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Abstract
Considering that the time of meeting the demands is very important for emergency
vehicle and emergency vehicle can’t reject any request, we introduce a more realis-
tic cost form into online traveling salesman problem(OL-TSP). When a new request
arrives, if the salesman can’t serve the request immediately, per-unit-time cost will
be generated. The goal is to minimize server’s total costs(travel makespan plus the
per-unit-time costs). We consider the server is a non-zealous server and show that
neither deterministic nor randomized online algorithms can achieve constant com-
petitive ratio for OL-TSP on general metric space. While on truncated line segment
and uniform metric space, we prove lower bounds, and present competitive online
algorithms. Especially for the case with uniform metric space, we prove an optimal
Greedy algorithm.

Keywords Online algorithm · Emergency vehicle routing · Traveling salesman
problem · Per-unit-time cost

1 Introduction

Consider the following traveling salesman problem: any request cannot be rejected,
and if the salesman can’t serve the request immediately, there occurs an extra cost
which increases with the waiting time for the salesman. This problem conforms with
reality such as in emergency vehicle rescue. In order to savemore lives and transfer the

B Tengyu Wu
fly200205@163.com

1 Chongqing smart post Engineering Technology Research Center, School of Economics and
Management, Chongqing University of Posts and Telecommunications, Chongqing, China

2 School of Economics and Management, Chongqing University of Posts and
Telecommunications, Chongqing, China

3 Insititute of Chongqing Port Logistics and Shipping, School of Economics and Management,
Chongqing Jiaotong University, Chongqing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-020-00585-1&domain=pdf
http://orcid.org/0000-0001-8169-2675


2144 Journal of Combinatorial Optimization (2022) 44:2143–2166

emergency materials to affected sites, the emergency vehicle can’t reject any request.
Zhou et al. (2017) consider that for the emergency vehicle, the sooner it meets the
demands of the affected area, the better. For affected population, after sending out
signal for help, they always want to be served immediately. A longer waiting time
may cause more dissatisfaction and victims. For injured people, a longer waiting time
may be life-threatening which can be seen an extra cost for the emergency vehicle. For
example, in the earthquake rescue, the time of the rescue is really important for the
affected population, one day after the earthquake, the survival rate is nearly 90 percent,
and after two or three days, the survival rate may be 70 to 80 percent. Moreover, in
order to cut the cost and improve efficiency, the emergency vehicles want to minimize
the final time which servers are back at the origin plus the costs associated with the
requests which can’t be served immediately. The situations mentioned above are very
similar to traveling salesman problem with per-unit-time cost.

For the time cost in TSP, Campbell and Thomas (2008) study the probabilistic TSP
with deadline, they consider a per-unit-time charge of violation charge for violating
the deadline. The cost for per-unit-time charge is represented by a customer-dependent
λi (which is the samewith the parameter B in our model). For instance, FedEx Custom
Critical refunds varying percentages of the cost of a shipment based on how late the
shipment is delivered (FedEx 2005). For additional examples, see (Charnsirisakskul
et al. 2004) and (Slotnick and Sobel 2005). Our model is the online version of Camp-
bell and Campbell and Thomas (2008)’s model when deadline is equal to 0 without
considering the probabilistic case.

In this paper, we consider the online version of the problem. The requests arrive
over-time, and the server has to decide how to move without any information of the
future requests. There are a few researches concerning OL-TSP with the extra cost,
but the cost form is different from the cost form in our model, the cost is generated
if the server rejects the request or misses the deadline, and the server can’t serve
it. Ausiello et al. (2008) introduce the costs for unserved requests into online quota
TSP, and call it online prize-collecting TSP, the objective of the server is to collect a
given amount of quota while minimizing the sum of time to complete the service and
the costs. Jaillet and Lu (2011) consider the situation that the server only serves the
accepted requests, there is a cost for rejecting a request, and the objective is tominimize
the time to serve all accepted requests plus the sum of penalties associated with the
rejected requests. Wen et al. (2015) introduce the deadline into the OL-TSP with
service flexibility, the server can choose whether to serve or not when a new request
arrives, by rejecting the request or missing its deadline, costs will be generated, the
objective is to minimize server’s total costs. Yu et al. (2014) study the Online Quota
Traveling Salesman Problem, and present optimal deterministic algorithms for each
variant defined on a general space, a real line, or a half-line. Above literatures neither
consider the cost which increases with the waiting time nor consider the situation that
the server can’t reject the request.

The similar online problem is OL-TRP(on line Traveling Repairman Problem)
which is an extension of OL-TSP, Krumke et al. (2003) study the OL-TRP, and the
objective is to minimize the latency. Irani et al. (2004) study the dynamic OL-TRP,
and the objective is to serve maximum requests before the deadline. The most related
research is theNet-latencyOL-TRP,Allulli et al. (2008) study theNet-latencyOL-TRP,
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the objective function is tominimize the net latency (which is similar to the cost form in
our model). They showwhen the lookahead informationΔ > 2D(D is the diameter of
the network), there exits a competitive online algorithm.Especially on the line segment,
they give an online algorithm with lookahead information, and the competitive ratio
depends on the lookahead information. Different from the model(Allulli et al. 2008),
we consider not only the cost but also the makespan(the earliest time for the server
to go back to the origin after serving all the requests), give the lower bound and a
competitive online algorithm on the truncated line segment without any lookahead
information. Our result is an extension and improvement of their work.

Compared with previous research, we have several contributions: (1) We study the
TSP with per-unit-time cost by considering an online version which matches several
real-life scenarios. (2) We try to minimize the total cost of traveling time and the
time cost as an objective instead of only one item. (3) We consider the non-zealous
algorithm. Previous research only considers the zealous algorithm (Allulli et al. 2008),
where the direction of online server changes only if a new request becomes known,
or the server is either in the origin or at a request that has just been served (Blom
et al. 2001). Taking realities into consideration, we consider non-zealous algorithm
(Lipmann 2003), where the online server can change its directions at any time and at
any place. The main contribution is the analysis of OL-TSP with per-unit-time cost.
The results are the general extension of OL-TSP by considering the per-unit-time cost
form. In previous research, they consider the scenario that the server does not serve the
request if violating the deadline or the server rejects the request which generates the
cost, but in our research, we consider the delayed service which leads the costs, this
means that the later the service, the larger the cost. We show that neither deterministic
nor randomized online algorithms can achieve constant competitive ratios on general
metric spaces. While on the truncated line segment, we give a lower bound and an
Observe and Move Algorithm whose competitive ratio is related to the length of the
line. While on uniform metric space, we give a lower bound and a Greedy Algorithm,
and prove that the Greedy Algorithm is optimal.

