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Abstract
In a minimum partial set multi-cover problem (MinPSMC), given an element set E , a
collectionof subsetsS ⊆ 2E , a costwS on each set S ∈ S, a covering requirement re for
each element e ∈ E , and an integer k, the goal is to find a sub-collectionF ⊆ S to fully
cover at least k elements such that the cost ofF is as small as possible, where element
e is fully covered byF if it belongs to at least re sets ofF . On the application side, the
problem has its background in the seed selection problem in a social network. On the
theoretical side, it is a natural combination of the minimum partial (single) set cover
problem (MinPSC) and the minimum set multi-cover problem (MinSMC). Although
both MinPSC and MinSMC admit good approximations whose performance ratios
match those lower bounds for the classic set cover problem, previous studies show
that theoretical study on MinPSMC is quite challenging. In this paper, we prove that

MinPSMC cannot be approximated within factor O(n
1

2(log log n)c ) for some constant c
under the ETH assumption. Furthermore, assuming rmax is a constant, where rmax =
maxe∈E re is the maximum covering requirement and f is the maximum number of
sets containing a common element, we present a primal-dual algorithm for MinPSMC
and show that its performance ratio is O(

√
n).We also improve the ratio for a restricted

version of MinPSMC which possesses a graph-type structure.
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1 Introduction

In this paper, we study approximation algorithms for the minimum partial set multi-
cover problem whose formal definition is given as follows.

Definition 1.1 (Minimum Partial Set Multi-Cover (MinPSMC)) Given an element set
E consisting ofn elements, a collection of subsetsS : 2E �→ R

+, a nonnegativeweight
wS for each subset S ∈ S, a covering requirement re for each element e ∈ E , and
an integer k ≤ n, the MinPSMC problem is to find a minimum weight sub-collection
F ⊆ S such that at least k elements are fully covered by F , where an element e is
fully covered by F means that e is contained in at least re sets of F , and the weight
of sub-collection F is w(F) = ∑

S∈F wS . An instance of MinPSMC is denoted as
(E,S, w, r , k).

In particular, when re ≡ 1, then the MinPSMC problem is the minimum partial set
cover problem (MinPSC), when k = n, then the MinPSMC problem is the minimum
set multi-cover problem (MinSMC). In this paper, it is always assumed that picking
all sets will fully cover all elements.

The study of the MinPSMC problem is motivated by a seed selection problem in a
social network. Social network is an important medium for the spread of information
and opinions. How information is spread depends on the structure of the network and
how opinions are spread depends on the mechanism of influence. One of the most
important topics people concern about is to which extent an opinion can be accepted.
Following the seminal work of Kempe et al. (2003) on the influence maximization
problem, there are a huge body of studies in this field.Most of the studies are on various
probabilistic spreading models. One widely studied model is the linear threshold
model in which a node is influenced only when the ratio between the number of
his influenced neighbors and the number of all his neighbors exceeds a threshold,
where the threshold function on the nodes is distributed uniformly and independently
in [0, 1]. Good performance ratios were achieved by exploring the submodularity
of the influence function (Kempe et al. 2003, 2005). One may be wondering about
a deterministic model in which the threshold function is predetermined. Previous
studies show that researches on such a deterministic model is very hard. In fact,
Chen (2009) proved that under such an influence mechanism, the minimum seeding
problem, the goal of which is to select the minimum number of initially selected nodes
(called seeds) to influence all nodes, does not admit an O(2log

1−ε n)-approximation
unless N P ⊆ DT IME(n polylog(n)), where n is the number of nodes in the network.
However, if one only considers the minimum one-step seeding problem, the goal of
which is to select the minimum number of seeds to influence all the people in the
network in one time slot, then the problem is a special case of the MinSMC problem
(see the explanation in Sect. 1.1), and thus admits good approximations. In the real
world, because of economic considerations, it is often more cost-effective to influence
only a fraction of people. Such a consideration leads to the minimum partial seeding
problem, which is a special case of the MinPSMC problem.

TheMinPSMCproblem is a combination of theMinSMCproblem and theMinPSC
problem. There are a lot of studies on MinPSC and MinSMC, achieving tight perfor-
mance ratios matching those lower bounds for the classic set cover problem. However,
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the study on MinPSMC is very rare. According to recent studies (Ran et al. 2017a, b),
this problem is quite challenging theoretically.

1.1 Related works

The minimum one-step seeding problem is to select the minimum number of seeds to
influence all the people in one time slot. This problem is also known as the minimum
positive dominating set problem (MinPDS) in Dinh et al. (2014) which can be defined
as follows: given a graph G = (V , E), a constant 0 < ρ ≤ 1, the goal is to find a node
set D ⊆ V with the minimum size such that every vertex v in V has at least 	ρd(v)

neighbors in D, where d(v) is the degree of node v in G. It can be viewed as a special
case of MinSMC by setting E = V (G), S = {NG(v) : v ∈ V } where NG(v) is the set
of neighbors of v in G, and rv = 	ρd(v)
. Wang et al. (2009, 2011) proved that the
MinPDS problem is APX-hard and proposed a greedy algorithm with performance
ratio H(�), where � is the maximum degree of the graph and H(�) = ∑�

i=1 1/i is
the Harmonic number. The same ratio was obtained by Dinh et al. (2014) by observing
the relation between MinPDS and MinSMC.

The minimum set cover problem (MinSC) was one of the 21 problems shown to
be NP-hard in Karp’s seminal paper (Karp 1972). Feige (1996) proved that unless
N P ⊆ DT IME

(
nO(log log n)

)
, MinSC does not admit performance ratio ρ ln n for

any 0 < ρ < 1, where n is the number of elements. Dinur and Steurer (2014) proved
that this lower bound holds if P �= N P . For the cardinality version ofMinSC, Johnson
(1974) andLovász (1975) obtained a greedy H(�)-approximation algorithm,where�

is the maximum cardinality of a set and H(�) = ∑�
i=1 1/i is the Harmonic number.

The same performance ratio was obtained for the weighted version of MinSC by
Chvatal (1979). Another well-known performance ratio forMinSC is f , the maximum
number of sets containing a common element (Vazirani 2001), which can be achieved
by either an LP rounding algorithm (Hochbaum 1982) or a local ratio method (Bar-
Yehuda and Even 1985). By Khot and Regev (2008), ratio f is also best possible.

