
Journal of Combinatorial Optimization (2022) 44:1913–1923
https://doi.org/10.1007/s10878-020-00567-3

A primal-dual algorithm for the minimum power partial
cover problem

Menghong Li1 · Yingli Ran1 · Zhao Zhang1

Published online: 7 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this paper, we study the minimum power partial cover problem (MinPPC). Suppose
X is a set of points and S is a set of sensors on the plane, each sensor can adjust its
power and the covering range of a sensor s with power p(s) is a disk of radius r(s)
satisfying p(s) = c · r(s)α . Given an integer k ≤ |X |, the MinPPC problem is to
determine the power assignment on every sensor such that at least k points are covered
and the total power consumption is the minimum. We present a primal-dual algorithm
for MinPPC with approximation ratio at most 3α . This ratio coincides with the best
known ratio for the minimum power full cover problem, and improves previous ratio
(12 + ε) for MinPPC which was obtained only for α = 2.

Keywords Power · Partial cover · Primal dual · Approximation algorithm

1 Introduction

With the rapid development of wireless sensor networks (WSNs), intensive studies on
WSNs have emerged, especially on the coverage problem. In a coverage problem, the
most basic requirement is to keep all points of interest under monitoring. In a typical
WSN, the service area of a sensor is a disk centered at the sensor whose radius is
determined by the power of the sensor. A typical relation between the power p(s) of
sensor s and the radius r(s) of its service area is

p(s) = c · r(s)α, (1)
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where c and α ≥ 1 are some constants (α is usually called the attenuation factor). So,
a larger service area needs more power. In other words, the consumption of energy and
the quality of service are two conflicting factors. The question is how to balance these
two conflicting factors by adjusting power at the sensors so that the desired service
can be accomplished using the minimum total power. This question is motivated by
the intention to extend the lifetime of WSN under limited energy supply, and we call
it the minimum power coverage problem (MinPC).

In the real world, it is often too costly to satisfy the covering requirement of every
point of interest (Liu andHuang 2018). It is not cost-effective to sacrifice a lot of power
on serving some distant outliers. So, it is beneficial to study theminimumpower partial
coverage problem (MinPPC), in which it is sufficient to cover at least k < |X | points.
The problem is motivated by the purpose of further saving energy while keeping an
acceptable quality of service.

TheMinPPCproblem can be viewed as a special case of theminimumweight partial
set cover problem (MinWPSC). Given a set E of elements, a collection of sets S, a
weight function w : S �→ R

+, and an integer k ≤ |E |, the MinWPSC problem is to
find the minimum weight sub-collection of sets F ⊆ S such that at least k elements
are covered by F , i.e., |⋃S∈F S| ≥ k and w(F) = ∑

S∈F w(S) is minimum. Notice
that in a MinPPC problem, the power at a sensor can be discretized by assuming that
there is a point of interest on the boundary of the disk supported by the assigned
power. We call such a disk as a canonical disk. So, if we associate with each sensor
|X | canonical disks, each disk corresponds to the set of points of interest contained in
it, and the weight of the disk equals the power supporting the disk which is determined
by Eq. (1), then the MinPPC problem is reduced to the MinWPSC problem.

It is known that theMinWPSC problem has a (ln(min{�k	,�})+1)-approximation
(Slavík 1997) and an f -approximation (Bar-Yehuda 2001), where � is the size of a
maximum set and f is the maximum frequency of an element (that is, the maximum
number of sets containing a common element). For the MinWPSC problem obtained
by the above reduction from a MinPPC problem, � equals to the number of points
to be covered, f equals the number of sensors, and k can be as large as �(n). So,
the above ratios for MinWPSC are too large to be good approximation factors for
MinPPC. The main purpose of this paper is to explore geometric properties of the
MinPPC problem to obtain a better approximation.

