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Abstract
The edge weight of a graph G is defined to be max{dG(u) + dG(v) : uv ∈ E(G)}.
The strong chromatic index of a graph is the minimum value of k such that the edge
set of G can be partitioned into k induced matchings. In this article, we prove that the
strong chromatic index of a graph with edge weight eight is at most 21.
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1 Introduction

All graphs in this article are simple and undirected. A strong edge-coloring of a graph
G, first introduced by Fouquet and Jolivet (1983), is a proper edge-coloring ofG such
that any two edges joined by another one have distinct colors. Clearly, every coloring
class is an induced matching of G. The minimum number of colors needed in a strong
edge-coloring is called the strong chromatic index, denoted by χ ′

s(G).
LetG be a graph and let� be themaximumdegree ofG. In 1989, Erdős andNešetřil

(1989) conjectured that χ ′
s(G) ≤ 5

4�
2 if � is even, and χ ′

s(G) ≤ 5
4�

2 − 1
2� + 1

4
if � is odd. They also found a class of graphs that can reach these upper bounds.
Since then, there have been many progress on the conjecture, especially for various
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Fig. 1 A graph with edge weight
8 and strong chromatic index 20

classes of sparse graphs, like planar graphs; k-degenerate graphs, bipartite graphs,
graphs with small maximum average degree, and so on. The strong chromatic index
on some special graphs have also been studied, such as unit distance graph (Debski
2019), and generalized Petersen graph (Yang and Wu 2018). For an overview of the
strong edge-coloring, we refer the reader to the survey (Deng et al. 2019).

The edge weight of a graph G is defined to be max{dG(u) + dG(v)|uv ∈ E(G)}.
Note that, for every edge uv ∈ E(G), the edges incident with u or v must receive
different colors in a strong edge-coloring. So χ ′

s is bounded below by the edge weight
minus one. It would be interesting if one can find a relationship between the edge
weight and an upper bound for χ ′

s . The first such result was proved by Wu and Lin
(2008) in 2008.

Theorem 1.1 (Wu and Lin (2008)) If G is a connected graph with edge weight at most
5. Then either χ ′

s(G) ≤ 6 or G is isomorphic to the graph obtained from C5 by adding
a new vertex connecting to a pair of nonadjacent vertices.

Recently, Chen et al. (2020) proved the following theorem:

Theorem 1.2 (Chen et al. (2020)) Let G be a graph.

(1) if the edge weight of G is at most 6, then χ ′
s(G) ≤ 10;

(2) if the edge weight of G is at most 7, then χ ′
s(G) ≤ 15.

Theygave agraphwith edgeweight 7 and strong chromatic index13,which suggests
that the bound of 15 may not be tight. In this article, we study graphs with edge weight
8 and prove the following result.

Theorem 1.3 For any graph G with edge weight 8, χ ′
s(G) ≤ 21.

Note that the graph in Fig. 1 given by Erdős and Nešetřil (1989) has edge weight
8 and strong chromatic index 20. No known example of graphs with edge weight 8
would require 21 colors. We strongly believe that the following conjecture should be
true.

Conjecture 1.4 For any graph G with edge weight 8, χ ′
s(G) ≤ 20.

The proof of our result relies heavily on the following result of Huang et al. (2018).
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Theorem 1.5 (Huang et al. (2018)) If G is a graph with maximum degree 4, then
χ ′
s(G) ≤ 21.

Note that every 4-regular graph has edgeweight 8, so our result is a natural extension
of Theorem 1.5. Likewise, Conjecture 1.4 is a non-trivial extension of Erdős and
Nešetřil’s Conjecture for � = 4. While it might be true that Conjecture 1.4 would
follow from Erdős and Nešetřil’s Conjecture, the proof used in this article does not
provide a direct link between these two conjectures, as we require the use of 21 colors
in a number of important steps.

2 Proof of Theorem 1.3

We will use k-vertex (resp. k−-vertex, k+-vertex) to denote a vertex of degree k (resp.
at most k; at least k). For v ∈ V (G), we use N (v) to denote the set of neighbors of
v. For two edges e and e′, we say that e sees e′ if they are incident with a common
vertex or adjacent to a common edge. Apparently, such two edges must be assigned
different colors in any strong edge-colorings of G.