The rest of the paper is structured as follows. In Sect.2, we introduce online traveling
salesman problem with per-unit-time cost and non-zealous server. In Sect.3, we show
that there are no constant competitive ratios for either deterministic or randomized
online algorithms on general metric spaces. In Sect.4, we analyze the problem on
the truncated line segment, give a lower bound, and an Observe and Move Algorithm
with its competitive ratio. In Sect.5, we analyze the problem on the uniform metric
space, give a lower bound, and a Greedy Algorithm with its competitive ratio. Final
conclusions are given in Sect.6.

2 Preliminaries

Given a general metric space M. Requests arrive over-time and request Ri is denoted
as Ri = (ri , li ), i ∈ N , N = {1, 2, 3 · · · , n}, where n is the number of request. ri
represents the request’s release time, and li represents the position of Ri . Denote si
as the service time (the moment that the server arrives at li ), and pi is the cost that
the server can’t serve the request Ri immediately which equals to B(si − ri ), where
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Fig. 1 Trajectory of online and
offline server
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B(B ≥ 1) is a cost rate. The problem starts at time 0 (initial state), and the server is at
the origin. The server can only be idle or move at unit speed. The server must be idle
at the origin after serving all the requests(final state). The earliest time for the server
to reach the final state is called makespan. The objective of the problem is to minimize
the total cost, i.e. makespan plus the total cost

∑n
i=1 pi .

3 Lower bounds for OL-TSP with per-unit-time cost

3.1 Deterministic case

Theorem 1 No deterministic online algorithm can achieve a constant competitive
ratio, even on the positive half line.

Proof Consider the positive half line. At time l(l ≥ 6), we consider the different
positions of the online server, suppose the online server is at point x .

Case 1. When x ≤ 0.5l, the adversary releases n requests denoted as R1≤i≤n =
(l + i

n , l − i
n ). After serving all the n requests, the online server and the offline server

would be back to the origin(see Fig. 1).
As shown in Fig. 1, the cost of the offline server is equal to copt = 2l. At time

l + 1, the online server arrives at point x + 1, and the cost for each request in R1≤i≤n

is at least equal to l − x − 2 > 1, the cost of the online server is equal to conline >

3l − x + n(l − x − 2)B > 2.5l + nB. We have conline
copt

> 2.5l+nB
2l → ∞ for n → ∞ .

Case 2.When x > 0.5l, the offline server arrives at point l at time l, the adversary
releases n requests denoted as R1≤i≤n = (l+ i

n , 1+ i
n ). After serving all the n requests,

the online server and the offline server would go back to the origin. The cost of the
offline server is equal to copt = l + 2, and the cost of the online server is equal to
conline > l + x + n(x − 2)B > 1.5l + nB. We have conline

copt
> 1.5l+nB

l+2 → ∞ for
n → ∞ .
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3.2 Randomized case

Since the deterministic online algorithms perform badly against the adversary, the
randomized online algorithms seem interesting. In this section, we only consider the
randomness of online server’s position. For the randomness of the requests’s release
time, see Simroth and Souza (2009)

Theorem 2 No randomized online algorithm can achieve a constant competitive ratio,
even on the positive half line.

Proof Consider the positive half line. At time 0, the offline server moves towards
point l(l ≥ 4). Because the online server is a non-zealous server, the online server
may stay any position between 0 and l, at time l. The probabilities are the same for
online server to stay at these positions. The position of the online server would be
uniformly distributed in the segment [0, l], the offline server arrives at point l. The
adversary releases n requests denoted as R1≤i≤n = (l + i

n , l − i
n ). After serving all

the n requests, the online server and the offline server must go back to the origin. The
offline server can serve all the requests without any extra cost. The online server’s cost
is correlated with the position of the online server at time l. Suppose the online server
would generate conline(1) if it is located during [0, l−3]. At time l+1, the online server
is located during [1, l − 2], the cost of each request in R1≤i≤n is at least equal to 1 for

the online server. Thus we have conline > conline(1) > l−3
l (

l∫

0
(l − x)dx+l)+n l−3

l B,

and conline
copt

→ ∞ for n → ∞ .

4 OL-TSP with per-unit-time cost on truncated line segment

Deterministic and randomized online algorithms can’t performwell against the offline
adversary. It is interesting to explore the performance of online algorithms on restricted
metric spaces. In this section, similar to Wen et al. (2012) and Gutiérrez et al. (2006),
we consider the truncated line segment [−L, L] with unit distance between nodes,
and L ≥ 3 as an integer. The requests can only be released at nodes, and every node
has only one unserved request at a time.

4.1 A lower bound

Theorem 3 The lower bound for OL-TSP with per-unit-time cost on truncated line
segment is 1 + 0.75LB(L is the half length of the truncated line, B is a cost rate).

Proof Because the adversary is an omnipotent one which can release the requests at
the positions of the offline server, and this would decrease the cost of the offline server.
The enlarged distance between the online server and the offline server would increase
the cost of the online server. With all the situations mentioned above, the adversary
would first release request sequence as follows. The classification of the case analysis
in the proof of lower bound is based on the position of the online server and the strategy
of the online server after the newly released request.
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Fig. 2 Trajectory of online and offline server

At time L , there are two cases for the online server: arrive at the extreme nodes(L
or −L) and arrive at other positions.

Case 1. The online server arrives at the extreme nodes(L or −L).
Without loss of generality suppose the online server arrives at node L at time L ,

the offline server arrives at node −L . The adversary would release L requests on
the negative half line, denoted as R1≤i≤L = (L + i − 1,−L + i − 1). The online
server must move towards−L , then the online server and the offline server meet at the
origin. If the offline server is idle at the origin, the cost of the offline server is equal
to cof f line = 2L , the cost of the online server is equal to conline = 4L + (L2 + L)B,
the cost ratio is equal to conline

cof f line
= 2 + (L+1)B

2 . Now we consider the offline server
starts to move again at time 2L , the offline server moves straightly to L , the adversary
releases requests at the offline server’s positions. There are two cases for the online
server, in these two cases, we only consider the added cost.

Case 1.1 The online server goes straightly to node −L , then turns around.
When the offline server is idle at the origin again at time 4L , the offline server’s

cost increases by 2L , the online server’s cost increases by 2L + 2L2B, the cost ratio
is equal to 2L+2L2B

2L = 1 + LB.
Case 1.2 The online server travels a distance y(y < L), then turns around.
Once the offline server finds that the online server turns around, the offline server

turns around too. The adversary releases requests at the offline server’s positions
without unserved requests for the online server. There are two cases for the online
server after turning around:

Case 1.2.1 After turning around, the online server travels a distance y1(y1 ≤ y)
then turns around to node −L .

The online server doesn’t serve any requests on the right side of the origin in this
case (See Fig. 2).

When the offline server is idle at the origin again, the offline server’s cost increases
by 2L+2y1. For the online server’s cost, we notice that the requests between node−y
and node−L increases by 2(L− y)y1, the online server’s cost increases by 2L+2y1+
(2y1(L−y)+2y1y+2L2)B, the cost ratio is equal to 2L+2y1+(2y1(L−y)+2y1y+2L2)B

2L+2y1
=

1 + LB.(See “Appendix” A for details)
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Fig. 3 Trajectory of online and offline server

Case 1.2.2 After turning around, the online server travels a distance y + y2, then
turns around to the origin.