For MinSMC, Vazirani (2001) showed that a greedy algorithm achieves perfor-
mance ratio H(n) using dual fitting analysis. The same performance ratiowas obtained
by a primal-dual algorithm presented by Rajagopalan and Vazirani (1993).

The MinPSC problem was first studied by Kearns and Ortiz (2003), and a greedy
algorithm was presented with performance ratio at most 2H(n) + 3. Slavík (1997)
improved the algorithm, obtaining performance ratio min{H(�), H(	pn
)}. Using
primal-dual method, Gandhi et al. (2004) gave an approximation algorithm with per-
formance ratio f . The same performance ratio f was also obtained by Bar-Yehuda
(2001) using local ratio method.

It can be seen from the above related work that both MinSMC and MinPSC have
approximation algorithms with the best possible performance ratios, matching those
lower bounds for the classic set cover problem. On the contrary, study on MinPSMC
seemsverydifficult.Ran et al. (2017a)were thefirst to obtain aguaranteedperformance
ratio for the MinPSMC problem. However, their ratio is meaningful only when the
covering percentage p = k/n is very close to 1. Afterwards, in (2017b), Ran et al.
presented a simple greedy algorithm for MinPSMC achieving performance ratio �.
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Notice that � can be as large as n, and in terms of �, the performance ratio for
MinSMC and MinPSC is of order ln�. In Ran et al. (2017b), the authors presented a
local ratio algorithm for MinPSMC, which reveals a “shock wave” phenomenon: their
performance ratio is f for both MinPSC and MinSMC (which is best possible), but
for MinPSMC, the ratio jumps abruptly to O(n) even when the covering percentage
p is smaller than 1 by a very small constant. In view of these results, the study of
MinPSMC seems to be very challenging.

1.2 Our contribution

In this paper, we obtain the following results for MinPSMC.

(i) We prove a lower bound for MinPSMC by a reduction from the famous densest
l-subgraph problem (DlS). Combining this reduction with the hardness result
for DlS obtained in Manurangsi (2017), under the ETH assumption, MinPSMC

can not be approximated within factor O(n
1

(log log n)c ) for some constant c.
(i i) Under the assumption that the maximum covering requirement rmax =

max{re : e ∈ E} is upper bounded by a constant, we present a primal-dual
algorithm for MinPSMC, obtaining performance ratio B + √

B · n, where
B = max{( fere

) : e ∈ E} and fe is the number of sets containing element e.
To use the primal-dual method, how to design a linear program based on which
a good approximation can be achieved is a crucial step. We propose a novel
integer program the relaxation of which (using Lovász extension Lovász 1975)
is a convex program. Using the fact that for a submodular function, its Lovász
extension coincides with its convex closure, we modify it into a linear program.
Although the linear program has exponential number of variables, we show that
our primal-dual algorithm can be executed in polynomial time, making use of an
efficient algorithm for minimizing a submodular function divided by a modular
function (Fleisher and Iwata 2003). Our algorithm consists of two stages. The
first stage is a primal-dual algorithm. After the first stage, the sub-collection
of sets selected by the last iteration may fully cover much more elements than
required by the remaining covering requirement. Hence the second stage refines
the solution by iteratively implementing submodular minimization algorithms
(Fleisher and Iwata 2003).

(i i i) We improve the performance ratio for a restricted version ofMinPSMC, inwhich
wS ≡ 1, re ≡ 2, and fe ≡ 2, where fe = |{S ∈ S : e ∈ S}| is the frequency of
element e. This restricted version looks more like an optimization problem on a
graph. Making use of structural properties of graphs, the performance ratio can
be improved to 1 + √

2n1/4.

The paper is organized as follows. In Sect. 2, we give the definitions of some
concepts and terminologies which are used in this paper. In Sect. 3, we prove a lower
bound forMinPSMC. In Sect. 4, we present a primal-dual algorithm forMinPSMCand
provide its performance analysis. In Sect. 5, the performance ratio is improved for the
restricted MinPSMC problem. Section 6 concludes the paper with some discussions
on future work.
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2 Preliminaries

In this section, we introduce some concepts, terminologies, and tools we shall use.

Definition 2.1 (Submodular) For a finite nonempty set V , a set function ρ : 2V �→ R

is submodular if for any subsets X ,Y ⊆ V ,

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ).

An equivalent definition of submodular function is that for any X ⊆ Y ⊆ V and
v /∈ Y ,

�vρ(X) ≥ �vρ(Y ),

where �vρ(X) = ρ(X ∪ {v}) − ρ(X).

Definition 2.2 (Lovász extension) Suppose ρ : 2V �→ R is a set function. The Lovász
extension of ρ is a function ρ̂ : RV �→ R defined as follows. For any vector z ∈ R

V ,
order elements of V as v1, v2, . . . , vn such that 1 = z0 ≥ z1 ≥ z2 ≥ · · · ≥ zn ≥
zn+1 = 0 where zi is the component of z indexed by vi . Let V0 = ∅ and Vi =
{v1, . . . , vi } for i = 1, . . . , n. The value of ρ̂ at z is

ρ̂(z) =
n∑

j=0

(z j − z j+1)ρ(Vj ).

The following result reveals the relationship between submodularity and convexity.

Theorem 2.3 (Lovász 1983) A set function ρ is submodular if and only if its Lovász
extension ρ̂ is a convex function.

Definition 2.4 (Convex Closure) For a set function ρ : 2V �→ R, the convex closure
of ρ is the point-wise highest convex function ρ− : RV �→ R that always lowerbounds
ρ. For any x ∈ R

V , ρ−(x) has the following expression:

ρ−(x)

= min

⎧
⎨

⎩

∑

A⊆V

ρ(A)zA :
∑

A:vi∈A⊆V

zA = xi ,∀vi ∈ V ;
∑

A⊆V

zA = 1; zA ≥ 0, ∀A ⊆ V

⎫
⎬

⎭

(1)

The following result reveals the relationship between Lovász extension and convex
closure.

Theorem 2.5 (Edmonds 1970) If ρ is submodular, then its Lovász extension is the
same as its convex closure.
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To prove a lower bound for MinPSMC, we shall reduce the Densest l-Subgraph
problem to a special case of the MinPSMC problem.

