
Journal of Combinatorial Optimization (2020) 39:933–954
https://doi.org/10.1007/s10878-020-00529-9

An efficient local search algorithm for solving maximum
edge weight clique problem in large graphs

Yi Chu1,2 · Boxiao Liu1,2 · Shaowei Cai3 · Chuan Luo4,5 · Haihang You1

Published online: 4 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Maximumvertexweight clique problem (MVWCP) andmaximum edgeweight clique
problem (MEWCP) are two significant generalizations of maximum clique problem
(MCP), and can be widely used in many real-world applications including molecular
biology, broadband network design and pattern recognition. Recently, breakthroughs
have been made for solving MVWCP in large graphs, resulting in several state-of-the-
art algorithms, such as WLMC, FastWClq and LSCC+BMS. However, less attention
has been paid to solving MEWCP in large graphs. In this paper, we present an effi-
cient Stochastic Local Search (SLS) algorithm for MEWCP by combining clique
construction, local search and graph reduction, resulting in a new algorithm named
ReConSLS. We also propose a new upper bound function for edge weighted graphs
which is essential for graph reduction. Extensive experiments on a wide range of large
graphs demonstrate that ReConSLS surpasses state-of-the-art SLS competitors on the
majority of testing graphs.

Keywords Graph reduction · Maximum edge weight clique problem · Stochastic
local search

1 Introduction

Given an undirected graph G = (V , E), where V is the set of vertices and E is the set
of edges, a clique C is a subset of V , such that all vertices in C are connected. The
maximum clique problem (MCP) is to find a clique with the maximum size inG. MCP
has two significant generalizations: (1) the maximum vertex weight clique problem
(MVWCP), in which each vertex is associated with a positive weight, and the goal is
to find a clique with the maximum weight of vertices; (2) the maximum edge weight

B Haihang You
youhaihang@ict.ac.cn

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-020-00529-9&domain=pdf
http://orcid.org/0000-0003-4681-7414

934 Journal of Combinatorial Optimization (2020) 39:933–954

clique problem (MEWCP), in which each edge is associated with a positive weight,
and the goal is to find a clique with the maximum weight of edges.

MCP is a classical combinatorial optimization problem that was among one of
the first problems proved to be NP-hard (Karp 1972). The weighted version of MCP
(including MVWCP and MEWCP) has many real-world applications, including com-
puter vision, pattern recognition, robotics (Ballard and Brown 1982), broadband
network design (Park et al. 1996), wireless telecommunication (Balasundaram and
Butenko 2006). Due to the theoretical significance and practical application value,
considerable efforts have been made to develop algorithms for MCP, MVWCP and
MEWCP. Algorithms for solving these problems are usually categorized into two
classes: complete algorithms and incomplete algorithms.

On the one hand, most of the complete algorithms forMCP are based on the general
branch and bound (BnB) framework. These algorithms differ from each other mainly
by their techniques of determining the upper bound and their branching strategies
Carraghan and Pardalos 1990; Tomita and Seki 2003; Tomita and Kameda 2007;
San Segundo et al. 2011; Li and Quan 2010; Li et al. 2013; Jiang et al. 2017. On
the other hand, incomplete algorithms cannot prove the optimality of the returned
solutions, but these algorithms are usually able to find good quality solutions within
reasonable time (Battiti and Protasi 2001; Pullan and Hoos 2006; Pullan 2006, 2008;
Pullan et al. 2011; Wu et al. 2012; Benlic and Hao 2013; Wang et al. 2016; Fan et al.
2017a). Recently, numerous work focused on solving MVWCP in large-sized real-
world graphs, resulting in several start-of-the-art algorithms. LSCC+BMS (Wang
et al. 2016) adopts a balanced strategy called ‘Best from Multiple Selections’ (BMS)
(Cai 2015) to improve the performance of a state-of-the-art algorithm named LSCC
on massive graphs. FastWClq (Cai and Lin 2016) utilizes a new method for MVWCP
which interleaves between clique construction and graph reduction, and achieves good
performance on solving massive real-world graphs.

There are two classes of methods to obtain the exact solutions of MEWCP: (1)
formulating MEWCP into mathematical programming such as integer programming
(IP) (Gouveia and Martins 2015) and mixed integer programming (MIP); (2) using
branch-and-boundmethod. The unconstrained quadratic binary program (UQP)model
is used to represent the nonlinear formula ofMEWCP.A tabu search heuristic designed
for UQP produces a new algorithm forMEWCP named TS/UQP (Alidaee et al. 2007).
Computational experiments on small instances show that the nonlinear model has
computational advantages over the linear model. EWCLIQUE (Shimizu et al. 2018)
is a purely combinatorial branch-and-bound algorithm and is faster than the methods
basedonmathematical programmingon randombenchmark andDIMACSbenchmark.
To promote the development of the methods that using branch-and-cut framework for
MEWCP, some work is focused on a family of cutting planes and gives the theoretical
proof that under certain conditions, one of the inequalities in this family defines a facet
for MEWCP (Fomeni 2017).

Although great efforts have been made to solve MVWCP on large graphs, less
attention was paid to MEWCP. Recently, two local search algorithms have been pro-
posed for MEWCP. CERS (Fan et al. 2017b) can be used to solve both MVWCP and
MEWCP, which outperforms a number of state-of-the-art algorithms on large graphs.
LSMR (Li et al. 2018) is another efficient algorithm for MEWCP on massive graphs.

123

Journal of Combinatorial Optimization (2020) 39:933–954 935

These local search algorithms derived from algorithms for MVWCP, although the
frameworks of several algorithms for MVWCP could be adopted to solve MEWCP,
many prominent strategies for MVWCP are not suitable for directly solving MEWCP.

1.1 Main contributions

In this paper, we are devoted to improving the performance over the state-of-the-art
algorithms for solving MEWCP on large graphs. Our main contributions in this paper
are concluded as follows.

Firstly, we construct a novel framework for solving MEWCP, which works in three
different phases, i.e., clique construction, local search and graph reduction. Based
on this framework, we develop an effective algorithm named ReConSLS for solving
MEWCP.

Secondly, we propose an effective upper bound function for edge-weighted graphs
which improves the performance of graph reduction.

Thirdly, we incorporate a number of effective techniques into this framework,
including BMS strategy (Cai 2015), benefit estimation function of vertices (Cai and
Lin 2016), resulting in a considerable performance improvement in the phases of
clique construction and local search.

Finally, we conduct extensive experiments to compare ReConSLS against four
state-of-the-art SLS algorithms including LSMR, CERS, LSCC and LSCC+BMS
on a broad range of practical benchmarks, including 139 graphs from Network Data
Repository and 18 graphs from KONECT (the Koblenz Network Collection). Our
experimental results indicate that ReConSLS outperforms other competitors in terms
of solution quality and running time on the majority of testing graphs.

1.2 Paper structure

We organize the remainder of the paper as follows. Section 2 gives preliminary def-
initions and notations. In Sect. 3, we present the new algorithm named ReConSLS
along with the details of graph reduction, clique construction and local search. Exten-
sive experimental results are shown in Sect. 4 to demonstrate the effectiveness of
ReConSLS. Finally, we conclude the paper and point out future work in Sect. 5.

2 Preliminaries

Given an undirected graph G = (V , E), where V = {v1, v2, · · · , vn} is the set of
vertices and E = {e1, e2, · · · , em} is the set of edges, a clique C is a subset of V , such
that all vertices inC are connected. MCP is to find a clique with the maximum number
of vertices in the given graph G = (V , E). The MVWCP, in which the graph has a
weight function Wv that assigns a positive weight to each vertex, and the weight of a
cliqueC is defined asWv(C) = Σi∈CWi , is to find a clique with the maximumWv(C)

in the given graph G = (V ,E,Wv). The MEWCP, in which the graph has a weight
functionWe that assigns a positive weight to each edge, for an edge ei j , the weight of e

123

936 Journal of Combinatorial Optimization (2020) 39:933–954

is denoted byWei j , theweight of a cliqueC is then defined asWe(C) = Σei j ,i, j∈CWei j ,
is to find a clique with the maximum We(C) in the given graph G = (V ,E,We). We
use W ∗(G) to denote the maximum weight of clique in G.