The online server serves min{y, y2} requests on the right side of the origin in
this case. When the offline server is idle at the origin again, the offline server’s cost
increases by 2L + 2y + 2y2.

When y2 ≤ y, the online server serves y2 requests on the right side of the origin(See
Fig. 3). The adversary releases y2 new requests on the left side of the origin. The online
server’s cost increases by2L+2y+2y2+(2yy2+2y22+2(L−y2)(y+y2)+2L2)B(See
“Appendix” B for details), the cost ratio is equal to

2L+2y+2y2+(2yy2+2y22+2(L−y2)(y+y2)+2L2)B
2L+2y+2y2

= 1 + LB.

When y2 > y, the online server serves y requests on the right side of the origin. The
adversary releases y new requests on the left side of the origin. The online server’s
cost increases by 2L + 2y + 2y2 + (2(y + y2)(L − y) + 2y2 + 2yy2 + 2L2)B(See
“Appendix” 1 for details), the cost ratio is equal to

2L+2y+2y2+(2(y+y2)(L−y)+2y2+2yy2+2L2)B
2L+2y+2y2

= 1 + LB

According to above analysis, the strategy of turning around for the online server
wouldn’t decrease the cost ratio, so the online serverwouldn’t turn arounduntil arriving
at node−L . We denote the situation (the offline server moves to an extreme node, then
goes back to the origin) as a cycle. For one cycle, the cost of the offline server would
increase by 2L , and the cost of the online server would increase by 2L + 2L2B, after
n cycles, the cost ratio is equal to

conline
cof f line

= 4L+(L2+L)B+n(2L+2L2B)
2L+2nL , when n → ∞, conline

cof f line
= 1 + LB > 2 +

(L+1)B
2 , L ≥ 3, B ≥ 1.

Case 2. The online server arrives at other positions
Without loss of generality suppose the online server is on the negative half line or

at the origin at time L , the offline server arrives at L . We consider the parity of L .
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Fig. 4 Trajectory of online and offline server

When L is even, the adversary releases 2L + 1 requests denoted as R1≤i≤L =
(L + i − 1, L − i + 1). The offline server would arrive at node −L at time 3L . If at
time 3L , the online server dozen’t serve the request at node L , the offline server waits
at node −L until online server arrives at node L . Notice that this is case 1, and the
cost ratio is equal to 1 + LB. If at time 3L , the online server has served the request
at node L which means that at time 2L , the online server’s position is x(0 < x ≤ L).
The online server’s strategy is to serve the requests on the positive half line firstly,
then turn around to serve the requests on the negative half line(otherwise the online
server can’t serve the request at node L before time 3L). We consider the cycles which
means that whenever the offline server arrives at the origin, the offline server would
move to the extreme node again which is farther from the online server(we notice
that the online server and the offline server don’t meet at the origin in this case). The
adversary releases the requests at the offline server’s positions. For the online server,
similar to above analysis, the online server must arrive at the extreme node which has
an unserved request before the offline server arrives at another extreme node(See Fig.
4), otherwise the case will become case 1.

For each cycle, offline server increases by 2L , and that of the online server increases
by 2L + (2L2 − 0.5x2 + 2L − x)B. When x = L , the online server’s added cost can
achieve its minimum value, which is equal to 2L + (1.5L2 + L)B. After n cycles, the

cost ratio is equal to conline
cof f line

= 3L+c+n(2L+(1.5L2+L)B)
2L+2nL , where c is the cost of the first

L requests. When n → ∞, conline
cof f line

= 1 + (0.75L + 0.5)B, L ≥ 3, B ≥ 1.

When L is odd, similar to above analysis, the cost ratio is equal to conline
cof f line

=
1 + (0.75L + 0.75)B.

In the above cases, we don’t consider the “waiting” strategy for the online server.
In case 1, if the online server adopts “waiting” strategy, so does the offline server, the
cost ratio is still the same. In case 2, if the online server adopts “waiting” strategy, the
case is similar with case 1 which will increase the ratio.

In conclusion of Case 1 and Case 2, we can get the lower bound for OL-TSP with
per-unit-time cost on truncated line segment as 1 + 0.75LB.
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4.2 Observe andmove algorithm and its competitive ratio

The main purpose of this section is to design OM algorithm and get the competitive
ratio. In order to describe OM algorithm clearly, we prove the best way of releasing the
requests for the adversary (Lemma 1). According to Lemma 1, we define the Released
request sequence. Based on the definition of the Released request sequence, we give
the description of Observe and Move algorithm. The main idea of OM algorithm is
that through observing the released request sequence, the online server will decide to
keep his direction or turn around. In order to get the competitive ratio, we prove that
after the occurring of Meeting situation 2, the offline server must go to the extreme
node (L or −L ) or go to the origin and idle (Lemma 2). At last, we prove that no
matter how the adversary releases the requests,Meeting situation 2 must happen. We
get the competitive ratio.

Lemma 1 Once the online server and the offline server are not at the same position,
the cost ratio of online algorithm A won’t decrease if the adversary only releases the
requests at the positions of the offline server.

Proof After the separation of the online server and the offline server, define a request
sequence set S = {Si , i = 1. . .k}, in S the adversary only releases the requests at the
positions of the offline server, and every request sequence in S begins at the time when
offline server leaves the origin, and ends at the time when the offline server goes back
to the origin for the second time.

For Sm , the offline server’s cost is equal to ym , and the online server’s cost is equal
to zm . Suppose the adversary only releases a request R j at node j which isn’t at the
position of the offline server, the release time is assumed to be t unit time earlier than
the arrival time, the offline server’s cost is equal to ym + Bt .

Now we consider the online server’s cost. If based on algorithm A, the online
server’s trajectory is the same with the trajectory when the adversary releases the
request sequence Sm , there are two cases for the online server:

Case 1. The position of node j is between the meeting position of the two servers
and the online server, the online server’s cost is equal to zm − Bt , and the cost ratio is
equal to zm−Bt

ym+Bt < zm
ym
;

Case 2. The position of node j is at other positions except the positions in case 1,
the online server’s cost is equal to zm + Bt , and the cost ratio is equal to zm+Bt

ym+Bt < zm
ym
.

If based on algorithm A, the online server’s trajectory isn’t the same with the
trajectory when the adversary releases the request sequence Sm(this may also change
the trajectory of the offline server), after the offline server serves all the requests, we
can find that the request sequence Sm turns into a new request sequence Sl in S(for
the unserved requests of the online server, the adversary can’t release new requests on
the nodes, the online server and the offline server will meet at different points which
would lead to a different released request sequence). For the new request sequence Sl ,
we can analyze it as above.

