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Abstract
We consider a scheduling game, in which both the machines and the jobs are players.
Machines are controlled by different selfish agents and attempt to maximize their
workloads by choosing a scheduling policy among the given set of policies, while
each job is controlled by a selfish agent that attempts to minimize its completion time
by selecting a machine. Namely, this game was done in two-stage. In the first stage,
every machine simultaneously chooses a policy from some given set of policies, and
in the second stage, every job simultaneously chooses a machine. In this work, we use
the price of anarchy to measure the efficiency of such equilibria where each machine
is allowed to use one of the at most two policies. We provide nearly tight bounds for
every combination of two deterministic scheduling policies with respect to two social
objectives: minimizing the maximum job completion, and maximizing the minimum
machine completion time.
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1 Introduction

This paper studies a scheduling game model that arose in cloud computing. Cloud
provides an attractive platform for two entities: service providers (or machine owners)
and users (or jobs). In our game model, both of them are players. Selfish Users want
to minimize the completion time by choosing a proper machine, while the service
providers attempt to attract more jobs by specifying a scheduling policy. A scheduling
policy is an algorithm for the machine to schedule all the jobs that have been assigned
to by the users.

Most previous games (Koutsoupias and Papadimitriou 1999; Immorlica et al. 2009)
on scheduling consider only one-side, jobs or machines are the players, but not both.
To the best of our knowledge, Ashlagi et al. (2010) were the first ones to study the
model, in which both machines and jobs are selfish players. This game will give a
set of scheduling policies at the beginning. In the first stage, every machine picks up
a scheduling policy with the goal to maximize its load. In the second stage, every
job simultaneously chooses a machine such that its completion time is minimized.
The game reaches a Nash equilibrium if no machine would like to change its policy,
and no job has the incentive to switch machines. Ashlagi et al. (2010) proved that
there always exists a pure strategy Nash equilibrium if the machines are restricted to
use two deterministic strategies. Besides, they have shown that there may not exist
a pure strategy Nash equilibrium if the machines are allowed to use more than two
deterministic policies.

It is worthy to note that a Nash equilibrium does not always get the optimal social
welfare. Actually, selfish behavior might lead to highly inefficient outcome (Ashlagi
et al. 2010). Moreover, there might exist many different equilibria. It is challenging
to figure out the quality of such equilibria. The quality of a Nash equilibrium is
measured with respect to the social optimum. In this work, we consider two social
objectives: minimizing the maximum completion time of the jobs (we call it theMin-
Max model), and maximizing the minimum machine completion time (we call it the
Max-Min model).

Tomeasure the efficiencyof a gameGwith respect to a social objective,we adopt the
price of anarchy (PoA) or the coordination ratio that was introduced by Koutsoupias
and Papadimitriou (1999). The price of anarchy has been extensively studied in many
game-theoretic models, such as job scheduling (Nisan et al. 2007; Immorlica et al.
2009), selfish routing (Roughgarden and Tardos 2002), network formation (Fabrikant
et al. 2003), facility location (Vetta 2002), congestion games (Roughgarden and Tardos
2004), greedy combinatorial auctions (Lucier and Borodin 2010; Feldman et al. 2016).

Let NE(G) be the set of Nash equilibria in the gameG. The social cost of a gameG
is a functionC(v) for each v ∈ NE(G) that numerically expresses the social objective
of an outcome v of the game. The social optimum OPT (G) is the optimal value in
the corresponding optimization problem. The price of anarchy of a game G is the
worst-case ratio over all equilibria to the social optimum. Formally, it is defined as

PoA(G) = sup
v∈NE(G)

{
C(v)

OPT (G)

}
,

123



618 Journal of Combinatorial Optimization (2021) 42:616–635

if the social objective is a minimization function. Similarly, for a maximization objec-
tive function, we have

PoA(G) = sup
v∈NE(G)

{
OPT (G)

C(v)

}
.

RelatedworkTo the best of our knowledge, there are not toomanyworks on two-stage
scheduling games. Recently, Chen et al. (2012) studied a two-stage scheduling game,
in which machines can reject some of their jobs. The motivation for rejecting jobs is
to attract more valuable jobs. Most scheduling games focus on the scenario that only
the jobs are players, where every job attempts to switch machines to minimize its own
completion time, where the completion time of a job refers to the load of themachine it
is assigned to. Immorlica et al. (2009) proved that the prices of anarchy are 2−2/(m+
1), �(logm/ log logm), and unbounded for identical parallel machine scheduling,
related machine scheduling, and unrelated machine scheduling, respectively, wherem
is the number of machines.

The price of anarchy is to measure the efficiency of equilibrium. To reduce the
price of anarchy, coordination mechanismwas first introduced by Christodoulou et al.
(2004). The coordination mechanism for a game is a set of local policies, one for each
machine, which will determine the completion time of a job that has been assigned to
it.

The scheduling policies can be Makespan (M), ShortestFirst (S), LongestFirst (L),
Randomized (R) (detailed definitions are given in Sect. 2). In contrast to our model,
each machine in a coordination mechanism game does not change its policy during
the whole game. Note that a coordination mechanism game with all machines using
the policy Makespan (M) is exactly the classic scheduling game (Nisan et al. 2007).
The motivation to use the Makespan policy is that all jobs in a machine will complete
at the same time in some scenario. Here the notation of Makespan is a bit overused,
sometimes it refers to the scheduling policy, sometimes it refers to the social objective.
Anyway, we will point it out explicitly when we use it.