Definition 2.6 (Densest l-Subgraph (DlS)) Given a graph G = (V , E) with |V | = n
and an integer l ≤ n, the DlS problem asks for a vertex subset C on l vertices such
that the subgraph of G induced by C , denoted as G[C], has the maximum number of
edges among all subgraphs of G on l vertices. An instance of DlS is denoted as (G, l).

Definition 2.7 (Minimum Restricted Partial Set Multi-Cover (MinRPSMC)) Min-
RPSMC is a special MinPSMC in which wS ≡ 1, re ≡ 2, and fe ≡ 2, where
fe = |{S ∈ S : e ∈ S}| is the frequency of element e. An instance of MinRPSMC is
denoted as (E,S, k).

The following notations and assumptions will be used in this paper. For a sub-
collection F ⊆ S, denote by C(F) the set of elements fully covered by F . For an
element e ∈ E , let fe be the number of sets containing e, and let f = max{ fe : e ∈ E}.
We assume that re ≤ fe holds for every e ∈ E , since an element e with re > fe can
be removed from consideration. Denote by

B = max
e∈E

(
fe
re

)

. (2)

Notice that B ≤ f rmax . This paper studies the MinPSMC problem under the assump-
tion that rmax is a constant. To avoid ambiguity, we shall use E to denote expectation
in order to distinguish it from the symbol E which denotes the edge set of a graph or
the element set of an MinPSMC instance.

3 Lower bound for MinPSMC

In this section, we prove a lower bound for MinPSMC by a reduction from DlS.

Theorem 3.1 Suppose β is a lower bound for the performance ratio of DlS. Then
√

β
2

is a lower-bound for the performance ratio of MinRPSMC.

Proof We shall show that if MinRPSMC has a polynomial-time γ -approximation,
then DlS has a polynomial-time 2γ 2-approximation.

Given aDlS instance (G, l), for an integer k between 1 and |E |, construct an instance
ofMinRPSMC as follows: the ground set is E ; for each v ∈ V (G), let Sv be the subset
of edges incident with vertex v in G; the collection of sets S = {Sv : v ∈ V (G)}; the
covering requirement is k. Notice that every edge is incident with exactly two vertices,
and thus fe ≡ 2. So, the constructed instance satisfies the frequency requirement of
MinRPSMC.

For any sub-collection of sets F ⊆ S, let vertex set CF = {v : Sv ∈ F}. Then

|CF | = |F |. (3)
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Notice that by re ≡ 2, if an element e is fully covered by F , then both of its two ends
belong to CF , which implies that e corresponds to an edge in G[CF ]. Hence

|E(G[CF ])| = |C(F)|. (4)

Conversely, for each vertex set C ⊆ V (G), let sub-collection FC = {Sv : v ∈ C},
then

|FC | = |C | (5)

and

|C(FC )| = |E(G[C])|. (6)

Assume that C∗ is an optimal solution to DlS and optD = |E(G[C∗])| is the
optimal value, that is, optD is the number of edges in a densest subgraph of G on l
vertices. ��
Claim 1 There exists a vertex set C ′ on l/γ vertices such that G[C ′] has at least
optD/(2γ 2) edges when γ ≤ (l + 1)/2.

We first show that by uniformly randomly picking l
γ
vertices from C∗ to form a

vertex set C ′, the expected number of edges in G[C ′] is at least optD/(2γ 2). In fact,
for each edge e ∈ E(G[C∗]), it belongs to E(G[C ′]) if and only if both of its two

ends are picked. Since there are
(|C∗|

l
γ

)
possible choices of l

γ
vertices and

(|C∗|−2
l
γ

−2

)
of

them include the two ends of edge e, hence the probability that e ∈ E(G[C ′]) is

Pr [e ∈ E(G[C ′])] =
(|C∗|−2

l
γ

−2

)

(|C∗|
l
γ

) =
l
γ
( l
γ

− 1)

|C∗|(|C∗| − 1)
. (7)

Combining this with |C∗| = l and the assumption γ ≤ (l + 1)/2, we have

Pr [e ∈ E(G[C ′])] ≥ 1

2γ 2 .

So, the expected number of edges in G[C ′] is

E[|E(G[C ′])|] =
∑

e∈E(G[C∗])
Pr [e ∈ E(G[C ′])]

≥
∑

e∈E(G[C∗])

1

2γ 2 = 1

2γ 2 |E(G[C∗])| = 1

2γ 2 optD

Then the claim follows from the Pigeon Hole Principle.
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Claim 2 Making use of a γ -approximation algorithm for MinRPSMC for |E | rounds,
a feasible solution C to DlS on graph G can be found such that |E(G[C])|
≥ optD/(2γ 2).

Notice that DlS has a trivial l-approximation algorithm: arbitrarily picking �l/2�
edges, the subgraph induced by the picked edges has at most l vertices; extending it
to a subgraph on exactly l vertices results in a subgraph with at least (l − 1)/2 edges
while an optimal solution has at most l(l−1)

2 edges. So, if l ≤ 2γ 2, then the claim is
true. In the following, we assume that l > 2γ 2. In this case,

γ <
√
l/2 < (l + 1)/2.

SupposeA is a γ -approximation algorithm forMinRPSMC. For k = 1, 2, . . . , |E |,
denote byFk the output of algorithmA on instance (E,S, k/(2γ 2)) andF∗

k an optimal
solution to (E,S, k/(2γ 2)) (we simplify the derivation by regarding k/(2γ 2) as an
integer). It follows from Claim 1 and Eq. (6) that there exists a vertex set C ′ ⊆ V (G)

on l/γ vertices such that

|C(FC ′)| = |E(G[C ′])| ≥ optD
2γ 2 .

Hence FC ′ is a feasible solution to (E,S, optD/(2γ 2)). Making use of Claim 1 and
equalities (3) and (5), we have

|CFoptD
| = |FoptD | ≤ γ |F∗

optD | ≤ γ |FC ′ | = γ |C ′| = γ · l

γ
= l. (8)

Notice that the algorithmA has the following property: for any two integers k1 and
k2 with k1 < k2, |Fk1 | ≤ |Fk2 |. Run algorithm A on instances (E,S, k/(2γ 2)) for
k = 1 up to |E |, and let k∗ be the largest integer satisfying |Fk∗ | ≤ l. By Eqs. (3) and
(4),

|CFk∗ | ≤ l and |E(G[CFk∗ ])| ≥ k∗

2γ 2 .

