
Journal of Combinatorial Optimization (2022) 44:2085–2103
https://doi.org/10.1007/s10878-020-00579-z

Exact algorithms for finding constrainedminimum
spanning trees

Pei Yao1 · Longkun Guo1,2,3

Published online: 5 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
For a given undirected graph with each edge associated with a weight and a length, the
constrained minimum spanning tree (CMST) problem aims to compute a minimum
weight spanning tree with total length bounded by a given fixed integer L ∈ Z

+.
In the paper, we first present an exact algorithm with a runtime O(mn2) for CMST
when the edge length is restricted to 0 and 1 based on combining the local search
method and our developed bicameral edge replacement approach. Then we extend the
algorithm to solve a more general case when the edge length is restricted to 0, 1 and 2
via iteratively improving a feasible solution of CMST towards an optimum solution.
At last, numerical experiments are carried out to validate the practical performance of
the proposed algorithms by comparing with previous algorithms as baselines.

Keywords Constrained minimum spanning tree · Bicameral edge replacement ·
Local search

1 Introduction

Broadcasting has become a fundamental method for public information dissemination
in nowadays networks because of its advantages in high throughput, energy saving,

Dedicated to Professor Minyi Yue on the Occasion of His 100th Birthday.

B Longkun Guo
longkun.guo@gmail.com

Pei Yao
Pei.Yao@foxmail.com

1 College of mathematics and Computer Science, Fuzhou University, Fuzhou 350116, P.R. China

2 Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology,
Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China

3 Shandong Computer Science Center, (National Supercomputer Center in Jinan), Jinan 250353, P.R.
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-020-00579-z&domain=pdf
http://orcid.org/0000-0003-2891-4253

2086 Journal of Combinatorial Optimization (2022) 44:2085–2103

efficiency, etc. Most data broadcasting applications require to minimize the occupied
resources while guarantee customer experience simultaneously, which is typically to
minimize the waiting time of the clients between proposing a request and receiving
the data. In the context, a link has a length as the delay of data transmission over the
link, and a weight as its occupied resource. Then the constrained minimum spanning
tree problem (CMST) arises, which is to compute a tree spanning all the nodes in the
network, such that the total edge weight of the tree is minimized and the total length
is bounded by a given threshold. Formally, we have the following definition:

Definition 1 (The Constrained Minimum Spanning Tree problem, CMST) Given an
undirected graph G = (V , E), a weight function w : E → Z

+
0 , a length function

l : E → Z
+
0 , and a length bound L ∈ Z

+
0 , the CMST problem aims to find a spanning

tree T with its weight sum minimized and length sum bounded by L , i.e. to minimize∑
e∈T w(e) subject to

∑
e∈T l(e) ≤ L .

1.1 Related works

To the best of our knowledge, the CMST problem was first addressed by Aggarwal
et al. (1982) decades ago and was shownweaklyNP-hard by reducing from the knap-
sack problem. Later, Marathe and Ravi (1995) gave a (2, 2)-approximation algorithm
for the CMST problem based on Hassin’s approximation approach for computing
constrained shortest path. Ravi and Goemans (1996) presented a polynomial-time
approximation scheme (PTAS) based on their proposed approximation algorithm via
Lagrangean relaxation, where PTAS is a polynomial-time algorithm which, for any
fixed parameter ε > 0, produces a solution with its objective bounded by 1 + ε

times of the optimum. Although achieving the best possible solution quality, PTAS is
always considered of some theoretical value rather than practical applications, because
it has the drawback with its time complexity to be similar to O(kn1/ε), which in

the case for CMST is O(nO(1
ε
)(m log2 n + n log3 n)) in paper (Ravi and Goemans

1996). In contrast, Hong et al. (2004) proposed a bifactor FPTAS with a runtime
O(mn5τ(�(n − 1)/ε� , �(n − 1)/δ�)) based on tree matrix. As the long standing best
theoretical result, Hassin and Levin (2004) proposed an efficient polynomial time
approximate scheme (EPTAS) with a runtime O

(
O (1/ε)O(1/ε) (

n4
))

via 3-matroid
intersection. Superior to PTAS and EPTAS, a fully polynomial-time approximation
scheme (FPTAS) is also an approximation algorithmwhich produces a solution within
1+ ε times of the optimum, yet with the time complexity polynomial to 1

ε
, (i.e., poly-

nomial in both the problem size and 1
ε
); it is thus practically useful and considered

a seed leading to many effective and efficient algorithms. However, whether CMST
admits an FPTAS remains open for more than 20 years.

The famous minimum spanning tree (MST) problem, a special case of CMST
when all edges are with length 0 that the length constraint is actually nullified, is
one of the most important optimization problems among the others. Many elegant
algorithms were developed for the MST problem, including the two well-known
algorithms due to Kruskal (1956) and Prim (1957). Rather than the length con-
straint, other constraints such as bounding the degrees of the nodes or the delay
from the root to every other nodes in the tree were also studied. For the for-

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2087

mer, Narula and Ho (1980) proposed the degree constrained minimum spanning
tree problem (DCMST) in paper, which was later shown NP-hard via a reduction
from the Hamiltonian path problem by Boldon et al. (1996). Then, an approxi-
mation algorithm was developed by Lau and Singh (2007) with an additive factor
of 1, which achieved the best factor possible under the assumption P �= NP .
Later, Gao and Jia (2016) proposed a genetic algorithm to solve three uncertain
edge value models (uncertain expected value DCMST model, uncertain α-DCMST
model and uncertain most chance DCMST model) for the DCMST problem. For
the delay constrain, Bicalho et al. (2016) studied the minimum shallow-light span-
ning tree (SLST) problem and gave an exact algorithm based on the branch-and-cut
method with exponential runtime. It was shown that even when the delay constraint
is only 2 and every edge is with delay 1, the SLST problem remains NP-Hard
in paper (Dahl 1998). For a even more special case when all edge costs are
within {1, 2}, Alfandari and Paschos (1999) presented a 1.25-approximation algo-
rithm.

1.2 Our results

In this paper, we present two exact algorithms for CMSTwhen its edge length is within
{0, 1} and {0, 1, 2}, respectively. The two algorithms are based on combining local
search and our proposed bicameral edge replacement method. The main results of our
paper can be summarized as follows:

1. Two exact algorithms are presented for special cases of CMST that the length of
edges is in a given set of integers, with time complexity O(mn2) and O(m2n2),
respectively.

2. Numerical results demonstrate the practical performance gain of our algorithm.
Compared to twobaselines including the integer linear programming for the special
CMSTand the traditional algorithm for computingminimumspanning treewithout
length constraint, we show that our algorithms achieve the best solution quality
among all the tested algorithms. In addition, they also have better runtime in
practical than any other algorithms, while retaining the same solution quality.

