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Abstract
LetG = (V , E) be a connected graph. The distance between the edge e = uv ∈ E and
the vertex x ∈ V is given by d(e, x) = min{d(u, x), d(v, x)}. A subset SE of vertices
is called an edge metric generator for G if for every two distinct edges e1, e2 ∈ E ,
there exists a vertex x ∈ SE such that d(e1, x) �= d(e2, x). An edge metric generator
containing a minimum number of vertices is called an edge metric basis for G and
the cardinality of an edge metric basis is called the edge metric dimension denoted by
μE (G). In this paper, we study the edge metric dimension of some classes of plane
graphs. It is shown that the edge metric dimension of convex polytope antiprism An ,
the web graph Wn , and convex polytope Dn are bounded, while the prism related
graph D∗

n has unbounded edge metric dimension.

Keywords Metric dimension · Edge metric dimension · Edge metric generator ·
Convex polytopes

1 Introduction

The metric dimension was first introduced independently by Slater (1975) and by
Harary and Melter (1976), which has been widely investigated in a number of papers,
see Cáceres et al. (2007), Hallaway et al. (2014), Chartrand et al. (2000), Sebő and
Tannier (2004), Guo et al. (2012) and Chartrand and Zhang (2003) for more details.
It was appeared in various areas including pharmaceutical chemistry (Chartrand et al.
2000), combinatorial optimization (Sebő and Tannier 2004), robot navigation (Khuller
et al. 1996), and sonar (Slater 1975), etc. LetG be a finite, simple, and connected graph
with the vertex set V (G) and the edge set E(G). Throughout the paper, when there is
no scope for ambiguity, we write V and E instead of the vertex set V (G) and the edge
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set E(G), respectively. For every distinct vertices u, v ∈ V , the distance between
the vertices u and v, denoted by d(u, v), is the number of edges in a shortest path
between them in G. A vertex x ∈ V is said to distinguish a pair of vertices u, v ∈ V if
d(u, x) �= d(v, x). A set S ⊆ V is ametric generator for G if every pair of vertices of
G can be distinguished by some vertex in S. A metric basis of G is a metric generator
of minimum cardinality. The cardinality of a metric basis, denoted by μ(G), is called
the metric dimension of G. It was shown that computing the metric dimension of a
graph is NP-hard (Khuller et al. 1996).

The edge metric dimension is a new variant of the metric dimension. It was intro-
duced by Kelenc et al. (2018) and further investigated by Zubrilina (2018), Peterin
and Yero (2018), Kratica et al. (2017) and Zhu et al. (2019). The distance between an
edge e = uv and a vertex x is defined as follows:

d(e, x) = min{d(u, x), d(v, x)}.

A vertex x ∈ V is said to distinguish two distinct edges e1, e2 ∈ E if d(e1, x) �=
d(e2, x). A set SE ⊆ V is an edge metric generator of a graph G if every two distinct
edges are distinguished by some vertex of SE . An edge metric generator with the
smallest number of vertices is called an edge metric basis of G. The edge metric
dimension of G, denoted by μE (G), is the cardinality of its edge metric basis. Kelenc
et al. (2018) proved that computing the edge metric dimension of a graph is NP-hard.

For an ordered subset SE = {x1, x2, . . . , xk} of the vertex set V , the k-tuple
r(e|SE ) = (d(e, x1), d(e, x2), . . . , d(e, xk)) is called the edge metric representation
of an edge e with respect to SE . In this sense, SE is an edge metric generator for G if
and only if for every pair of different edges e1, e2 ofG, we have r(e1|SE ) �= r(e2|SE ).