2.1 Basic operations and scoring functions

Given an undirected graph G = (V , E), an edge e ∈ E is expressed as a pair of two
vertices in V , i.e., euv , where u ∈ V and v ∈ V are two endpoints of e. For a vertex
v ∈ V , the set of v’s neighboring vertices is denoted by N (v) = {u ∈ V | euv ∈ E};
the degree of v is denoted by d(v) = |N (v)|. We also denote N [v] = N (v) ∪ {v}.

To find a clique with good solution-quality, the local search based method usually
moves from one clique to another until the time limit is reached, it then returns the
clique with the best solution-quality found so far. Our algorithm framework contains
three types of search steps: add, swap, and drop. Assume that C is a clique. In order
to preserve the property of a clique, we define three sets as follows:

– Sadd = {u|u /∈ C, u ∈ N (v) for all v ∈ C}, where C is still a clique after adding
u into C if u ∈ Sadd .

– Sswap = {euv|u /∈ C, v ∈ C, euv /∈ E, u ∈ N (w) for all w ∈ C\{v}}, where C is
still a clique after both adding u into C and dropping v from C if (u, v) ∈ Sswap.

– Sdrop = {v|v ∈ C}.
Let C be a clique, W (C) denotes the weight of clique C . Ascore(v,C) repre-

sents the increment of W (C) after adding v into C , i.e., Ascore(v,C) = W (C ∪
{v}) − W (C). Sscore(u, v,C) corresponds the increment of W (C) after both adding
u into C and dropping v from C , i.e., Sscore(u, v,C) = W (C\{v} ∪ {u}) − W (C).
Dscore(v,C) is the increment ofW (C) after dropping v fromC , i.e., Dscore(v,C) =
W (C\{v}) − W (C).

Besides, given an undirected graph G = (V , E) as well as a cliqueC in G, a vertex
v ∈ V has two possible states: inside C or outside C . We define the number of steps
that has occurred since v last changed its states, as the age of v, denoted as age(v).
The cardinality of C is |C |.

2.2 Strong configuration checking

For local search algorithms, it is well acknowledged that a severe issue is the so-
called cycling problem, i.e., frequently revisiting candidate solutions which have been
explored lately. Cai et al. (2011) proposed an efficient strategy called configuration
checking (CC) to handle the cycling problem. The CC strategy is usually implemented
with a Boolean array named con f Change, in which con f Change(v) = 1 means that
v’s circumstance information (also knownas configuration) has changed since themost
recent change of v’s state. Till now, the CC strategy has been successfully applied to
a number of well-known NP-hard problems, including Boolean satisfiability (Cai and
Su 2012; Luo et al. 2012, 2015a; Cai and Su 2013; Abramé et al. 2017), maximum
satisfiability (Luo et al. 2015b, 2017), minimum vertex cover (Cai et al. 2011, 2013).
Based on theCCstrategy, literatureWang et al. (2016) proposed a strategy called strong

123

Journal of Combinatorial Optimization (2020) 39:933–954 937

Algorithm 1: The ReConSLS Algorithm
Input: graph G = (V , E,We)

1 initialize C∗ := ∅, ContinuousNoImprovedNum := 0, C0 := ∅;
2 while termination criteria are not met do
3 C := CliqueConstruction(G);
4 ContinuousNoImprovedNum + +;
5 if W (C) > W (C∗) then
6 C∗ := C ; ContinuousNoImprovedNum := 0;

7 Cs := StochasticLocalSearch(G,C);
8 if W (Cs) > W (C∗) then
9 C∗ := Cs ; ContinuousNoImprovedNum := 0;

10 if ContinuousNoImprovedNum>threshold and W (C0) < W (C∗) then
11 G := GraphReduction(G,C∗);
12 if the vertex set of G = C∗ then
13 return C∗;
14 C0 := C∗;

15 return C∗;

configuration checking (SCC) in the context ofMCP solving. The SCC strategy works
according to the following rules:

(1) initially, for each vertex v, con f Change(v) is set to 1;
(2) when v is added into the current clique, con f Change(u) is set to 1 for all u ∈

N (v);
(3) when v is removed from the current clique, con f Change(v) is set to 0;
(4) when v is removed from the current clique and u is added into the clique,

con f Change(v) is set to 0.

A vertex v is allowed to be added into the clique if con f Change(v) = 1.

3 The ReConSLS algorithm

In this section, we propose a new algorithm forMEWCP, which works in three phases,
i.e., clique construction, local search and graph reduction. We first describe the algo-
rithm, and then present details about the three phases of the algorithm.

3.1 The framework of ReConSLS

The pseudo-code of ReConSLS is outlined in Algorithm 1. The framework of the
algorithm is described as follows. After initialization, ReConSLS executes a WHILE
loop until the time limit is reached or the simplified graph of G is a clique. In each
WHILE loop: firstly, a clique is constructed by iteratively adding vertices into a set
that is initialized to be empty (line 3), the variable ContinuousNoImprovedNum is a
consecutive loop counter which increases by 1 after each construction (line 4) and sets
to 0 if a better solution is found (line 6, 9). Then the local search phase is executed (line
7). Finally, if ContinuousNoImprovedNum is greater than a positive integer threshold

123

938 Journal of Combinatorial Optimization (2020) 39:933–954

(In this paper, the threshold is set to 10) and the weight of the current best clique is
larger than that of the clique that has been used in the most recent graph reduction
phase, the graph reduction phase is executed (line 11).

3.2 Graph reduction

A graph can be reduced to a simplified graph with the identical maximum weight
clique by applying proper graph reduction rules. Intuitively, it is easier for a local
search algorithm for finding a larger clique weight in the simplified graph due to a
smaller search space. As computing the upper bound for a vertex in MEWCP is more
complicated than that inMVWCP, it is not easy to directly adapt the bound-computing
strategies in Cai and Lin (2016), Fang et al. (2014) and Jiang et al. (2017) for solving
MEWCP. In this subsection, we propose an upper bound function for edge-weighted
graphs and describe the graph reduction algorithm.

As in literature Cai and Lin (2016), we give the definition of upper bound of a
vertex.

Definition 1 Given an edge-weighted graph G = (V , E,We), for a vertex v ∈ V , an
upper bound of v is a positive integer, denoted by UB f unc(v), such that for ∀C in G
that v ∈ C , UB f unc(v) ≥ W (C).

Based on the Definition 1, we consider the following reduction rule:
Reduction Rule: Given an edge-weighted graph G = (V , E,We) and a clique C0

in G, for ∀v ∈ V , if UB f unc(v) < W (C0), delete v and its incident edges from G.
We denote this rule by Rule(UB f unc,C0), where UB f unc is the upper bound

function and C0 is the input clique. We can apply this rule in the algorithm of solving
MEWCP for graph reduction, which depends on the following proposition being true.

Proposition 1 Given an edge-weighted graph G = (V , E,We), G ′ is a simplified
graph by applying Rule(UB f unc,C0) on G. Then W (G) = max{W (C0),W (G ′)}.
The proof of Proposition 1 has been given in the literature Cai and Lin (2016).

The upper bound function is fundamental in the reduction rule. We provide
some notations before proposing the upper bound function. The sum of the weight
of the edges adjacent to v is denoted by WN (v) = Σu∈N (v)Weuv . For a vertex
v, the maximum weight of the edges adjacent to v is denoted by Emax(v) =
max{Weuv |u ∈ N (v)}, the minimum weight of the edges adjacent to v is denoted
by Emin(v) = min{Weuv |u ∈ N (v)}. For a clique C , we say that an edge euv is in C
iff i ∈ C and j ∈ C .