1.3 Organization

The rest of this paper is organized as follows. Section 2 gives the definition of bicameral
edge replacement aswell as some related propositions; Sect. 3 proposes an algorithm to
solve CMST when l(e) ∈ {0, 1} via the proposed bicameral edge replacement; Sect. 4
shows that the algorithm can be extended to optimally solve the case when l(e) ∈
{0, 1, 2} Sect. 5 gives numerical experiments to demonstrate the practical performance
and runtime of the proposed algorithms; At last, Sect. 6 concludes the paper.

123

2088 Journal of Combinatorial Optimization (2022) 44:2085–2103

2 Bicameral edge replacement

For a pair of edges e and e′, e ∈ T , e′ ∈ G\T , we say (e′, e) is a tree edge replacement
(TER) iff T \{e} ∪ {e′} remains a tree. For notation briefness, we denote l(e′, e) =
l(e′) − l(e) and w(e′, e) = w(e′) − w(e). Then obviously, l(e′, e)

w(e′, e) is the exchanging
rate between length and weight, when using (e′, e) to improve the length of T .

For the constrained minimum spanning tree problem (CMST), the crucial question
remains how to decide which one TER would benefit better. Intuitively, r(e′, e) =
l(e′, e)
w(e′, e) is the exchanging ratewith respect to length andweightwhile swapping e and e

′
for T . Note that when l(e′, e) < 0 and w(e′, e) > 0, we want to minimize r(e′, e) as
it means maximizing the rate of length decrement over weight increment; identically,
when l(e′, e) > 0 and w(e′, e) < 0, we want to maximize r(e′, e). For briefness, we
say a TER (e′, e) is positive if l(e′, e) < 0 andw(e′, e) > 0; and the TER is negative,
if l(e′, e) > 0 and w(e′, e) < 0. It remains to choose between the best negative and
positive TERs i.e. choose between the positive TER with minimum r(e′, e) and the
negative TER with maximum r(e′, e). For the task, inspired by the bicameral cycle
cancellation in Guo et al. (2015), we introduce bicameral edge replacement formally
as below:

Definition 2 (Bicameral Edge Replacement, BER) Let T be a spanning tree with
l(T) > L + 1 and (e′, e) be a TER wrt T . Let
L = L − l(T) and
W =
WOPT −w(T), whereWOPT is the weight of an optimal solution to CMST. Then we
have three types of bicameral edge replacements as in the following:

1. Let (e′, e) be a TER. If l(e′, e) < 0 and w(e′, e) ≤ 0 or l(e′, e) ≤ 0 and
w(e′, e) < 0, then it is a type-I bicameral edge replacement (BER-I);

2. Let
(
e′
1, e1

)
be a TER with l(e′

1, e1) < 0, w(e′
1, e1) > 0 and

l(e′
1, e1)

w(e′
1, e1)

≤
L

W ,

such that

r
(
e′
1, e1

) = min

{
l(e′, e)
w(e′, e)

∣
∣
∣
∣ (e

′, e) is a posi tive T ER

}

;

Similarly, let
(
e′
2, e2

)
be a TER with l(e′

2, e2) > 0, w(e′
2, e2) < 0 and

l(e′
1, e1)

w(e′
1, e1)

≥

L

W , such that

r
(
e′
2, e2

) = min

{
l(e′, e)
w(e′, e)

∣
∣
∣
∣ (e

′, e) is a negative T ER

}

.

Then If r
(
e′
1, e1

) ≥ r
(
e′
2, e2

)
,
(
e′
1, e1

)
is a type-II bicameral edge replacement

(BER-II); Otherwise,
(
e′
2, e2

)
is a type-III bicameral edge replacement (BER-III).

Let T be the current spanning tree and T ∗ be an optimal solution to CMST. The
key observation inspiring our algorithm is that the edges of T \T ∗ can pair with the
edges of T ∗\T to form a set of disjoint edge pairs, each of which is a TER. So first of
all, we will show the edges of T \T ∗ can pair with the edges of T ∗\T to form a set of

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2089

disjoint TERs. Actually, we have a more general property over the relationship of the
two sets of different edges of any two distinct spanning trees, as stated below:

Lemma 1 Let T , T ′ be two distinct spanning trees in graph that E1 = E(T)\E(T ′)
and E2 = E(T ′)\E(T). Let H = (U , V , E) be a bipartite graph whose vertex
sets are U = E1 and V = E2. Let E(H) = {(e′, e)|e ∈ E1, e′ ∈ E2, T \{e} ∪
{e′} is a tree}. Then there exists a perfect matching in H.

Proof Firstly and obviously, |E1| = |E2| holds since T and T ′ are both spanning
trees. Suppose the lemma is not true, then there exists a maximal matching P ′ with
|P ′| < |E1| = |E2|. Assume that E ′

1 ⊆ E1, E ′
2 ⊆ E2 be the two sets of edges

that do not appear in P ′. Obviously, for any p ∈ E ′
1, T

′ ∪ {p} contains a cycle O .
Note that O ∩ E ′

2 = ∅, since otherwise suppose q ∈ O\O ∩ E ′
2, then T ′ ∪ {p}\{q}

remains a tree, and hence P ′ ∪ {(p, q)} remains a matching, which contradicts with
the maximality of P ′. So O ⊆ T ′ ∪ {p}\E ′

2 holds. Since T ∩ T ′ = T ′\E ′
2 = T \E ′

1,
we have O\{p} ⊆ T ∩ T ′ ⊆ T . Then since p ∈ E ′

1 ⊆ T also holds, O ⊆ T is true.
Thus, T contains a cycle, contradicting with the fact that T is a tree. ��
Following the above lemma, we immediately have the following corollary:

Corollary 1 There exists a perfect matching P between the edges of T \T ∗ and T ∗\T ,
such that: (1) |P| = |T \T ∗| = |T ∗\T |; (2) x ∩ y = ∅ for any distinct x �= y ∈ P; (3)
For any (e′, e) ∈ P , e ∈ T \T ∗ and e′ ∈ T ∗\T both hold, and T \{e} ∪ {e′} is a tree.

3 An optimal algorithm for CMST with edges of length 0 and 1

In this section, we present an algorithm with a polynomial runtime for the special
case of the constrained minimum spanning tree problem (CMST) problem that the
length of the edge is either 0 or 1. The key idea is similar to the local search method:
initially compute a minimum weight spanning tree T without considering the length
constraint, then repeatedly improve the length sum of T towards an optimal solution
of CMST.