We don’t consider that the offline server would stay at some point without mov-
ing(except staying at the origin at the final state). Because the adversary can’t release
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any new request which would lead to a higher offline server’s cost and a lower online
server’s cost according to Lemma 1 and the hypothesis.

4.2.1 Observe andmove algorithm

According to Lemma 1, after the separation of the online server and the offline server,
the adversary must release the requests at the positions of the offline server. In the
proof of the lower bound, the adversary also releases the requests at the positions of
the offline server.When the online server serves these requests, the cost of each request
for the online server is the same. For the online server, turning around before serving
these requests is no good. This kind of released request must be considered specially.
In order to describe the Observe and Move Algorithm clearly, the definitions of two
released request sequences is given firstly:

Released request sequence 1: For a given request sequence S, the online server must
serve it, if the cost of each request in S for the online server is the same, which equals
to 2 |x − 0.5(x0 + l)|(where x is the position where the online server turns around, l
is the position of the first released request in S, x0 is the position of online server when
the first request in S is released), we call this sequence S Released request sequence
1(Especially, only one request can be seen as Released request sequence 1)(see Fig.
5).

Released request sequence 2: The other released request sequences except released
request sequence 1 are denoted as Released request sequence 2.

We give the OM Algorithm in the following table.
Themain idea of the algorithm is that the online server observes the released request

sequence, and then hemakes the decisions (keeping the direction or turning around). If
the online server is serving the released request sequence 1, no matter the direction of
the online server, he must serve all the requests of the released request sequence 1 then
turns around. If the online server isn’t serving the released request sequence 1, when
the online server is moving towards the extreme node, the newly released requests
behind the online server satisfy released request sequence 1, the online server won’t
turn around until serving all the requests in front of the online server, if not, turn
around immediately; when the online server is moving towards the origin, the strategy
is quite different. Once the newly request has been released behind the online server,
the online server turns around immediately.
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Observe and Move Algorithm
1. Stay still until there are newly released requests, choose the optimal route that generates the

smallest cost. After online server leaves the origin, once a new request is released, go to step
2.

2. If online server is moving towards the extreme node L (or −L) or arriving at origin, go to step 3;
else if online server is moving towards the origin from −L(or L) or arriving at the extreme node L
(or −L), go to step 4.

3. The online server observes the request sequence in front of the online server first.
3.1. If the request sequence in front of the online server contains released request sequence 1,

the online server goes straightly to the rightmost (or to the leftmost) unserved request of
the released request sequence 1 then go to step 5.

3.2. Else the online server observes the request sequence behind the online server.
3.2.1. If the request sequence behind the online server contains released request

sequence 1, the online server keeps his direction, serve all the requests in
front of the online server then turns around, then go to step 5.

3.2.2. Else the online server turns around immediately to serve all the requests on
the left(or right) side of the online server, then go to step 2.

4. The online server observes the request sequence in front of the online server first.
4.1. If the request sequence in front of the online server contains released request sequence 1,

the online server goes straightly to the rightmost (or to the leftmost) unserved request of
the released request sequence 1, then go to step 5.

4.2. Else the online server observes the request sequence behind the online server.
4.2.1. If any request is released behind the online server, the online server turns

around immediately to serve all the requests on the left(or right) side of the
online server, then go to step 5.

4.2.2. Else the online server keeps his direction until a new request is released or
the requests have been served, then go to step 5.

5. The online server observes whether there are unserved requests.
5.1. If there are no unserved requests, the online server goes back to the origin. During the

travel when a new request is released, go to step 2.
5.2. Else if there are unserved requests, go to step 2.

4.2.2 Competitive ratio

Before we give the proof of the competitive ratio, we give the definitions of two
meeting situation:

Meeting situation 1: Online server moves towards the origin, and offline server
moves towards the extreme node(L or −L). When two servers meet at some point on
the truncated line, we call it Meeting situation 1.

Meeting situation 2: Online server moves towards the extreme node(L or −L), and
offline server moves towards the origin. When two servers meet at some point on the
truncated line, we call it Meeting situation 2.

Especially, when two servers meet at the origin, we define this meeting asMeeting
situation 2. The classification of the case analysis in Lemma 2 is based on theMeeting
situation 2’s occurrence.

Lemma 2 After Meeting situation 2 occurs, the offline server must go straightly to the
origin and idle or keep his direction to the extreme node, and this won’t decrease the
cost ratio of OM algorithm.

Proof Without loss of generality, suppose that theMeeting situation 2 occurs at node
−x(for simplicity of the analysis, suppose x is an integer and we suppose all the
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Fig. 6 Trajectory of online and offline server

parameters are integer in the following part). Before this meeting, the offline server
wouldn’t turn around until the offline server arrives at the extreme node (L or −L ).
According to Lemma 1 and OM algorithm, the last meeting of the two servers occurs
at node x at time t , it was alsoMeeting situation 2. Now we only consider two servers’
cost after time t + 2L . Based on the different movement of the offline server, we
consider three cases:

Case 1. The offline server goes straightly to the origin or node L .
When the offline server goes straightly to node L , then turns around back to the

origin, according to Lemma 1 and OM algorithm, the online server and the offline
server will meet at node L − x . The cost ratio is equal to ρ0 = 4L−x+2(L−x)(2L+x)B

2L+x .
When the offline server goes straightly to the origin, the online server and the offline

server won’t meet again. According to Lemma 1 and OM algorithm, the cost ratio is
equal to ρ = 2(L−x)LB+2L−x

x .
We will compare the cost ratio of the following cases with ρ or ρ0. If the value of

ρ or ρ0 is larger, we can prove Lemma 2.
Case 2. The offline server travels a distance of y, then turns around, before the

meeting happens, turns around again.
If two servers don’t meet for the first turning around of the offline server(the two

servers will eventually meet), the value of y must satisfy 1 ≤ y < L− x , if y ≥ L− x ,
the offline server must turn around on the right side of node −x . The adversary can’t
release any new request which would decrease the cost ratio.

The offline server turns around to node −x − y1(0 ≤ y1 ≤ L − x − y − 1)(this
assures that two servers wouldn’t meet at the negative half line), then goes straightly
to node L , goes back to the origin and stays still. According to Lemma 1, the adversary
releases requests at the positions of the offline server, but the adversary can’t release
requests at the nodes which online server hasn’t served. The cost of the offline server
is equal to cof f line = 2y + 2y1 + x + 2L . For the online server’s movements, we can
see Fig. 6.
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As shown in Fig. 6, the released requests between node−x and node−x+ y for the
online server satisfy Released request sequence 1, the cost for each request is equal
to 2(L − x)B; the released requests between node −x + y and node L for the online
server also satisfy Released request sequence 1, the cost for each request is equal to
2(L−x− y− y1)B. According to OM algorithm, the online server would go straightly
to node −L , turn around to node L , then go back to the origin. The cost of the online
server is equal to conline = 4L − x + (2(L − x)(L − x + y) + 2(L − x − y)(y1 +
1) + 2(L − x − y − y1)(L + 2x + y1) − (y12 + y1))B.