From now on, we assume that G is a minimal counterexample to Theorem 1.3,
that is, G has edge weight 8, χ ′

s(G) ≥ 22, and |V (G)| as small as possible. A partial
strong edge-coloring of G is a proper edge-coloring of a subgraph G ′ of G with at
most 21 colors such that any two edges that can see each other in G receive distinct
colors. We will show that a certain partial strong edge-coloring of G can be extended
to a strong edge-coloring of G. We denote by C(e) the set of colors that are available
for e ∈ E(G) − E(G ′) and we let c(e) = |C(e)|. By a good coloring, we mean a
strong edge-coloring using at most 21 colors.

Next we prove some basic properties of G.

Lemma 2.1 The minimum degree of G is at least 3.

Proof Assume that there exists a vertex v ∈ E(G) with dG(v) ≤ 2. If dG(v) = 1 and
v′ is the only neighbor of v, then the edge vv′ can see at most 12 edges in G − v. So a
good coloring ofG−v can be easily extended to a good coloring ofG, a contradiction.
If dG(v) = 2 and v′ and v′′ are the two neighbors of v, then each of the edges vv′ and
vv′′ can see at most 17 edges in G − v. So a good coloring of G − v can again be
easily extended to a good coloring of G, a contradiction. ��

It follows immediately that dG(v) ∈ {3, 4, 5} for any v ∈ V (G).

Lemma 2.2 A 3-vertex can not be adjacent to a 3-vertex.

Proof Let v be a 3-vertex with neighbor set {v1, v2, v3}. Assume without loss of
generality that dG(v1) = 3. Then the edge vv1 can see at most 18 edges of G − v,
there are at least three colors available for the edge vv1, we color it with one of the
colors. Now each of the edges vv2, and vv3 can see at most 19 edges, and there are at
least 2 colors for each of them, so a good coloring of G − v can be extended to a good
coloring of G, a contradiction.

The case in which one of v2 and v3 is a 3-vertex is done in a similar manner. ��
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Fig. 2 A 5-vertex v and its neighbors

Lemma 2.3 Every 3-vertex is adjacent to at least one 5-vertex.

Proof Let v be a 3-vertex with neighbor set {v1, v2, v3}. If none of them is a 5-vertex,
then by Lemma 2.2, they must all be 4-vertices. Then each of the edges vv1, vv2, and
vv3 can see at most 18 edges of G − v, therefore, there are at least 3 colors available
for vv1, vv2, and vv3. So a good coloring of G −v can be extended to a good coloring
of G. ��

By Theorem 1.5, we may assume that G has at least one 5-vertex.
Let G ′ be a subgraph of G with |V (G ′)| < |V (G)|. Suppose that G has a strong

partial edge-coloring φ on G ′. In order to extend φ to a good coloring of G, we
construct a bipartite graph B = B[X ,Y ] with bipartition (X ,Y ), where a vertex
x ∈ X corresponds to an edge x in E(G) − E(G ′), Y = [21] is the set of all 21
colors, and a vertex x ∈ X is adjacent to a vertex y ∈ Y if and only if the color
y is available for the edge x . By the construction of B, if B has a matching M that
covers X , then we color each edge of E(G) − E(G ′) with the color that is adjacent
to it in M , hence the coloring φ of G ′ can be extended to a good coloring of G. The
edges in X will be ordered by e0, e1, . . ., ek . The degree sequence of X in B, denoted
by dB(X), is the sequence (d0, d1, . . . , dk) where di = dB(ei ) for 0 ≤ i ≤ k. That
is, di is the number of available colors for the edge ei . Let S = (s0, s1, . . . , sk) and
S′ = (s′

0, s
′
1, . . . , s

′
k) be two sequences of the same length. We say that S dominates S′

if for each i ∈ {0, 1, . . . , k}, si ≥ s′
i . We need the well-known Hall’s Theorem (Hall

1935) in our proofs.

Theorem 2.4 A bipartite graph B = B[X ,Y ] has a matching that covers every vertex
of X if and only if |NB(S)| ≥ |S| for all S ⊆ X, where NB(S) is the set of all neighbors
of vertices in S.

Let v be a 5-vertex of G and let N (v) = {v1, v2, v3, v4.v5}. Note that each of vi ,
1 ≤ i ≤ 5 is a 3-vertex. For each 1 ≤ i ≤ 5, we use v′

i and v′′
i to denote the neighbors

of vi other than v. We shall label the edges incident to v, v1, or v2 as shown in Fig. 2.
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Lemma 2.5 For any {i, j} ⊂ {1, 2, 3, 4, 5}, we have that viv j /∈ E(G).