Since k∗ is the largest index with |Fk∗ | ≤ l and FoptD also satisfies |FoptD | ≤ l (see
inequality (8)), so k∗ ≥ optD . It follows that CFk∗ is a feasible solution to DlS with

|E(G[CFk∗ ])| ≥ optD
2γ 2 .

Then the theorem follows directly from Claim 2. ��
Up to now, the best known performance ratio for DlS is O(n

1
4+ε), where ε > 0 is an

arbitrary real number (Bhaskara et al. 2010). Very recently,Manurangsi (2017) showed

that DlS has no n
1

(log log n)c -approximation assuming the exponential time hypothesis
(ETH), where c > 0 is a constant independent of n. Hence we have the following
corollary.
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Corollary 3.2 MinPSMC cannot be approximated within factor O(n
1

2(log log n)c ) under
the ETH assumption.

4 Primal-dual algorithm

4.1 Linear program for MinPSMC

Before we give the integer program formulation for MinPSMC, we introduce some
notations. For an element e ∈ E , an re-cover set is a sub-collection A ⊆ S with
|A| = re such that e ∈ S for every S ∈ A. Denote by �e the family of all re-cover
sets and � = ∪e∈E�e. The following example illustrates theses concepts.

Example 4.1 Let E = {e1, e2, e3}, S = {S1, S2, S3} with S1 = {e1, e2}, S2 = {e1, e3},
S3 = {e1, e2, e3}, r(ei ) = 2 for i = 1, 2, 3. For this example, �e1 = {A1,A2,A3}
with A1 = {S1, S2}e1,A2 = {S1, S3}e1,A3 = {S2, S3}e1 , �e2 = {A4} with A4 =
{S1, S3}e2 , �e3 = {A5} with A5 = {S2, S3}e3 , and � = {A1, . . . ,A5}.
Remark 4.2 Notice that different elements may have a same collection of sets as an
re-cover set. For the above example, {S1, S3} is an re1 -cover set as well as an re2 -cover
set. In this case, this collection of sets should be viewed as different re-cover sets.
We use superscript in the above example to distinguish them. The idea behind this
definition is that if an re-cover set A ∈ � is taken, then e is fully covered by those
sets in A.

For a sub-family �′ ⊆ �, let

S�′ =
⋃

A∈�′
A

be the sub-collection of S consisting of those sets which belong to some cover set of
�′. For an instance, in the above example, if �′ = {A3,A5}, then S�′ = {S2, S3} (the
superscripts are ignored while taking the union).

Let ρ : 2� �→ R be a function on sub-families of � defined by

ρ(�′) =
∑

S∈S�′
wS (9)

for�′ ⊆ �. For the above example with�′ = {A3,A5}, we have ρ(�′) = wS2 +wS3 .

Lemma 4.3 The function ρ defined in (9) is a nonnegative monotone nondecreasing
submodular function on 2�.

Proof The nonnegativity and the monotonicity are obvious. To show the submodu-
larity, consider two sub-families �1 ⊆ �2 ⊆ � and a cover set B ∈ � \ �2. Since
B \ (⋃A∈�2

A) ⊆ B \ (⋃A∈�1
A), we have

�Bρ(�2) ≥ �Bρ(�1).
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By Definition 2.1, ρ is submodular. ��
The MinPSMC problem can be formulated as an integer program as follows. We

assign a binary variable xA ∈ {0, 1} to each cover set A ∈ � which takes value 1 if
and only if A is selected. A binary variable ye ∈ {0, 1} is assigned to each element
e ∈ E which takes value 1 if and only if e is not fully covered. For an element e ∈ E ,
if there exists at least one re-cover set A ∈ �e with xA = 1, then e is fully covered.
Hence the first constraint of the following integer program indicates that if e is not
fully covered (that is xA = 0 for all A ∈ �e), then ye = 1. The second constraint
indicates that there are at most n − k elements which are not fully covered.

min ρ

⎛

⎝
⋃

A : xA=1

A
⎞

⎠

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

A : A∈�e

xA + ye ≥ 1, ∀e ∈ E,

∑

e∈E
ye ≤ n − k

xA ∈ {0, 1}, ∀A ∈ �,

ye ∈ {0, 1}, ∀e ∈ E,

(10)

The corresponding integer program relaxation is to relax the domain of xA and ye
allowing real numbers between 0 and 1. Since the right hand side of the first constraint
is 1, so the upper bound 1 on xA and ye can be dropped. The objective function is
relaxed to its Lovász extension function ρ̂.

min ρ̂(x)

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

A : A∈�e

xA + ye ≥ 1, ∀e ∈ E,

∑

e∈E
ye ≤ n − k

xA ≥ 0, ∀A ∈ �,

ye ≥ 0, ∀e ∈ E,

(11)

Since ρ is a submodular function, ρ̂ is a convex function by Theorem 2.3. So, (11)
is a convex program. Next, we linearize it.

By Theorem 2.5, ρ̂(x) coincides with the convex closure ρ−(x), which is a solution
to the following linear program (see Definition 2.4):

min
∑

�′ : �′⊆�

ρ(�′)ξ�′

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

∑

�′ : A∈�′
ξ�′ = xA, ∀A ∈ �,

∑
�′⊆� ξ�′ = 1,

ξ�′ ≥ 0, ∀�′ ⊆ �

(12)
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Substituting (12) into (11), we have the following relaxed linear program for
MinPSMC:

min
∑

�′ : �′⊆�

ρ(�′)ξ�′

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

�′ : A∈�′
ξ�′ = xA, ∀A ∈ �,

∑

A : A∈�e

xA + ye ≥ 1, ∀e ∈ E,

∑

e∈E
ye ≤ n − k

ξ�′ ≥ 0, ∀�′ ⊆ �,

xA ≥ 0, ∀A ∈ �,

ye ≥ 0, ∀e ∈ E .