In order to describe the upper bound function, we propose a concept called the
contribution from vertex u to vertex v. The contribution from u to v is defined as
the sum of the weights of edges that connected with vertex u and may be in cliques
containing vertex v, and is denoted by CB(u, v). From this definition, we learn that u
makes contribution to v iff u and v are neighbors. It is clear that the value of cardinality
of cliques containing v will not be greater than d(v) + 1. The number of edges that u
can contribute to v will not be greater than d(v). In order to define the upper bound of
vertex v, we first define the upper limit ofCB(u, v), denoted byULCB(u, v). Suppose

123

Journal of Combinatorial Optimization (2020) 39:933–954 939

Algorithm 2: The GraphReduction Algorithm
Input: the edge weighted graph G = (V , E,We), a clique C0

1 initialize is Pending [] to 0, pendingRm := ∅;
2 foreach v ∈ V (G) do
3 if UB f unc(v) < W (C0) then
4 pendingRm := pendingRm ∪ {v}; is Pending[v] := 1;

5 while ∅ 	= pendingRm do
6 u := pop a vertex from pendingRm;
7 remove u and its incident edges from G;
8 foreach v ∈ N (u) do
9 if 0 = is Pending[v] and U B(v) < W (C0) then

10 pendingRm := pendingRm ∪ {v}; is Pending[v] := 1;

11 return;

that vertices u and v are neighbors, then the maximum number of edges adjacent to u
within any clique C containing u and v is not greater than min{d(u), d(v)}. Assume
that d(v) < d(u), C is any clique containing u and v, let EMAX = d(v)∗ Emax(u),
EMI N = WN (u) − (d(u) − d(v)) ∗ Emin(u), the sum of weight of any d(v) edges
within C that are adjacent to u is not greater than min{EMAX , EMI N }. Thus, we
give the definition of ULCB(u, v) as follows.

ULCB(u, v) =
{
WN (u), d(v) ≥ d(u);
min{EMAX , EMI N }, d(v) < d(u).

Based on the concept of contribution, we propose an efficient upper bound function.
The definition is described as follows.

UB(v) =
⎧⎨
⎩
0, d(v) = 0;
WN (v), d(v) = 1;
WN (v)+�u∈N (v)ULCB (u,v)

2 , d(v) > 1.

Our graph reduction algorithm is based on our upper bound function and the reduc-
tion rule. The pseudo-code is outlined in Algorithm 2.

3.3 Clique construction

In this subsection, we present a clique construction algorithm. This algorithm contains
twocomponents: first, selecting a startingvertex, and add it into an empty setC ; second,
iteratively adding a vertex to expand the clique C .

WeuseCandSet to denote the set containing candidate vertices.After initialization,
each candidate vertex in CandSet could be utilized as a starting vertex to construct a
clique. During the adding vertex selection phase, given a current cliqueC , the property
of CanSet is identical with Sadd which was proposed in Sect. 2.1, i.e., C is still a
clique after adding u into C if u ∈ CandSet .

123

940 Journal of Combinatorial Optimization (2020) 39:933–954

To select a starting vertex, we utilize our upper bound function UB f unc(v) as the
selection criterion and utilize the BMS strategy to select a vertex in CandSet . The
BMS strategy has been proposed for efficiently selecting a good-quality element from
a large-sized candidate element set which uses a parameter ks to control the sampling
size. For instance, ks sets to 1, referring to randomly select a vertex from CandSet ;
ks sets to 100, indicating randomly selecting 100 vertices from CandSet and then
selecting v with the largest value ofUB f unc(v) from the vertices previously selected.
In our algorithm, ks is set to 1 and 100 alternatively, which means randomly and
greedily selecting alternatively.

To select adding vertices, inspired by the benefit estimation function of vertex
addition in literature Cai and Lin (2016), we use CandNeighborWeight(v) to
denote the possible benefit after adding v into C , i.e, CandNeighborWeight(v) =
�u∈(N (v)∩Sadd)Weuv . Based on CandNeighborWeight(v), we propose a new func-
tion B(v) to estimate the benefit of adding vertex v, i.e., B(v) = Ascore(v,C) +
CandNeighborWeight(v)/2. We select the adding vertex based on B(v), and adopt
the dynamic BMS heuristic proposed in literature Cai and Lin (2016). For the parame-
ter k of the dynamic BMS, it starts with a small value (k0). The dynamic BMS utilized
in our algorithm is similar with that in FastWClq (Cai and Lin 2016), but with two
differences. (1) The dynamic BMS utilized in our algorithm adjusts k more frequently
than that utilized in FastWClq. After each starting vertex selection phase, the value of
k is increased via k := 2k; (2) whenever k exceeds the maximum value km , it resets
to k = k0 (In FastWclq, resets to k := + + k0).

3.4 Stochastic local search

Based on the SCC strategy, in this phase, we utilize the BMS heuristic to strike a
good balance between the quality of the selected neighboring clique and the time
complexity. We also adopt a random walk strategy to choose the dropping vertex from
the current clique.

The pseudo-code of the local search procedure is outlined in Algorithm 3. In each
search step, according to the SCC strategy, Algorithm 3 randomly selects k vertices
from Sadd and then selects v with the maximum Ascore from the vertices previously
selected (line 3). It also randomly selects k vertex pairs from Sswap and then selects
(u, u′) with the maximum Sscore from the vertex pairs previously selected (line 4).
If null = v, then Algorithm 3 selects v′ with the maximum Dscore from Sdrop
(line 11), if (null, null) = (u, u′) or Dscore(v′) > Sscore(u, u′), then Algorithm 3
determines to select a vertex to drop from the current clique; with probability p, it
randomly selects a vertex from Sdrop to be dropped (line 13-14), otherwise it drops
vertex v′ from the current clique (line 15).

123

Journal of Combinatorial Optimization (2020) 39:933–954 941

Algorithm 3: The StochasticLocalSearch Algorithm
Input: graph G = (V , E,We), the current clique C

1 initialize con f Change [] to 0, C∗ := C ;
2 for i=0; i<L; i++ do
3 v := vertex in Sadd with the biggest Ascore(v) with BMS (with kadd) and con f Change(v) = 1,

breaking ties in favor of the oldest one; otherwise v := null;
4 (u, u′) := a vertex pair in Sswap with the biggest Sscore(u, u′) with BMS (with kswap) and

con f Change(u) = 1, breaking ties in favor of the oldest one; otherwise (u, u′) := (null, null);
5 if null 	= v then
6 if (u, u′) = (null, null) or Ascore(v) > Sscore(u, u′) then
7 C := C ∪ {v};
8 else
9 C := C\{u′} ∪ {u};

10 else
11 v′ := vertex in Sdrop with the biggest Dscore(v′), breaking ties in favor of the oldest one;
12 if (u, u′) = (null, null) or Dscore(v′)>Sscore(u, u′) then
13 if with fixed probability p then
14 v′ := choose vertex in Sdrop randomly;

15 C := C\{v′};
16 else
17 C := C\{u′} ∪ {u};
18 if W (C) > W (C∗) then
19 C∗ := C ;

20 return C∗;

4 Experimental evaluations

In this section, we conduct experiments to compare ReConSLS against existing state-
of-the-art competitors on a broad range of real-world large graphs, in order to evaluate
the efficiency of ReConSLS for solving MEWCP.

4.1 The benchmarks

To comprehensively evaluate the effectiveness of our ReConSLS algorithm, we con-
ducted experiments on two benchmarks:

(i) We downloaded all 139 graphs online,1 which were originally taken from the
Network Data Repository.2 These graphs have been recently used for evaluating the
performance of algorithms for solving MVWCP (Cai and Lin 2016; Wang et al. 2016;
Fan et al. 2017a; Jiang et al. 2017), MEWCP (Fan et al. 2017b), Coloring (Rossi and
Ahmed 2014) and MVC (Cai 2015).