Let us consider the social objective is tominimize themakespan, namely the longest
completion time of jobs, and we will introduce the prices of anarchy in various coor-
dination mechanism games as below. For identical parallel machines, the PoA of
the game with the policies Makespan, ShortestFirst, LongestFirst, Randomized are
2− 2/(m + 1) (Immorlica et al. 2009; Finn and Horowitz 1979), 2− 1/m (Immorlica
et al. 2009; Graham 1966), 4/3− 1/(3m) (Graham 1969; Christodoulou et al. 2004),
2 − 2/(m + 1) (Finn and Horowitz 1979), respectively, where m is the number of
machines. For related machines, the PoA of the game with the ShortestFirst policy is
�(logm) (Immorlica et al. 2009), the PoA of the game with the LongestFirst policy
is at least 1.52 and at most 1.59 (Dobson 1984; Friesen 1987), the PoAs of the game
with Makespan policy and Randomized policy are �(logm/ log logm) (Koutsoupias
and Papadimitriou 1999). For unrelated machines, there are a number of results, see
e.g. Azar et al. (2008), Caragiannis (2009), Immorlica et al. (2009). We refer to the
survey (Heydenreich et al. 2007; Nisan et al. 2007) for the study of selfish scheduling.

There are alsomany studies of scheduling games on the social objective ofmaximiz-
ing the minimum machine load. Deuermeyer et al. (1982) investigated a coordination
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Table 1 The PoAs of different games

Model (S, L) (S, M) (L, M)

Min-Max m = 2 9/7 3/2 7/6

Min-Max m ≥ 3 2m/(m + 1) 2 − 1/m 2m/(m + 1)

Max-Min m ≥ 2 [2 − 2/(m − 1), 2 − 1/m] m [1.691, 1.7]

mechanism scheduling game with all machines using the policy LongestFirst. They
showed the upper bound is of at most 4/3−1/3m for identical parallel machines. The
scheduling game with policy Makespan was studied in Epstein et al. (2009), Chen
et al. (2013), it was shown that the PoA is bounded in 1.691 and 1.7. Furthermore, it
was mentioned in Chen et al. (2013), Epstein et al. (2014) that the PoAwas unbounded
in the related machine model. Some restricted cases of the related machine scheduling
game where the speed ratio is of at most two was studied in Epstein et al. (2014), Tan
et al. (2012), Lin and Tan (2014).

Finally, wemention that there are someworks on the social objective of minimizing
the (or weighted) sum of completion time. Cole et al. (2011) showed that the PoA is
4 for unrelated machines. Hoeksma and Uetz (2011) studied the related machine
scheduling under the SPT (shortest processing time first) rule, and presented an upper
bound of 2 and a lower bound of e/(e − 1) ≈ 1.58.

Our contribution As indicated in Ashlagi et al. (2010), there might not exist an
equilibrium if machines are allowed to use more than two policies. They claimed that
there exists Nash equilibrium when machines are limited to use two deterministic
policies. However, this claim is inaccurate. In this work, we first show the existence
of Nash equilibrium under a necessary assumption, even if the machines are restricted
to use only two policies. Next, we give a detailed analysis of the performance via
the price of anarchy. We assume that the local policies for machines are limited to
ShortestFirst, LongestFirst, and Makespan. We denote it as a (S, L)-game if the two
policies are ShortestFirst and LongestFirst. Similarly, we define the (S, M)-game and
the (L, M)-game, respectively. Table 1 summarizes the results of the three games,
where a single number presents a tightly bound and an interval presents a lower bound
and an upper bound.

In the remaining part of the paper, we first present the problem statement and
settings in Sect. 2. Then we address the analysis of the price of anarchy on two social
objectives in Sects. 3 and 4, respectively. We conclude the paper with open questions
in Sect. 5.

2 The game settings

Let M = {1, 2, . . . ,m} be the set of identical machines, and N = {1, 2, . . . , n} be
the set of jobs. Both jobs and machines are selfish players. Each job j , associated with
a processing time (or size) a j , attempts to minimize his own completion time. Each
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machine can select a local scheduling policy to maximize the workload, which is the
total processing time of all the jobs that have been assigned to that machine.

Let Pi be the set of all possible strategies of machine i , and let P = P1 ×
P2 × . . . × Pm be the set of all possible machine strategy profiles. Let p =
(p1, p2, · · · , pi , pi+1, . . . , pm) be a specific vector of machines’ strategies, where
pi ∈ Pi . And let us denote p−i be the vector of all strategies except machine i’s
strategy, i.e., p−i = (p1, p2, . . . , pi−1, pi+1, . . . , pm).

In this work, we consider three scheduling policies, namely ShortestFirst (S),
LongestFirst (L), and Makespan (M). That is Pi = {S, L, M} for all i . The
ShortestFirst policy (the LongestFirst policy) executes jobs in the non-decreasing
(non-increasing) order of processing times. The Makespan policy processes the jobs
in a batch such that all the jobs complete at the same time, i.e., the completion time
of every job is the workload of the machine. Actually, every policy determines the
priority of jobs that have been assigned to that machine. In ShortestFirst policy, a job
with a shorter processing time has a higher priority. In LongestFirst policy, a job with
a longer processing time has a higher priority. In Makespan policy, all jobs have the
same priorities.

