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Abstract
The k-server problem was introduced by Manasse et al. (in: Proceedings of the 20th
annualACMsymposiumon theory of computing, Chicago, Illinois, USA, pp 322–333,
1988), and is one of the most famous and well-studied online problems. Koutsoupias
and Papadimitriou (J ACM 42(5):971–983, 1995) showed that the work function algo-
rithm (WFA) has a competitive ratio of at most 2k−1 for the k-server problem. In this
paper, by proposing a potential function that is different from the one in Koutsoupias
and Papadimitriou (1995), we show that the WFA has a competitive ratio of at most
n − 1, where n is the number of points in the metric space. When n < 2k, this ratio is
less than 2k − 1.

Keywords Competitive analysis · k-server problem · On-line algorithms ·
Work function

1 Introduction

The k-server problem was introduced by Manasse et al. (1988), and is one of the most
famous and well-studied online problems (for an excellent reference, please refer to
Koutsoupias 2009). The problem is defined on a metric space U , which is a set of n
points with a symmetric distance function d (nonnegative real function) that satisfies
the triangle inequality. On the metric space U , k servers reside that can move from
point to point.
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As in Koutsoupias and Papadimitriou (1995), a possible position of the k servers
is called a configuration, which can be viewed as a multiset of k points of U . We use
capital letters for configurations. For two configurations X and Y , we use D(X ,Y ) for
the minimum distance to move the servers from X to Y . We assume that the k servers
are initially at a fixed configuration A0.

A request sequence ρ is a sequence of points of the metric spaceU to be serviced by
the k servers; servicing a request entailsmoving some server to the point of request. Let
opt(A0, ρ) denote the optimal off-line cost for servicing a request sequence ρ starting
at the initial configuration A0, and let cost(A0, ρ) denote the cost for servicing ρ of
some online algorithm. The competitive ratio of the online algorithm is the infimum
of all c such that for all initial configurations A0 and for all request sequences ρ

cost(A0, ρ) ≤ c · opt(A0, ρ) + C,

whereC may depend on the initial configuration A0 but not on the request sequence ρ.
An online algorithm with competitive ratio c is called c-competitive. For an overview
on competitive analysis and online algorithms, please refer to Komm (2016).

It has been shown that for the k-server problemnodeterministic online algorithmhas
a competitive ratio less than k (Manasse et al. 1988). The famous k-server conjecture,
which has been open for over 30years, states that there exists a k-competitive online
algorithm for every metric space (Manasse et al. 1988). Currently, the top candidate
online algorithm for settling this conjecture is the work function algorithm (WFA),
which was shown to have a competitive ratio of at most 2k − 1 (Koutsoupias and
Papadimitriou 1995).

The WFA was first made explicit in the work of Chrobak and Larmore (1992),
where the algorithm was proved to be 2-competitive for k = 2. Then, Koutsoupias
and Papadimitriou (1995) showed that the WFA has a competitive ratio of at most
2k − 1, for any k ≥ 1. They conjecture that the WFA is in fact k-competitive. To
support this conjecture, Bartal and Koutsoupias (2004) proved that theWFA achieves
ratio k in several special metric spaces: the line, the star, and all metric spaces with
k + 2 points. In addition, numerical results from several implementations of theWFA
(Rudec et al. 2010, 2013; Rudec and Manger 2015) indicate that, the WFA could
indeed assure better cost than simple heuristics, such as the greedy algorithm or the
balanced algorithm.

In this paper, by proposing a potential function that is different from the one in
Koutsoupias and Papadimitriou (1995), we show that theWFA has a competitive ratio
of at most n − 1, where n is the number of points in metric space U . When n < 2k,
this ratio is less than 2k − 1.

2 Preliminaries

Ourwork ismainly based on the idea and tools developed inKoutsoupias and Papadim-
itriou (1995), and we adopt the notation and definitions therein. To make the paper
more self-contained, we list them as the following.