3.1 A naive algorithm

A naive idea to improve the length sum of T by directly employing local search
can be simply as: repeat swapping an edge inside T with another edge outside T
(with comparative smaller length), such that the length of T decreases until the length
constraint is satisfied. The edge swap simply processes as: (1) Compute a tree edge
replacement (e′, e), such that l(e′, e) < 0 and l(e′, e)

w(e′, e) attains minimum; (2) Set T :=
T \{e} ∪ {e′}.

The traditional local search method might generate poor solutions because it only
swaps edges to decrease the length of T , but never allows increasing the length of
T . So different to traditional local search method, our algorithm allows necessary
increment over the length of T , and in general acts like a crafty merchant who sells
or buys items depending on whichever produces better profit. That is, the algorithm

123

2090 Journal of Combinatorial Optimization (2022) 44:2085–2103

decides to decrease or increase the length (and theweight of T will increase or decrease
accordingly) depending on whichever produces better “profit”.

3.2 Our exact algorithm

Different with the naive algorithm, the key idea of our algorithm is to use
the definition of bicameral edge replacement (BER) as in Definition 2 based
on local search. Firstly, compute a minimum weight spanning tree T ; Then,
classify all tree edge replacements (TERs) of T , the type-I of bicameral edge
replacement (BER-I) is chosen firstly since it can decrease the length (weight)
without any increase the weight (length), otherwise find an optimal TER (e′, e)
which is the maximum l(e′, e)

w(e′, e) between min
{

l(e′, e)
w(e′, e) |(e′, e) is, BER − I I

}
and

max
{

l(e′, e)
w(e′, e) |(e′, e) is BER − I I I

}
; Finally, set T := T \{e} ∪ {e′}, such that via

repeatedly choosing process against T , the length of T can be decreased until the
length constraint is satisfied. BER-I is preferred since it decreases the length without
any weight gain. However, there exists no BER-I for every tree T , since every T is a
minimum weight tree under the length bound l(T). The detail algorithm is described
as in Algorithm 1.

Algorithm 1 An algorithm for CMST.

Input: An undirected graph G = (V , E), a weight function w : E → Z+
0 , a length function

l : E → {0, 1}, and a length bound L ∈ R
+;

Output: An exactly solution to CMST.
1: Calculate a minimum weight spanning tree T , without considering edge length;
/*T can be computed by Prim’s algorithm Prim (1957). */

2: If l(T) = ∑
e∈T l(e) ≤ L then return T ;

/* Otherwise l(T) > L , decrease l(T) as in the following.*/
3:While l(T) > L do
4: Set r = 0, R := ∅;
5: For each TER (e, e′) do
6: If l(e′, e) < 0, w(e′, e) > 0 then set R1 := R1 ∪ (e′, e);
7: If l(e′, e) > 0, w(e′, e) < 0 then set R2 := R2 ∪ (e′, e);

/* R2 is an empty-set for l(e) ∈ {0, 1}. */
8: Endfor
9: Set r1(e′, e) = min

{
l(e′, e)
w(e′, e) |(e′, e) ∈ R1

}
, r2(e′, e) = max

{
l(e′, e)
w(e′, e) |(e′, e) ∈ R2

}

10: If r1(e′, e) < r2(e
′, e) then set R := argmax r2(e′, e); /* That is BER-III.*/

11: Else set R := argmin r1(e′, e), ;/* BER-II is obtained.*/
12: Set T := T ∪ R1;
13: Endwhile
14: Return T .

The runtime and the correctness of Algorithm 1 can be stated as in the following:

Theorem 1 Algorithm 1 produces an optimal solution to special CMST with l(e) ∈
{0, 1}, ∀e ∈ G, or determines the instance of special CMST is infeasible after
O

(
mn2

)
iterations.

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2091

Algorithm 1 length decreases 1 in each iteration. That is the algorithm iterates at most
l(T0) times where T0 is minimum weight spanning tree and l(T0) ≤ n, each of which
takes O(mn) time to find a bicameral edge replacement. Hence, the running time of
Algorithm 1 is O

(
mn2

)
. The proof of the above theorem will be given in the next

section, as there are some propositions that need to be given first.

3.3 Proof of Theorem 1

To prove the correctness of both Algorithm 1 as in Theorem 1, we first show that
Algorithm 1 terminates in finite steps. Assume that the algorithm terminates in f
iterations. Without loss of generality, assume that f > 1. Then we first give the
following lemma and show that our algorithm will either improve the average rate or
keep the average rate unchanged but decrease the length of the tree. Therefore, the
algorithmwill terminate once there exists no further decrement of the average rate and
the length of the tree. Before presenting the proof, we will first prove the proposition
as follows:

Proposition 1 Let {a1, . . . , an} and {b1, . . . , bn} be two sets of numbers. Then when
ai and bi are with the same sign, there must exist an integer i∗ ∈ [1, n] and an integer
j∗ ∈ [1, n] such that ai∗

bi∗ ≤
∑

i ai∑
i bi

≤ a j∗
b j∗ .

Proof We shall only show that ai∗
bi∗ ≤

∑
i ai∑
i bi

when ai , bi > 0 as the second inequality
and ai , bi < 0 are similar. When n = 1 the proposition is obviously true. When
n = 2, w.l.o.g. assume that a1

b1
≤ a2

b2
, then we have a2b1 − a1b2 ≥ 0 and hence

a1+a2
b1+b2

− a1
b1

= a2b1−a1b2
b1(b1+b2)

≥ 0. That is, a1+a2
b1+b2

≥ a1
b1

≥ min
{
a1
b1

, a2
b2

}
is true.

By induction hypothesis, the proposition holds when n = l − 1, i.e. there exists an

integer i∗ ∈ [1, l − 1] such that ai∗
bi∗ ≤

∑l−1
i=1 ai∑
i bi

.
When n = l, by hypothesis, we have

min

{∑l−1
i=1 ai

∑l−1
i=1 bi

,
al
bl

}

≤
∑l

i=1 ai
∑l

i=1 bi
.

Again by hypothesis, there must exist i∗ ∈ [1, l − 1], such that

ai∗

bi∗
≤

∑l−1
i=1 ai

∑l−1
i=1 bi

.

Then combining the two inequalities above, we have

min

{
ai∗

bi∗
,
al
bl

}

≤ min

{∑l−1
i=1 ai

∑l−1
i=1 bi

,
al
bl

}

≤
∑l

i=1 ai
∑l

i=1 bi
.

��

123

2092 Journal of Combinatorial Optimization (2022) 44:2085–2103

Lemma 2 Let Ti be obtained spanning tree in i th iteration, and Li and Wi be the
length and weight of the current solution, respectively. Let (e′

i , ei) be chosen TER in

ith step. Let
Li = L − Li ,
W = WOPT − Wi and ri =
Li
Wi
. Then for the i th

iteration, i < f , at least one of the following two cases holds:

1. ri+1 = ri , and
Li+1 <
Li ;
2. ri+1 > ri .