(ii) In addition, we downloaded 18 unweighted undirected graphs from KONECT
(The Koblenz Network Collection) (Kunegis 2013).3 (We chose those graphs with

1 http://www.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz.
2 http://networkrepository.com/networks.php.
3 http://konect.uni-koblenz.de/.

123

http://www.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz
http://networkrepository.com/networks.php
http://konect.uni-koblenz.de/

942 Journal of Combinatorial Optimization (2020) 39:933–954

more than 300K edges and not included in the Network Data Repository. The
graphs we used are available online4)

Many of these real-world graphs have millions of vertices and dozens of millions
of edges. Since the original graphs are unweighted, we transformed them into an edge
weighted version using the same weighting method as in Pullan (2008) – for an edge
ei j , the weight of edge ei j is set to Wei j = ((i + j) mod 200) + 1.

4.2 Experimental setup

We include four state-of-the-art SLS solvers as the competitors. CERS (Fan et al.
2017b) and LSMR (Li et al. 2018) are two efficient solvers for MEWCP in large
graphs. Recently, breakthroughs have been made in MVWCP solving, resulting in
several state-of-the-art solvers, such as LSCC, LSCC+BMS (Wang et al. 2016), Fast-
WClq (Cai and Lin 2016) andWLMC (Jiang et al. 2017). Considering that it is not easy
to adapt FastWClq andWLMC to solveMEWCP, we utilized LSCC and LSCC+BMS
as two competitors by adapting such two solvers to solve MEWCP. We implemented
ReConSLS, LSCC and LSCC+BMS in C++. The source code of ReConSLS is avail-
able online (see footnote 4). CERS was also implemented in C++ by its author and
could be downloaded online5. LSMR was kindly provided by its author. All solvers
were compiled by g++ (version 4.8.5) with the option ‘-O3’. All the experiments in this
paper were carried out on a workstation under the operating system CentOS (version:
7.6.1810), with Intel(R) Xeon(R) CPU E5-2620 2.10GHz CPU, 20MB L3 cache and
128GB RAM.

In our experiments, all solvers are randomized ones. As a result, to make our
evaluations statistically significant, each algorithm was performed 10 runs on each
graph with seeds from 1 to 10. The cutoff time for each solver run was set to 1000
CPU seconds. For each run, we recorded the final solution and the time for seeking
out the final solution. For each solver on each graph, we report the best clique weight,
denoted by ‘Wmax’, the averaged clique weight over all runs, denoted by ‘Wavg’ (we
do not report ‘Wavg’ if ‘Wavg’= ‘Wmax’), and the averaged time of finding the final
solution in each run, denoted by ‘time’ (the unit is CPU second). We use ‘N/A’ to
denote that a solver failed to run on that graph. In Tables 2 and 4 , in each category,
we report the number of graphs where the solver finds the best clique weight among
all competing solvers, denoted by ‘#max’, the number of graphs where the solver
finds the best averaged clique weight weight among all competing solvers, denoted by
‘#avg’. The number of graphs in each category is indicated by ‘#graph’. The number
of vertices and edges in each graph is indicated by ‘|V|’ and ‘|E|’, respectively. The
results in boldface show the best performance for the related graph or category in the
same table. In this experiments, unspecified time units are CPU seconds.

In ReConSLS, parameters k0 and km for dynamic BMS heuristic were set to 8 and
128, respectively. In the local search phase, the search depth L was set to 100, kadd
and kswap were set to 128, p for randomly choose the vertex to drop was set to 50%.

4 https://github.com/acl-star/MEWCP-ReConSLS.
5 https://github.com/Fan-Yi/Local-Search-for-Maximum-Edge-Weight-Clique.

123

https://github.com/acl-star/MEWCP-ReConSLS
https://github.com/Fan-Yi/Local-Search-for-Maximum-Edge-Weight-Clique

Journal of Combinatorial Optimization (2020) 39:933–954 943

In LSCC and LSCC+BMS, the search depth L was set to 4000, the BMS parameter
k for LSCC+BMS was set to 100 as suggested in literature Wang et al. (2016).

4.3 Experimental results

4.3.1 Experimental results on graphs from network repository

Table 1 presents the comparative results of ReConSLS, CERS, LSMR, LSCC and
LSCC+BMS on graphs from Network Repository. For the sake of space, we report
35 graphs and do not report the graphs that all the solvers find the same best clique
weight within 25s. The complete results are available online (see footnote 4). From
Table 1, we can see that ReConSLS stands out as the best solver on this benchmark. On
all 35 graphs reported in Table 1, ReConSLSfinds the best cliqueweight on all of them.
ReConSLS also finds the best averaged clique weight on all the 35 graphs, while the
figure for CERS, LSMR, LSCC and LSCC+BMS is 33, 20, 27 and 32, respectively.
In terms of running time, ReConSLS finds the best averaged clique weight with the
shortest averaged time on 31 of the 35 graphs. Furthermore, on 16 of the 35 graphs,
ReConSLS’s speed of finding the best averaged clique weight is more than 3 times as
fast as the second fastest competitor’s. The comparative results on all the 139 graphs
fromNetwork Repository was presented in Table 2. The 139 graphs are divided into 12
categories according to the filename of these graphs. On all 12 categories, ReConSLS
gives the best clique weight and best averaged clique weight with the shortest averaged
time on all of them.

4.3.2 Experimental results on graphs from KONECT

Table 3 presents the comparative results of ReConSLS, CERS, LSMR, LSCC and
LSCC+BMS on 18 graphs from KONECT. From Table 3, ReConSLS provides a
performance advantage in terms of both cliqueweight and runtime.On all 18 instances,
all the solvers find the best clique weight for all of them except LSMR. ReConSLS
also finds the best clique weight on all 10 runs for all 18 graphs, while this figure
for CERS, LSMR, LSCC and LSCC+BMS is only 13, 13, 14 and 13, respectively.
In terms of running time, ReConSLS finds the best averaged clique weight with the
shortest averaged time on 14 of the 18 instances. Furthermore, on 8 of the 18 graphs,
ReConSLS’s speed of finding the best averaged clique weight is more than 3 times as
fast as the second fastest competitor’s.

4.3.3 The effectiveness of the graph reduction algorithm and the ConSLS algorithm

To evaluate the effectiveness of the graph reduction algorithm proposed in Sect. 3.2,
as well as the techniques utilized in the clique construction phase and the stochastic
local search phase, we disable the graph reduction algorithm in ReConSLS, resulting
in another solver named ConSLS.