Work Function Fix a metric space U and an initial configuration A0. For a request
sequence ρ define the work functionwρ from configurations to nonnegative real num-
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bers as follows: wρ(X) is the optimal cost of servicing ρ starting at A0 and ending up
at configuration X .

The subscript ρ is usually omitted from wρ when it is clear from the context.
Furthermore, for a work function w = wρ , w′ = wρr is referred to as the resulting
work function after request r , when ρ and r are understood from the context. The
value of w′(X) can be computed as follows (which is stated as Fact 1 in Koutsoupias
and Papadimitriou 1995)

w′(X) = min
x∈X {w(X − x + r) + d(r , x)}.

For convenience, in this paper we also refer to the above property of the work function
as Fact 1. Also, by Fact 4 in Koutsoupias and Papadimitriou (1995), for all configura-
tions X , w′(X) ≥ w(X).

Work Function Algorithm (WFA) Let ρ be a request sequence and let A be the
configuration of an online algorithm after servicing ρ. The work function algorithm
services a new request r by moving its servers to a configuration A′, with r ∈ A′, that
minimizes wρr (A′) + D(A, A′).

Extended Cost The extended cost for request r is defined to be the maximum
increase of the work function after request r : maxX {w′(X) − w(X)}. The extended
cost is said to occur on a configuration A when A maximizes the quantity in the
extended cost.

It is showed that if the total extended cost of all requests is bounded above by c+ 1
times the optimal off-line cost plus a constant, then the WFA is c-competitive (Fact 5
in Koutsoupias and Papadimitriou 1995).

Minimizer A configuration A is called a minimizer of a point a with respect to w,
if A minimizes the expression w(X) − ∑

x∈X d(a, x), that is

w(A) −
∑

x∈A

d(a, x) = min
X

{w(X) −
∑

x∈X
d(a, x)}.

The following lemma, which is proved in Koutsoupias and Papadimitriou (1995),
is crucial in later analysis. For convenience of the readers, we put the proof of this
lemma in “Appendix A”, to make the paper more self-contained.

Lemma 2.1 (Duality lemma) Let w be a work function and w′ be the resulting work
function after request r . Then anyminimizer A of r with respect tow is also aminimizer
of r with respect to w′, and the extended cost of servicing the request r occurs on A.
That is,

w′(A) − w(A) = max
X

{w′(X) − w(X)}.

3 A potential for (n− 1)-competitiveness

In this section, we will show that theWFA is (n−1)-competitive by proposing a poten-
tial different from that in Koutsoupias and Papadimitriou (1995). Let u1, u2, . . . , un
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denote the n points in metric space U . For configurations Bi = {bi1, bi2, . . . , bik},
i = 1, 2, . . . , n, let

�(w, B1, B2, . . . , Bn) =
n∑

i=1

⎛

⎝w(Bi ) −
k∑

j=1

d(ui , bi j )

⎞

⎠ .

Let �(w) denote its minimum value over all configurations Bi , i = 1, 2, . . . , n;
�(w) is called the potential of the work function w.

Lemma 3.1 Let A0 = {a01 , a02 , . . . , a0k }. For the initial work function we(X) =
D(A0, X),

�(we) = −
n∑

i=1

k∑

j=1

d(ui , a
0
j ).

Proof It is easy to see that the lemma follows if the minimum value �(we) of
�(we, B1, B2, . . . , Bn) is achieved when Bi = A0 for i = 1, 2, . . . , n.

Consider a point bi j ∈ Bi . In the minimum matching D(A0, Bi ), bi j is
matched to some point a ∈ A0. By using the triangle inequality d(u j , bi j ) ≤
d(a, u j ) + d(a, bi j ), we see that we can replace bi j with a without increas-
ing the value of �(we, B1, B2, . . . , Bn). Therefor the minimum value �(we) of
�(we, B1, B2, . . . , Bn) is achieved when Bi = A0, for i = 1, 2, . . . , n. The lemma
follows. ��

Now we are ready to prove our main result.