Proof Assume that
(
e′
i , ei

)
is the edge replacement in the i th iteration. If

(
e′
i , ei

)
is

BER-I, then either l
(
e′
i , ei

)
< 0 and −WOPT ≤ w

(
e′
i , ei

) ≤ 0 or l
(
e′
i , ei

) ≤ 0 and
−WOPT ≤ w

(
e′
i , ei

)
< 0 hold. That is, Clause 2 always holds for BER-I. So we

need only to prove the lemma holds for BER-II and BER-III, as the two cases in the
following:

1.
(
e′
i , ei

)
is BER-II

According theDefinition 2, we can obtain
l(e′

i ,ei)
w(e′

i ,ei)
≤ ri . Then sincew

(
e′
i , ei

)
> 0,

we have:

l
(
e′
i , ei

) ≤ ri · w
(
e′
i , ei

)
. (1)

For the ratio ri , we have the following equation after one edge replacement:

ri+1 =
Li+1

Wi+1
=
Li − l

(
e′
i , ei

)

Wi − w
(
e′
i , ei

) . (2)

Then, combining Inequality 1 with Inequality 2 immediately yields the following
inequality:

ri+1 ≥
Li − ri · w
(
e′
i , ei

)

Wi − w
(
e′
i , ei

) = ri ·
Wi − w
(
e′
i , ei

)

Wi − w
(
e′
i , ei

) = ri . (3)

Apparently, when the first equality in Inequality 3 holds, Clause 1 is true; Other-
wise, Clause 2 is true.

2.
(
e′
i , ei

)
is BER-III

This proof is similar to the first case. Firstly, according toDefinition 2,
l(e′

i ,ei)
w(e′

i ,ei)
≥ ri

holds and w
(
e′
i , ei

)
< 0. Hence,

l
(
e′
i , ei

) ≤ ri · w
(
e′
i , ei

)
. (4)

Then since ri+1 =
Li+1

Wi+1

=
Li−l(e′
i ,ei)

Wi−w(e′
i ,ei)

, from Inequality 4wehave the following

inequality:

ri+1 ≥
Li − ri · w
(
e′
i , ei

)

Wi − w
(
e′
i , ei

) = ri ·
Wi − w
(
e′
i , ei

)

Wi − w
(
e′
i , ei

) = ri . (5)

Similar to the first case, either Clause 1 or Clause 2 holds. ��

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2093

According to the above lemma, Algorithm 1 will terminate in finite steps. It remains
to show the optimality of the output of Algorithm 1. For the task, we first propose the
following property:

Theorem 2 In each iteration, Algorithm 1 obtains a spanning tree Ti , for which there
exists no other spanning tree T �= Ti such that l(T) = l(Ti) and w(Ti) > w(T).

Proof Assume that the theorem holds before the i th step (exclusive). Then we shall
first show that the length of the tree never increases until the i th step (inclusive).
Otherwise, suppose j < i is the first iteration that the length increases. Apparently,
j ≥ 2 since T0 is the tree with minimum weight. Then we have l(Tj) = l(Tj−2) since
each edge is with length either 0 or 1. By the induction hypothesis, Tj−2 is with the
minimumweight under the length l(Tj−2), so we havew(Tj) ≥ w(Tj−2). This results

in r j =
L j

Wj

≤
L j−2

Wj−2

= r j−2 and
L j =
L j−2, which contradict with Lemma 2.

Let (e′
i , ei) be the TER in the i th iteration. Suppose there exists a spanning tree T ′

such that l(T ′) = l(Ti), w(T ′) < w(Ti). We shall show Ti will not be chosen as a
BER for Ti−1 in the algorithm and hence a contradiction.

Following Lemma 1, assume that there exists a disjoint TER set M such that Ti−1∪
M = T ′ and |M | ≥ 2. Then by the definition of T ′, we have

∑
M l(e′, e)∑
M w(e′, e) <

l(e′
i , ei)

w(e′
i , ei)

.

Note that in M there may exist both l(e′, e) < 0 and l(e′, e) > 0 by the assumption
l(T ′) = l(Ti). So M can be divided into two disjoint sets M1 and M2, which are the
two sets of TERs respectively with l(e′, e) < 0 and l(e′, e) > 0. Then we need only
to discuss the following two cases by comparing M1 and M2:

1.
∑

M l(e′, e)∑
M w(e′, e) ≥

∑
M1

l(e′, e)
∑

M1
w(e′, e)

By Proposition 1, there exists (e′, e) such that l(e′, e)
w(e′, e) ≤

∑
M1

l(e′, e)
∑

M1
w(e′, e) <

l(e′
i , ei)

w(e′
i , ei)

.

This contradicts theminimality selection rule ofAlgorithm1, as it should be (e′, e)
be selected instead of (e′

i , ei).

2.
∑

M l(e′, e)∑
M w(e′, e) <

∑
M1

l(e′, e)
∑

M1
w(e′, e)

We shall first show
∑

M l(e′, e)∑
M w(e′, e) <

∑
M2

l(e′, e)
∑

M2
w(e′, e) . Because the length of the tree must

decrease, we have

∑

M

l(e′, e) < 0. (6)

Then by combining the assumption
∑

M l(e′, e)∑
M w(e′, e) <

∑
M1

l(e′, e)
∑

M1
w(e′, e) with Inequality

6, we have
∑

M2
l(e′, e)

∑
M1

w(e′, e) − ∑
M2

w(e′, e)
∑

M1
l(e′, e) < 0, i.e

∑
M1

l(e′, e)
∑

M1
w(e′, e) <

∑
M2

l(e′, e)
∑

M2
w(e′, e) . Hence, inequality

∑
M l(e′, e)∑
M w(e′, e) <

∑
M2

l(e′, e)
∑

M2
w(e′, e) can be

obtained. However, there exists (e′, e) with l(e′, e)
w(e′, e) >

l(e′
i , ei)

w(e′
i , ei)

and l(e′, e) >

0, w(e′, e) < 0 by Proposition 1. Similar to case 1, this contradicts with the
minimality selection rule. ��

123

2094 Journal of Combinatorial Optimization (2022) 44:2085–2103

CombiningLemma2 andTheorem2,we immediately have the correctness of Theorem
1. Moreover, from the proof of Theorem 1, we have the following corollary:

Corollary 2 There exist no BER-III in any iteration of Algorithm 1.

4 Extension to CMST with l(e) ∈ {0, 1, 2}
In this section, we propose an algorithm for the constrained minimum spanning tree
problem (CMST) when l(e) ∈ {0, 1, 2} by generalizing Algorithm 1. Note that differ-
ent with the case of l(e) ∈ {0, 1}, there can exist type-III bicameral edge replacements
(BER-III), since Corollary 2 no longer holds.