We compare ReConSLS with ConSLS, CERS, LSMR, LSCC and LSCC+BMS on
all the 157 graphs. The related results are listed in Table 4. According to Table 4, we

123

944 Journal of Combinatorial Optimization (2020) 39:933–954

Ta
bl
e
1

E
xp

er
im

en
ta
lr
es
ul
ts
on

gr
ap
hs

fr
om

ne
tw
or
k
re
po

si
to
ry

(F
or

th
e
sa
ke

of
sp
ac
e,
w
e
do

no
tr
ep
or
to
n
gr
ap
hs

th
at
al
lt
he

so
lv
er
s
fin

d
th
e
sa
m
e
be
st
cl
iq
ue

w
ei
gh
tw

ith
in

25
s,
w
e
do

no
tr
ep
or
t‘
W
av
g’

w
hi
ch

is
eq
ua
lt
o
‘W

m
ax
’)

G
ra
ph

s
R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

|V
|,
|E
|

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

co
l/c

a-
co
au
th
or
s-
db

lp
56

61
00

8
56

61
00

8
56

61
00

8
56

61
00

8
56

61
00

8

54
0K

,1
5M

(5
.7
91

)
(3
0.
95

4)
(2
02

.0
37

)
(1
2.
04

1)
(1
0.
46

8)

co
l/c

a-
ho

lly
w
oo

d-
20

09
24

50
95

62
4

24
50

95
62

4
24

50
95

62
4

24
50

95
62

4
24

50
95

62
4

1M
,5

6M
(2
7.
62

1)
(2
93

.1
91

)
(4
1.
9)

(5
9.
87

9)
(4
5.
77

1)

co
l/c

a-
M
at
hS

ci
N
et

32
36

4
32

36
4

32
36

4
32

36
4

32
36

4

33
3K

,8
21

K
(0
.5
)

(3
.3
09

)
(3
6.
37

1)
(3
2.
12

7)
(2
8.
82

9)

fb
/s
oc
fb
-A

-a
no

n
32

53
2

32
53

2
32

53
2/

32
53

2
32

53
2

3M
,2

4M
(1
3.
20

9)
(4
7.
12

8)
29

50
1.
9(
36

1.
87

)
(3
7.
73

8)
(4
5.
19

4)

fb
/s
oc
fb
-B

-a
no

n
28

38
4

28
38

4
28

38
4/

28
38

4
28

38
4

3M
,2

1M
(2
4.
58

5)
(8
6.
06

5)
23

79
7.
3(
46

3.
45

1)
(1
29

.5
26

)
(1
81

.9
01

)

fb
/s
oc
fb
-D

uk
e1
4

55
94

0
55

94
0/

55
94

0
55

94
0

55
94

0

10
K
,5

06
K

(0
.1
98

)
55

92
9.
2(
1.
63

9)
(1
.8
06

)
(0
.3
58

)
(0
.6
7)

fb
/s
oc
fb
-u
ci
-u
ni

22
10

22
10

N
/A
/

22
10

22
10

59
M
,9

2M
(1
19

.3
91

)
(2
04

.2
23

)
N
/A

(N
/A

)
(8
9.
33

6)
(7
1.
63

)

in
f/
in
f-
ro
ad
N
et
-C

A
10

50
10

50
97

5/
10

50
10

50

2M
,3

M
(4
.1
95

)
(6
.5
34

)
81

7.
9(
44

1.
35

9)
(2
28

.8
41

)
(2
21

.5
63

)

in
f/
in
f-
ro
ad
N
et
-P
A

11
64

11
64

11
64

11
64

11
64

1M
,2

M
(1
.7
04

)
(3
.0
25

)
(2
61

.5
47

)
(3
2.
65

3)
(3
3.
22

1)

in
f/
in
f-
ro
ad
-u
sa

10
92

10
92

N
/A

/
10

17
/

10
17

/

24
M
,2

9M
(7
0.
12

8)
(8
7.
84

1)
N
/A

(N
/A

)
86

4.
2(
52

1.
61

2)
86

4.
2(
52

4.
22

9)

re
c/
re
c-
am

az
on

18
66

18
66

18
66

18
66

18
66

92
K
,1

26
K

(0
.0
09

)
(0
.4
29

)
(2
9.
84

5)
(0
.5
17

)
(0
.5
3)

123

Journal of Combinatorial Optimization (2020) 39:933–954 945

Ta
bl
e
1

co
nt
in
ue
d

G
ra
ph

s
R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

|V
|,
|E
|

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

re
t/r
t-
re
tw
ee
t-
cr
aw

l
82

62
82

62
82

62
/

82
62

/
82

62

1M
,2

M
(8
.0
42

)
(2
0.
59

7)
57

07
.2
(1
51

.5
53

)
48

68
.4
(1
15

.3
5)

(1
01

.1
95

)

sc
i/s
c-
ld
oo
r

40
61

0
40

61
0

40
61

0/
40

61
0

40
61

0

95
2K

,2
1M

(7
.9
48

)
(3
3.
82

1)
39

83
0(
45

0.
44

6)
(5
7.
81

7)
(5
6.
40

8)

sc
i/s
c-
m
sd
oo
r

40
25

0
40

25
0

40
25

0/
40

25
0

40
25

0

41
6K

,9
M

(3
.1
52

)
(1
7.
26

2)
40

09
8(
44

9.
81

6)
(6
7.
45

7)
(6
4.
99

)

sc
i/s
c-
pk

us
tk
11

77
58

0
77

58
0

77
58

0
77

58
0

77
58

0

88
K
,3

M
(0
.9
52

)
(6
.6
93

)
(3
8.
99

1)
(2
5.
11

4)
(1
2.
74

4)

sc
i/s
c-
pk

us
tk
13

99
91

5
99

91
5

99
91

5
99

91
5

99
91

5

95
K
,3

M
(2
.8
84

)
(4
8.
51

7)
(7
2.
30

2)
(7
7.
93

1)
(1
09

.5
06

)

sc
i/s
c-
pw

tk
51

88
8

51
88

8
51

88
8/

51
88

8
51

88
8

21
8K

,6
M

(2
.0
22

)
(8
.3
22

)
51

83
2.
8(
34

5.
38

1)
(6
.4
36

)
(7
.2
47

)

sc
i/s
c-
sh
ip
se
c1

45
12

6
45

12
6

45
12

6
45

12
6

45
12

6

14
0K

,2
M

(0
.6
39

)
(3
.0
42

)
(7
5.
63

8)
(8
.0
3)

(7
.7
29

)

sc
i/s
c-
sh
ip
se
c5

48
57

6
48

57
6

48
57

6
48

57
6

48
57

6

17
9K

,2
M

(0
.8
6)

(4
.6
33

)
(3
3.
62

2)
(1
2.
05

3)
(1
2.
11

)

so
c/
so
c-
di
gg

12
37

57
12

37
57

12
37

57
/

12
37

57
12

37
57

77
1K

,6
M

(2
1.
74

4)
(2
67

.3
84

)
12

37
38

.4
(2
75

.4
39

)
(4
2.
34

9)
(6
0.
32

6)

so
c/
so
c-
fli
ck
r

16
65

52
16

65
52

16
65

52
16

65
52

16
65

52

51
4K

,3
M

(2
.0
02

)
(1
1.
66

1)
(9
6.
14

9)
(3
.2
37

)
(4
.4
71

)

so
c/
so
c-
fli
xs
te
r

47
68

5
47

68
5

47
68

5
47

68
5

47
68

5

123

946 Journal of Combinatorial Optimization (2020) 39:933–954

Ta
bl
e
1

co
nt
in
ue
d

G
ra
ph

s
R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

|V
|,
|E
|

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

3M
,8

M
(5
.4
98

)
(1
6.
95

)
(1
88

.1
61

)
(6
.6
74

)
(5
.0
06

)

so
c/
so
c-
Fo

ur
Sq

ua
re

45
98

2
45

98
2

45
98

2
45

98
2

45
98

2

63
9K

,3
M

(5
.9
15

)
(9
9.
32

5)
(2
1.
65

7)
(1
68

.8
32

)
(1
4.
52

3)

so
c/
so
c-
go
w
al
la

30
22

6
30

22
6

30
22

6
30

22
6/

30
22

6

19
7K

,9
50

K
(2
.8
51

)
(3
7.
03

8)
(2
6.
35

8)
29

46
6.
4(
39

0.
04

5)
(3
47

.0
44

)

so
c/
so
c-
la
st
fm

11
26

6
11

26
6

11
26

6
11

26
6

11
26

6

1M
,5

M
(8
.8
91

)
(1
2.
43

9)
(1
18

.1
35

)
(3
4.
96

6)
(2
4.
43

8)

so
c/
so
c-
liv

ej
ou
rn
al

22
89

99
3

22
89

99
3

21
57

82
7/

22
89

99
3/

22
89

99
3/

4M
,2

8M
(1
9.
13

9)
(1
06

.8
25

)
12

47
88

3.
3(
48

5.
84

9)
21

34
98

1.
8(
37

8.
91

7)
22

12
48

7.
4(
36

5.
10

9)

so
c/
so
c-
or
ku

t
10

55
49

/
10

55
49

/
N
/A
/

10
55

49
/

10
55

49
/

3M
,1

06
M

10
54

75
(4
75

.1
55

)
99

30
5.
1(
43

5.
90

7)
N
/A

(N
/A

)
97

56
8.
7(
23

3.
93

)
96

30
4.
1(
27

2.
13

8)

so
c/
so
c-
po
ke
c

38
20

2
38

20
2

38
20

2/
38

20
2/

38
20

2

2M
,2

2M
(4
4.
29

9)
(1
23

.9
1)