Theorem 3.1 The competitive ratio of the WFA is at most n−1, where n is the number
of points in metric space U .
Proof Consider a work function w and let w′ be the resulting work function
after request r . We assume that �(w′, B1, B2, . . . , Bn) achieves its minimum with
B∗
1 , B∗

2 , . . . , B∗
n , that is,

�(w′) = �(w′, B∗
1 , B∗

2 , . . . , B∗
n ).

Let B∗
i = {b∗

i1, b
∗
i2, . . . , b

∗
ik}, for i = 1, 2, . . . , n.

Assume that r = ul for some l ∈ {1, 2, . . . , n}. Let A be a minimizer of r with
respect tow. Then, byLemma2.1, A is also aminimizer of r with respect tow′, and it is
not difficult to see that theminimumvalue of�(w′, B1, B2, . . . , Bn) is unaffected ifwe
fix Bl = A. Hence, without loss of generality, we assume that B∗

l = A. Furthermore,
from the definition of �(w), we get that

�(w) ≤ �(w, B∗
1 , B∗

2 , . . . , B∗
n ).

Thus,

�(w′) − �(w) ≥ �(w′, B∗
1 , B∗

2 , . . . , B∗
n ) − �(w, B∗

1 , B∗
2 , . . . , B∗

n )
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=
n∑

i=1

(
w′(B∗

i ) − w(B∗
i )

)

≥ w′(A) − w(A),

where the last inequality holds sincew′(B∗
i ) ≥ w(B∗

i ) for i = 1, 2, . . . , n and B∗
l = A.

According to Lemma 2.1, the extended cost is w′(A) − w(A), because A is a
minimizer of r with respect to w. Thus, we can conclude that the extended cost to
service request r is bounded above by �(w′) − �(w). Summing over all moves, the
total extended cost is bounded above by �(wρ) − �(we), where we and wρ are the
initial and the final work functions, respectively.

Let A0 = {a01 , a02 , . . . , a0k } and At = {at1, at2, . . . , atk} be the initial and final con-
figurations (as in Koutsoupias and Papadimitriou (1995), without loss of generality
we can assume that the off-line algorithm ends up in the same configuration as the
online algorithm). From the definition of �(wρ), we have

�(wρ) ≤ �(wρ, At , At , . . . , At )

=
n∑

i=1

(
wρ(At ) −

k∑

j=1

d(ui , a
t
j )

)

≤ nwρ(At ).

The value of�(we) is given by Lemma 3.1, which is a constant (depending only on
the initial configuration). Hence, the total extended cost is bounded above by nwρ(At )

plus a constant. Because the optimal off-line cost is wρ(At ), the total extended cost is
bounded above by n times the off-line cost plus a constant, implying that the WFA is
(n − 1)-competitive. ��

By combining the result that the WFA is (2k − 1)-competitive in Koutsoupias and
Papadimitriou (1995), we have the following result.

Corollary 3.1 The competitive ratio of the WFA is at most min{2k − 1, n − 1}.

4 Conclusion

In this paper, we propose a potential function that is different from the one in Koutsou-
pias and Papadimitriou (1995), and by which we show that the WFA for the k-server
problem has a competitive ratio of at most n − 1, where n is the number of points in
metric space U . When n < 2k, this ratio is less than 2k − 1. Whether or not theWFA
has a competitive ratio of k for the k-server problem remains a central open problem
in the field of on-line algorithms.
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Appendix A: Proof of Lemma 2.1

The following is the proof of Lemma 2.1 given in Koutsoupias and Papadimitriou
(1995).

Definition A.1 A function w is called quasiconvex if for all configurations A, B, there
exists a bijection h : A → B such that for all bipartitions of A into X ,Y :

w(A) + w(B) ≥ w(X ∪ h(Y )) + w(h(X) ∪ Y ). (1)

Notice that the union (∪) in the definition denotes the union of multisets. Before
showing that all work functions are quasiconvex, the following lemma provides a
stronger form of the quasiconvexity condition by restricting the set of possible bijec-
tions.