1.1 Related works

Theminimumweight set cover problem (MinWSC) is a classic combinatorial problem.
It iswell-known thatMinSCadmits approximation ratio H(�) (Chvatal 1979; Johnson
1974), where H(�) = 1 + 1

2 + · · · + 1
�
is the Harmonic number and � denotes the

size of the largest set (it is known that H(�) ≤ ln� + 1). It is also known that a
simple LP-rounding algorithm can achieve an approximation ratio of f , where f is
the maximum number of sets containing a common element [see for example Chapter
12 of the book Vazirani 2001].

For the minimum weight partial set cover problem (MinWPSC), (Slavík 1997)
obtained an H(min{�k	,�})-approximationusinggreedy strategy, (Bar-Yehuda2001)
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obtained an f -approximation using local ratio method, (Gandhi et al. 2004) also
obtained f approximation using primal-dual method. Very recently, Inamdar and
Varadarajan (2018) designed anLP-rounding algorithm, obtaining approximation ratio
2β + 2, where β is the integrality gap for the linear program of the minimum weight
(full) set cover problem.

For the geometric minimum weight set cover problem, much better approxima-
tion factors can be achieved. Using partition and shifting method, (Hochbaum 1982)
obtained a PTAS for the minimum unit disk cover problem in which the disks are
uniform and there are no prefixed locations for the disks. For the minimum disk cover
problem in which disks may have different sizes, Mustafa and Ray (2010) designed a
PTAS using a local search method. This PTAS was generalized by Roy et al. (2018)
to non-piercing regions including pseudo-disks. These are results for the cardinality
version of the geometric set cover problem. Considering weight, Varadarajan (2010)
presented a clever quasi-uniform sampling technique, which was improved by Chan
et al. (2012), yielding a constant approximation for the minimum weight disk cover
problem. This constant approximation was generalized by Bansal and Pruhs (2012)
for the minimum weight disk multi-cover problem in which every point has to be
covered multiple times. Using a separator framework, Mustafa et al. (2015) obtained
a quasi-PTAS for the minimum weight disk cover problem.

To our knowledge, there are two papers studying the geometric minimum partial
set cover problem. The first paper is Gandhi et al. (2004), in which Gandhi et al.
presented a PTAS for the minimum (cardinality) partial unit disk cover problem using
partition and shifting method. Notice that this result only works for the case when the
centers of the disks are not prefixed. Another paper is due to Inamdar and Varadarajan
(2018), in which a (2β + 2)-approximation was obtained for the general minimum
weight partial set cover problem, where β is the integrality gap of the natural linear
program for the minimum weight (full) set cover problem. As a consequence, for
those geometric set cover problems (including the disk cover problem) in which β is
a constant, the approximation ratio for the partial version is also a constant.

Recently, there are a lot of works studying theminimum power multi-cover problem
(MinPMC), in which every point x is associated with a covering requirement crx , and
the goal is to find a power assignment with the minimum total power such that every
point x is covered by at least crx disks. Let crmax be the maximum number of times
that a point requires to be covered. Using local ratio method, Bar-Yehuda and Rawitz
(2013) presented a 3α ·crmax -approximation algorithm. The dependence on crmax was
removed by Bhowmick et al. (2015), achieving an approximation ratio of 4 · (27√2)α .
This result was further generalized to any metric space in Bhowmick et al. (2017), the
approximation ratio is at most 2 · (16 · 9)α . For the minimum power (single) cover
problem, the best known ratio is 3α (as a consequence of Bar-Yehuda and Rawitz
(2013) and the fact crmax = 1 in this case).

Prior to our study, there is only one paper (Freund and Rawitz 2003) studying
the minimum power partial (single) cover problem, and the study is on the special
case when α = 2. The approximation ratio obtained in Freund and Rawitz (2003)
is (12 + ε), where ε is an arbitrary constant greater than zero, by a reduction to a
prize-collecting coverage problem.