Proof Suppose otherwise. By symmetry, we may assume that v1v2 ∈ E(G). Let
G ′ = G − v. Then each of the edges vv1 and vv2 can see at most 13 edges of G ′;
and each of the edges vv3, vv4, and vv5 can see at most 17 edges of G ′; we can first
color vv3, vv4, vv5, then color vv1 and vv2 to extend a good coloring of G ′ to a good
coloring of G; a contradiction. ��
Lemma 2.6 For any {i, j} ⊂ {1, 2, 3, 4, 5}, N (vi ) ∩ N (v j ) = {v}.
Proof By symmetry, we only need show that v1 and v2 have no common neighbor
other than v. It is easy to see that we have the following three cases.

(1) v′
1 = v′

2 and v′′
1 = v′′

2 .
In this case, we consider the subgraph G − v. Then each of vv1 and vv2 can see
at most 16 edges of G − v; each of vv3, vv4, and vv5 can see at most 18 edges of
G − v. We can first color vv3, vv4, and vv5, then color vv1 and vv2 to extend a
good coloring of G − v to a good coloring of G; a contradiction.

(2) v′
1 = v′

2 and v′′
1v

′′
2 ∈ E(G).

In this case, byLemma2.2,we have that dG(v′′
1 ) �= 3, dG(v′′

2 ) �= 3.ByLemma2.1,
d(v) ∈ {3, 4, 5} for any v ∈ V (G). If dG(v′′

1 ) = 5, since v′′
1v

′′
2 ∈ E(G), dG(v′′

2 ) =
3, a contradiction. Therefore, dG(v′′

1 ) = 4. Similarly, dG(v′′
2 ) = 4. We again

consider the subgraph G − v. Then each of vv1 and vv2 can see at most 16 edges
of G − v; each of vv3, vv4, and vv5 can see at most 18 edges of G − v. We can
first color vv3, vv4, and vv5, then color vv1 and vv2 to extend a good coloring of
G − v to a good coloring of G; a contradiction.

(3) v′
1 = v′

2 and the edges v1v
′′
1 and v2v

′′
2 do not see each other.

In this case, we will chooseG ′ = G−{v, v1, v2} and construct the bipartite graph
B[X ,Y ], where X = E(G) − E(G ′) = {e1, e2, . . . , e9} and Y = [21]. Then by
calculating the least number of available colors for each edge in X, we have the
degree sequence dB(X) dominates the sequence (8, 6, 8, 6, 8, 8, 7, 7, 7). For any
S ⊆ X with |S| ≤ 8, we have |NB(S)| ≥ |S|. Now if |NB(X)| ≥ 9, then by Hall’s
theorem, there exists a matching that covers X , which implies a good coloring of
G ′ can be extended to a good coloring ofG. So wemay assume that |NB(X)| = 8.
If C(e2) ∩ C(e4) = ∅, |C(e2) ∪ C(e4)| ≥ 12, then |NB(X)| ≥ 12 ≥ |X | = 9,
contrary to our assumption. So C(e2) ∩ C(e4) �= ∅. Since e2 and e4 do not see
each other, we may color them with one color. Therefore the degree sequence
dB(X − {e2, e4}) dominates (7, 7, 7, 7, 6, 6, 6). So for any S ⊆ (X − {e2, e4}),
we have that |NB(S)| ≥ |S|, by Hall’s theorem, there exists amatching that covers
X − {e2, e4}, thus a good coloring of G ′ can be extended to a good coloring of
G; a contradiction.

Therefore v1 and v2 have no common neighbor other than v, that is, N (v1)∩ N (v2) =
{v}. ��
Lemma 2.7 Neither v1v

′
1 nor v1v

′′
1 can see the edges v2v

′
2 or v2v

′′
2 .

Proof Suppose otherwise. By symmetry, we may assume that the edge v1v
′
1 can see

the edge v2v
′
2, that is, v

′
1v

′
2 ∈ E(G). By Lemma 2.6, v′

1, v
′′
1 /∈ {v′

2, v
′′
2 }. Since G has

123



232 Journal of Combinatorial Optimization (2020) 40:227–233

no adjacent 3-vertices, both v′
1 and v′

2 are 4-vertices. We consider the following two
cases:
Case 1: the edge v1v

′
1 also sees the edge v2v

′′
2 .