Lemma A.1 If there exists a bijection h that satisfies the conditions in Definition A.1,
then there exists a bijection h′ that satisfies the same conditions and h′(x) = x for all
x ∈ A ∩ B.

Proof Let h be a bijection from A to B that satisfies the conditions of the definition
above and maps the maximum number of elements in A ∩ B to themselves. Assume
that, for some a ∈ A ∩ B, we have h(a) �= a . Define a bijection h′ that agrees with h
everywhere except that

h′(a) = a and h′(h−1(a)) = h(a)

(h′ interchanges the values of h on a and h−1(a)).
Consider nowabipartition of A into X andY and assume (without loss of generality)

that h−1(a) ∈ X . If a ∈ X , then h(X) = h′(X) and h(Y ) = h′(Y ) and (1) holds for
h′. Otherwise, when a /∈ X , we derive the quasiconvexity condition for X and Y from
the quasiconvexity condition for X ′ = X + a and Y ′ = Y − a as follows:

Since, h(Y ′) = h′(Y ′) and h(X ′) = h′(X ′), we have that

X ′ ∪ h(Y ′) = X ′ ∪ h′(Y ′) = (X + a) ∪ h′(Y − a) = X ∪ h′(Y ),

and similarly, h(X ′) ∪ Y ′ = h′(X) ∪ Y . From these, we get

w(A) + w(B) ≥ w(X ′ ∪ h(Y ′)) + w(h(X ′) ∪ Y ′)
= w(X ∪ h′(Y )) + w(h′(X) ∪ Y ).

Therefore, h′ satisfies the quasiconvexity condition. Because h′ maps at least one
more element in A ∩ B to itself than h, it contradicts the assumption that h maps the
maximum number of elements in A ∩ B to themselves.

We conclude that h(a) = a for all a ∈ A ∩ B, and the lemma holds. ��
Lemma A.2 (Quasiconvexity lemma) All work functions are quasiconvex.
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Proof The proof is by induction on the number of requests.
Recall that the initial work function we(X) of a configuration X is equal to

D(A0, X), where A0 is the initial configuration. So we have

w(A) + w(B) = D(A0, A) + D(A0, B).

Fix two matchings M(A0, A) and M(A0, B) that realize the minima of D(A0, A) and
D(A0, B). Each point x j in A0 is matched to some point a j in A and b j in B. Consider
the bijection h : A → B that maps each a j to b j . For any bipartition of A into X and Y ,
w(X + h(Y ))+w((h(X)+Y ) is equal to the sum of two minima matchings between
A0, X +h(Y ) and A0, h(X)+Y . Since we can rearrange the matchings M(A0, A) and
M(A0, B) to obtain two matchings (not necessarily minima) between A0, X + h(Y )

and A0, h(X) + Y , it follows that w(A) + w(B) ≥ w(X + h(Y )) + w(h(X) + Y ).
For the induction step, assume that w is quasiconvex. We want to show that the

resulting w′ after request r is also quasiconvex.
Fix two configurations A and B. Using Fact 1 to express w′ in terms of w, we

get that w′(A) = w(A − a + r) + d(r , a) for some a ∈ A; similarly w′(B) =
w(B − b + r) + d(r , b) for some b ∈ B. The induction hypothesis is that w is
quasiconvex, so there exists a bijection h from A−a+ r to B−b+ r that satisfies the
quasiconvexity condition. Furthermore, LemmaA.1 allows us to assume that h(r) = r .

Consider now a bijection h′ : A → B that agrees with h everywhere, except that
h′(a) = b. We show that h′ satisfies the requirements of the quasiconvexity condition
of w′. Consider a bipartition of A into X and Y and without loss of generality assume
that a ∈ X . We have:

w′(A) + w′(B) = w(A − a + r) + w(B − b + r) + d(r , a) + d(r , b)
= w((X − a + r) ∪ Y ) + w(B − b + r) + d(r , a) + d(r , b)
≥ w((X − a + r) ∪ h(Y )) + w(h(X − a + r) ∪ Y )

+d(r , a) + d(r , b)
= w((X − a + r) ∪ h′(Y )) + w((h′(X) − b + r) ∪ Y )

+d(r , a) + d(r , b)
≥ w′(X ∪ h′(Y )) + w′(h′(X) ∪ Y ),

where the first inequality is based on the quasiconvexity of w and the second one on
Fact 1. So, w′ is quasiconvex and the lemma follows. ��

Now we use the quasiconvexity condition to prove the next two lemmata. In fact,
the following weaker condition derived from quasiconvexity is used:

∀a ∈ A ∃b ∈ B : w(A) + w(B) ≥ w(A − a + b) + w(B − b + a).