An edge metric generator SE is not necessarily a metric generator. In Kelenc et al.
(2018), the authors proposed an realization question for edge metric dimension and
metric dimension. Specifically, they stated that it is possible to find graphs for which
the metric dimension equals the edge metric dimension, as well as other graphs G for
which μ(G) < μE (G) or μ(G) > μE (G). In this paper, using four classes of plane
graphs convex polytope antiprism An , the web graphWn , the prism related graph D∗

n
and convex polytope Dn , we further explore such situations by comparing the value
of μ(G) and μE (G), where G denotes one of plane graphs An , Wn , D∗

n and Dn .
This paper is organized as follows. In Sect. 2, we recall some results related to the

edge metric dimension of graphs. In Sect. 3, we study the edge metric dimension of
antiprism An . In Sect. 4, the explicit expression forμE (Wn) andμE (D∗

n) are obtained.
The edge metric dimension convex polytope Dn is determined in Sect. 5. In the last
section, we conclude the obtained results.

Throughout this paper, all vertex indices are taken to be module n.

2 Preliminaries

In this section, we recall some results on the edge metric dimension of graphs.
Let G = (V , E) be a simple connected graph with the vertex set V and the edge

set E . For a vertex v, let N (v) = {u ∈ V |uv ∈ E} denote the neighborhood of
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the vertex v. |N (v)| is called the degree of the vertex v, denoted by degG(v). The
maximum degree and the minimum degree of G are denoted by �(G) and δ(G),
respectively. Let R be a real number set and Z be the integer set. If i, j ∈ R, we let
�i, j� := {x ∈ Z| i ≤ x ≤ j} stand for the discrete interval between i and j .

It is known that if G is a connected graph of order n, we have 1 ≤ μE (G) ≤ n− 1.
Now,we recall the lower bounds of the edgemetric dimension of a connected graph.

Proposition 1 (Kelenc et al. 2018) If G is a connected graph and�(G) is themaximum
degree of G, then we have μE (G) ≥ �log2�(G)	.
Proposition 2 (Kratica et al. 2017) Let G be a connected graph and let δ(G) be the
minimum degree of G. Then μE (G) ≥ 1 + �log2δ(G)	.

For a family F of connected graphs, we say that F has bounded edge metric
dimension, if for every graphG ofF there exists a constantC > 0 such thatμE (G) ≤
C ; otherwise F has unbounded edge metric dimension.

If all graphs inF have the same edge metric dimension, thenF is called a family
with constant edge metric dimension. Paths Pn , cycles Cn for n ≥ 2 and prism Dn are
families of graphs with constant edge metric dimension.

We end this section with some useful facts about the metric dimension of antiprism
An , the web graph Wn , the prism related graph D∗

n and convex polytope Dn .

Lemma 1 (Javaid et al. 2008) Let An be an antiprism with n ≥ 3. Then we have
μ(An) = 3.

Lemma 2 (Imran et al. 2016) For n ≥ 3, let Wn be a web graph. Then we have

μ(Wn) =
{
2, n is odd,

3, n is even.

Lemma 3 (Ali et al. 2012) For n ≥ 6, we have μ(D∗
n) = 3.

Lemma 4 (Imran et al. 2012) Let Dn be the graph of convex polytope with n ≥ 3.
Then we have μ(Dn) = 3.

3 The graph of convex polytope antiprism An

In this section, we present the edge metric dimension of antiprism An with n ≥ 3.
The antiprism An defined in Bača (1988) is a 4-regular graph which has 2n 3-

sided faces, and a pair of n-sided faces respectively, see Fig. 1. It consists of an
outer cycle b1, b2, . . . , bn , an inner cycle a1, a2, . . . , an , and a set of 2n spokes aibi
and aibi+1. We have the vertex set V (An) = {ai , bi |1 ≤ i ≤ n}, and the edge set
E(An) = {aiai+1, aibi , aibi+1, bibi+1|1 ≤ i ≤ n}.
Lemma 5 For any edge metric generator SE of An, SE contains at least one vertex of
outer cycle and one vertex of inner cycle, respectively.
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Fig. 1 Antiprism An

Proof Without loss of generality, assume {b1, b2, . . . , bn} ⋂
SE = ∅. Since SE �= ∅,

there exist some elements of inner cycle in SE . In this case, we have r(aibi |SE ) =
r(aibi+1|SE ) for 1 ≤ i ≤ n. It implies that SE is not an edge metric generator. A
contradiction. So there exists at least one vertex of outer cycle in SE .