In the policies stated above, ties are broken in favor of the job with the lowest
index. If two jobs have the same length, then the one with the lower index has a higher
priority.

Let Q j be the set of all possible strategies of job j , and let Q = Q1×Q2×· · ·×Qn

be the set of all possible job strategy profiles. Then Q j = M for all j . Let q =
(q1, q2, . . . , q j , q j+1, . . . , qn) be a specific vector of jobs’ strategies, where q j ∈ Q j .
And let us denote q− j be the vector of all strategies except job j’s strategy, i.e.,
q− j = (q1, q2, . . . , q j−1, q j+1, . . . , qn).

Let cpj (q) be the completion time of job j with machine policy profile p ∈ P and

the job profile q ∈ Q. Let lqi (p) be the workload of machine i with job policies q ∈ Q
and machine policy p ∈ P .

Definition 1 (Job equilibrium) A job action profile q = (q1, . . . , qn) is a pure Nash
equilibrium in the game with policies p = (p1, p2, . . . , pm) if for every job j ,
cpj (q j , q− j ) ≤ cpj (q

′
j , q− j ) for every q ′

j ∈ Q j .

Definition 2 (Machine equilibrium) A machine action profile p = (p1, . . . , pm) is a
pure Nash equilibrium in the game with job policies q = (q1, q2, . . . , qn) if for every
machine i , lqi (pi , p−i ) ≥ lqi (p′

i , p−i ) for every p′
i ∈ Pi .

In our problem, the scheduling game can be stated in two stages. At the first stage,
machines announce their scheduling policies. Then in the second stage, each job
chooses a machine to minimize his completion time. A job will move to another
machine if this can decrease his completion time. A job (or a machine) is satisfied if
this job (or a machine) does not have an incentive to change its decision. Once all the
jobs (or machines) satisfied, we called it a job equilibrium (or a machine equilibrium).

We say that the game reaches a pureNash equilibrium if it is both in a job equilibrium
and in a machine equilibrium. Namely, a Nash equilibrium is a solution in which no
player (either job ormachine) can improvehis utility by changingonly his own strategy.
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Fig. 1 An example to illustrate that there is no Nash equilibrium if each machine will change its policy
once it benefits in one job equilibrium

Ashlagi et al. (2010) claimed that they have proved that there exists a pure Nash
equilibrium if the machines are restricted to use any two deterministic policies. How-
ever, this claim is inaccurate. Figure 1 illustrates a scenario that the algorithm in
Ashlagi et al. (2010) did not find an equilibrium. In details, there are two machines
and four jobs with processing times 2, 3, 4, 5, respectively. Each sub-figure shows a
job equilibrium. Initially, both the machines use the policy S, illustrated in Fig. 1a.
If the first machine changes its policy from S to L, Fig. 1b shows one possible job
equilibrium. In this equilibrium, the first machine has workload 9, which is larger than
the workload 6 in Fig. 1a, which indicates that the first machine will change its policy
from S to L. Similarly, one will get a job equilibrium from Fig. 1a–d. We rename the
machines, and then Fig. 1d becomes 1e. Thus this is a loop demonstrating the change
of machine policies. Along the loop, there is always a job equilibrium so that exactly
one machine can get better by changing the current policy.

Note that the problem arises in the above example is that given a profile of the
machines, there might exist several job equilibria. To find a Nash equilibrium for our
problem, we need to make an assumption that a machine has an incentive to alter his
policy if and only if his workload will strictly increase in all the resulting job equilibria
after the change. Violating this assumption, the existence of a Nash equilibrium cannot
be guaranteed. This example reaches a Nash equilibrium even under this assumption.
As we know, Fig. 1b, d are both job equilibria when one machine in Fig. 1a changes
his policy from S to L. In the Fig. 1d, the load of the machine with policy L is 5, which
is smaller than the equilibrium in Fig. 1a with load of 6 or 8. Therefore, no machines
in Fig. 1a have the incentive to change their policies.

Under the assumption, we define a Nash equilibrium for our two-stage scheduling
game as below.

Definition 3 (Nash equilibrium) A profile (p, q) is a pure Nash equilibrium if

1. q is a pure job Nash equilibrium with p, and

2. for any machine i , lqi (pi , p−i ) ≥ lq
′

i (p′
i , p−i ) holds for every (q ′, p′

i ) ∈ Q × Pi
such that q ′ is a pure job Nash equilibrium with (p′

i , p−i ).

Definition 4 (Consistency) A scheduling policy is consistent if for every two jobs i, j
(i �= j) where they are both assigned on the same machine, job i is always scheduled
before job j , or job j is always scheduled before job i .
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RemarkThe policy ShortestFirst, the policyLongestFirst, and the policyMakespan
are consistent.

In the following, we will show the existence of a pure Nash equilibrium.

Theorem 1 In the two-stage game, there exists a pure Nash equilibrium, if machines
are only allowed to use two arbitrary deterministic and consistent policies, and a
machine has an incentive to change its policy only if its workload will strictly increase
in all resulting job equilibria after the change.

Proof Ashlagi et al. (2010) have shown that there exists a job equilibrium if we fix
a profile of machines using these two deterministic and consistent policies. We call
it a round of the game if we fix a profile of machines, and then there reaches a
job equilibrium due to this machine profile. Let ψ, φ be the two deterministic and
consistent policies that a machine might adopt.