Lemma A.3 Let w be a work function. Consider a new request at r and the resulting
work functionw′. If A is a minimizer of r with respect tow, then A is also a minimizer
of r with respect to w′.
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Proof It suffices to show that for all configurations B:

w′(B) −
∑

b∈B
d(r , b) ≥ w′(A) −

∑

a∈A

d(r , a),

or equivalently:

w′(B) −
∑

b∈B
d(r , b) + w(A) ≥ w′(A) −

∑

a∈A

d(r , a) + w(A).

In order to show this we need the following: From Fact 1, we get that there exists
b′ ∈ B such that

w′(B) = w(B − b′ + r) + d(r , b′).

Using quasiconvexity, we get that there exists a′ ∈ A such that

w(B − b′ + r) + w(A) ≥ w(B − b′ + a′) + w(A − a′ + r).

Finally, since A is a minimizer of r , we have that

w(B − b′ + a′) −
∑

b∈B−b′+a′
d(r , b) ≥ w(A) −

∑

a∈A

d(r , a).

Putting all these together:

w′(B) + w(A) − ∑

b∈B
d(r , b)

= w(B − b′ + r) + d(r , b′) + w(A) − ∑

b∈B
d(r , b)

= w(B − b′ + r) + w(A) − ∑

b∈B−b′+r
d(r , b)

≥ w(B − b′ + a′) + w(A − a′ + r) − ∑

b∈B−b′+r
d(r , b)

= w(B − b′ + a′) + w(A − a′ + r) + d(r , a′) − ∑

b∈B−b′+a′
d(r , b)

≥ w(A) + w(A − a′ + r) + d(r , a′) − ∑

a∈A
d(r , a)

≥ w(A) + w′(A) − ∑

a∈A
d(r , a),

where the last inequality is based on Fact 1. The lemma follows. ��
The following lemma has the same premises with Lemma A.3, but a different

conclusion:

Lemma A.4 Let w be a work function. Consider a new request at r and the resulting
work function w′. If A is a minimizer of r with respect to w, then the extended cost
occurs at A, that is
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w′(A) − w(A) = max
X

{w′(X) − w(X)}.

Proof The proof is rather similar to the proof of LemmaA.3. Notice first that it suffices
to show that for all configurations B:

w′(A) + w(B) ≥ w′(B) + w(A).

By Fact 1, we get that there exists a′ ∈ A such that

w′(A) = w(A − a′ + r) + d(r , a′).

Using quasiconvexity, we also get that there exists b′ ∈ B such that

w(A − a′ + r) + w(B) ≥ w(A − a′ + b′) + w(B − b′ + r).

Finally, since A is a minimizer of r with respect to w:

w(A − a′ + b′) −
∑

a∈A−a′+b′
d(r , a) ≥ w(A) −

∑

a∈A

d(r , a),

which is equivalent to

w(A − a′ + b′) + d(r , a′) ≥ w(A) + d(r , b′).

Combining all these we get:

w′(A) + w(B) = w(A − a′ + r) + d(r , a′) + w(B)

≥ w(A − a′ + b′) + d(r , a′) + w(B − b′ + r)
≥ w(A) + d(r , b′) + w(B − b′ + r)
≥ w(A) + w′(B).

Again, the last inequality is based on Fact 1. ��
LemmataA.3 andA.4 can be combined into Lemma 2.1, which characterizes where

the extended cost occurs. The proof of Lemma 2.1 is established.
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