(13)

In obtaining this linear program, we drop off the second constraint of (12) for the
simplicity of the algorithm designed below. Such a drop-off can be viewed as a further
relaxation of the problem, still providing a lower bound for the optimal value of the
original problem.

The dual program of (13) is:

max
∑

e∈E
ue − (n − k)t

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

A : A∈�′
zA ≤ ρ(�′), ∀�′ ⊆ �,

∑

e : A∈�e

ue ≤ zA, ∀A ∈ �,

ue ≤ t, ∀e ∈ E,

ue ≥ 0, ∀e ∈ E,

t ≥ 0

(14)

Remark 4.4 Suppose z ∈ R
� is a vector whose components are indexed by elements

of �. For a sub-family �′ ⊆ �, denote

z(�′) =
∑

A∈�′
zA.

Using such a notation, the first constraint of (14) can be abbreviated as z(�′) ≤ ρ(�′).
For any vector z ∈ P(ρ), sub-family �′ ⊆ � is said to be z-tight if z(�′) = ρ(�′).

Remark 4.5 By Remark 4.2, for every A ∈ �, there exists a unique element e such
that A ∈ �e (we say that A belongs to e, denoted as A � e). For example, consider
set A3 = {S2, S3}e1 and A5 = {S2, S3}e3 in Example 4.1, although they are identical
as sets, they are viewed as different sets in�, which belongs to e1 and e3, respectively.
So, the second constraint of (14) is in fact ue ≤ zA for A � e.
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Remark 4.6 Notice that |�| = ∑
e∈E

( fe
re

) ≤ B|E |. Hence the number of dual variables
in (14) (namely zA for A ∈ �, ue for e ∈ E , and t) is at most (B + 1)|E | + 1, which
is polynomial under the assumption that rmax is a constant.

4.2 The algorithm

Recall that C(F) denotes the set of elements fully covered by sub-collection F ⊆ S.
This notation can be naturally extended for a sub-family of cover sets: for �′ ⊆ �, let
C(�′) = C(S�′) be the set of elements fully covered by �′.

The algorithm is formally described in Algorithm 1. It keeps a feasible solution
({ue}e∈E , {zA}A∈�, t) of program (14) and a sub-family 	 ⊆ �. Initially, all dual
variables are set to be zeros, and 	 is set to be ∅. All dual variables are active at the
beginning. While S	 is not a feasible solution to MinPSMC, the algorithm uniformly
increases active dual variables until a sub-family �′ ⊆ � \ 	 becomes z-tight. We
shall prove later that this process can be accomplished in polynomial time. Then the
algorithm updates 	 ← 	 ∪ �′ and deactivates some dual variables, where a dual
variable is deactivated means that its value will not increase any more. To be more
concrete, when e is newly fully covered by �′, neither ue nor zA (for any A ∈ �e)
can continue to increase their values in latter iterations. Such an operation is executed
iteratively until S	 is a feasible solution to MinPSMC. In the algorithm, we use 	 j

to represent the sub-family 	, set E j to represent the set of elements which are not
fully covered, and family � j to represent the sub-family of cover-sets consisting of
those �e with e not fully covered, at the end of the j th iteration. We also use �( j) to
represent the sub-family �′ which becomes z-tight in the j th iteration. Suppose the
while loop is executed g rounds. One problem is that the last sub-family �(g) might
fully cover too many elements the number of which is much more than required by
the remaining covering requirement after the (g − 1)th iteration. To overcome such
a problem, the algorithm continues to construct another sub-family �̃ satisfying the
remaining covering requirement, and outputs the better solution of 	g−1 ∪ �(g) and
	g−1 ∪ �̃ (notice that the index j in the second while loop, having the value when
the algorithm jumps out of the first while loop, is g). The sub-family �̃ is constructed
by iteratively selecting a cover set minimizing ρ until the union of selected cover sets
satisfies the remaining covering requirement.

Lemma 4.7 The running time of the above algorithm is polynomial.

Proof By Remark 4.6, both |�|, |E | and the number of dual variables are polynomial.
So, to prove the lemma, it suffices to show that line 4 and line 5 of Algorithm 1 can be
accomplished in polynomial time (notice that the number of �′ ⊆ � is exponential).
Notice that the objective to be minimized is a submodular function divided by a
modular function. Such an objective can be minimized in polynomial time (Fleisher
and Iwata 2003). ��
Remark 4.8 For a sub-family �, denote by E(�′) the set of elements indexing those
cover sets of �′. Notice that |C(�′)| might be larger than |E(�′)|. For example, in
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Algorithm 1 PD(E,�, ρ, r , k)
Input: An instance (E, �, ρ, r , k) of MinPSMC.
Output: A sub-collection T fully covering at least k elements.
1: j ← 0, �0 ← �, E0 ← E , 	0 ← ∅.

t ← 0, zA ← 0 for everyA ∈ �0 and ue ← 0 for every e ∈ E .
2: while |C(	 j )| < k do
3: j ← j + 1.

4: α j ← min{ ρ(�′)−z(�′)
|�′| : |�′| ≥ 1,�′ ⊆ � j−1}.

5: �( j) ← argmin{ ρ(�′)−z(�′)
|�′| : |�′| ≥ 1,�′ ⊆ � j−1}.

6: t ← t + α j
7: For each A ∈ � j−1, zA ← zA + α j
8: For each e ∈ E j−1, ue ← ue + α j .