The proof of this Theorem can be done by construction.Wewill show the following
routine finds a Nash equilibrium. For any given profile, we change the profile of the
machines one by one at each round, i.e., only one machine will change its policy at a
round. In particular, we show that if a machine switches one policy to another in one
round, then it will never switch back in the next round. At round t of the game, let
x(t) be the number of machines use the policy ψ , and y(t) be the number of machines
use the policy φ, where x(t) + y(t) = m. Then we claim that either x(t) or y(t) is a
non-decreasing function of t .

If none of the machines has the incentive to change policy, i.e., x(t + 1) = x(t),
then the theorem follows immediately. Thus let us consider x(t + 1) = x(t) + 1 or
x(t + 1) = x(t) − 1. W.L.O.G., we only prove that x(t) is a non-decreasing function
of t when x(t + 1) = x(t) + 1. Otherwise, y(t) is a non-decreasing function of t .

At round t + 2, we can show that no machine with policy ψ changes to φ, i.e.,
x(t + 2) ≥ x(t + 1). Otherwise, we shall have x(t + 2) = x(t). We have illustrated in
round t + 1 there exists a job equilibrium in which one machine uses the policy φ can
increase his load by switching his policy. In other words, there exists a job equilibrium
such that one machine of ψ will decrease the load after changing his policy. Hence,
we got a contradiction.

In sums, the game runs at most m rounds, and then finally reaches a Nash equilib-
rium. �	

3 The PoA in theMin-Maxmodel

In this section, we study the game with the social objective to minimize the makespan.
The selfish actions of machines may result in high social costs, because the machines
attempt to increase their workloads. We consider the (S, M)-game, the (S, L)-game,
and the (L, M)-game, respectively.
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Fig. 2 Job configuration in the profile (S, M)

3.1 The (S,M)-game

In this game, the machines are only allowed to use either the ShortestFirst policy or
the Makespan policy. The idea of analysis is similar to the list scheduling (Graham
1966) by Graham.

Theorem 2 The price of anarchy of the (S, M)-game is 2 − 1/m.

Proof Consider any Nash equilibrium NE of the game. Let L j be the workload of
machine j in the equilibrium NE. Assume the makespan is determined by machine i ,
i.e., Li = max j L j . Let y be the processing time of the last job on machine i . Clearly
Li − L j ≤ y for any j , as the schedule is an equilibrium. Recall that COPT and CNE

are respectively the social cost of the optimal solution and the cost of the equilibrium.
We have COPT ≥ Li − y + y/m, i.e.,

CNE = Li ≤ COPT + (1 − 1/m)y. (1)

It implies an upper bound of 2 − 1/m since y ≤ COPT .
The following instance that we borrowed from the lower bound for list scheduling

(Graham 1966) shows the tightness of the bound. There are m(m − 1) small jobs
of unit processing time and one large job of processing time m. Figure 2a shows
a job equilibrium that all machines use the policy S. Clearly, machine 1 (the leftist
machine) will not change his policy. Figure 2b illustrates a job equilibrium when one
of the machines (other than the first one) changes his policy to M. The equilibrium
shows that this machine does not strictly increase his load by changing policy. Thus,
the PoA is at least 2 − 1/m. �	
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3.2 The (S, L)-game

We show that the price of anarchy for the (S, L)-game is 2m/(m + 1) for m ≥ 3,
while it becomes 9/7 for m = 2.

Theorem 3 The price of anarchy of the (S, L)-game is at most 2m/(m+1), for m ≥ 3.

Proof Denote by� the set of machines that use the policy S, and� the set of machines
that use the policy L, respectively. Note that � can be empty (or � is empty) which
represents that all the machines use the same policy L (or S).

We consider the job k with processing time y, which is the last job on machine i
that determines the makespan. Denote Li to be the load of machine i . Let x = Li − y
be the load of the machine i without job k. Again, denote COPT and CNE to be the
social cost of the optimal solution and the cost of the equilibrium, respectively.

One can easily check that the theorem follows immediately if y ≤ m/(m+1)COPT .
In the following we assume that y > m/(m + 1)COPT and the proof is done by
contradiction. Actually, we can also assume that y + x > 2m/(m + 1)COPT , since
otherwise the theorem follows trivially. Now we have max{y, x} > m/(m+1)COPT .

Case 1 Machine i uses the policy S, i.e., i ∈ �. We know that the load of each
machine in � other than i is not less than y. Otherwise, this machine will change
its policy to L and its load will be at least y, which contradicts with the fact that the
current schedule is an equilibrium. We also note that L j ≥ x from the point that
job k does not move to machine j for any j �= i . On the other hand, the load of each
machine in� is at least y, otherwise, the job k will move that machine. Hence, we have
L j ≥ max{y, x} ≥ m/(m + 1)COPT for any j �= i . The total load of all machines is
at least

∑
j �=i

L j + Li > ((m − 1)m/(m + 1) + 2m/(m + 1))COPT

= mCOPT ,

which is a not true since COPT is at least the average of total loads.

Case 2Machine i uses the policy L , i.e., i ∈ �.We get that x ≥ y ≥ m/(m+1)COPT .
On the other hand, L j ≥ x for any j �= i due to the equilibrium. Again, we have the
total load is larger than mCOPT , which is a contradiction. �	

In the following, we show the price of anarchy will be smaller than 4/3 as indicated
in Theorem 3. Moreover, we will provide lower bounds for general m machines in the
following.