4.1 Exact algorithm for l(e) ∈ {0, 1, 2}

Our algorithm employs a similar idea of Algorithm 1 to solve the case l(e) ∈ {0, 1, 2}.
However, the algorithm encounters a different case in which the length of T is larger
than L . In that case, we still have l(T) ≤ L + 1. Our algorithm will improve the tree
by using the best tree edge replacement (TER) between the two best TERs that is
respectively in the two sets: (1) Find a TER with minimum l(e′, e)

w(e′, e) for all l(e
′, e) =

−1; (2) Find a pair TERs (e′, e) and (e′
1, e1) with minimum

l(e′, e)+l(e′
1, e1)

w(e′, e)+w(e′
1, e1)

for all

l(e′, e) = −2 where l(e′
1, e1) = 1. Finally, by applying the best TER to the current

tree which violates the length constraint, we obtain a minimum weight spanning tree
satisfying the length constraint. The detailed algorithm is stated in Algorithm 2.

Figure 1 compares the results of threemethods: our algorithm, themixednormalized
spanning tree and Prim’s algorithm. In the example, we set l(e) ∈ {0, 1, 2} and the
length constraint L = 3. Figure 2 illustrates an execution of Algorithm 2. The length
of dashed edge is 0, the length of normal edge is 1 and the dotted edge is 2 in Fig. 1a.

With the given complete graph in Fig. 1a and the length constraint L = 3, our
algorithm will first produce a minimum weight spanning tree T0 by Prim’s algorithm
as in Fig. 2a. In Fig. 2b, the new tree is generated by replacing the dashed edge of
Fig. 2a with dotted edge. In Fig. 2c, we show the second iteration of our algorithm by
replacing the dashed edgewith the dotted edge in the tree of the lower part of the graph.
In Fig. 2d, we construct three new trees, where tree (I) is generated via decreases length
1 of the spanning tree T2 by replacing the dashed edge with the dotted edge, tree (II) is
obtained via replacing the dash-dotted edge by the dotted edge with length decreased
by 2, and tree (III) is produced by replacing the dash edge in tree (II) with dotted edge
and the length is increased by 1. Figure 2e shows the optimal tree produced by our
algorithm.

For the time complexity and correctness of Algorithm 2, we have:

Theorem 3 Algorithm 2 runs in time O
(
m2n2

)
and produces an optimal solution to

CMST when the length is only included in {0, 1, 2} for all edges, or determines the
instance of CMST is infeasible.

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2095

Algorithm 2 An algorithm for CMST when l(e) ∈ {0, 1, 2}
Input: An undirected graph G = (V , E), a weight function w : E → Z+

0 , a length function
l : E → {0, 1, 2}, and a length bound L ∈ R

+;
Output: An exact solution to CMST when l(e) ∈ {0, 1, 2}.
1: Calculate a minimum weight spanning tree T , without considering edge length;
/*T can be computed by Prim’s algorithm Prim (1957). */

2: If l(T) = ∑
e∈T l(e) ≤ L then return T ;

/* Otherwise l(T) > L , decrease l(T) as in the following.*/
3:While l(T) > L do
4: Set r = 0, R := ∅;
5: For each TER (e, e′) do
6: If l(e′, e) < 0, w(e′, e) > 0 then set R1 := R1 ∪ (e′, e);
7: If l(e′, e) > 0, w(e′, e) < 0 then set R2 := R2 ∪ (e′, e);
8: Endfor
9: Set r1(e′, e) = min

{
l(e′, e)
w(e′, e) |(e′, e) ∈ R1

}
, r2(e′, e) = max

{
l(e′, e)
w(e′, e) |(e′, e) ∈ R2

}

10: If r1(e′, e) < r2(e
′, e) then set R := argmax r2(e′, e); /* That is BER-III.*/

11: Else set R := argmin r1(e′, e); /* BER-II is obtained.*/
12: If l(T) = L + 1 and l(R) < −1 then
13: Compute-min-tree (T , L), break;
14: Else
15: Set T := T ∪ R;
16: If l(T) = L then break;
17: Endif
18: Endwhile
19: Return T .

Algorithm 3 Compute-min-tree (T , R)
Input: A spanning tree T with l(T) > L .
Output: A spanning tree T with l(T) ≤ L .
1: Set S1 := ∅ and S2 := ∅, where S1 is a set of TERs of length −1;
2: For each TER (e′, e) of T do
3: If l(e′, e) = −1 then set S1 := S1 ∪ (e′, e);
4: If l(e′, e) = −2 then /*To compute an optimal pair of TERs. */
5: Set Ti := T \{e} ∪ {e′} and S2 := ∅, where S2 will be the set of pairs of TERs with

a total length −1, i.e. two TERs respectively with length −2 and 1;
5: For each TER (e′1, e1) of Ti do
6: If l(e′1, e1) = 1 then set S2 := S2 ∪ {(e′, e), (e′1, e1)};
7: Endfor
9: Endif
10: Endfor
11: Set the best TER of length −1 as R1 := argmin

{
l(e′, e)
w(e′, e)

∣
∣
∣ (e′, e) ∈ S1

}
, and the best

TER pair of length −2 as R2 := argmin

{
l(e′, e)+l(e′1, e1)

w(e′, e)+w(e′1, e1)

∣
∣
∣
∣ (e

′, e), (e′1, e1) ∈ S2
}

;

12: Return T := T ∪ R, where R = argmin{w(R1), w(R2)}.

4.2 Proof of Theorem 3

The key idea of the proof is to show that each calculated tree Ti attains minimum
weight under the length bound l(Ti) excepting the last iteration.

Lemma 3 Algorithm 2 produces optimal solutions in each iteration before l(T) > L.

Proof This proof is similar to Theorem 2 but with more sophisticated details.