9: 	 j ← 	 j−1 ∪ �( j).
10: E j ← E j−1 \ {e : e is newly fully covered}
11: � j ← � j−1 \ {�e : e is newly fully covered}
12: end while
13: �̃ ← ∅.
14: while |C(	 j−1 ∪ �̃)| < k do
15: A ← argminA∈� j−1

ρ(A)

16: �̃ ← �̃ ∪ A
17: � j−1 ← � j−1 \ {�e : e is newly fully covered}
18: end while
19: � ← argmin{ρ(	 j−1 ∪ �( j)), ρ(	 j−1 ∪ �̃)}
20: Output T ← S�

Example 4.1, if �′ = {A3}, then E(�′) = {e1} while C(�′) = {e1, e3}. However, the
sub-family �( j) found in line 5 of Algorithm 1 always satisfies

|C(�( j))| = |E(�( j))|. (15)

In fact, notice that for any cover set A ∈ � j−1, the dual variable zA is active. Hence
zA = t for any A ∈ � j−1. It follows that

ρ(�′) − z(�′)
|�′| = ρ(�′)

|�′| − t . (16)

So, for two sub-families�′ and�′′ withρ(�′) = ρ(�′′), the onewith larger cardinality
will be preferred (since line 5 chooses the one with the minimum ratio). Hence

�( j) must include all cover sets which are subsets of S�( j) . (17)

In order words, if e is newly covered by S�( j) , then there is an re-cover set which is
a subset of S�( j) , adding such an re-cover set into �( j) will not change the value of
ρ(�( j)) while the cardinality of |�( j)| will be larger. Consider Example 4.1, if we
choose �′ = {A3}, then S�′ = {S2, S3}, which can fully cover e1 and e3. In this case,
adding A5 = {S2, S3}e3 into �′ will lead to a smaller ratio. Then claim (15) follows
from (17).
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4.3 Performance analysis

First, we show that throughout the algorithm, a dual feasible solution is maintained.

Lemma 4.9 Algorithm 1 maintains the feasibility of (14).

Proof Notice that when a sub-family �′ becomes z-tight, for every A ∈ �′, zA is
deactivated. Hence

a z-tight set will remain to be z-tight to the end of the algorithm. (18)

For those sub-families which are not z-tight, the choice of α in line 4 guarantees that
the first constraint of (14) is not violated.

Since all active dual variables increase at the same rate, and for any element ewhich
is fully covered in some iteration, ue and every A ∈ �e are deactivated at the same
time (namely, the time when e is newly fully covered), hence

ue = zA holds for every A ∈ �e throughout of the algorithm. (19)

Combining this with Remark 4.5, the second constraint of (14) holds.
Since ue increases at the same rate as t until it is deactivated, hence ue ≤ t holds

for every element e, and

ue = t for every e which is not fully covered yet. (20)

The third constraint of (14) is maintained. The lemma is proved. ��
Denote by

(
{u( j)

e }e∈E , {z( j)A }A∈�, t ( j)
)
the dual feasible solution after the j th iter-

ation.

Lemma 4.10 For any index j , the sub-family 	 j satisfies z( j)(	 j ) = ρ(	 j ).

Proof We prove the lemma by induction on j . This is obvious for j = 0 since 	0 = ∅
and ρ(∅) = z(0)(∅) = 0. Assume that j ≥ 1 and the lemma is true for j − 1. In the
j th iteration, a sub-family �( j) is found, and 	 j is set to be 	 j−1 ∪ �( j). Notice that
	 j−1 ∩ �( j) = ∅. By the choice of α j in line 4 and the update of z in line 7, we have

ρ(�( j)) = z( j−1)(�( j)) + α j |�( j)| =
∑

A∈�( j)

(
z( j−1)
A + α j

)
=

∑

A∈�( j)

z( j)A = z( j)(�( j)).

Since zA is deactivated when A is chosen into 	 j−1, we have z
( j)
A = z( j−1)

A for every
A ∈ 	 j−1. Hence

z( j)(	 j−1) = z( j−1)(	 j−1) = ρ(	 j−1),

where the second equality comes from induction hypothesis. It follows that

ρ(	 j−1) + ρ(�( j)) = z( j)(	 j−1) + z( j)(�( j)) = z( j)(	 j ). (21)
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By the feasibility of z( j), we have

z( j)(	 j ) ≤ ρ(	 j ). (22)

By the submodularity of ρ and the observation that 	 j−1 ∩ �( j) = ∅ (and thus
ρ(	 j−1 ∩ �( j)) = 0), we have

ρ(	 j ) = ρ(	 j−1 ∪ �( j)) + ρ(	 j−1 ∩ �( j)) ≤ ρ(	 j−1) + ρ(�( j)). (23)

Combining (21), (22), and (23), we have z( j)(	 j ) = ρ(	 j ). The induction step is
finished and the lemma is proved. ��
Remark 4.11 For any sub-collection of sets F ⊆ S, we can rewrite F as a fam-
ily �F of cover sets. The following example illustrates how this can be done. Let
E = {e1, e2, e3, e4}, S = {S1, S2, S3, S4} with S1 = {e1, e2, e4}, S2 = {e2, e3},
S3 = {e1, e2, e3}, S4 = {e3, e4}, and r(ei ) = 2 for i = 1, 2, 3, 4. For this exam-
ple, A1 = {S1, S3}e1,A2 = {S1, S2}e2 ,A3 = {S1, S3}e2 ,A4 = {S2, S3}e2 ,A5 =
{S2, S3}e3,A6 = {S2, S4}e3,A7 = {S3, S4}e3,A8 = {S1, S4}e4 . If F = {S2, S3, S4},
then �F = {A4,A5,A6,A7}. In general, �F consists of all those cover sets which
are subsets of F .

Theorem 4.12 Algorithm 1 has performance ratio at most B + √
n · B.

Proof Let�(1), . . . , �(g) be the sequence of sub-families of cover sets found by Algo-
rithm 1. Then 	 j = ∪ j

l=1�
(l) for j = 1, . . . , g. Denote by U(	 j ) the set of elements

which are not fully covered by S	 j . Denote by opt the optimal value of the MinPSMC
instance. ��
Claim 1 ρ(	g−1) ≤ B · opt .

For any index j , it can be calculated that

ρ(	 j ) = z( j)(	 j ) =
∑

A∈	 j

z( j)A

=
∑

A∈	 j

∑

e : A�e
u( j)
e

=
∑

e : e∈C(	 j )

u( j)
e · |{A ∈ 	 j : A � e}|

≤ B
∑

e : e∈C(	 j )

u( j)
e

= B

⎛

⎝
∑

e : e∈E
u( j)
e −

∑

e : e∈U(	 j )

u( j)
e

⎞

⎠

= B

(
∑

e : e∈E
u( j)
e − |U(	 j )|t ( j)

)

, (24)
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where the first equality comes from Lemma 4.10; the third equality comes from
remark 4.5 and property (19); the inequality holds because the number of sets belong-
ing to e is at most B; the last equality comes from (20).