Similarly, we can show that there exists at least one vertex of inner cycle in SE . ��
Lemma 6 If an edge metric generator SE for An contains two vertices of one cycle,
then SE contains at least two vertices of the another cycle.

Proof The result will be proved by showing that if an edge metric generator SE for
An contains n − 1 vertices of one cycle, then SE contains at least two vertices of the
another cycle. Because of symmetry of the antiprism An , it is enough to show that if
an edge metric generator SE for An contains n − 1 vertices of inner cycle, then SE
contains at least two vertices of the outer cycle. By Lemma 5, there exists at least one
vertex of outer cycle in SE . Assume that there is only one vertex, say b j for 1 ≤ j ≤ n,
such that b j ∈ SE . Without loss of generality, we assume that ai /∈ SE and ak ∈ SE
(1 ≤ k ≤ n, k �= i). We divide the proof into two cases.

(1) If j or j + n ∈ �i + 1, i + � n
2 	�, then we have r(aibi+1|SE ) = r(bibi+1|SE );

(2) If j or j + n ∈ �i + � n
2 	 + 1, i + n�, then we have r(aibi |SE ) = r(bibi+1|SE ).

Any of case above contradicts that SE is an edge metric generator for An .
The lemma follows immediately from what we have proved. ��
In the following, we give a lower bound for the edge metric dimension of antiprism

An .

Corollary 1 If An is an antiprism with n ≥ 3, then μE (An) ≥ 4.

Proof Immediate from Proposition 2 and Lemma 6. ��
The metric dimension of antiprism An was investigated in Javaid et al. (2008), see

Lemma 1. In the following, we determine the exact value of the edge metric dimension
for antiprism An .

Theorem 1 Let An be an antiprism with n ≥ 3. Then we have

μE (An) =
{
4, n is even,

5, otherwise.
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Proof We divide our proof into two cases.

Case (I) n is even. Set n = 2l, where l ∈ Z. Let SE = {a1, al , b1, bl+1}. To show that
SE is an edge metric generator for An , we give representations of any edge of E(An)

with respect to SE . They are

r(aiai+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, l − i − 1, i, l − i), 1 ≤ i ≤ l − 1,
(l − 1, 0, l, 1), i = l,
(2l − i, i − l, 2l − i, i − l), l + 1 ≤ i ≤ 2l − 1,
(0, l − 1, 1, l), i = 2l.

r(aibi |SE ) =
{

(i − 1, l − i, i − 1, l − i + 1), 1 ≤ i ≤ l,
(2l − i + 1, i − l, 2l − i + 1, i − l − 1), l + 1 ≤ i ≤ 2l.

r(aibi+1|SE ) =
{

(i − 1, l − i, i, l − i), 1 ≤ i ≤ l,
(2l − i + 1, i − l, 2l − i, i − 1), l + 1 ≤ i ≤ 2l.

r(bibi+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(1, l − 1, 0, l − 1), i = 1,
(i − 1, l − i, i − 1, l − i), 2 ≤ i ≤ l − 1(l ≥ 3),
(l − 1, 1, l − 1, 0), i = l,
(2l − i + 1, i − l, 2l − i, i − l − 1), l + 1 ≤ i ≤ 2l.

We note that there are no two edges having the same edge metric representations.
So we have μE (An) ≤ 4. Using the Corollary 1 we obtain μE (An) = 4.