123

2096 Journal of Combinatorial Optimization (2022) 44:2085–2103

Fig. 1 Comparison of the results output by Algorithm 2, the mixed normalized spanning tree algorithm, and
Prim’s algorithm. a A random complete graph with six vertices and a length constraint L = 3, where the
length of dashed edges is 0, the length of solid edges is 1 and the length of dotted edges is 2; b A spanning
tree TOPT produced by our exact algorithm with l(TOPT) = 3 and w(TOPT) = 78; c A spanning tree
produced by the mixed normalized spanning tree algorithm with length 6 and weight 72; d A tree produced
by Prim’s algorithm with length and weight respectively being l(T0) = 8 and w(T0) = 71

Fig. 2 Example of executing our algorithm on Fig. 1a with the length constraint L = 3: a the minimum
weight spanning tree T0 with l(T0) = 8 and w(T0) = 71; b T1 that is obtained from T0 by an iteration
of improvement as Algorithm 2, with l(T1) = 6 and w(T1) = 72; c T2 that is produced by improving T1
by a second iteration with l(T2) = 4 = L + 1 and w(T2) = 76 ; d The set of TERs where tree (I) is the
spanning tree generated from the spanning tree T2 by decreasing length 1 and increasing weight 3, tree (II)
is obtained by decreasing length 2 and increasing weight 5, tree (III) is produced by increasing the length
of (II) by 1 and decreasing its weight by 3; e The optimal spanning tree generated by our algorithm with
l(TOPT) = 3 and w(TOPT) = 78

Firstly, assume that the theorem holds before the i th-step (exclusive). Let (e′
i , ei)

be the TER in the i th step and Ti be a spanning tree that is produced by Algorithm 2.
Suppose there exists a spanning tree T ′ such that l(T ′) = l(Ti), w(T ′) < w(Ti). We
shall show that Ti can not be selected in the algorithm and hence a contradiction.

Following Lemma 1, we can assume that there exists a disjoint TERs set M such

that Ti−1∪M = T ′ and |M | ≥ 2. Then by the assumption of T ′, we have
∑

M l(e′, e)∑
M w(e′, e) <

l(e′
i , ei)

w(e′
i , ei)

when l(e′
i , ei) < 0, otherwise

∑
M l(e′, e)∑
M w(e′, e) >

l(e′
i , ei)

w(e′
i , ei)

. Note that in M there

may exist both BER-II and BER-III. So we divide M into two disjoint sets M1 and
M2, which are respectively the set of BER-II and BER-III.When l(e′

i , ei) < 0, we can
know that there no exist T ′ that satisfied l(T ′) = l(Ti), w(T ′) < w(Ti) by Theorem
2. Hence, we need only to discuss the case l(e′

i , ei) > 0. Similar to Theorem 2, we
need only to consider the following two cases that compare M2 and M :

1.
∑

M l(e′, e)∑
M w(e′, e) ≤

∑
M2

l(e′, e)
∑

M2
w(e′, e)

There exists a BER-III (e′, e) such that
l(e′

i , ei)
w(e′

i , ei)
<

∑
M2

l(e′, e)
∑

M2
w(e′, e) ≤ l(e′, e)

w(e′, e) by

Proposition 1. This contradicts the maximality selection rule of Algorithm 2 about
BER-III, that is (e′, e) should be selected instead of (e′

i , ei).

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2097

2.
∑

M l(e′, e)∑
M w(e′, e) >

∑
M2

l(e′, e)
∑

M2
w(e′, e)

We firstly show
∑

M l(e′, e)∑
M w(e′, e) >

∑
M1

l(e′, e)
∑

M1
w(e′, e) holds. Combining the assumption

∑
M l(e′, e)∑
M w(e′, e) −

∑
M2

l(e′, e)
∑

M2
w(e′, e) =

∑
1 l(e

′, e)
∑

M2
w(e′, e)−∑

1 w(e′, e)
∑

M2
l(e′, e)

∑
M w(e′, e)

∑
M1

w(e′, e) > 0 with
∑

M l(e′, e) > 0,
∑

2 l(e
′, e)

∑
M1

w(e′, e)−∑
2 w(e′, e)

∑
M1

l(e′, e) < 0 can

be obtained, i.e
∑

M1
l(e′, e)

∑
M1

w(e′, e) <

∑
M2

l(e′, e)
∑

M2
w(e′, e) . Hence, the inequality

∑
M l(e′, e)∑
M w(e′, e) >

∑
M1

l(e′, e)
∑

M1
w(e′, e) holds. Then similar to case 1, there exists a BER-II (e′, e) with

l(e′, e)
w(e′, e) >

l(e′
i , ei)

w(e′
i , ei)

by Proposition 1. According to the selection rule of Algo-

rithm 2 between BER-II and BER-III, it would be (e′, e) to be selected instead of
(e′

i , ei), contradicting with the assumption that (e′
i , ei) is selected.

��
It remains to show the case for the last iteration of Algorithm 2, which immediately

results in the optimality of the algorithm as stated below:

Theorem 4 The spanning tree T ∗ produced by Algorithm 2 is optimal, i.e. there does
not exist any spanning tree that satisfies l(T) ≤ L and w(T) < w(T ∗).

Proof Assume that the theorem is not true, then there exists a spanning tree T with
l(T) ≤ L and w(T) < w(T ∗). Suppose T ∗ is obtained from Ti by applying one or
more TERs. Then l(Ti) = L + 1 holds. If l(Ti) = L + 2 and l(T ∗) = L , then let
(e′

i , ei) be a TER applied on Ti . Then there must exist a TER set M between Ti and

T such that
∑

M l(e′, e)∑
M w(e′, e) <

l(e′
i , ei)

w(e′
i , ei)

. Hence, there must exist a TER (e′, e) such that

l(e′, e)
w(e′, e) <

l(e′
i , ei)

w(e′
i , ei)

if (e′, e) is BER-II otherwise l(e′, e)
w(e′, e) >

l(e′
i , ei)

w(e′
i , ei)

by Theorem 3.

That contradiction the selection rule of Algorithm 2. And l(T) < L − 2 can not exist,
since the decrease of length is produced by the increase of weight. Hence, through
Algorithm 2, we know that there are two cases for the length of T ∗ and T . Hence, we
need only to discuss the following cases:

1. l(T) = L
T ∗ is obtained by applying one or more TERs on Ti but that is no more than
three TERs. Let S be a TERs set between Ti and T ∗. Then there exists a disjoint
TERs set M between Ti and T by Lemma 1. Through the assumption, we have∑

M l(e′, e)∑
M w(e′, e) <

∑
S l(e

′, e)∑
S w(e′, e) . Since l(T) − l(Ti) = −1 and M is a disjoint TERs set,

then these elements in M must be combined some subset Mi such that the sum
length of these subset is −1 where i ≥ 1, the number of subset satisfies |Mi | ≤ 2.

Hence, we have
∑

i
∑

Mi
l(e′, e)

∑
i
∑

Mi
w(e′, e) <

∑
M1

l(e′, e)
∑

M1
w(e′, e) and M can be divided two parts,

let M1 be a set of these subsets with length −1 and M2 is a set that all element
length is 1. Then through similar to Theorem 2, there exists a subset Mi such that∑

Mi
l(e′, e)

∑
Mi

w(e′, e) <

∑
S l(e

′, e)∑
S w(e′, e) and

∑
Mi

l(e′, e) = −1 or
∑

Mi
l(e′, e)

∑
Mi

w(e′, e) >

∑
S l(e

′, e)∑
S w(e′, e) and

123

2098 Journal of Combinatorial Optimization (2022) 44:2085–2103

∑
Mi

l(e′, e) = 1. For the former, it contradicts the selection rule of Algorithm 2.
For the later, the element of length in Mi must be {−1, 2} then there must exist a

element of Mi such that its ratio is better than
∑

S l(e
′, e)∑

S w(e′, e) . That is contradiction the
operation of Algorithm 2.