123



1916 Journal of Combinatorial Optimization (2022) 44:1913–1923

1.2 Contribution

In this paper, we show that the MinPPC problem can be approximated within factor
3α , which coincides with the best known ratio for theMinPC problem (the full version
of the minimum power coverage problem). When applied to the case when α = 2, our
ratio is 9, which is better than 12 + ε obtained in Freund and Rawitz (2003).

In the conference version of this paper (Li et al. (2019)), we have shown that ratio
3α can be achieved by a local ratio method. In this paper, we find that a primal-dual
method can also achieve the same ratio, furthermore, the algorithm and the analysis
can be even simpler than the local ratio method.

A difficulty of implementing a primal-dual framework on the partial cover problem
is that the natural LP for the partial cover problem has integrality gap arbitrarily large.
The reason is that the last disk chosen into the solution may cover much more points
than needed, and thus its cost cannot be controlled. Based on this observation, by
guessing a disk with the largest radius in an optimal solution and working on an LP
which is constructed on the residual instance, we could get a better approximation..

The remaining part of this paper is organized as follows. In Sect. 2, we formally
define the problem and introducing the preprocessing step of guessing. In Sect. 3,
the primal-dual algorithm is presented, together with a strict analysis on its time
complexity and approximation ratio. Section 4 concludes the paper.

2 The problem and a preprocessing

We first give a formal definition of the MinPPC problem.

Definition 2.1 [Minimum Power Partial Cover (MinPPC)] Suppose X is a set of n
points and S is a set of m sensors on the plane, k is an integer satisfying 0 ≤ k ≤ n.
A point x ∈ X is covered by a sensor s ∈ S with power p(s) if x belongs to the disk
supported by p(s), that is x ∈ Disk(s, r(s)), where Disk(s, r(s)) is the disk centered
at s whose radius r(s) is determined by p(s) through equation (1). A point is covered
by a power assignment p : S �→ R

+ if it is covered by some disk supported by p.
The goal of MinPPC is to find a power assignment p covering at least k points such
that the total power

∑
s∈S p(s) is as small as possible. Here, we assume that there is

no limit on the power at a sensor.

In an optimal solution, we may assume that for any sensor s, there is at least
one point that is on the boundary of the disk Disk(s, r(s)), since otherwise we may
reduce p(s) to cover the same set of points, resulting in a lower power consumption.
Therefore, at most mn disks need to be considered. We denote the set of such disks
by D. In the following, denote by (X ,D, k) an instance of the MinPPC problem, and
use opt(X ,D, k) to denote the optimal power for the instance (X ,D, k). To simplify
the notation, we use D to represent both a disk in D and the set of points contained
in D, and use r(D) and p(D) to denote the radius and the power of disk D, where
p(D) = c · r(D)α . For a set of disks D, we shall use C(D) = ⋃

D∈D D to denote the
set of points covered by the union disks of D.
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In order to control the approximation factor of our algorithm, we need a prepro-
cessing step: guessing the maximum power of a sensor (or equivalently, the radius of a
maximum disk) in an optimal solution. Suppose Dmax ∈ D is the guessed disk. Denote
by D≤r(Dmax) the subset of disks of D whose radii are no greater than the radius of
Dmax (excluding Dmax), and denote by (X\Dmax,D≤r(Dmax), k−|Dmax|) the residual
instance after guessing Dmax. The following lemma is obvious.

Lemma 2.2 Suppose Dmax is the correctly guessed disk with the maximum power in
an optimal solution of instance (X ,D, k). Then

opt(X ,D, k) = opt(X\Dmax,D≤r(Dmax), k − |Dmax|) + p(Dmax).

3 A primal dual algorithm

In this section, we present a primal-dual algorithm for the MinPPC problem on the
instance (X\Dmax,D≤r(Dmax), k − |Dmax|). And then show how to make use of it to
find a power assignment for the MinPPC problem.

3.1 Algorithm after the preprocessing

For simplicity of notation in this section, we still use (X ,D, k) to denote the residual
instance after the guessing, assuming that every disk inD has radius at most r(Dmax).