Case (II) n is odd. Set n = 2l + 1, where l ∈ Z. Let SE = {a1, al+1, al+2, b1, bl+2}.
To show that SE is an edge metric generator for An , we give representations of any
edge of E(An) with respect to SE . They are

r(ai ai+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, l − i, l − i + 1, i, l − i + 1), 1 ≤ i ≤ l,
(l, 0, 0, l, 1), i = l + 1,
(2l − i + 1, i − l − 1, i − l − 2, 2l − i + 1, i − l − 1), l + 2 ≤ i ≤ 2l,
(0, l, l − 1, 1, l), i = 2l + 1.

r(ai bi |SE ) =
⎧⎨
⎩

(0, l, l, 0, l), i = 1,
(i − 1, l − i + 1, l − i + 2, i − 1, l − i + 2), 2 ≤ i ≤ l + 1,
(2l − i + 2, i − l − 1, i − l − 2, 2l − i + 2, i − l − 2), l + 2 ≤ i ≤ 2l + 1.

r(ai bi+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(0, l, l, 1, l), i = 1,
(i − 1, l − i + 1, l − i + 2, i, l − i + 1), 2 ≤ i ≤ l,
(l, 0, 1, l, 0), i = l + 1,
(2l − i + 2, i − l − 1, i − l − 2, 2l − i + 1, i − l − 1), l + 2 ≤ i ≤ 2l + 1.

r(bi bi+1|SE ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, l, l, 0, l), i = 1,
(i − 1, l − i + 1, l − i + 2, i − 1, l − i + 1, ), 2 ≤ i ≤ l(l ≥ 2),
(l, 1, 1, l, 0), i = l + 1,
(l, 1, 1, l − 1, 0), i = l + 2,
(2l − i + 2, i − l − 1, i − l − 2, 2l − i + 1, i − l − 2), l + 3 ≤ i ≤ 2l + 1.

Note that there are no two edges having same edge metric representation, which
implies that μE (An) ≤ 5. On the other hand, we show that μE (An) ≥ 5. Suppose
on contrary that μE (An) = 4. Then there are following possibilities to be discussed.
Using Lemma 6, we know that an edge metric generator SE for An contains at least
two vertices of two cycles respectively.
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Let a1, ai be two vertices on inner cycle and b j , bk be two vertices on outer cycle,
where 2 ≤ i ≤ n, 1 ≤ j �= k ≤ n. For 2 ≤ i ≤ l + 1, we only consider the following
cases.

(1) If both of j, k aren’t equal to l+2, thenwehave r(al+1al+2|SE ) = r(al+1bl+2|SE ).
(2) If one of the j, k equals l+2, we assume j = l+2. we only consider the following

two cases.

(i) If k = 1, then we have r(al+1al+2|SE ) = r(al+1bl+1|SE );
(ii) If k �= 1, then we obtain r(a1an|SE ) = r(a1b1|SE ).

Thus, in every case we get a contradiction.
For l + 2 ≤ i ≤ n, we can rename vertices and situation will be same as discussed

above.
Hence, it follows from the above that there is no edge metric generator with four

vertices for An implying that μE (An) = 5 in this case. ��

Remark 1 If An is an antiprism with n ≥ 3, then μ(An) < μE (An) by Lemma 1.

4 The prism related graphs

The prism Dn is a 3-regular graph which is obtained by the Cartesian product of a
cycle Cn and the path P2. It consists of an outer cycle b1, b2, . . . , bn , an inner cycle
a1, a2, . . . , an , and a set of n spokes aibi . We have the vertex set V (Dn) = {ai , bi |1 ≤
i ≤ n}, and the edge set E(Dn) = {aiai+1, aibi , bibi+1|1 ≤ i ≤ n}. The edge metric
dimension of the prism Dn has been studied recently in Kratica et al. (2017). In this
section, we extend this study to two classes prism related graphs which obtained from
prism Dn by slight modifications. Furthermore, we consider how the edge metric
dimension of prism Dn is affected by adding a single vertex.

4.1 The web graphWn

Koh et al. (1980) defined a web graph Wn (Fig. 2) as a stacked prism graph P3 × Cn

with the edges of the outer cycle removed. The web graph Wn also can be obtained
from prism Dn by attaching a pendant edge bi ci at each vertex bi of outer cycle of
prism Dn . We have the vertex set V (Wn) = {ai , bi , ci |1 ≤ i ≤ n}, and the edge set
E(Wn) = {aiai+1, aibi , bibi+1, bi ci |1 ≤ i ≤ n}. For convenience, we call vertices
ci where 1 ≤ i ≤ n, the pendent vertices.