When y = 1, y1 = 0, conline
cof f line

can get the maximum value, ρ0 − conline
cof f line

> 0(See
“Appendix” C for details).

Case 3. The Offline server travels a distance of y, then turns around, and two
servers meet.

After traveling a distance of y(1 ≤ y ≤ L + x − 1), the offline server turns around
and meets with the online server at node −L + y. Based on the values of −L + y, we
consider three cases:

Case 3.1. The online server and the offline server meets on the left side of node
−x(including node −x).

If the online server and the offline server meets on the left side of the node −x , the
value of y must satisfy y ≤ L − x .

Suppose the offline server wouldmove a distance of z(1 ≤ z ≤ y) after themeeting,
then turn around back to the origin. According to OM algorithm, online server would
go towards node−L , then turn around. If two servers would meet for the second time,
the position of the meeting is node y − x − z. There is y − x − z ≥ −L + y, this
means that the position of the meeting is on the right side of node −L + y. Based on
the different values of y − x − z, we consider two cases:

Case 3.1.1. The online server and the offline server meet at negative half line.
If the online server and the offline server meet at negative half line, the value of y

satisfy y < x + z.
Themeeting isMeeting situation 2(whenMeeting situation 2occurs again,we don’t

consider that the offline serverwould turn around again until the offline server arrives at
the origin or the extreme node). The offline serverwould go straightly back to the origin
after the meeting, the cost of the offline server is equal to cof f line = 2L + 2z − x .
According to OM algorithm, we can get the trajectory of the online server and the
offline server(see Fig. 7).

As shown in Fig. 7, the released requests between node −x + 1 and node −x + y,
the released requests between node−L+ y+1 and node−L+ y− z, and the released
requests between node y−x−z+1 and the origin for online server all satisfyReleased
request sequence 1, and the cost for each request is equal to 2(L − x)B. According
to OM algorithm, the online server would go straightly to node −L at time t + 2L ,
turn around to node −x + y, and turn around to node −L + y − z, then go back to
the origin. The cost of the online server is equal to conline = 4L − 3x + 2z + (4(L −
x)z + (L − x − y)2 + (L − x − y) + (L − x − z)2 + (L − x − z) + 2L2 − 2xL)B.

Let f (y, z) = ρ − conline
cof f line

, f (y, z) is an increasing function of y and z. We can get
f (y, z) > 0(See “Appendix” D for details).
Case 3.1.2. The online server and the offline server don’t meet at negative half line.
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Fig. 7 Trajectory of online and offline server

If the online server and the offline server don’t meet at negative half line, the value
of y must satisfy y ≥ x + z.

The online server and the offline server wouldn’t meet at the positive half line,
because the offline server has stayed at the origin. According to Lemma 1 and OM
algorithm, the cost of the offline server is equal to cof f line = 2L + 2z − x , the cost of
the online server is equal to conline = 4L − 3x + 2z + (2(L − x)(L − x + y + z) +
(L − x − y)2 + (L − x − y)+ (L − y)2 + (L − y))B. Similar to the analysis in Case
3.1.1, we can get ρ >

conline
cof f line

.
Case 3.2 The online server and the offline server meet between the node −x and

the origin(including the origin).
If the online server and the offline server meet between the node −x and the ori-

gin(including the origin), the value of y must satisfy L − x < y ≤ L .
Suppose the offline server wouldmove a distance of z(1 ≤ z ≤ y) after themeeting,

then turn around back to the origin. The analysis of this case is similar to the Case 3.1,
no matter what values y and z are, we can get ρ >

conline
cof f line

.
Case 3.3 The online server and the offline server meet at the positive half line.
If the online server and the offline server meet at the positive half line, the value of

y must satisfy y > L .
After the meeting, the offline server would go back to the origin. For the online

server, according to OM algorithm and Lemma 1, the online server would go straightly
to node−L , turn around,move straightly to node−x+y, then go back to the origin(See
Fig. 8).

The cost of the offline server is equal to cof f line = 2y − x , the cost of the online
server is equal to conline = 2L + 2y − 3x + 2(L − x)(2y − L)B.

Let f (y) = conline
cof f line

, f (y) is an increasing function of y.When y = L+x−1, f (y)
can get the maximum value, ρ0 − f (L + x − 1) = f (L + x) − f (L + x − 1) > 0.

In conclusion of the above cases, we can prove Lemma 2.
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Fig. 8 Trajectory of online and offline server

Theorem 4 The competitive ratio for Observe and Move Algorithm on the truncated
line segment is 1 + LB.

Proof The adversary always wants to separate the online server and the offline server.
According to OM algorithm, there are two cases to separate the online server and the
offline server: 1. At time 0, the adversary releases a request at node x . 2. At time 0, the
adversary doesn’t release any request, offline server moves towards extreme node(L
or −L). We show that no matter how the adversary releases the requests, Meeting
situation 2 must occur.

Case 1.Without loss of generality, suppose x > 0, according to OM algorithm, the
online server serves the request immediately. For the offline server, when the online
server leaves the origin, staying at the origin seems meaningless(Because this only
leads to a higher cost of the offline server, and a lower cost of the online server).

Case 1.1. The offline server moves towards node −L .
After traveling a distance of y(y > 0), the offline server turns around. According

to Lemma 1, the adversary would release requests at positions of the offline server.
For the online server, these y requests satisfy Released request sequence 1. According
to OM algorithm, the online server would serve the request on node x firstly, then turn
around to serve these y requests. If y ≥ x , two servers would meet at negative half line
or at the origin again, and this meeting is Meeting situation 2; If y < x , two servers
would meet at node x − y > 0, the offline server must serve the request at node x .
Suppose the offline server travels a distance of z(z ≥ 0) after serving the request on
node x , then turns around to the origin. Two servers would meet at 0.5z again, this
meeting isMeeting situation 2.

Case 1.2. The offline server moves towards node L .
The offline server would stay at the origin first, after the leaving of the online

server, the offline server starts to move.When the adversary begins to release requests,
according to OM algorithm, the first released request for the online server satisfies
Released request sequence 1, online servermust serve the request at node x thenmakes
the decision. At the same time, the offline server would go on keeping the direction

123



2158 Journal of Combinatorial Optimization (2022) 44:2143–2166

to extreme node L , or turn around. If the meeting occurs at negative half line, the
meeting isMeeting situation 2; if the meeting occurs at positive half line, the meeting
is Meeting situation 1, the following analysis is similar to Case 1.1, the next meeting
must be meeting situation 2.

Case 2. Without loss of generality, at time 0, suppose the offline server moves
towards node L , the online server stays at the origin.When the first request is released,
according to Lemma 1 and OM algorithm, the online server would move to serve the
request immediately and the offline server is on the right side of the online server. No
matter how the adversary releases requests, two servers must meet at positive half line,
and the meeting is meeting situation 2.