In this case, we have that v′
1v

′′
2 ∈ E(G) and dG(v′′

2 ) = 4. Consider the subgraph
G − v. Then vv1 sees at most 17 edges of G − v; vv2 sees at most 16 edges of G − v;
and each of the edges vv3, vv4, and vv5 sees at most 18 edges of G − v. So we may
color the edges in E(G) − E(G ′) in the following order vv3, vv4, vv5, vv1, vv2. This
way we can extend a good coloring of G ′ to a good coloring of G; a contradiction.
Case 2: the edge v1v

′
1 does not see the edge v2v

′′
2 .

In this case, we will choose G ′ = G − {v, v1, v2} and construct the bipartite graph
B[X ,Y ], where X = E(G)−E(G ′) = {e1, e2, . . . , e9} andY = [21]. Then the degree
sequence dB(X) dominates (6, 6, 6, 6, 8, 8, 7, 7, 7). Note that, for any proper subset S
of X , we have that |NB(S)| ≥ |S|. So by Hall’s Theorem, if |NB(X)| ≥ 9, then there
exists a matching that covers X , and thus, a good coloring of G ′ can be extended to a
good coloring of G; a contradiction. So we may assume that |NB(X)| = 8. Since the
edge e1 = v1v

′
1 does not see the edge e4 = v2v

′′
2 , wemay color e1 and e4 with the same

color, now the degree sequence for the remaining edges dominates (5, 5, 7, 7, 6, 6, 6).
Again by Hall’s theorem, a good coloring of G ′ can be extended to a good coloring of
G, a contradiction. ��

Now we are ready to complete the proof for Theorem 1.3. Let G ′ = G −
{v, v1, v2} and we construct the bipartite graph B[X ,Y ], where X = E(G) −
E(G ′) = {e1, e2, . . . , e9} and Y = [21]. Then the degree sequence dB(X) domi-
nates (5, 5, 5, 5, 7, 7, 7, 7, 7). Note that for any S ⊆ X with |S| ≤ 7, we have that
|NB(S)| ≥ |S|. So we may assume that there exists an S0 ⊆ X with |S0| = 8 or 9
such that |NB(S0)| < |S0|.

First assume that |S0| = 9, that is, S0 = X . Then 7 ≤ |NB(X)| ≤ 8. Note that
|C(e2) ∪ C(e4)| ≤ |NB(X)| ≤ 8. Since c(e2), c(e4) ≥ 5, |C(e2) ∩ C(e4)| ≥ 2.
Similarly, |C(e1) ∩ C(e3)| ≥ 2. By Lemma 2.7, we may color e1 and e3 with the
same color, and color e2 and e4 with the same color. Now the degree sequence for the
remaining edges dominates (5, 5, 5, 5, 5). By Hall’s Theorem, there exists a matching
covering these edges. So a good coloring of G ′ can be extended to a good coloring of
G, a contradiction.

Next assume that |S0| = 8 and |NB(S0)| = 7. Note that, if {e1, e2, e3, e4} ⊂ S0,
then we may again color e1 and e3 with the same color, and color e2 and e4 with the
same color; thus extending a good coloring of G ′ to G, a contradiction. Therefore, S0
contains exactly three edges of {e1, e2, e3, e4}. By symmetry, assume that S0 = X−e1.
We may further assume that |C(e1) ∩ C(e3)| ≤ 1; as otherwise we may repeat the
same coloring procedure to obtain a coloring of G. Therefore, |C(e1) ∪ C(e3))| ≥ 9,
and hence, C(e1) − NB(S0) �= ∅. Now we choose a color from C(e1) − NB(S0) to
color e1, and a color from C(e2)∩C(e4) to color the edges e2 and e4. Now the degree
sequence for the remaining edges dominates (4, 6, 6, 6, 6, 6). By Hall’s Theorem, a
good coloring of G ′ can be extended to a good coloring of G; a contradiction.

This completes the proof for Theorem 1.3.

Acknowledgements The first author is supported by the National Natural Science Foundation of
China(11501223,11701195), and Quanzhou High-Level Talents Support Plan. The second author is sup-

123



Journal of Combinatorial Optimization (2020) 40:227–233 233

ported by Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao
University.

References

Chen L, Huang M, Yu G, Zhou X (2020) The strong edge-coloring for graphs with small edge weight.
Discrete Math 343:111779

Debski M (2019) Strong chromatic index of unit distance graph. J Graph Theory 90:523–534
DengK,YuG, ZhouX (2019) Recent progress on strong edge-coloring of graphs. DiscreteMathAlgorithms

Appl 11:1950062
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