Theorem 2 For the web graph Wn with n ≥ 3, we have μE (Wn) = 3.

Proof We consider the following two cases.

Case (I) n is even. Set n = 2l, where l ∈ Z. Let SE = {a1, a2, al+1}. To show that SE
is an edge metric generator for Wn , we give representations of any edge of E(Wn)
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Fig. 2 The web graphWn

with respect to SE . They are

r(aiai+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0, l − 1), i = 1,
(i − 1, i − 2, l − i), 2 ≤ i ≤ l,
(l − 1, l − 1, 0), i = l + 1,
(2l − i, 2l − i + 1, i − l − 1), l + 2 ≤ i ≤ 2l.

r(aibi |SE ) =
⎧⎨
⎩

(0, 1, l), i = 1,
(i − 1, i − 2, l − i + 1), 2 ≤ i ≤ l + 1,
(2l − i + 1, 2l − i + 2, i − l − 1), l + 2 ≤ i ≤ 2l.

r(bibi+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 1, l), i = 1,
(i, i − 1, l − i + 1), 2 ≤ i ≤ l,
(l, l, 1), i = l + 1,
(2l − i + 1, 2l − i + 2, i − l), l + 2 ≤ i ≤ 2l.

r(bi ci |SE ) =
⎧⎨
⎩

(1, 2, l + 1), i = 1,
(i, i − 1, l − i + 2), 2 ≤ i ≤ l + 1,
(2l − i + 2, 2l − i + 3, i − l), l + 2 ≤ i ≤ 2l.

Note that there are no two edges having same edgemetric representation,which implies
that μE (Wn) ≤ 3.

It remains to show that μE (Wn) ≥ 3. The result will be proved by showing that
there is no edge metric generator SE with |SE | = 2. Assume for a contradiction that
|SE | = 2, then there are the following possibilities to be discussed.

(1) Both vertices are in the inner cycle. Without loss of generality, we assume that
one vertex is a1, and the other is ai (2 ≤ i ≤ l + 1). For 2 ≤ i ≤ l, we have
r(a1an|SE ) = r(a1b1|SE ) = (0, i −1). And for i = l +1, we have r(a1a2|SE ) =
r(a1an|SE ) = (0, l − 1). A contradiction.

(2) Both vertices are in the outer cycle. Without loss of generality, we assume that
one vertex is b1, and the other is bi (2 ≤ i ≤ l + 1). For 2 ≤ i ≤ l, we have
r(b1bn|SE ) = r(b1c1|SE ) = (0, i − 1). And for i = l + 1, we have r(b1b2|SE ) =
r(b1bn|SE ) = (0, l − 1). A contradiction.

(3) Both vertices are in the set of pendent vertices. Without loss of generality, we
assume that one vertex is c1, and the other is ci (2 ≤ i ≤ l + 1). For 2 ≤ i ≤ l, we
have r(a1b1|SE ) = r(b1bn|SE ) = (1, i). And for i = l+1, we have r(a2b2|SE ) =
r(anbn|SE ) = (2, l). A contradiction.
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(4) One vertex is in the inner cycle, and the other is in the outer cycle. Consider
the vertex a1, and the other is bi (1 ≤ i ≤ l + 1). For 1 ≤ i ≤ l, we have
r(b1c1|SE ) = r(b1bn|SE ) = (1, i − 1). And for i = l + 1, we have r(a2b2|SE ) =
r(anbn|SE ) = (1, l − 1). A contradiction.

(5) One vertex is in the inner cycle, and the other is in the set of pendent vertices.
Consider the vertex a1, and the other is ci (1 ≤ i ≤ l + 1). For i = 1, we
have r(b1b2|SE ) = r(b1bn|SE ) = (1, 1). And for 2 ≤ i ≤ l + 1, we have
r(b1b2|SE ) = r(a2b2|SE ) = (1, i − 1). A contradiction.