2. l(T) = L − 1
By Lemma 1, there must exist a disjoint TERs set M such that Ti can be changed
to T by applying M . Then assume that Ti uses a TERs set S to obtain T ∗. Then,∑

M l(e′, e)∑
M w(e′, e) <

∑
S l(e

′, e)∑
S w(e′, e) holds. And M can be divided some disjoint subsets and

the length of these subset is no more than 2. Since
∑

M l(e′, e) = −2 < 0, then
the proof is similar to Case 1.

��
It remains to show the time complexity of Algorithm 2. The algorithm decreases the
length of the tree by 1 or 2 in each iteration when the length of the tree is bounded by
L . That is, the algorithm terminates after at most l(T0) iterations, where l(T0) < 2n
is the weight of a minimum spanning tree. Each of the iterations takes O(mn) time to
compute a TER. When l(T) = L + 1, the algorithm takes O(m2n2) to find a TER to
decrease the length of T by 1. Therefore, the running time of Algorithm 1 is O

(
m2n2

)
.

5 Numerical experiments

In this section, we shall evaluate the practical performance of Algorithm 1 and Algo-
rithm 2 (the exact algorithm, denoted by EA) by comparing its runtime and solution
quality with two other baselines: the integer liner programs of the constrained mini-
mum spanning tree (CMST) problem (denoted by ILP), the PRIM algorithm that is a
traditional algorithm for computing minimum spanning tree without length constraint
(denoted by MST) (Prim 1957). The testing instances for the experiments are com-
posed by a set of randomly generated graphs. In experiments, the number of the edges
is denoted bym, and the length constrained is denoted by L . For better comparison, all
the algorithms are implemented in Java, on a PCwith Intel Core i7 processor and 16GB
memory. The ILP for CMST we use in the paper is similar to the ILP for minimum
spanning tree as in Korte et al. (2002).

The runtime of EA is evaluated by simulation experiments. In these experiments, we
randomly generate a complete graph via randomly producing edges between vertices.
The edge weight is integer and uniformly distributed in [1, 1000], while the length is
chosen from {0, 1} or {0, 1, 2}. These experimental results are reported in Table 1 and
Table 2, where the length in Table 1 is restricted in {0, 1} and Table 2 is in {0, 1, 2}.

Among the three algorithms in Table 1, EA and ILP both produce solutions with the
best quality. This agrees with the theoretical analysis that EA and ILP both produce
optimal solutions. In contrast, MST always produces solutions with the minimum
weight (even smaller than our EA in some of cases), but the solution might violate the
length constraint, where it has an average length sum of 1.2L . As with compromising
solution quality, MST compares favorably in the practical runtime against EA and
ILP, while ILP has the worst runtime which is rapidly rising as the number of edge

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2099

Ta
bl
e
1

C
om

pa
ri
so
n
of

ou
r
al
go

ri
th
m

w
ith

th
re
e
ba
se
lin

es
w
he
n
l(
e)

∈{
0,

1}
R
an
do

m
Si
ze

IL
P

O
ur

E
A

M
ST

m
L

W
ei
gh
t

L
en
gt
h

T
im

e(
s)

W
ei
gh
t

L
en
gt
h

T
im

e(
s)

W
ei
gh
t

L
en
gt
h

T
im

e(
s)

R
an
_0

1
45

11
19

38
11

0.
03

8
19

38
11

0.
00

7
18

44
13

<
1m

s

R
an
_0

2
55

12
73

7
12

0.
07

0
73

7
12

0.
01

5
53

6
15

0

R
an
_0

3
78

14
17

05
14

0.
40

17
05

14
0.
01

7
14

52
17

0

R
an
_0

4
91

16
14

96
16

0.
85

14
96

16
0.
01

9
12

43
20

0

R
an
_0

5
13

6
20

13
98

20
12

.1
3

13
98

20
0.
03

5
10

18
24

0

R
an
_0

6
15

3
21

12
66

21
15

.3
3

12
66

21
0.
03

3
10

96
25

0

R
an
_0

7
17

1
22

11
09

22
35

.5
0

12
27

22
0.
03

6
93

2
27

0

R
an
_0

8
19

0
22

11
09

22
90

.0
8

11
09

22
0.
04

6
10

09
26

0

R
an
_0

9
49

50
12

3
–

–
–

14
68

12
3

0.
31

6
12

24
14

7
0

R
an
_1

0
16

11
0

22
1

–
–

–
13

22
22

1
0.
89

2
10

46
26

7
0

R
an
_1

1
19

90
0

24
9

–
–

–
14

51
24

9
1.
58

11
57

29
9

0

R
an
_1

2
44

85
0

37
5

–
–

–
11

54
37

5
3.
95

89
4

45
1

0

123

2100 Journal of Combinatorial Optimization (2022) 44:2085–2103

Ta
bl
e
2

C
om

pa
ri
so
n
of

ou
r
al
go

ri
th
m

w
ith

th
re
e
ba
se
lin

es
w
he
n
l(
e)

∈{
0,

1,
2}

R
an
do

m
Si
ze

IL
P

O
ur

E
A

M
ST

m
L

W
ei
gh
t

L
en
gt
h

T
im

e(
s)

W
ei
gh
t

L
en
gt
h

T
im

e(
s)

W
ei
gh
t

L
en
gt
h

T
im

e(
s)