Theorem 4 The price of anarchy of the (S, L)-game for two machines is at most 9/7.

Proof If the machine profile of the final equilibrium is (L, L), then it is the same as
the LPT algorithm (Graham 1969), which is of (4/3− 1/(3m))-approximation. Thus
the (S, L)-game has a PoA of 7/6 for m = 2.

Without loss of generality, suppose that job j with the longest completion time
is processed on machine 1, whose processing time is y. Let x = L1 − y. The load
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Fig. 3 Job configuration in case
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(a) (b)

of machine 2 is denoted by L2 = z. Further, we can assume that COPT = 1 and
x + y+ z = 2, otherwise we can add tiny jobs to the instance such that the assumption
holds. If the machine profile in the equilibrium is (S, S) or (L, L), the added tiny jobs
may increase the makespan. If the machine profile is (S, L), the added tiny jobs will
increase the load in the machine with policy S, no matter whether a job in this machine
will move to the machine with policy L, the makespan is not decreased. Hence we
proved that the price of anarchy is not decreased with this modification of the original
instance.

Similar to the general case, we suppose that y > 4/7, otherwise, from the Inequal-
ity (1), the PoA is at most 9/7.

Case 1 The machine profile of the equilibrium is (S, L). First, let us consider the case
that the machine that job j is located selects policy S (see Fig. 3a for an illustration
of job configuration). We assume that L1 = x + y > 9/7, otherwise it is done. Then
L2 = z < 5/7, and this machine only consists of a single job. Let ε, δ > 0 such that
z = 5/7 − ε and y = 4/7 + δ. Then x = 2 − y − z = 5/7 + ε − δ.

Once we change the profile to (S, S) (see Fig. 3b for a job equilibrium). Hence we
assume that x1, x3, and z assign to one machine, while x2 and y assign to one machine,
where x1+ x2+ x3 = x and x1 ≤ x2 and x3 is the longest jobs among in M2 in Fig. 3a.
Notice that in Fig. 3b, job z and y cannot be assigned together, otherwise, x3 ≥ y and
then it is a contradiction with COPT = 1.

Suppose that x2 ≤ 1/7− δ − ε, otherwise x2 + y > z, and then the profile (S, L) is
not stable and it is a contradiction.Hence, x1 ≤ x2 ≤ 1/7−δ−ε and x3 ≥ 3/7+δ+3ε.
Note that x3 consists of only one job. Now we get a contradiction that COPT is 1 and
hence x + y ≤ 9/7.

One can give the analogous proof for job j that is located at the machine with
policy L. In this case, M1 uses policy L, and then x ≥ y > 4/7. Again, suppose
that z = 5/7 − ε. We know that no job in M2 has processing time larger than 3/7,
otherwise COPT > 1. If we change the policy of M2 to L, then the two jobs in M1
will be assigned to two machines, and the load in both machines are at least 11/14,
which implies that M2 is benefit by this changing. Hence it is a contradiction with the
fact that (L, S) is a Nash equilibrium.

Case 2Themachine profile of the equilibrium is (S, S). See Fig. 4 for the configuration
of the profile (S, S), where z2 is the second largest job. Again, we assume that 5/7 >
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Fig. 4 Job configuration in the
profile (S, S)
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Fig. 5 Lower bound for the price
of anarchy for two machines

1/7

1/7

3
7 − ε

5/7

4/7

S L

(a) (b)
S S

5/7

4/7

1/7 1/7

3
7 − ε

z > y > 4/7, otherwise, this case is done, and the inequality z > y holds since M2
does not change its policy to L. Since x + y > 9/7, we have x > 4/7.

Notice that the second longest job z2 must be located in machine M2 due to (S, S)

policy. If z2 ≤ 4/7, then it will be beneficial if we change the profile to (S, L), since
the maximum gap between these two machines is at most the second largest job and
then the minimum load of a machine is at least 5/7 and thus larger than z. Now let us
consider the case that z2 > 4/7. We have z1 < 1/7, which implies x2 > 3/7 since
x1 + x2 = x > 4/7. Note that x2 consists of only one job and it is a contradiction with
COPT = 1. �	

Theorem 5 The price of anarchy of the (S, L)-game is at least 2m/(m+1) for m ≥ 3
and at least 9/7 for m = 2.

Proof For any given sufficiently small ε > 0, we prove that the lower bound form ≥ 3
is at least (2m − ε)/(m + 1), and for m = 2 the lower bound is at least 9/7 − ε.

We first consider an instance whenm = 2. There are five jobs with processing times
1/7, 1/7, 3/7 − ε, 4/7, 5/7, respectively. Figure 5a is a Nash equilibrium, where the
profile of the two machines is (S, S). To see this, note that no job has the incentive to
move. Meanwhile, Fig. 5b shows that neither machine has the incentive to change his
policy to L.

Clearly, the optimal makespan is 1, while the equilibrium has a length of 9/7 − ε.
Thus PoA ≥ 9/7 for m = 2.