The algorithm consists of three steps.
(i) In the first step, a primal dual method is employed to find a feasible solution D̄,

that is, D̄ covers at least k points.
(ii) Before going into the second step, remove the disk Drmv which is the last

disk added into D̄. Then, in the second step, a maximal independent set of disks
I ⊆ D̄\{Drmv} is computed in a greedy manner, that is, disks in I are mutually
disjoint, while any disk D ∈ D̄\{Drmv} which is not picked into I intersects some
disk in I.

(iii) In the third step, every disk in I has its radius enlarged three times. Such set
of disks together with {Dmax, Drmv} are the output of the algorithm.

The first step is accomplished by Algorithm 1, in which the MinPPC instance
(X ,D, k) is viewed as an instance of the minimum weight partial set cover problem,
where X serves as the set of elements to be covered,D serves as the collection of sets,
and the weight of each D ∈ D is p(D).

TheMinPPCproblemcanbe formulated as an integer program.Variable zD ∈ {0, 1}
indicates whether disk D ∈ D is picked, that is, zD = 1 if and only if D is picked.
Variable yx ∈ {0, 1} indicates whether point x ∈ X is covered, here yx = 0 if and
only if x is covered. The following is the LP-relaxation of the integer program.
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min
∑

D∈D
c · r(D)αzD

s.t.
∑

D : x∈D
zD + yx ≥ 1, ∀x ∈ X

∑

x∈X
yx ≤ n − k

zD ≥ 0, ∀D ∈ D
yx ≥ 0, ∀x ∈ X

(2)

Notice that we need not add the constraints zD ≤ 1 and yx ≤ 1 since they are
automatically satisfied in an optimal solution of (2). The dual program is:

max
∑

x∈X
βx − (n − k)γ

s.t .
∑

x∈D
βx ≤ c · r(D)α, ∀D ∈ D

0 ≤ βx ≤ γ, ∀x ∈ X
γ ≥ 0

For a dual feasible solution (β, γ ), we say that a disk D ∈ D is tight if
∑

x∈D βx =
c ·r(D)α . The subprocedure PD follows the classic primal-dual method: starting from
the trivial dual feasible solution zero, it increases dual variables simultaneously until
some disk becomes tight. Pick such a tight disk and iterate until a feasible solution is
obtained. In line 5 of Algorithm 1, those points which have been covered by a tight
disk is removed from X , the purpose of this step is to freeze the dual variables of
these points in the sense that βx will no longer increase for any point x which have
been covered by tight disks. Furthermore, γ keeps increasing until a feasible solution
is found. So, γ = max{βx : x ∈ X} all the time. Hence the dual feasibility is kept
throughout the algorithm.

Algorithm 1 PD(X ,D, p, k).
Input: A set of points X , a set of disks D, a weight function p : D �→ R

+, a covering requirement k.
Output: A subset of disks D̄ covering at least k points.
1: D̄ ← ∅, βx ← 0 for each x ∈ X , γ ← 0.
2: while |C(D̄)| < k do
3: Increase {βx }x∈X and γ simultaneously until some disk D becomes tight.
4: D̄ ← D̄ ∪ {D}
5: X ← X\D
6: end while
7: Return D̄.

Algorithm 2 finds a maximal independent set I of D̄\{Drmv}, where Drmv is the
last disk added into D̄. The removal of Drmv is crucial for the estimation of p(I).
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Algorithm 2 I S(D).
Input: A set of disks D.
Output: A maximal independent set of disks I.
1: I ← ∅
2: while D �= ∅ do
3: D′ ← argmaxD∈D r(D)

4: I ← I ∪ {D′}
5: N ← the set of disks of D that intersect D′
6: D ← D\N
7: end while
8: Return I

Algorithm 3 combines the above two algorithms to compute a feasible solutionM
to the residual instance. We use c(D) and r(D) to denote the center and the radius
of disk D, respectively. So, Disk(c(D), 3r(D)) represents the disk with center c(D)

and radius 3r(D) (which is a disk obtained from D by enlarging its radius by three
times). Notice that M is no longer confined to be a subset of D.