According to Lemma 2, after Meeting situation 2 occurs, the offline server must
go straightly to the origin and idle or keep his direction to the extreme node. Suppose
the position of the meeting on the positive half line is node x . Now we consider the
situation (the offline server arrives at L and −L successively, then goes back to the
origin) as a cycle, for each cycle, the cost of the offline server would increase by 4L ,
and the cost of the online server would increase by 4L + 4(L2 − x2)B. When x = 0,
the cost of the online server would get maximum value.

Through above analysis, two servers meet at the origin is the worst case. We can
describe the worst case as follows: At time 0, the adversary releases a request at node
L , the online servermustmove towards to node L to serve the request, the offline server
moves straightly to node −L . The adversary releases the requests at the positions of
the offline server, this will last n + 1 cycles. The cost of the offline server is equal to
4L + 3LB + 4nL , the cost of the online server is equal to 6L + LB + 2L2B + 4nL +
4nL2B. The competitive ratio is conline

cof f line
= 6L+LB+2L2B+4nL+4nL2B

4L+3LB+4nL , when n → ∞,
conline
cof f line

= 1 + LB.
We conclude that the competitive ratio of OM algorithm is 1 + LB.

5 Uniformmetric space

5.1 Lower bound on uniformmetric space

In this section, we discuss the online TSP with per-unit-time cost on the uniform
metric space, the uniform metric space is induced by a complete graph with unit edge
weights. Besides the origin, there are n vertices in the metric space, and the request
can only be released at the vertex.

Theorem 5 No deterministic online algorithm can achieve a competitive ratio less
than 1 + B.

Proof The offline server would visit the n vertices one by one, then return to the origin,
the adversary would release the requests at the offline server’s positions. The cost of
the offline server is equal to cof f line = n + 1. We consider the different positions of
the online server at time 1.

Case 1. The online server stays at the origin.
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For the online server, when a new request is released, there are three options: 1.
Serve the request immediately. 2. Go to another node. 3. Stay. The options of “stay”
would lead to a higher cost for the online server. We only consider the two options:

1. Serve the request immediately. The cost of each request for the online server is
equal to B. After serving all the n requests, the cost of the online server is equal
to conline = n + 2 + nB.

2. Go to another vertex. The worst case for the online server is that after visiting n−1
nodes, the online server has not served any request at all. The adversary would
release the last request at time n. The penalties of n requests for the online server
are larger than nB, the cost of the online server is equal to conline > 2n − 1+ nB.

If the online server adopts the mixed strategy, i.e, for some requests, the online
server would serve it immediately, for other requests, the online server would go to
another vertex, the value of the cost in this case must larger than n + 2 + nB.

The cost ratio is equal to conline
cof f line

= n+2+nB
n+1 , when n → ∞, conline

cof f line
= 1 + B.

Case 2. The online server stays at other vertex.
Consider the symmetry of the network, this case is the same with case 1, the cost

ratio is equal to conline
cof f line

= 1 + B.
Case 3. The online server stays between the origin and vertex j .
Vertex j would be any vertex in the uniform metric space, suppose at time 1, the

distance between the online server and the origin(or vertex j) is x(0 < x ≤ 0.5). The
online server still has two options as in case 1 when a new request is released. Similar
to the analysis in case 1, the minimum value of the online server’s cost is equal to
conline = n + 2 + x + n(1 + x)B. The cost ratio is equal to conline

cof f line
= 1 + (1 + x)B

when n → ∞.
In conclusion of above cases, we can get the lower bound for online TSP with

per-unit-time cost on the uniform metric space as 1 + B.

5.2 The greedy algorithm

In this section, we give a greedy algorithm and analyze the competitiveness on the
uniform metric space.

Greedy algorithm(GA): At any time t , define S(t) as a set for all the released requests
but not yet served by online server. The greedy server will always choose to serve the
requests in S(t) for the least cost. If set S(t) is empty, the greedy server will go back
to the origin.

Lemma 3 The adversary only releases the requests at the positions of the offline server.

Proof When the adversary only releases the requests at the positions of the offline
server, the cost of the offline server is equal to y, the cost of the online server is equal
to z. Suppose the adversary only releases one request R j at node j before the offline
server arrives at node j , the distance from the online server to node j at time r j is
x(0 < x ≤ 1). The cost of the offline server is equal to cof f line ≥ y + x B. For the
online server, at time r j , there are two unserved requests. According to GA, there are
two cases for the online server:
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Case 1. The online server serves the request R j later, the cost of the online server is
equal to z1 = z + x B.

Case 2. The online server serves the request R j firstly, the cost of the online server
is equal to z2.

if z2 > z1, the cost ratio is equal to z+x B
y+x B < z

y ; if z2 < z1, the cost ratio is equal to
z2

y+x B < z+x B
y+x B < z

y .

Theorem 6 The competitive ratio of the Greedy algorithm is 1 + B.

Proof According to GA, the online server would serve the request immediately when
a new request is released. According to Lemma 3, the adversary only releases the
requests at the positions of the offline server. For the online server, there is only one
unserved request at the same time. For each request, the cost is equal to B. If the
adversary does’nt release request when the offline server arrives at the vertex which
would decrease the online server’s cost(the offline server’s cost is the same). After
serving all the n requests, the cost of the offline server is equal to cof f line = n + 1,
the cost of the online server is equal to conline = n + 2 + nB, when n → ∞, the
competitive ratio is conline

cof f line
= 1 + B.

6 Conclusion

In this paper, we consider the affected population’s dissatisfaction in the emergency
vehicle routing problem, introduce per-unit-time cost into the OL TSP. First, we find
out that no deterministic and randomized online algorithms can achieve constant com-
petitive ratio for OL-TSP with per-unit-time cost on general metric space even on the
positive half line. Therefore, we propose the problem onmore restrictedmetric spaces,
such as the truncated line segment and the uniform metric space. While on truncated
line segment, we give a lower bound, an Observe and Move Algorithm and the algo-
rithm’s competitive ratio. The algorithm is to observe the sequence of the released
requests, accordingly the online server decides how to move. There are two interest-
ing practical applications that can be solved by the proposed algorithm: (1)Emergency
vehicle routing problem. After the natural disaster (such as earthquake, hurricane), the
natural disaster would destruct the roads of the city, there would be only several main
roads which can pass through in the city (especially the structure of the city is grid
network). For each main road, we can see it as a truncated line segment; (2) The order
picking problem. Imagine in a big ware house, under the assembly-line order picking
system, every picker is responsible for one cross aisle which can be seen as a truncated
line segment. The request in our model can be seen as the storage which would be
picked by the picker, the objective function can measure the efficiency of the picker.
While on uniform metric space, we give a lower bound and a Greedy Algorithm with
its competitive ratio, and prove it optimal. Besides, introducing other factors(such as
deadline) into this problem is also interesting.
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Appendix A. Case 1.2.1 in Theorem 3