123



Journal of Combinatorial Optimization (2021) 42:616–635 627

1
2-ε

1 1 1 1

1 1 1 1 1 1
1
1

1
1
1

m

S S S S S S

1
1
1

1
1

1
1
1

1
1 1

1

1
1
1
1

1
1
1

1
1

1
1
1

1
1

2 2 2 2 2

SS S S S L

(a) (b)

m − 2

m machines m machines

1
2-ε

1 1 1
1

1 1 1 1 1
1
1

1
1
1 m

1
1
1

1
1

1
1
1

1
1 1

1

1
1
1
1

1
1
1

1
1

1 1 1
2 2 2 2

2

m − 2

Fig. 6 Lower bound for the price of anarchy for m ≥ 3 machines

Now we turn to the general case thatm ≥ 3. In the instance, we are givenm(m−2)
jobs of processing time 1, m − 1 jobs of processing time 2, one job of processing time
2− ε and one job of processing time m. The machine profile is (S, S, . . . , S), and the
assignment of jobs in Fig. 6a is a Nash equilibrium. To see this, let us consider if one
machine (not the first one) changes his policy to L, the unique equilibrium of profile
(S, S, . . . , S, L) is illustrated in Fig. 6b. The load of the machine with policy L is m,
showing that no improvement at all on theworkload, comparedwith Fig. 6a. Therefore,
themakespan is 2m−ε, while the optimalmakespan ism+1. The PoA ≥ 2m/(m+1).

�	

3.3 The (L,M)-game

We consider the (L, M)-game, where machines can use the policy LongestFirst or
Makespan.

Theorem 6 The price of anarchy of the (L, M)-game is 2m/(m + 1) for m ≥ 3.

Proof To prove the lower bound, we are given (m − 1)(m − 2) jobs of processing
times 1, (m − 1) jobs of processing time 2, one job of processing time m − ε, and
one job of processing time m, and the profile of machine policies is (M, M, . . . , M).
All the machines use the policy M. The job configuration in Fig. 7a is an equilibrium.
This is because all the jobs cannot reduce their completion times if only one of them is
moving. On the other hand, if one machine change to L, Fig. 7b is an equilibrium, in
which the load of the machine with policy L ism. Hence, Fig. 7a is a Nash equilibrium
for the (L, M)-game, which indicates that the PoA is at least 2m/(m + 1) for m ≥ 3.

The proof for the upper bound is shown below. Again let us consider the job J ′
with processing time y that determines the makespan locates on the machine i . Let
x = Li − y be the load on machine i without counting J ′.
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Fig. 7 Job configuration in the profile (L, M)-game

Each machine with policy M has load at least y, otherwise it will increase its
load by changing to policy L. On the other hand, we know the load in machines
with policy L is at least y. Similar as Theorem 3, if y > m/(m + 1)COPT and
x + y > 2m/(m + 1)COPT , where COPT is the optimal social solution, we will
get a contradiction with total optimal load is within mCOPT . Then we have either
y ≤ m/(m + 1)COPT or x + y ≤ 2m/(m + 1)COPT , which therefore the PoA is at
most 2m/(m + 1). �	

From the construction of the lower bound for the (L, M)-game, we know that the
result of Theorem 3.3 does not valid for m = 2. In the following, we obtain a new
result when m = 2.

Theorem 7 The price of anarchy of the (L, M)-game is 7/6 for m = 2.

Proof To get the lower bound, we consider 2 machines with the profile (L, L), and
5 jobs with processing times 1/2, 1/2, 1/3, 1/3, 1/3, respectively. Figure 8a gives a
Nash equilibrium, which indicates the lower bound of 7/6. If one machine in Fig. 8a
replaces his policy to M, one stable configuration is illustrated in Fig. 8b and the
machine with policy M does not increase the load compared to that load in Fig. 8a.

We prove the upper bound by counterproof as below. Clearly, if the profile is (L, L),
then it acts the same as the LPT algorithm, which is (4/3 − 1/(3m))-approximated
and it is 7/6-approximated if m = 2 (Graham 1969), and then PoA ≤ 7/6.

Let us consider the machine profile of the final equilibrium is (L, M). Suppose the
job that makes the makespan with processing time y is located on the machine M1, a
total load of other jobs on this machine is x , and the load of the other machine M2 is
z. Again, we suppose that COPT = 1, y > 1/3, and x + y > 7/6. Suppose there are
some jobs with processing time no greater than 1/3, otherwise, the optimal solution
cannot be 1.

If the machine M2 uses the policy M and the machine M1 uses policy L, which will
give a contradiction. Since, if we change the policy of M2 to L, then the minimum
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Fig. 8 Job configuration in the
profile (L, M)-game when
m = 2
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load among the machines with profile (L, L) is at least 5/6 which is larger than z since
some job is smaller than 1/3, thus it benefits for M2 changing its policy.

If the machine M2 uses the policy L and the machine M1 uses the policy M, we
know that 5/6 > z > y > 1/3. Notice that all the jobs in M1 must be larger than 1/3,
otherwise, any job with processing time no more than 1/3 will move to M2 such that
its completion time is reduced. Now get that all the jobs in the system are larger than
1/3, which conflicts with COPT = 1.

The final case we need to consider is the profile of the final equilibrium is (M, M).
Again 5/6 > z > y > 1/3, all the jobs in M1 consists of jobs larger than 1/3. If M2
changes to L, then, denote L ′

i to be the load after changing policy, i = 1, 2. We have
L ′
2 < z < 5/6, which indicates all the jobs in L ′

1 is larger than 1/3. Since M2 taking
the policy L after changing, all the jobs in this machine is no less than the jobs in L ′

1,
which indicates that all the jobs in the system are larger than 1/3. Again it conflicts
with COPT = 1. �	

4 The PoA for maximizing theminimum load

In this section,we study the gamewith the social objective ofmaximizing theminimum
load among machines. The change of social objective does not affect the existence of
equilibria. However, the price of anarchy might be very different.