Algorithm 3 Cov(X ,D, k)
Input: A residual instance (X ,D, k).
Output: a set of disksM covering at least k points.
1: D̄ ← PD(X ,D, p,k)
2: Drmv ← The last disk added into D̄
3: I ← IS(D̄\{Drmv})
4: M ← {Disk(c(D), 3r(D)) : D ∈ I} ∪ {Drmv}
5: ReturnM

Lemma 3.1 Suppose D∗ is an optimal solution for (X ,D, k). Then the independent
set of disks I output by Algorithm 2 based on D̄ computed by Algorithm 1 satisfies
p(I) ≤ p(D∗).

Proof Since any disk D ∈ I ⊆ D̄ is tight, we have

p(I) =
∑

D∈I
c · r(D)α =

∑

D∈I

∑

x∈D
βx =

∑

x∈C(I)

βx |{D : D ∈ I, x ∈ D}|

=
∑

x∈C(I)

βx =
∑

x∈X
βx −

∑

x∈X\C(I)

βx , (3)

where the fourth equality holds because I is an independent set and thus any point
x ∈ C(I) is covered by exactly one disk of I.

Notice that X\C(I) ⊇ X\C(D̄\{Drmv}). Observe that

βx = γ for any x ∈ X\C(D̄\{Drmv}),

where both β and γ refer to the values at the end of Algorithm 1. In fact, since Drmv is
the last disk added into D̄, a point x ∈ X\C(D̄\{Drmv}) implies that x is not covered
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by any disk before the last iteration, and thus its dual variable βx keeps increasing at
the same rate as γ until the termination of the algorithm. The reason why Drmv is
added into D̄ is because |C(D̄\{Drmv})| < k. So

|X\C(D̄\{Drmv})| > n − k.

It follows that

∑

x∈X\C(I)

βx ≥
∑

x∈X\C(D̄\{Drmv})
βx ≥ γ (n − k).

Substituting this inequality into (3),

p(I) ≤
∑

x∈X
βx − γ (n − k).

The righthand side of this inequality is exactly the objective value of the dual program
(3), which provides a lower bound for p(D∗). The lemma is proved. ��
Theorem 3.2 The set of disks M computed by Algorithm 3 covers at least k points.

Proof The set of disks in D̄ computed in line 1 of Algorithm 3 cover at least k points.
For any point x which is covered by D̄, if x is covered by Drmv or any disk in
I, then it is also covered by M. Otherwise, x is covered by a disk D which is
removed in line 6 of Algorithm 2. This disk D is removed because it intersects
a disk D′ ∈ I. Because of the greedy choice of disk D′ in line 3 of Algorithm
2, we have r(D) ≤ r(D′). Hence d(x, c(D′)) ≤ d(x, c(D)) + d(c(D), c(D′)) ≤
r(D) + (r(D) + r(D′)) ≤ 3r(D′), where d(·, ·) denotes the Euclidean distance. So,
x is covered by disk(c(D′), 3r(D′)) ∈ M. ��

The next theorem estimates the approximation effect of Algorithm 3.

Theorem 3.3 Suppose C∗ is an optimal solution on instance (X ,D, p, k), and M is
the output of Algorithm 3. Then

p(M) ≤ 3α p(C∗) + p(Drmv).