The added cost of the online server includes four parts:

1. The added penalties of the requests between node −y − 1 and node −L . For each
of L − y requests, the increased cost is equal to 2y1B. The increased costs of the
L − y requests are equal to 2(L − y)y1B;

2. The costs of the requests between node 1 and node y. y requests are released
during the time interval [2L + 1, 2L + y] one by one, the requests are served
during the time interval [4L + 2y1 + 1, 4L + 2y1 + y] by online server. The cost
is equal to (2L + 2y1)B for each request. The costs of the y requests are equal to
2(L + y1)yB;

3. The costs of the requests between node y + 1 and node L . L − y requests are
released during the time interval [2L + 2y1 + y + 1, 3L + 2y1] one by one, the
L − y requests are served during the time interval [4L + 2y1 + y + 1, 5L + 2y1]
by online server. The cost is equal to 2LB for each request. The costs of the L − y
requests is equal to 2(L − y)LB;

4. The added traveling time of the online server. The increased traveling time of the
online server is equal to 2L + 2y1.

The total added cost of the online server is equal to 2L +2y1 +2(L − y)y1B +2(L +
y1)yB + 2(L − y)LB = 2L + 2y1 + (2L2 + 2Ly1)B.

Appendix B. Case 1.2.2 in Theorem 3

When y2 ≤ y, the added cost of the online server includes seven parts:

1. The added costs of the requests between node −y − 1 and node −L . For each of
L − y requests, the increased cost is equal to 2(y + y2)B. The increased costs of
the L − y requests are equal to 2(L − y)(y + y2)B;

2. The costs of the requests between node 1 and node y2. y2 requests are released
during the time interval [2L + 1, 2L + y2] one by one, the y2 requests are served
during the time interval [2L + 2y + 1, 2L + 2y + y2] by online server. The cost
is equal to 2yB for each request. The costs of the y2 requests are equal to 2yy2B;

3. The costs of the requests between node y2 + 1 and node y. y − y2 requests are
released during the time interval [2L + 2y2 + 1, 2L + y] one by one, the y − y2
requests are served during the time interval [4L + 3y2 + 2y + 1, 4L + 2y2 + 3y]
by online server. The cost is equal to 2(L + y + y2)B for each request. The costs
of the y − y2 requests are equal to 2(L + y + y2)(y − y2)B;

4. The costs of the requests between node−1 and node−y2. y2 requests are released
during the time interval [2L + 2y + 1, 2L + 2y + y2] one by one, the y2 requests
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are served during the time interval [2L + 2y + 2y2 + 1, 2L + 2y + 3y2] by online
server. The cost is equal to 2y2B for each request. The costs of the y2 requests are
equal to 2y22 B;

5. The costs of the requests between node 1 and node y2. y2 requests are released
during the time interval [2L + 2y + 2y2 + 1, 2L + 2y + 3y2] one by one, the
requests are served during the time interval [4L + 2y + 2y2 + 1, 4L + 2y + 3y2]
by online server. The cost is equal to 2LB for each request. The costs of the y2
requests are equal to 2y2LB;

6. The costs of the requests between node y+1 and node L . L−y requests are released
during the time interval [2L+3y+2y2 +1, 3L+2y+2y2] one by one, the L− y
requests are served during the time interval [4L + 3y + 2y2 + 1, 5L + 2y + 2y2]
by online server. The cost is equal to 2LB for each request. The costs of the L − y
requests are equal to 2(L − y)LB;

7. The added traveling time of the online server. The increased traveling time of the
online server is equal to 2L(L + y + y2).

The total added cost of the online server is equal to 2L + 2y + 2y2 + (2(L − y)(y +
y2)B + 2yy2B + 2(L + y + y2)(y − y2)B + 2y22B + 2y2LB + 2(L − y)LB) =
2(L + y + y2) + 2(L + y + y2)LB.

When y2 > y, the added cost of the online server includes five parts:

1. The added costs of the requests between node −y − 1 and node −L . For each of
L − y requests, the increased cost is equal to 2(y + y2)B. The increased costs of
the L − y requests are equal to 2(L − y)(y + y2)B;

2. The costs of the requests between node 1 and node y. y requests are released during
the time interval [2L + 1, 2L + y] one by one, the y2 requests are served during
the time interval [2L + 2y + 1, 2L + 3y] by online server. The cost is equal to
2yB for each request. The costs of the y requests are equal to 2y2B;

3. The costs of the requests between node −1 and node −y. y requests are released
during the time interval [2L + 2y + 1, 2L + 3y] one by one, the y requests are
served during the time interval [2L + 2y + 2y2 + 1, 2L + 3y + 2y2] by online
server. The cost is equal to 2y2B for each request. The costs of the y requests are
equal to 2yy2B;

4. The costs of the requests between node 1 and node L . L requests are released
during the time interval [2L + 2y + 2y2 + 1, 3L + 2y + 2y2] one by one, the L
requests are served during the time interval [4L + 2y + 2y2 + 1, 5L + 2y + 2y2]
by online server. The cost is equal to 2LB for each request. The costs of the L
requests are equal to 2L2B;

5. The added traveling time of the online server. The increased traveling time of the
online server is equal to 2L(L + y + y2).

The total added cost of the online server is equal to 2L + 2y + 2y2 + (2(L − y)(y +
y2)B + 2y2B + 2yy2B + 2L2B) = 2(L + y + y2) + 2(L + y + y2)LB.

Appendix C. Case 2 in Lemma 2

The cost of the online server after time t + 2L includes six parts:
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1. The costs of the requests between node −x − 1 and node −L . L − x requests are
released during the time interval [t + 2x + 1, t + x + L] one by one, the L − x
requests are served during the time interval [t + 2L + 1, t − x + 3L] by online
server. The cost is equal to 2(L − x)B for each request. The costs of the L − x
requests are equal to 2(L − x)2B;

2. The costs of the requests between node −x + 1 and node −x + y. y requests are
released during the time interval [t+2L+1, t+2L+ y] one by one, the y requests
are served during the time interval [t + 4L − 2x + 1, t + 4L − 2x + y] by online
server. The cost is equal to 2(L − x)B for each request. The costs of the y requests
are equal to 2(L − x)yB;

3. The costs of the requests between node −x and node −x − y1. y1 + 1 requests are
released during the time interval [t + 2L + 2y, t + 2L + 2y + y1] one by one, the
y1+1 requests are served during the time interval [t+4L−2x−y1, t+4L−2x] by
online server. The costs of these requests are equal to 2(L−x− y)B, 2(L−x− y−
1)B, · · · · · · 2(L − x − y− y1)B respectively which forms an arithmetic sequence.
The costs of the y1+1 requests are equal to (2(L− x− y)(y1+1)− (y12+ y1))B;