4.1 The (S, L)-game

Theorem 8 The lower bound of the price of anarchy of the (S, L)-game is at least
2 − 2/(m − 1), and the upper bound is at most 2 − 1/m, where m is the number of
machines.
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Fig. 9 Illustration of the lower bound for the (S, L)-game in the Max-Min model

Proof The job instance is m(m − 2) + 1 jobs of processing time 1 and m − 1 jobs
of processing time m − 1. Since all the machines use the policy S, we know that a
job configuration in Fig. 9a is a job equilibrium. Figure 9b shows that no machine
has the incentive to change its policy to L. From this instance, CNE = m − 1 and
COPT = 2m − 4, therefore we obtain that PoA ≥ 2 − 2/(m − 1).

The upper bound is shown below. Denote L j to be the load of machine j . Suppose
that the machine i has the minimum load. Thus CNE = Li . Suppose that the machine
k reaches the makespan and let y = Lk − Li . Denote by J ′ the latest job on the
machine k, whose processing time is z, then z ≥ y, otherwise job J ′ would move to
the machine i . Similar as Theorem 3, we know Li ≥ max{z, Lk − z}. Thus, for any
other machine j �= i , we obtain that

L j ≥ Li ≥ max{z, Lk − z} ≥ y,

which implies that y ≤ Li . On the other hand,

mCOPT ≤ mLi +
∑
j �=i

(L j − Li )

≤ mLi + (m − 1)y

≤ (2m − 1)Li = (2m − 1)CNE ,

which gives PoA = COPT /CNE ≤ 2 − 1/m. �	

4.2 The (S,M)-game

Lemma 9 The price of anarchy of the (S, M)-game in the Max-Min model is at least
m.
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Fig. 10 Illustration of the lower
bound for the (S, M)-game in
the Max-min model

1 1

m

S S
11111

· · ·

· · ·

Proof There are total m jobs of processing time 1 and m − 1 jobs of processing times
m. All themachines use the policy S. FromFig. 10, nomachine has incentive to change
its policy to M. In this equilibrium, CNE = 1, while COPT = m. �	

Theorem 10 The price of anarchy of the (S, M)-game in the Max-Min model is at
most m.

Proof Let j be the machine with the minimum load, and suppose its load is 1. Hence
CNE = 1. Denote yk to be the size of the latest job in the machine k. Hence the load
in machine k �= j is at most 1 + yk , otherwise that job with size yk will switch to the
machine j .

Suppose that we keep the last job of all thatm−1 machines other than j , and move
the other jobs to the machine j . In this case, machine j has a load at most of m, and
the other machines contain a single job. It is easy to check that the load of machine j
is an upper bound of the optimal solution. As a consequence, COPT ≤ m. �	

4.3 The (L,M)-game

If all the machines use policy L, Deuermeyer et al. (1982) have shown the upper bound
is at most of 4/3−1/3m. Epstein et al. (2009) have proved that if all the machines use
policy M, the price of anarchy is bounded by 1.691 and 1.7. In this section, we will
prove that the price of anarchy of the (L, M)-game is also between 1.691 and 1.7. The
technique for the upper bound proof is based on Epstein et al. (2009), some analysis
in that paper will be adopted as a black-box.

Theorem 11 The lower bound of the price of anarchy for the (L, M)-game in the
Max-Min model approaches to 1.691 when m is sufficiently large.

Proof Let t1 = 1 and ti+1 = ti (ti + 1) for i ≥ 1. Let m = tk for an integer k. All the
machines adopt the Makespan policy. Let ε > 0 be a sufficiently small number. The
job configuration consists of k − 1 classes. The first class has m/2 machines, with
each machine has 1 job of processing time 1 and 1 job of processing time 1 − ε. For
class 2 ≤ i ≤ k − 2, there are m/(ti + 1) machines, with each machine has ti + 1 jobs
of processing time 1/ti . The last class consists of m/(tk−1 + 1) machines, and each
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machine has tk−1 − 2 jobs of processing time 1/tk−1 and one job of processing time
3/tk−1. Denote Li to be the load of amachine in each class i . Thus in this configuration,
we have L1 = 2 − ε, Li = 1 + 1/ti for 2 ≤ i ≤ k − 1.

First, this configuration is a job equilibrium. Any job in the smaller class do not
move the machines in a larger class, Li < L j if i > j . Moreover, the jobs in class i
do not move to the class j with i ≤ j , since the load in machine of class i will be 1
by removing one job, while L j > 1 for any j .

At second, no machine has an incentive to change its policy to L.

Case 1 One of the machines Mm from the last class changes its policy. We know the
last class has tk−1 machines. The load in this class before changing is 1 + 1/tk−1.
After changing, the machine Mm has load 1+ 1/tk−1, and the other load of this class
is 1 + 2/tk−1. This is because one job of processing time 1 from the first class will
move to the machine Mm , follows which a job of 1/tk−1 on machine Mm moves to
different machines in the (k − 1)th class, and then the job of 3/tk−1 on machine Mm

move to the least loaded machine on the first class.