(6) One vertex is in the outer cycle, and the other is in the set of pendent vertices.
Consider the vertex b1, and the other is ci (1 ≤ i ≤ l + 1). For 1 ≤ i ≤ l, we have
r(a1b1|SE ) = r(b1bn|SE ) = (0, i). And for i = l + 1, we have r(a2b2|SE ) =
r(anbn|SE ) = (1, l). A contradiction.

So from above we conclude that there is no edge metric generator with two vertices
forWn implying that μE (Wn) = 3 in this case.

Case (II) n is odd.
Set n = 2l + 1, where l ∈ Z. Let SE = {a1, a2, al+2}. To show that SE is an edge
metric generator forWn , we give representations of any edge of E(Wn) with respect
to SE . They are

r(aiai+1|SE ) =
⎧⎨
⎩

(0, 0, l), i = 1,
(i − 1, i − 2, l − i + 1), 2 ≤ i ≤ l + 1,
(2l − i + 1, 2l − i + 2, i − l − 2), l + 2 ≤ i ≤ 2l + 1.

r(aibi |SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 1, l), i = 1,
(i − 1, i − 2, l − i + 2), 2 ≤ i ≤ l + 1,
(l, l, 0), i = l + 2,
(2l − i + 2, 2l − i + 3, i − l − 2), l + 3 ≤ i ≤ 2l + 1.

r(bibi+1|SE ) =
⎧⎨
⎩

(1, 1, l + 1), i = 1,
(i, i − 1, l − i + 2), 2 ≤ i ≤ l + 1,
(2l − i + 2, 2l − i + 3, i − l − 1), l + 2 ≤ i ≤ 2l + 1.

r(bi ci |SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 2, l + 1), i = 1,
(i, i − 1, l − i + 3), 2 ≤ i ≤ l + 1,
(l + 1, l + 1, 1), i = l + 2,
(2l − i + 3, 2l − i + 4, i − l − 1), l + 3 ≤ i ≤ 2l + 1.

Again we see that there are no two edges having same edge metric representation,
which implies that μE (Wn) ≤ 3.

By the similar arguments to Case (I), we have μE (Wn) ≥ 3. Thus, we obtain
μE (Wn) = 3. This completes the proof. ��

Remark 2 Let Wn be a web graph with n ≥ 3. If n is odd, then μ(Wn) < μE (Wn);
if n is even, then μ(Wn) = μE (Wn) by Lemma 2,
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Fig. 3 The prism related graph
D∗
n

4.2 The prism related graph D∗
n

The plane graph D∗
n (Fig. 3) defined in Ali et al. (2012) is also an extension of the

prism Dn . It can be obtained from prism Dn by adding a new vertex ci between the
vertices bi−1 and bi of the outer cycle with the vertex ci joining to vertices bi−1 and bi
for 1 ≤ i ≤ n, where b0 = bn . We have the vertex set V (D∗

n) = {ai , bi , ci |1 ≤ i ≤ n},
and the edge set E(D∗

n) = {aiai+1, aibi , bibi+1, bi ci , bi ci+1|1 ≤ i ≤ n}.
Lemma 7 Let W = {c1, c2, . . . , cn} be a subset of V (D∗

n). For arbitrary edge metric
generator SE of D∗

n , SE contains at least � n
2 	 vertices of W .

Proof Suppose that SE contains at most � n
2 	 − 1 vertices of W for a contradic-

tion. Without loss of generality, we assume vertices ci , ci+1 /∈ SE . Then we have
r(bi ci |SE ) = r(bi ci+1|SE ), a contradiction. ��
Remark 3 Let SE be any edge metric basis for D∗

n . We note that SE contains all odd
vertices (vertex indices are odd ) of W for odd n, while SE contains either all odd
vertices or even vertices (vertex indices are even) of W for even n.

In the next lemma, we give a lower bound for the edge metric dimension of D∗
n .

Lemma 8 For n ≥ 5, we have μE (D∗
n) ≥ � n

2 	 + 1.