R
an
_0

1
45

11
10

62
11

0.
02

0
10

62
11

0.
01

5
89

7
14

0

R
an
_0

2
55

12
10

19
12

0.
04

4
10

19
12

0.
01

6
79

5
15

0

R
an
_0

3
78

15
17

14
15

0.
25

17
14

15
0.
03

7
13

37
19

0

R
an
_0

4
10

5
17

15
71

17
1.
31

15
71

17
0.
04

0
13

30
21

0

R
an
_0

5
12

0
20

14
75

20
2.
28

7
14

75
20

0.
04

0
12

76
25

0

R
an
_0

6
13

6
20

25
06

20
6.
88

25
06

20
0.
06

0
11

09
25

0

R
an
_0

7
17

1
23

16
51

23
47

.2
7

16
51

23
0.
05

3
12

44
28

0

R
an
_0

8
49

50
43

–
–

–
15

69
43

0.
42

2
12

15
87

0

R
an
_0

9
11

17
5

74
–

–
–

14
88

74
0.
95

9
12

32
14

8
0

R
an
_1

0
19

90
0

10
0

–
–

–
13

80
10

0
1.
79

9
10

12
20

0
0

R
an
_1

1
31

12
5

12
8

–
–

–
13

14
12

8
2.
92

9
95

7
25

6
0

R
an
_1

2
44

85
8

13
9

–
–

–
14

29
13

9
4.
19

9
10

64
27

8
0

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2101

Fig. 3 Runtime comparison for l(e) ∈ {0, 1}

Fig. 4 Runtime comparison for l(e) ∈ {0, 1, 2}

increases. When the number of edge is not less than 190 (i.e. a complete graph with 20
vertices), the runtime of ILP rises so high that it could not be used to solve the CMST
problem, but our EA can obtain an optimal solutionwith less than 1 seconds timewhen
the number of edge is no more than 16110 (i.e. a complete graph with 180 vertices).
Since there has two variables m and L in Table 1 and we could not find which is
more important for the change of runtime. Hence, we use the Matlab software to draw
figures to show the influences of the length constraint and the number of edges for the
runtime of algorithms. Figure 3a demonstrates the influence of length constraint for
l(e) ∈ {0, 1} for the number of edges being fixed at 120 (i.e. a complete graph with
16 vertices). It is shown that the runtime of ILP grows when the difference between
length constraint and the length of minimum weight spanning tree increases. Figure
3b demonstrates the change of runtime when the number of edges increases from 55
to 153 where the graph is a complete graph and the number of vertices increases from
11 to 18 with one at each time. In this figure, we can see the runtime of ILP grows
much faster than EA when the number of edge increases, indicating the large runtime
gap between ILP and EA.

The experimental results for l(e) ∈ {0, 1, 2} are as illustrated in Table 2, where ILP
and EA produce identical solutions, while the length of the spanning tree computed

123

2102 Journal of Combinatorial Optimization (2022) 44:2085–2103

byMST is almost 1.2L that is larger than the length constraint. The runtime of our EA
is always less than ILP that cannot solve CMST in practice when the number of edges
is larger than 4950 (i.e a complete graph with 100 vertices). In contrast, the runtime of
our EA is less than one second for the instances. We use Fig. 4 to better evaluate the
influence of the length constraint and the number of edges. The number of edges is
fixed at 120 (i.e. a complete graph with 16 vertices) in Fig. 4a and the length constraint
is fixed at 17 in Fig. 4b. As illustrated in Figs. 3 and 4, the runtime of EA grows much
slower for l(e) ∈ {0, 1} than for l(e) ∈ {0, 1, 2} provided that the two algorithms are
against the same increasing rate of either length constraint or edge number.

6 Conclusion

In this paper, we have devised two exact algorithms for the constrained minimum
spanning tree (CMST) problem when the edge length is within l(e) ∈ {0, 1} and
l(e) ∈ {0, 1, 2}, respectively. The two algorithms respectively run in time O(mn2)
and O(m2n2), wherem and n are respectively the number of edges and the number of
vertices. The key idea of the algorithm is based on an enhanced local search method
combining with our proposed bicameral edge replacement approach. Then we carried
numerical experiments to evaluate the performance of our algorithms by comparing
with other baselines. Our algorithm has the potential to be extended to solve CMST
with l(e) ∈ {0, 1, . . . , n}.
Acknowledgements The research is supported by National Science Foundation of China (No. 61772005),
Innovative Team of Youth and Creative Science and Technology Program of Shandong Province
(2020KJN008) and Natural Science Foundation of Fujian Province (No. 2017J01753).

References

Aggarwal V, Aneja YP, Nair KPK (1982) Minimal spanning tree subject to a side constraint. Comput Oper
Res 9(4):287–296

Alfandari L, Paschos VT (1999) Approximating minimum spanning tree of depth 2. Int Trans Oper Res
6(6):607–622

Bicalho LH, Cunha ASD, Lucena A (2016) Branch-and-cut-and-price algorithms for the degree constrained
minimum spanning tree problem. Comput Optim Appl 63(3):1–38

Boldon B, Deo N, Kumar N (1996)Minimum-weight degree-constrained spanning tree problem: Heuristics
and implementation on an simd parallel machine. Parallel Comput 22(3):369–382

Dahl G (1998) The 2-hop spanning tree problem. Oper Res Lett 23(1):21–26
Gao X, Jia L (2016) Degree-constrained minimum spanning tree problem with uncertain edge weights.

Appl Soft Comput 56:580–588
Guo L, Liao K, Shen H, Li P (2015) Brief announcement: Efficient approximation algorithms for computing

k disjoint restricted shortest paths. In: Proceedings of the 27th ACM on symposium on parallelism in
algorithms and architectures, SPAA 2015, Portland, OR, USA, June 13–15, 2015, pp 62–64

Hassin R, Levin A (2004) An efficient polynomial time approximation scheme for the constrainedminimum
spanning tree problem using matroid intersection. SIAM J Comput 33(2):261–268

Hong SP, Chung SJ, Park BH (2004)A fully polynomial bicriteria approximation scheme for the constrained
spanning tree problem. Oper Res Lett 32(3):233–239

Korte B, Vygen J, Korte B, Vygen J (2002) Combinatorial optimization, vol 1. Springer, New York
Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc

Am Math Soc 7(1):48–50

123

Journal of Combinatorial Optimization (2022) 44:2085–2103 2103

Lau LC, Singh M (2007) Iterative rounding and relaxation (combinatorial). ACM Symp Theory Comput
(STOC) 651:660

Marathe M, Ravi R, Ravi S, Rosenkrantz D, Hunt H (1995) Bicriteria network design problems. In:
Automata, languages and programming, pp 487–498

Narula SC, Ho CA (1980) Degree-constrained minimum spanning tree. Comput Oper Res 7(4):239–249
PrimRC (1957) Shortest connection networks and some generalizations. Bell Labs Tech J 36(6):1389–1401
Ravi R, Goemans M (1996) The constrained minimum spanning tree problem. In: Algorithm theory

SWAT’96, pp 66–75

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Exact algorithms for finding constrained minimum spanning trees
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Our results
	1.3 Organization

	2 Bicameral edge replacement
	3 An optimal algorithm for CMST with edges of length 0 and 1
	3.1 A naive algorithm
	3.2 Our exact algorithm
	3.3 Proof of Theorem 1

	4 Extension to CMST with l(e)in{0,1,2}
	4.1 Exact algorithm for l(e)in{0,1,2}
	4.2 Proof of Theorem 3

	5 Numerical experiments
	6 Conclusion
	Acknowledgements
	References