Case 2One of themachine except the last class changes its policy, suppose themachine
to be Mj in class j for 1 ≤ j ≤ k − 2. The number of jobs in Mj is t j + 1, the next
class has machines m/(t j + 1) ≥ t j for 1 ≤ j ≤ k − 2. Thus it is an equilibrium if t j
jobs would move to the next class such that some machine increases load at most 1/t j ,
thus whose load is 1+ 1/t j+1 + 1/t j , which will finally converge to the situation that
Mj = 1+ 1/t j , since 1+ 2/t j > 1+ 1/t j+1 + 1/t j . As a consequence, the machine
Mj has no incentive to change its policy.

From the above analysis, CNE = 1 + 1/tk−1, while we can prove that COPT =∑k−2
i=1 ti − ε, since in the optimal solution, each machine has a set of jobs of distinct

sizes 1 (or 1−ε) , 1/2, . . . , 1/tk−2. Thus, letm = tk and k be a sufficient large integer,
ε approaches to zero, we get that PoA ≥ COPT /CNE → 1.691. �	

In the following, we show that the upper bound of PoA for (L, M)-game is at most
1.7,

Theorem 12 The upper bound for the price of anarchy of the (L, M)-game in the
Max-Min model is at most 1.7.

Proof Epstein et al. (2009) proved that the PoA for the (M, M)-game is at most of
1.7. Hence, we only consider the final equilibrium with policies M and L, or only with
L. Denote CNE to be the minimum machine load in the final equilibrium and COPT

to be the optimal value. Without loss of generality, we assume that CNE = 1. If the
makespan of the equilibrium is at most 1.7, we obtain that COPT ≤ 1.7 and then
the theorem is done. In the following, we assume that the makespan is generated on
machine Mj which is larger than 1.7.

Case 1 The machine Mj uses the policy L. The last job in Mj are at least 0.7, and
then all the jobs in Mj are no less than 0.7. Thus it has only two jobs in this machine.
We also obtain that all the jobs in machines with L is no less than 0.7.

Case 2 The machine Mj uses the policy M. The last job in Mj is at least 0.7, all the
jobs in machines with policy L is at least 0.7.
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Hence, we obtain that all jobs in machines with L are no less than 0.7, and there
are at most two jobs in such machines.

We denote the machine with load 1 in the final equilibrium NE by P . All other
machines are called tall machines. Let COPT be the optimal solution. Obviously,
COPT ≥ 1. We modify the instance as Epstein et al. (2009) one by one on NE, which
does not increase COPT and does not violate the equilibrium conditions for NE and
does not decrease CNE .

• Step 1: Remove the machine and all the jobs in this machine if there is a single
job in a machine.

• Step 2: Enlarge the jobs to be 1 if a tall machine in NE which has two jobs.
• Step 3: Given jobs of sizes p1 ≤ p2 ≤ · · · ≤ pt assigned to a machine Q �= P in
NE, then increase pt such that p2 + · · · + pt = 1.

• Step 4: If a machine Q �= P in NE which has t ≥ 3 jobs assigned to it. Replace
the largest job with two jobs of its half size such that the largest jobs are no more
twice larger than the smallest job.

• Step 5: Partition jobs such that machine P contains only tiny jobs, that is, jobs of
infinitesimal size.

The above steps are the same as reference Epstein et al. (2009), we can also check that
the actions do not affect by the machines with policy L. Step 1 ensures that there is no
single job with size larger than 1. Step 2 guarantees the machines with policy L have
exactly two jobs whose size now is 1. Step 3 does not violate the NE since pt is not
larger than 1 and it does not move to the machines with policy L. Step 4 and Step 5
only decrease the sizes of the corresponding jobs, they will not change the allocation
of the machine with policy L. From Step 3 and Step 4 we know there is no job of size
between [2/3, 1).

By the above modification, we adopt the same weight function w(x) as Epstein
et al. (2009) on sizes of jobs x .

w(x) =
⎧⎨
⎩

1
2 for x = 1,
x

2−x for x ∈ (1/2, 2/3),
x

x+1 for x ∈ (0, 1/2].

First, machine P has a weight of less than 1. The total weight (byw) of jobs assigned
to a machine Q �= P in NE is at most 1 since all the machines with policy L have
only two jobs and their total weight is exactly 1. From Epstein et al. (2009), we know
that machines use policy M have weight at most of 1. Thus, any optimal solution must
have one machine with weight strictly less than 1. By the proof of Lemma 7 in Epstein
et al. (2009), we know the total size of jobs with weight less than 1 is at most of 1.7.
Hence, our proof is done. �	

5 Concluding remarks

In this paper, we have addressed the price of anarchy in two-stage identical parallel
machine scheduling games. In these games, both the machines and the jobs are selfish
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players. The prices of anarchy were explored with respect to two social objectives, the
minimum of the makespan and the maximum of the minimum machine completion
time. We provided nearly tight bounds for the (S, L)-game, the (S, M)-game, and the
(L, M)-game, respectively.

Many directions for futurework arise from these two-stage games. It is interesting to
consider different individual value functions of the agents or different social objectives.
In particular, one may consider the case that each machine attempts to minimize his
load because each machine might get more profit in the long run since agents prefer
a machine with the lightest load. One can extend our work to other measures of
efficiencies, such as the strong price of anarchy or price of stability. Another direction
might be the extension work on uniformly related machine scheduling, or unrelated
machine scheduling.

Acknowledgements The authors thank anonymous referees for helpful comments and suggestions to
improve the presentation of this paper.
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