Proof For each disk D ∈ M\{Drmv}, it comes from a disk D′ ∈ I by expanding
the radius by three times. Hence by (1), p(D) = 3α p(D′). So p(M) = 3α p(I) +
p(Drmv), and the theorem follows from Lemma 3.1. ��

By Theorem 3.3, the approximate effect is related with p(Drmv). The reason why
we should guess a disk Dmax with the largest radius in an optimal solution is now
clear: to control the term p(Drmv) to be not too large. The algorithm combining the
guessing technique is presented as follows.
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3.2 The whole algorithm

Algorithm 4 is the whole algorithm for the MinPPC problem. It first guesses a disk
with themaximum radius in an optimal solution, takes it, and then uses Algorithm 3 on
the residual instance. For a guessed disk D, the residual instance consists of all those
disks D≤r(D) whose radii are no larger than r(D) (excluding D itself), and the goal
is to cover the remaining elements X\D beyond the remaining covering requirement
max{0, k − |D|}. The weight function, denoted as pD , is determined by (1). If for a
guessed disk D, Algorithm 3 does not return a feasible solution, then we regard the
solution to have cost ∞. Algorithm 4 returns the best solution among all the guesses.

Algorithm 4 MinPPC(X ,D, k, p)
Input: A set of points X , a set of sensors S, a covering requirement k.
Output: A power assignment p to cover at least k points.
1: Construct the set D of canonical disks, and determine the weight of disks by (1).
2: for D ∈ D do
3: MD ← Cov(X\D,D≤r(D),max{0, k − |D|})
4: FD ← MD ∪ {D}
5: end for
6: D̃ ← argminD∈D{p(FD)}
7: Return the power assignment corresponding to FD̃

Theorem 3.4 Algorithm 4 is a 3α-approximation algorithm for MinPPC, which runs
in time O(kn2m2).

Proof Suppose C∗ is an optimal solution to the MinPowerPartCov problem, and Dmax
is a disk with the maximum radius in C∗. By Theorem 3.3 and the fact p(Dmax,rmv) ≤
p(Dmax ) (where Dmax,rmv is the removed disk when the guessed disk is Dmax ), we
have

p(FDmax) = p(MDmax) + p(Dmax) ≤ 3α p(C∗
Dmax

) + 2p(Dmax)

≤ 3α
(
p(C∗

Dmax
) + p(Dmax)

) = 3αopt,

where opt is the optimal power, and C∗
Dmax

is the optimal solution when the guessed
disk is Dmax. Since the setFD̃ computed byAlgorithm 4 satisfies p(FD̃) ≤ p(FDmax),
the approximation ratio 3α is proved.

The for loop of Algorithm 4 is executed O(nm) times. Since in each while loop of
Algorithm 1, the number of covered points is increased by at least one, the number of
iterations before at least k points are covered is O(k). Furthermore, the running time
of line 3 in Algorithm 1 is O(mn). So, the overall time complexity for Algorithm 1
is O(kmn). Since the output D̄ of Algorithm 1 has O(k) disks, the running time for
Algorithm 2 is O(k log k), which is the time needed to order the O(k) disks of D̄.
Therefore, the overall time complexity of Algorithm 4 is O(kn2m2). ��
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4 Conclusion

In this paper, we presented an approximation algorithm for the minimum power partial
cover problem achieving approximation ratio 3α , using a primal-dual method. This
ratio improves the ratio of (12+ ε) in Freund and Rawitz (2003) which was obtained
only for α = 2, and matches the best known ratio for the minimum power (full) cover
problem in Bar-Yehuda and Rawitz (2013).

Recently, there are a lot of studies on the minimum power multi-cover problem
(Bhowmick et al. 2015, 2017). A problem which deserves to be explored is the mini-
mum power partial multi-cover problem (MinPPMC). This problem can be viewed as
a special case of the minimum weight partial set multi-cover problem (MinWPSMC),
in which every element x has a covering requirement crx and x is fully covered only
when x is contained in at least crx selected sets. The goal of MinWPSMC is to select a
minimum weight collection of subsets such that at least k elements are fully covered.
According to current studies on MinWPSMC (Ran et al. 2017a, b, 2019), it seems
that studying the combination of multi-cover and partial cover in a general setting
is very difficult. An interesting question is how about the problem in some special
setting? The speciality of MinPPMC lies not only in its intrinsic geometry, but also
in the special weight function which relates the power and the radius of a disk. Such
speciality might lead to better approximation.
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