29
16

6.
9(
41

1.
25

7)
36

94
2.
1(
47

7.
04

)
(4
91

.2
17

)

so
c/
so
c-
tw

itt
er
-f
ol
lo
w
s

16
25

16
25

16
25

16
25

16
25

40
5K

,7
13

K
(1
.0
03

)
(3
.1
62

)
(3
2.
84

6)
(2
.9
44

)
(1
.9
34

)

te
c/
te
ch
-a
s-
sk
itt
er

17
99

15
17

99
15

17
99

15
17

99
15

17
99

15

2M
,1

1M
(1
0.
25

)
(6
4.
88

1)
(1
13

.9
58

)
(8
4.
34

1)
(7
7.
63

6)

te
m
/s
cc
_r
ea
lit
y

76
64

96
65

76
64

96
65

76
64

96
65

76
64

96
65

/
76

64
96

65

7K
,5

M
(4
4.
37

7)
(5
6.
34

5)
(1
9.
30

2)
76

37
28

57
(3
93

.6
9)

(3
93

.2
52

)

te
m
/s
cc
_r
et
w
ee
t-
cr
aw

l
19

64
8

19
64

8
19

64
8/

19
64

8
19

64
8

1M
,2

4K
(0
.0
59

)
(0
.4
62

)
19

12
6.
4(
34

0.
88

7)
(0
.2
7)

(0
.2
61

)

123

Journal of Combinatorial Optimization (2020) 39:933–954 947

Ta
bl
e
1

co
nt
in
ue
d

G
ra
ph

s
R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

|V
|,
|E
|

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

te
m
/s
cc
_t
w
itt
er
-c
op

en
16

91
22

30
16

91
22

30
16

91
22

30
16

91
22

30
16

91
22

30

9K
,4

74
K

(0
.4
7)

(7
.9
61

)
(1
.6
56

)
(4
0.
28

3)
(2
7.
56

)

w
eb
/w

eb
-i
t-
20

04
93

08
69

1
93

08
69

1
93

08
69

1
93

08
69

1
93

08
69

1

50
9K

,7
M

(2
.9
39

)
(1
0.
11

5)
(9
8.
14

)
(6
.5
31

)
(5
.5
42

)

w
eb
/w

eb
-w

ik
ip
ed
ia
20

09
46

83
2

46
83

2
46

83
2/

46
83

2/
46

83
2

2M
,5

M
(4
.1
83

)
(1
8.
64

5)
46

78
9.
7(
18

4.
19

2)
46

82
2.
6(
36

0.
34

6)
(2
18

.1
43

)

123

948 Journal of Combinatorial Optimization (2020) 39:933–954

Ta
bl
e
2

E
xp

er
im

en
ta
lr
es
ul
ts
on

13
9
gr
ap
hs

fr
om

ne
tw
or
k
re
po

si
to
ry

G
ra
ph

R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

ca
te
go

ry
#m

ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

(#
gr
ap
h)

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

bi
o/
bi
o(
4)

4/
4(
0.
01

)
4/
4(
0.
29

)
4/
4(
0.
01

)
4/
4(
0.
01

)
4/
4(
0.
01

)

co
l/c

a(
13

)
13

/1
3(
2.
70

)
13

/1
3(
25

.8
4)

13
/1
3(
25

.2
7)

13
/1
3(
8.
98

)
13

/1
3(
7.
39

)

fb
/s
oc
fb
(1
8)

18
/1
8(
9.
21

)
18

/1
7(
22

.7
0)

17
/1
5(
10

3.
67

)
18

/1
8(
17

.6
0)

18
/1
8(
21

.0
2)

in
f/
in
f(
4)

4/
4(
19

.0
1)

4/
4(
24

.4
2)

2/
2(
42

5.
74

)
3/
3(
19

5.
78

)
3/
3(
19

4.
75

)

in
t/i
a(
9)

9/
9(
0.
02

)
9/
9(
0.
45

)
9/
9(
0.
14

)
9/
9(
0.
12

)
9/
9(
0.
14

)

re
c/
re
c(
1)

1/
1(
0.
01

)
1/
1(
0.
43

)
1/
1(
29

.8
5)

1/
1(
0.
52

)
1/
1(
0.
53

)

re
t/r
t(
3)

3/
3(
2.
68

)
3/
3(
7.
05

)
3/
2(
50

.5
2)

3/
2(
38

.4
5)

3/
3(
33

.7
3)

sc
i/s
c(
8)

8/
8(
2.
36

)
8/
8(
15

.5
2)

8/
5(
18

4.
72

)
8/
8(
32

.1
2)

8/
8(
34

.1
0)

so
c/
so
c(
23

)
23

/2
3(
25

.8
4)

23
/2
2(
51

.4
1)

21
/1
9(
11

7.
54

)
23

/1
9(
76

.2
8)

23
/2
1(
69

.6
6)

te
c/
te
ch
(7
)

7/
7(
1.
52

)
7/
7(
9.
75

)
7/
7(
17

.5
9)

7/
7(
13

.4
0)

7/
7(
12

.6
3)

te
m
/s
cc
(3
7)

37
/3
7(
1.
25

)
37

/3
7(
2.
06

)
37

/3
6(
10

.6
6)

37
/3
6(
12

.1
8)

37
/3
7(
11

.6
8)

w
eb
/w

eb
(1
2)

12
/1
2(
0.
96

)
12

/1
2(
4.
06

)
12

/1
1(
25

.9
1)

12
/1
1(
31

.6
4)

12
/1
2(
19

.8
4)

su
m
m
ar
y(
13

9)
13

9/
13

9(
6.
95

)
13

9/
13

7(
17

.0
4)

13
4/
12

4(
65

.4
0)

13
8/
13

1(
30

.7
1)

13
8/
13

6(
28

.7
1)

123

Journal of Combinatorial Optimization (2020) 39:933–954 949

Ta
bl
e
3

C
om

pa
ra
tiv

e
re
su
lts

of
R
eC

on
SL

S,
C
E
R
S,

L
SM

R
,L

SC
C
an
d
L
SC

C
+
B
M
S
on

re
al
w
or
ld

gr
ap
hs

fr
om

K
O
N
E
C
T

G
ra
ph

s
R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

|V
|,
|E
|

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

A
m
az
on

-M
D
S

39
51

39
51

39
51

39
51

39
51

33
5K

,9
26

K
(0
.5
9)

(3
.0
75

)
(1
61

.8
79

)
(2
3.
12

3)
(7
.9
29

)

C
at
st
er
-f
ri
en
ds
hi
ps

32
91

20
32

91
20

/
32

91
20

32
91

20
/

32
91

20

15
0K

,5
M

(5
5.
54

5)
32

90
24

(4
11

.0
39

)
(2
3.
76

2)
32

90
72

(2
33

.7
08

)
(2
57

.4
92

)

D
B
L
P-
co
-a
ut
ho

rs
hi
p

63
34

43
63

34
43

63
34

43
63

34
43

63
34

43

31
7K

,1
M

(0
.5
4)

(2
.3
2)

(1
4.
13

)
(1
.1
34

)
(1
.0
23

)