Proof We assume for a contradiction that the cardinality of subset SE is equal to
� n
2 	 by Lemma 7. Using Remark 3, we take SE = {ci ∈ W | vertex indices i is odd

} such that |SE | = � n
2 	. For even i ∈ [n], we have r(aibi |SE ) = r(bi ci |SE ) and

r(ai−1bi−1|SE ) = r(bi−1ci |SE ), a contradiction. ��
Theorem 3 For the prism related graph D∗

n with n ≥ 3, we have

μE (D∗
n) =

{
4, n = 3, 4,
� n
2 	 + 1, otherwise.

Proof For n = 3 or n = 4, we have found the edge metric dimension by total enu-
meration and given edge metric bases of D∗

n in Table 1.
For n ≥ 5, we consider the following four cases.
Let SE = {a1, c1, c3, c5, . . . , c2l−1}. We will show that SE is an edge metric basis

of D∗
n in Case (I) and (II), respectively.

Case (I) n ≡ 0 (mod 4).
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Table 1 Edge metric bases of
D∗
n

n Basis μE (D∗
n )

3 {a1, a2, c1, c2} 4

4 {a1, c1, c2, c3} 4

In this case, we can write n = 2l, where l ∈ Z. Let S1 = {a1, c1, c3, cl+1, c2l−1}.
Next, we give representations of any edge of E(D∗

n) with respect to S1. They are

r(aiai+1|S1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i − 1, i + 1, 2, l − i + 1, i + 3), 1 ≤ i ≤ 2,
(i − 1, i + 1, i − 1, l − i + 1, i + 3), 3 ≤ i ≤ l − 2,
(i − 1, i + 1, i − 1, 2, 2l − i − 1), l − 1 ≤ i ≤ l,
(2l − i, 2l − i + 1, i − l, i − l + 1, 2l − i − 1), l + 1 ≤ i ≤ l + 2,
(2l − i, 2l − i + 1, 2l − i + 3, i − l + 1, 2l − i − 1), l + 3 ≤ i ≤ 2l − 3,
(2l − i, 2l − i + 1, 2l − i + 3, i − l + 1, 2), 2l − 2 ≤ i ≤ 2l − 1,
(0, 2, 3, l + 1, 3), i = 2l.

r(ai bi |S1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i − 1, i, 3 − i, l − i + 1, i + 2), 1 ≤ i ≤ 2,
(i − 1, i, i − 2, l − i + 1, i + 2), 3 ≤ i ≤ l − 2,
(i − 1, i, i − 2, l − i + 1, 2l − i − 1), l − 1 ≤ i ≤ l,
(2l − i + 1, 2l − i + 1, i − 2, i − l, 2l − i − 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 1, 2l − i + 1, 2l − i + 3, i − l, 2l − i − 1), l + 3 ≤ i ≤ 2l − 2,
(2l − i + 1, 2l − i + 1, 2l − i + 3, i − l, i − 2l + 2), 2l − 1 ≤ i ≤ 2l.

r(bi bi+1|S1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i, i, 1, l − i, i + 2), 1 ≤ i ≤ 2,
(i, i, i − 2, l − i, i + 2), 3 ≤ i ≤ l − 2,
(i, i, i − 2, 1, 2l − i − 2), l − 1 ≤ i ≤ l,
(2l − i + 1, 2l − i, i − 2, i − l, 2l − i − 2), l + 1 ≤ i ≤ l + 2,
(2l − i + 1, 2l − i, 2l − i + 2, i − l, 2l − i − 2), l + 3 ≤ i ≤ 2l − 3,
(2l − i + 1, 2l − i, 2l − i + 2, i − l, 1), 2l − 2 ≤ i ≤ 2l − 1,
(1, 1, 2, l, 2), i = 2l.

r(bi ci |S1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 2, l, 3), i = 1,
(i, i, 3 − i, l − i + 1, i + 2), 2 ≤ i ≤ 3,
(i, i, i − 2, l − i + 1, i + 2), 4 ≤ i ≤ l − 2,
(i, i, i − 2, l − i + 1, 2l − i − 1), l − 1 ≤ i ≤ l,
(2l − i + 2, 2l − i + 1, i − 2, 2i − 2l − 2, 2l − i − 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l, 2l − i − 1), l + 3 ≤ i ≤ 2l − 1,
(2, 1, 3, l, 2), i = 2l.