In particular, taking j = g − 1 in inequality (24),

ρ(	g−1) ≤ B

(
∑

e : e∈E
u(g−1)
e − |U(	g−1)|t (g−1)

)

. (25)

Since the algorithm does not jump out of the while loop at the (g − 1)th iteration,
|C(	g−1)| < k and thus |U(	g−1)| > n − k. Combining this with inequality (25) and
the weak duality theorem for linear programs, we have

ρ(	g−1) ≤ B

(
∑

e : e∈E
u(g−1)
e − (n − k)t (g−1)

)

= B · obj (g−1)
D ≤ B · opt,

where obj (g−1)
D is the objective value of dual program (14) for those dual variables

after the (g − 1)th iteration. Claim 1 is proved.

Claim 2 ρ(�(g)) ≤ (n − |C(	g−1)|)
k − |C(	g−1)| · B · opt .

Let � be the family of cover sets constructed from an optimal solution by the
method described in Remark 4.11. Let

�g−1 = � \ 	g−1. (26)

Notice that �g−1 �= ∅, since otherwise � ⊆ 	g−1 which contradicts |C(	g−1)| < k.
In the gth iteration, �(g) is chosen, which means that

ρ(�(g)) − z(g−1)(�(g))

|�(g)| ≤ ρ(�g−1) − z(g−1)(�g−1)

|�g−1| . (27)

By (16) in Remark 4.8, we have

ρ(�(g)) ≤ |�(g)|
|�g−1|ρ(�g−1). (28)

Then Claim 2 follows from the observation that

|�(g)| ≤ B · (n − |C(	g−1)|),
|�g−1| ≥ k − |C(	g−1)|,

ρ(�g−1) ≤ ρ(�) = opt, (29)

where the first inequality holds because there are n − |C(	g−1)| elements which are
not fully covered by 	g−1, and each element is contained in at most B cover sets; the
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second inequality holds because �g−1 fully covers at least k − |C(�g−1)| elements
and each element has at least one cover set in �g−1.

Claim 3 ρ(�̃) ≤ (k − |C(	g−1)|) · opt .
This claim is obvious by observing that the second while loop picks at most k −

|C(	g−1)| cover sets and every cover set picked has cost upper bounded by opt .
Combing Claims 2 and 3, the last sub-family has cost at most

min

{
(n − |C(	g−1)|)
k − |C(	g−1)| · B · opt, (k − |C(	g−1)|) · opt

}

≤ √
n · B · opt . (30)

Then the theorem follows from the combination of inequality (30) and Claim 1. ��

5 Improvement on restrictedMinPSMC

In the restricted problem MinRPSMC, fe ≡ 2 and re ≡ 2, so B = 1 by the definition
of B in (2). Then it follows from Theorem 4.12 that Algorithm 1 has performance ratio
1 + √

n for MinRPSMC. In this section, we present a modified algorithm achieving
performance ratio 1 + √

2n1/4 for MinRPSMC.
This restricted problem can be considered from a graph theoretical point of view.

Since fe ≡ 2, we may regard every set in S as a vertex and every element in E as
an edge which is incident with the two vertices corresponding to the two sets of S
containing e. Denote by G the graph on vertex set S and edge set E under such a point
of view. For a sub-family �′, denote by V�′ the set of vertices corresponding to the
sets in S�′ , and denote by E�′ the edge set of the subgraph of G induced by vertex set
V�′ . Then it can be seen that E�′ is exactly the set of elements fully covered by S�′ .
In other words,

|C(�′)| = |E�′ |. (31)

By the definition of ρ(�′) in (9), and because wS ≡ 1 in this restricted problem,

ρ(�′) = |V�′ |. (32)

The modified algorithm for the restricted problem is presented in Algorithm 2.
Compared with Algorithm 1, instead of outputting the better solution of 	g−1 ∪ �(g)

and 	g−1 ∪ �̃, the modified algorithm outputs the better solution of 	g−1 ∪ �̂ and
	g−1 ∪ �̃, where g is the value of index j when the algorihm jumps out of the first
while loop, and �̂ is obtained from line 13 to line 17. The algorithm uses a parameter

γ =
√

|C(�(g))|
2(k − |C(	g−1)|) . (33)

One question is whether the sub-family �̂ in line 16 of the algorithm exists and can
be found in polynomial time? The following lemma will answer this question.
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Algorithm 2 PD(E,�, ρ, r , k)
Input: An instance (E, �, ρ, r , k) of MinRPSMC.
Output: A sub-collection T fully covering at least k elements.
1: j ← 0, �0 ← �, E0 ← E , 	0 ← ∅.

t ← 0, zA ← 0 for everyA ∈ �0 and ue ← 0 for every e ∈ E .
2: while |C(	 j )| < k do
3: j ← j + 1.

4: α j ← min{ ρ(�′)−z(�′)
|�′| : |�′| ≥ 1,�′ ⊆ � j−1}.

5: �( j) ← argmin{ ρ(�′)−z(�′)
|�′| : |�′| ≥ 1,�′ ⊆ � j−1}.

6: t ← t + α j
7: For each A ∈ � j−1, zA ← zA + α j
8: For each e ∈ E j−1, ue ← ue + α j .

9: 	 j ← 	 j−1 ∪ �( j).
10: E j ← E j−1 \ {e : e is newly fully covered}
11: � j ← � j−1 \ {�e : e is newly fully covered}
12: end while
13: if |C(�( j))| ≤ 2(k − |C(	 j−1)|) then
14: �̂ ← �( j)

15: else
16: �̂ ← a sub-family of �( j) with ρ(�̂) ≤ ρ(�(g))/γ and |C(�̂)| ≥ k − |C(	 j−1)|
17: end if
18: �̃ ← ∅.
19: while |C(	 j−1 ∪ �̃)| < k do
20: A ← argminA∈� j−1

ρ(A)

21: �̃ ← �̃ ∪ A
22: � j−1 ← � j−1 \ {�e : e is newly fully covered}
23: end while
24: � ← argmin{ρ(	 j−1 ∪ �̂), ρ(	 j−1 ∪ �̃)}
25: Output T ← S�

Using the notation in the proof of Theorem 4.12, suppose the first while loop is exe-
cuted g times, and the sub-collections found in line 5ofAlgorithm2are�(1), . . . , �(g).