4. The costs of the requests between node −x + y + 1 and node L . L + x − y
requests are released during the time interval [t + 2L + 3y + 2y1 + 1, t + 3L +
2y + 2y1 + x] one by one, the L + x − y requests are served during the time
interval [t + 4L + y − 2x + 1, t + 5L − x] by online server. The cost is equal to
2(L − y − y1 − x)B for each request. The costs of the L + x − y requests are
equal to 2(L − y − y1 − x)(L + x − y)B;

5. The costs of the requests between node x + y + y1 − 1 and the origin. x + y + y1
requests are released during the time interval [t + 4L + y+ y1 + 1, t + 4L + 2y+
2y1 + x] one by one, the x + y + y1 requests are served during the time interval
[t + 6L − y − y1 − 2x + 1, t + 6L − x] by online server. The cost is equal to
2(L − y − y1 − x)B for each request. The costs of the x + y + y1 requests are
equal to 2(L − y − y1 − x)(x + y + y1)B;

6. The traveling time of the online server. The traveling time of the online server is
equal to 4L − x .

The total cost of the online server is equal to conline = 4L − x + (2(L − x)(L − x +
y) + 2(L − x − y)(y1 + 1) − (y12 + y1) + 2(L − y − y1 − x)(L + 2x + y1))B.

As shown in Fig. 6, the cost of the offline server is equal to cof f line = 2y + 2y1 +
x + 2L .

The cost ratio is equal to f (y1) = conline
cof f line

,

f ′(y1) = −2conline + (2L − 8x − 4y − 6y1 − 1)Bcof f line
cof f line2

.
Let g(y1) = −2conline + (2L − 8x − 4y − 6y1 − 1)Bcof f line, g′(y1) =

−6Bcof f line < 0.
Because 0 ≤ y1 ≤ L − x − y−1, when y1 = 0, g(y1) can get the maximum value.
Let h(x) = g(0) = −2(4L − x + 2((L − x)(L − x + y) + (L − x − y)(L + 2x +

1))B) + (2y + x + 2L)(2L − 8x − 4y − 1)B
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h′(x) = (−16L − 20x − 26y − 3)B + 2 < 0, when x = 0, h(x) can get the
maximum value.

h(0) = −8L + (−4L2 − 4yL − 8y2 − 6L + 2y)B < 0, g(0) ≤ h(0) < 0,
f ′(y1) < 0, f (y1) is a decreasing function of y1. When y1 = 0, conline

cof f line
can get

the maximum value. Similar to the above analysis, when y = 1, conline
cof f line

can get the
maximum value.

When y1 = 0, y = 1, conline
cof f line

= 4L−x+(2(L−x)(L+2x)+(L−7x−2))B
2L+x+2

ρ0 − conline
cof f line

= 2(4L − x) + 8(3x + 1)(2L + x)B

(2L + x + 2)(2L + x)
> 0

Appendix D. Case 3.1.1 in Lemma 2

The cost of the online server after time t + 2L includes seven parts:

1. The costs of the requests between node −x − 1 and node −L . L − x requests are
released during the time interval [t + 2x + 1, t + x + L] one by one, the L − x
requests are served during the time interval [t + 2L + 1, t − x + 3L] by online
server. The cost is equal to 2(L − x)B for each request. The costs of the L − x
requests are equal to 2(L − x)2B;

2. The costs of the requests between node −x + 1 and node −x + y. y requests are
released during the time interval [t+2L+1, t+2L+ y] one by one, the y requests
are served during the time interval [t + 4L − 2x + 1, t + 4L − 2x + y] by online
server. The cost is equal to 2(L − x)B for each request. The costs of the y requests
are equal to 2(L − x)yB;

3. The costs of the requests between node−x and node−L+y+1. L−x−y requests
are released during the time interval [t+2L+2y, t+3L+y−x−1] one by one, the
L−x−y requests are served during the time interval [t+3L+y−x+1, t+4L−2x]
by online server. The costs of these requests are equal to 2(L−x− y)B, 2(L−x−
y − 1)B, · · · · · · 2B respectively which forms an arithmetic sequence. The costs
of the L − x − y requests are equal to ((L − x − y)2 + (L − x − y))B;

4. The costs of the requests between node−L+ y−1 and node−L+ y−z. z requests
are released during the time interval [t + 3L + y − x + 1, t + 3L + y − x + z]
one by one, the z requests are served during the time interval [t + 5L + y − 3x +
1, t + 5L + y − 3x + z] by online server. The cost is equal to 2(L − x)B for each
request. The costs of the z requests are equal to 2(L − x)zB;

5. The costs of the requests between node −L + y and node y− x − z−1. L − x − z
requests are released during the time interval [t + 3L + y − x + 2z, t + 4L + y −
2x + z − 1] one by one, the L − x − z requests are served during the time interval
[t + 4L + y − 2x + z + 1, t + 5L − 3x + y] by online server. The costs of these
requests are equal to 2(L − x − z)B, 2(L − x − z − 1)B, · · · · · · 2B respectively
which forms an arithmetic sequence. The costs of the L − x − z requests are equal
to ((L − x − z)2 + (L − x − z))B;
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6. The costs of the requests between node y − x − z + 1 and the origin. x + z − y
requests are released during the time interval [t + 4L − 2x + y + z + 1, t + 4L −
x + 2z] one by one, the x + z − y requests are served during the time interval
[t + 6L − 4x + z + y + 1, t + 6L − 3x + 2z] by online server. The cost is equal
to 2(L − x)B for each request. The costs of the x + z − y requests are equal to
2(L − x)(x + z − y)B;

7. The traveling time of the online server. The traveling time of the online server is
equal to 4L − 3x + 2z.

The total cost of the online server is equal to conline = 4L + 3x − 2z + (2(L −
x)(2z + L) + (L − x − y)2 + (L − x − y) + (L − x − z)2 + (L − x − z))B.

As shown in Fig. 7, the cost of the offline server is equal to cof f line = 2L +2z− x .

Let f (y, z) = ρ − conline
cof f line

= A
xcof f line

, f ′
z(y, z) = −2x A+A′xcof f line

xcof f line
.

Let g(z) = −2x A + A′xcof f line, g′(z) = −2x Bcof f line < 0.
Because z ≤ y, when z = y, g(z) can get the minimum value.
g′(y) = 2x(2L + 2y − x)B > 0, when y = 1, g(y) can get the minimum value.
ming(y) = g(1) > g(0) = x2(4L2 + 2x2 − 6xL + 6L − 5x)B > 0, we can get

g(z) > 0.
f (y, z) is an increasing function of z, when z = 1, f (y, z) can get the minimum

value. For f (y, 1), with the similar analysis, we can get f (y, 1) is an increasing
function of y, and

min f (y, z) = f (1, 1) > f (0, 0) = (4(L−x)2L−2x((L−x)2+(L−x))B+4(L−x)2

x(2L−x) > 0.
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