D
og

st
er
-f
ri
en
ds
hi
ps

92
96

9
92

96
9/

92
96

9/
92

96
9/

92
96

9/

42
7K

,9
M

(6
4.
33

8)
88

92
7.
2(
29

9.
00

9)
92

62
6.
8(
32

7.
27

5)
92

37
3.
6(
40

7.
09

5)
91

77
8.
2(
31

3.
70

7)

D
ou

ba
n

49
95

49
95

49
95

49
95

49
95

15
5K

,3
27

K
(0
.1
92

)
(0
.7
41

)
(4
.4
88

)
(0
.1
55

)
(0
.1
53

)

Fa
ce
bo

ok
-f
ri
en
ds
hi
ps

47
63

9
47

63
9

47
63

9
47

63
9

47
63

9

64
K
,8

17
K

(0
.5
15

)
(3
.6
11

)
(5
.6
2)

(5
.3
93

)
(4
.6
41

)

Fa
m
ily

lin
ks

67
58

84
03

67
58

84
03

67
58

84
03

67
58

84
03

/
67

58
84

03

62
4K

,1
6M

(1
5.
26

6)
(2
87

.9
85

)
(4
2.
71

9)
61

94
15

84
.2
(2
42

.3
74

)
(4
71

.8
63

)

Fl
ic
kr

16
50

07
89

16
50

07
89

16
50

07
89

16
50

07
89

16
50

07
89

10
6K

,2
M

(1
.0
45

)
(7
.8
88

)
(2
.8
7)

(1
3.
23

2)
(1
1.
50

9)

Fl
ic
kr
-l
in
ks

47
63

72
47

63
72

/
47

63
72

/
47

63
72

47
63

72

2M
,1

6M
(5
8.
17

8)
47

22
12

.8
(4
00

.2
55

)
47

07
82

.4
(1
17

.7
41

)
(3
02

.1
57

)
(1
89

.1
03

)

Fl
ix
st
er

51
21

5
51

21
5

51
21

5
51

21
5

51
21

5

3M
,8

M
(6
.0
43

)
(1
7.
21

)
(1
21

.3
39

)
(4
.6
69

)
(6
.1
)

123

950 Journal of Combinatorial Optimization (2020) 39:933–954

Ta
bl
e
3

co
nt
in
ue
d

G
ra
ph

s
R
eC

on
SL

S
C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

|V
|,
|E
|

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

W
m
ax
/W

av
g

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

G
ow

al
la

29
41

0
29

41
0

29
41

0
29

41
0

29
41

0/

19
7K

,9
50

K
(2
.6
84

)
(9
2.
02

6)
(2
3.
79

)
(1
92

.2
97

)
28

72
5.
3(
16

4.
25

8)

H
yv
es

15
43

0
15

43
0

15
43

0
15

43
0

15
43

0

1M
,3

M
(1
.8
29

)
(8
.3
84

)
(7
2.
91

2)
(1
.7
49

)
(2
.3
79

)

L
iv
ej
ou

rn
al
-l
in
ks

64
26

16
0

64
26

16
0/

62
63

33
9/

64
26

16
0/

64
26

16
0/

5M
,4

9M
(3
5.
52

5)
64

23
12

8.
2(
52

2.
14

6)
44

48
62

5(
36

8.
74

)
63

38
08

8.
8(
47

1.
45

5)
61

32
51

2.
6(
46

9.
73

1)

O
rk
ut

13
14

52
13

14
52

/
N
/A
/

13
14

52
13

14
52

/

3M
,1

17
M

(2
72

.4
05

)
12

55
61

.2
(4
25

.7
72

)
N
/A

(N
/A

)
(3
69

.8
5)

12
99

53
.3
(3
89

.9
09

)

Te
xa
s

11
10

11
10

11
10

11
10

11
10

1M
,2

M
(1
.2
16

)
(3
.1
72

)
97

0.
8(
32

8.
65

7)
(7
.7
03

)
(7
.5
06

)

W
or
dN

et
60

25
1

60
25

1
60

25
1

60
25

1
60

25
1

14
6K

,6
57

K
(0
.3
6)

(1
.8
67

)
(2
8.
35

1)
(6
.6
11

)
(4
.8
72

)

Y
ou

T
ub

e
20

18
5

20
18

5
20

18
5

20
18

5
20

18
5/

3M
,9

M
(2
4.
62

7)
(2
95

.5
92

)
(2
16

.0
41

)
(3
21

.9
44

)
19

84
3.
8(
42

7.
54

)

Y
ou

tu
be
-f
ri
en
ds
hi
p

14
64

8
14

64
8

14
64

8
14

64
8

14
64

8

1M
,3

M
(1
.4
21

)
(1
1.
37

9)
(1
1.
39

2)
(3
.0
92

)
(2
.2
64

)

123

Journal of Combinatorial Optimization (2020) 39:933–954 951

Ta
bl
e
4

E
xp

er
im

en
ta
lr
es
ul
ts
of

R
eC

on
SL

S,
C
on

SL
S,

C
E
R
S,

L
SM

R
,L

SC
C
an
d
L
SC

C
+
B
M
S
on

al
lt
he

gr
ap
hs

G
ra
ph

R
eC

on
SL

S
C
on

SL
S

C
E
R
S

L
SM

R
L
SC

C
L
SC

C
+
B
M
S

ca
te
go

ry
#m

ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

#m
ax
/#
av
g

(#
gr
ap
h)

(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)
(t
im

e)

re
po

si
to
ry
(1
39

)
13

9/
13

9(
6.
95

)
13

9/
13

7(
10

.4
1)

13
9/
13

7(
17

.0
4)

13
4/
12

4(
65

.4
0)

13
8/
13

1(
30

.7
1)

13
8/
13

6(
28

.7
1)

ko
ne
ct
(1
8)

18
/1
8(
30

.1
3)

18
/1
8(
33

.3
1)

18
/1
3(
15

5.
19

)
18

/1
3(
15

9.
54

)
18

/1
4(
14

4.
87

)
18

/1
3(
15

1.
78

)

su
m
m
ar
y(
15

7)
15

7/
15

7(
9.
61

)
15

7/
15

5(
13

.0
4)

15
7/
15

0(
32

.8
8)

15
2/
13

7(
76

.1
9)

15
6/
14

5(
43

.8
0)

15
6/
14

9(
42

.8
2)

123

952 Journal of Combinatorial Optimization (2020) 39:933–954

can see that ReConSLS gives the best performance on all the graphs and ConSLS is the
second best solver. In terms of solution quality, ReConSLS gives the best cliqueweight
and best averaged clique weight on all of them. In terms of running time, the averaged
running time for ReConSLS of finding the largest clique weight is 9.61, and the figure
for ConSLS, CERS, LSMR, LSCC and LSCC+BMS is 13.04, 32.88, 76.19, 43.80
and 42.82, respectively. The comparison between ReConSLS and ConSLS indicates
the effectiveness of the graph reduction algorithm. The comparison between ConSLS
and other competitors shows that the techniques utilized in clique construction phase
and stochastic local search phase are efficient.

5 Conclusions and future work

In this paper, we present an effective local search algorithm named ReConSLS, which
works in three phases, i.e. clique construction, stochastic local search and graph reduc-
tion. We also proposed a new upper bound function for edge-weighted graphs to
improve the performance of graph reduction. Experiments on real-world large graphs
demonstrate that ReConSLS outperforms other competitors in terms of solution qual-
ity and running time on majority of testing graphs. Furthermore, we remove the graph
reduction algorithm from ReConSLS, resulting in an alternative algorithm named
ConSLS. We conducted experiments to compare ConSLS against ReConSLS, CERS,
LSMR, LSCC and LSCC+BMS, and the related results show that ConSLS is the sec-
ond best solver following ReConSLS, indicating the effectiveness of our upper bound
function and the techniques utilized in the clique construction phase and the stochastic
local search phase.