Lemma 5.1 In the case |C(�(g))| > 2(k − |C(	g−1)|), one can find a sub-family of
cover sets �̂ in polynomial time with ρ(�̂) ≤ ρ(�(g))/γ and |C(�̂)| ≥ k−|C(	g−1)|.
Proof Under the assumption that |C(�(g))| > 2(k − |C(	g−1)|), we have γ > 1. Let
V̂ be the vertex set obtained by uniformly randomly picking |V�(g) |/γ vertices from
V�(g) (we simplify the derivation by regarding |V�(g) |/γ as an integer). Similar to the
proof of Theorem 3.1,

E[|EV̂ |] ≥ |EV
�(g) |

2γ 2 .

where EV̂ represents the set of edges in the subgraph induced by vertex set V̂ .
The construction of vertex set V̂ can be derandomized using the classic method of

conditional expectation satisfying

|V̂ | ≤ |V�(g) |
γ

and |EV̂ | ≥ |EV
�(g) |

2γ 2 . (34)
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Let Ŝ be the sub-collection of sets corresponding to V̂ , and consider the sub-family
of cover sets �̂ which is constructed from Ŝ by the method described in Remark 4.11.
By observations (31) and (32), inequality (34) is in fact

ρ(�̂) ≤ ρ(�(g))

γ
and |C(�̂)| ≥ |C(�(g))|

2γ 2 ≥ k − |C(	g−1)|,

where the last inequality follows from the definition of γ in (33). The lemma is proved.
��

Next, we analyze the performance ratio.

Theorem 5.2 Algorithm 2 has performance ratio at most 1 + √
2n1/4.

Proof Denote by opt the optimal value of theMinRPSMC instance.We estimate ρ(�̂)

and ρ(�̃) as follows. ��
Claim 1 	g−1 ∪ �̂ is a feasible solution to MinRPSMC and

ρ(�̂) ≤ max

{

2,

√
2|C(�(g))|

k − |C(	g−1)|

}

opt .

Since fe ≡ 2 and re ≡ 2, each element e has exactly one re cover set. Hence for a
sub-family �′, the number of elements indexing the cover sets of �′ is equal to |�′|.
Then by property (15), we have

|C(�(g))| = |�(g)|.

Combining this with inequalities (28) and (29), we have

ρ(�(g)) ≤ |C(�(g))|
k − |C(	g−1)|ρ(�g−1). (35)

In the case |C(�(g))| ≤ 2
(
k − |C(	g−1)|

)
, we have �̂ = �(g). Since 	g−1 ∪ �(g)

fully covers at least k elements, 	g−1 ∪ �̂ is a feasible solution to MinRPSMC. By
(35),

ρ(�̂) ≤ 2ρ(�g−1). (36)

In the case |C(�(g))| > 2
(
k − |C(	g−1)|

)
, by the choice of �̂ in line 16 of the

algorithm, |C(�̂)| ≥ k − |C(	g−1)|, and thus 	g−1 ∪ �̂ is a feasible solution to
MinRPSMC. Then it follows from inequality (35) that

ρ(�̂) ≤ ρ(�(g))

γ
≤
√

2|C(�(g))|
k − |C(	g−1)|ρ(�g−1). (37)

Claim 1 follows from (36), (37), and the observation that ρ(�g−1) ≤ opt .
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Claim 2 ρ(�̃) ≤ √
2(k − |C(	g−1)|)opt .

Suppose �̃ contains t cover sets. Since the addition of a cover set fully covers
at least one more element, we have t ≤ k − |C(	g−1)|. Since every cover set has
cardinality 2 in this restricted problem, we have |S�̃| ≤ 2t . It follows from (32) that

ρ(�̃) = |V�̃| = |S�̃| ≤ 2
(
k − |C(	g−1)|

)
. (38)

Let � be a family of cover sets constructed from an optimal solution to the Min-
RPSMC instance by the method described in Remark 4.11. By (31), |E� | = |C(�)| ≥
k. Since any graph with at least k edges has at least

√
2k vertices, we have

opt = ρ(�) = |V� | ≥ √
2k ≥

√
2(k − |C(	g−1)|).

Combining this inequality with (38), Claim 2 follows.

By Claims 1 and 2, when 2 ≥
√

2|C(�(g))|
k−|C(	g−1)| , we have

min{ρ(�̂), ρ(�̃)} ≤ 2opt,

and when 2 <

√
2|C(�(g))|

k−|C(	g−1)| , we have

min{ρ(�̂), ρ(�̃)} = √
2|C(�(g))|1/4opt ≤ √

2n1/4opt .

where the minimum is achieved when k − |C(	g−1)| = √|C(�(g))|. Notice that the
second upper bound is larger than the first one in general (in fact, when n ≥ 4). Then
by Claim 1 of Theorem 4.12, recalling that B = 1 in this restricted problem, we have

ρ(	) ≤ (1 + √
2n1/4)opt .

The theorem is proved.

6 Conclusion and discussion

This paper proves a lower bound for the minimum partial set multi-cover problem
MinPSMC by a reduction from the densest l-subgraph problem. Then, under the
assumption that the maximum covering requirement rmax is upper bounded by a con-
stant, this paper gives a (B+√

n · B)-approximation algorithm for MinPSMC, where
B = max{( fere

) : e ∈ E} ≤ f rmax and f is the maximum number of sets containing
a common element. For a restricted version of MinRPSMC, the performance ratio
can be improved to 1 + √

2n1/4. From Theorem 3.1 and the fact that the current best

known performance ratio for DlS is O(n
1
4+ε), where ε > 0 is an arbitrary real num-

ber (Bhaskara et al. 2010), it is natural to ask whether the performance ratio for the

restricted version can be improved to O(n
1
8+ε)?
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Our algorithm depends on the assumption that rmax is upper bounded by a con-
stant. Notice that for the minimum partial positive influence dominating set problem
MinPPIDS which is a special case of MinPSMC, rmax = 	δ/2
, where δ is the max-
imum degree of the graph. In a real world network which satisfies power law, δ may
be of order O(

√
n) (Dinh et al. 2014). How to obtain an approximation algorithm for

the problem without assuming a constant upper bound on rmax is a topic deserving
further exploration.
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