 . Finding

the best QTSP tour in F(MEE) is a nontrivial task. Interestingly, TSP restricted to
MEE-tours can be solved in O(n3) time by formulating it as aminimumweight perfect
matching problem on an associated bipartite graph (Punnen 2001b).

The quadratic travelling salesman problem where the family of feasible solutions
is restricted to MEE-tours is denoted by QTSP-MEE. Note that by using the rank
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decomposition of the matrix Q (which has rank p), QTSP-MEE can be stated as

Minimize q(τ ) =
p∑

h=1

(
∑

e∈τ

ahe

) (
∑

e∈τ

bhe

)

Subject to τ ∈ F(SEE).

It may be noted that in the above representation, p could be O(n2).
QTSP-MEE is strongly NP-hard. This follows directly from a stronger result that

we later prove.
The quadratic assignment problem on the complete bipartite graphG ′ = (U , V , E)

which, by using the rank decomposition, can be stated as

QAP(G ′) : Minimize q(P) =
p∑

h=1

(
∑

e∈P

αh
e

) (
∑

e∈P

βh
e

)

Subject to P ∈ P,

where P is the set of all perfect matchings in G ′, and |U | = |V | = n. When n is odd,
we denote QAP(G′) as odd-QAP. It is easy to see that odd-QAP is strongly NP-hard.

By extending the formulation (Punnen 2001b), we can also formulate QTSP-MEE
as a QAP(G′).

Given a graph GM , construct the complete bipartite graph G ′ as follows. Note that
the vertex set of GM is represented by V M = U ∪V whereU = {u1, u2, . . . , ur } and
V = {v1, v2, . . . , vs}. Also, the edge set is E(GM ) = Eu ∪ Euv where Eu = {ei =
(ui , ui+1) : 1 ≤ i ≤ r} and Euv = {(ui , v j ) : 1 ≤ i ≤ r , 1 ≤ j ≤ s}, r + 1 ≡ 1 and
s ≤ r . Construct a complete bipartite graphG ′ = (V ′, E ′)where V ′ = {Eu∪(V∪{vi :
s < i ≤ r})} and E ′ = {(ei , v j ) : ei ∈ Eu, v j ∈ V ∪ {vi : s < i ≤ r}}. For j ∈ V
set weights αh

i j = ahui ,v j
+ ahv j ,ui+1

− ahui ,ui+1
and βh

i j = bhui ,v j
+ bhv j ,ui+1

− bhui ,ui+1
,

and set weights αh
i j = ahui ,ui+1

and βh
i j = bhui ,ui+1

, otherwise, for all h = 1, 2, . . . , p
and all i such that ei ∈ Eu . For j ≤ s, the edge e = (ei , v j ) represents the events of
ejecting edge ei from cycle Eu and inserting v j by joining it to the endpoints of ei ,
otherwise e represents the event that no vertex is inserted along ei .

The problemQTSP(p, c) restricted to the collection of tours in F(MEE) is denoted
QTSP(p, c)-MEE.Wehave the analogous definition for the homogenous case, denoted
QTSP(p, H)-MEE.

Corollary 5.1 QTSP(p, c)-MEE isNP-hard even if p = 1and c(e) = 0 for all e ∈ EM.

The proof follows from the reduction above using the fact that rank 1 odd QAP is
NP-hard (Punnen 2001a).

Corollary 5.2 QTSP(1, H)-MEE admits an FPTAS when a,b ≥ 0.

The proof of this corollary follows from the reduction given above and applying the
result of Goyal et al. (2011) on the resulting rank 1 odd QAP.
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Fig. 16 Construction used in the
proof of Theorem 5.3

The adjacent quadratic TSP over the collection ofMEE-tours is denoted QTSP(A)-
MEE. Note that QTSP(A)-SEE, QTSP(A)-DEE, and QTSP(A)-PV are solvable in
polynomial time. This simplicity however, does not extend to QTSP(A)-MEE.

Theorem 5.3 QTSP(A)-MEE is strongly NP-hard.

Proof We give a reduction from the linear TSP. Given a graph G on the vertices
1, 2, . . . , n, and linear cost function c defined on the edges of G, the graph GM

is constructed on the vertex set V M = U ∪ V , where U = {u1, u2, . . . , un} and
V = {v1, v2, . . . , vn}. Let Eu be the cycle (u1, u2, . . . , un, u1). The indices are taken
modulo n. For an illustration of this construction, see Fig. 16. Assign quadratic cost
on the pairs of adjacent edges q((ui , v j ), (v j , uk)) = c(i, k) for i, j, k = 1, 2, . . . , n,
i �= k. All other costs are zero.

It can be verified that every tour π = (π(1), π(2), . . . , π(n), π(1)) ∈ G has the
same cost as the tour π ′ which results from inserting π(i) into edge (ui , ui+1), for
each i = 1, 2, . . . , n, that is, π ′ = (u1, vπ(1), u2, vπ(2), . . . , un, vπ(n), u1) ∈ G ′ (see
Fig. 17). This establishes a one-to-one correspondence between tours in G and MEE-
tours in GM , and the result follows. ��

6 Conclusion

We presented a systematic study of various complexity aspects of QTSP which gen-
eralizes the well-known travelling salesman problem. We have shown that QTSP is
NP-hard on several classes of exponential neighbourhoods for which the linear TSP
is polynomially-solvable. We introduce a restricted version of the QTSP objective,
the fixed-rank QTSP, and examine the complexity of this problem on these classes
of exponential neighbourhoods. It is shown that QTSP(p, c)-SEE, QTSP(p, c)-DEE,
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Fig. 17 An example of the
construction used in the proof of
Theorem 5.3, with n = 7, is
shown. The solid lines indicate
the tour π ′ ∈ G′ defined by
π ∈ G. The cycle
Eu = (u1, u2, . . . , u7, u1) is
shown with dashed lines

and QTSP(p, c)-PV can be solved in pseudopolynomial time and they also admit an
FPTAS. QTSP(p, c)-MEE with p = 1 can be solved in pseudopolynomial time and
admits an FPTAS. For fixed p > 1, the complexity status is open. For the adjacent
QTSP variation, i.e. QTSP(A)-SEE, QTSP(A)-DEE and QTSP(A)-PV, we present
polynomial algorithms. The problem QTSP(A)-MEE is shown to be strongly NP-
hard. As a by-product, we obtain an FPTAS for the fixed-rank quadratic shortest path
problem, and a pseudopolynomial algorithm when the problem is restricted to acyclic
graphs.
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