For future work, we would like to design more efficient graph reduction algorithm,
as well as heuristics applied to MEWCP.

Acknowledgements This work is partially supported by the National Key Research and Development
ProgramofChina underGrant 2017YFB0202502. ShaoweiCai is supported byYouth Innovation Promotion
Association, Chinese Academy of Sciences (No. 2017150).

References

Abramé A, Habet D, Toumi D (2017) Improving configuration checking for satisfiable random k-sat
instances. Ann Math Artif Intell 79(1–3):5–24

Alidaee B, Glover F, Kochenberger G, Wang H (2007) Solving the maximum edge weight clique problem
via unconstrained quadratic programming. Eur J Oper Res 181(2):592–597

Balasundaram B, Butenko S (2006) Graph domination, coloring and cliques in telecommunications. In:
ResendeMGC, Pardalos PM (eds)Handbook of optimization in telecommunications. Springer, Boston

Ballard DH, Brown CM (1982) Computer vision. Prenice-Hall, Englewood Cliffs
Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem 1. Algorithmica

29(4):610–637
BenlicU,Hao JK (2013)Breakout local search formaximumclique problems. ComputOperRes 40(1):192–

206
Cai S (2015) Balance between complexity and quality: local search for minimum vertex cover in massive

graphs. In: Proceedings of IJCAI 2015, pp 747–753
Cai S, Su K (2012) Configuration checking with aspiration in local search for sat. In: AAAI

123

Journal of Combinatorial Optimization (2020) 39:933–954 953

Cai S, Su K (2013) Local search for boolean satisfiability with configuration checking and subscore. Artif
Intell 204:75–98

Cai S, Lin J (2016) Fast solving maximum weight clique problem in massive graphs. In: Proceedings of
IJCAI 2016, pp 568–574

Cai S, Su K, Sattar A (2011) Local search with edge weighting and configuration checking heuristics for
minimum vertex cover. Artif Intell 175(9–10):1672–1696

Cai S, Su K, Luo C, Sattar A (2013) NuMVC: an efficient local search algorithm for minimum vertex cover.
J Artif Intell Res 46:687–716

Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett
9(6):375–382

Fan Y, Li N, Li C, Ma Z, Latecki LJ, Su K (2017a) Restart and random walk in local search for maximum
vertex weight cliques with evaluations in clustering aggregation. In: Proceedings of international joint
conference on artificial intelligence (IJCAI), pp 622–630

Fan Y, Ma Z, Su K, Li C, Rao C, Liu RH, Latecki L (2017b) A local search algorithm for the maximum
weight clique problem in large graphs. In: 29rd IEEE international conference on tools with artificial
intelligence (ICTAI) 2017. IEEE, pp 1099–1104

Fang Z, Li CM,QiaoK, FengX,XuK (2014) Solvingmaximumweight clique usingmaximum satisfiability
reasoning. In: Proceedings of the twenty-first European conference on artificial intelligence. IOSPress,
pp 303–308

Fomeni FD (2017) A new family of facet defining inequalities for the maximum edge-weighted clique
problem. Optim Lett 11(1):47–54

Gouveia L, Martins P (2015) Solving the maximum edge-weight clique problem in sparse graphs with
compact formulations. EURO J Comput Optim 3(1):1–30

Jiang H, Li CM, Manya F (2017) An exact algorithm for the maximum weight clique problem in large
graphs. In: AAAI, pp 830–838

Karp RM (1972) Reducibility among combinatorial problems. J Symb Logic 40(4):618–619
Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international con-

ference on world wide web. ACM, pp 1343–1350
Li CM, Quan Z (2010) An efficient branch-and-bound algorithm based on maxsat for the maximum clique

problem. In: AAAI, vol 10, pp 128–133
Li CM, Fang Z, Xu K (2013) Combining maxsat reasoning and incremental upper bound for the maxi-

mum clique problem. In: 2013 IEEE 25th international conference on tools with artificial intelligence
(ICTAI), pp 939–946. IEEE

Li R, Wu X, Liu H, Wu J, Yin M (2018) An efficient local search for the maximum edge weighted clique
problem. IEEE Access 6:10743–10753

Luo C, Su K, Cai S (2012) Improving local search for random 3-SAT using quantitative configuration
checking. In: Proceedings of ECAI 2012, pp 570–575

Luo C, Cai S, Su K, Wu W (2015a) Clause states based configuration checking in local search for satisfia-
bility. IEEE Trans Cybern 45(5):1028–1041

Luo C, Cai S, WuW, Jie Z, Su K (2015b) CCLS: an efficient local search algorithm for weighted maximum
satisfiability. IEEE Trans Comput 64(7):1830–1843

Luo C, Cai S, Su K, Huang W (2017) CCEHC: an efficient local search algorithm for weighted partial
maximum satisfiability. Artif Intell 243:26–44

Park K, Lee K, Park S (1996) An extended formulation approach to the edge-weighted maximal clique
problem. Eur J Oper Res 95(3):671–682

Pullan W (2006) Phased local search for the maximum clique problem. J Comb Optim 12(3):303–323
PullanW (2008) Approximating the maximum vertex/edge weighted clique using local search. J Heuristics

14(2):117–134
Pullan W, Hoos HH (2006) Dynamic local search for the maximum clique problem. J Artif Intell Res

25:159–185
Pullan W, Mascia F, Brunato M (2011) Cooperating local search for the maximum clique problem. J

Heuristics 17(2):181–199
Rossi RA, Ahmed NK (2014) Coloring large complex networks. Soc Netw Anal Min 4(1):228
San Segundo P, Rodríguez-Losada D, Jiménez A (2011) An exact bit-parallel algorithm for the maximum

clique problem. Comput Oper Res 38(2):571–581

123

954 Journal of Combinatorial Optimization (2020) 39:933–954

Shimizu S, Yamaguchi K, Masuda S (2018) A branch-and-bound based exact algorithm for the maximum
edge-weight clique problem. In: International conference on computational science/intelligence &
applied informatics. Springer, pp 27–47

Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum clique with
computational experiments. J Global Optim 37(1):95–111

Tomita E, Seki T (2003) An efficient branch-and-bound algorithm for finding a maximum clique. In:
International conference on discrete mathematics and theoretical computer science, pp 278–289

Wang Y, Cai S, Yin M (2016) Two efficient local search algorithms for maximum weight clique problem.
In: Proceedings of AAAI 2016, pp 805–811

Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight clique problem.
Ann Oper Res 196(1):611–634

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Yi Chu1,2 · Boxiao Liu1,2 · Shaowei Cai3 · Chuan Luo4,5 · Haihang You1

Yi Chu
chuyi@ict.ac.cn

Boxiao Liu
liuboxiao@ict.ac.cn

Shaowei Cai
caisw@ios.ac.cn

Chuan Luo
chuanluosaber@gmail.com

1 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, China

4 Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

5 Microsoft Research, Beijing, China

123

http://orcid.org/0000-0003-4681-7414

	An efficient local search algorithm for solving maximum edge weight clique problem in large graphs
	Abstract
	1 Introduction
	1.1 Main contributions
	1.2 Paper structure

	2 Preliminaries
	2.1 Basic operations and scoring functions
	2.2 Strong configuration checking

	3 The ReConSLS algorithm
	3.1 The framework of ReConSLS
	3.2 Graph reduction
	3.3 Clique construction
	3.4 Stochastic local search

	4 Experimental evaluations
	4.1 The benchmarks
	4.2 Experimental setup
	4.3 Experimental results
	4.3.1 Experimental results on graphs from network repository
	4.3.2 Experimental results on graphs from KONECT
	4.3.3 The effectiveness of the graph reduction algorithm and the ConSLS algorithm

	5 Conclusions and future work
	Acknowledgements
	References