r(bi ci+1|S1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1, 2, l, 3), i = 1,
(i, i, i − 2, l − i + 1, i + 2), 2 ≤ i ≤ l − 2,
(l − 1, l − 1, l − 3, 2, l), i = l − 1,
(i, l, i − 2, i − l, 2l − i − 1), l ≤ i ≤ l + 1,
(l, l − 1, i − 2, 2, l − 3), i = l + 2,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l, 2l − i − 1), l + 3 ≤ i ≤ 2l − 3,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l, i − 2l + 2), 2l − 2 ≤ i ≤ 2l − 1,
(2, 0, 3, l, 2), i = 2l.

When 1 ≤ i ≤ n and i �= 1, 2, 3, l, l + 1, 2l − 2, 2l − 1, 2l, we have
r(bi ci |S1) = r(bi ci+1|S1). In other cases, there are no two edges having same edge
metric representation. For odd i , where 1 ≤ i ≤ n and i �= 1, 3, l + 1, 2l − 1, we have
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r(bi−1ci−1|S1∪{ci }) �= r(bi−1ci |S1∪{ci }) and r(bi ci |S1∪{ci }) �= r(bi ci+1|S1∪{ci }).
It follows that r(bi ci |SE ) �= r(bi ci+1|SE ) for 1 ≤ i ≤ n. Combining the above and
Lemma 8, we obtain that SE is an edge metric generator for D∗

n , which implies that
μE (D∗

n) = � n
2 	 + 1.

Case (II) n ≡ 2 (mod 4).
In this case, we can write n = 2l, where l ∈ Z. Let S1 = {a1, c1, c3, cl+2}. Next, we
give representations of any edge of E(D∗

n) with respect to S1. They are

r(aiai+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i − 1, i + 1, 2, l − i + 2), 1 ≤ i ≤ 2,
(i − 1, i + 1, i − 1, l − i + 2), 3 ≤ i ≤ l,
(l − 1, l, l, 2), i = l + 1,
(2l − i, 2l − i + 1, 2l − i + 3, i − l), l + 2 ≤ i ≤ 2l − 1,
(0, 2, 3, l), i = 2l.

r(aibi |S1) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, i, 3 − i, l), 1 ≤ i ≤ 2,
(i − 1, i, i − 2, l − i + 2), 3 ≤ i ≤ l,
(2l − i + 1, 2l − i + 1, i − 2, 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 1, 2l − i + 1, 2l − i + 3, i − l − 1), l + 3 ≤ i ≤ 2l.

r(bibi+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i, i, 1, l − i + 1), 1 ≤ i ≤ 2,
(i, i, i − 2, l − i + 1), 3 ≤ i ≤ l,
(l, l − 1, l − 1, 1), i = l + 1,
(2l − i + 1, 2l − i, 2l − i + 2, i − l − 1), l + 2 ≤ i ≤ 2l − 1,
(1, 1, 2, l − 1), i = 2l.

r(bi ci |S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0, 2, l), i = 1,
(i, i, 3 − i, l − i + 2), 2 ≤ i ≤ 3,
(i, i, i − 2, l − i + 2), 4 ≤ i ≤ l,
(2l − i + 2, 2l − i + 1, i − 2, l − i + 2), l + 1 ≤ i ≤ l + 2,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l − 1), l + 3 ≤ i ≤ 2l.

r(bi ci+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 1, 2, l), i = 1,
(i, i, i − 2, l − i + 2), 2 ≤ i ≤ l,
(2l − i + 2, 2l − i + 1, i − 2, i − l − 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l − 1), l + 3 ≤ i ≤ 2l − 1,
(2, 0, 3, l − 1), i = 2l.

When 1 ≤ i ≤ n and i �= 1, 2, 3, l+1, l+2, 2l, we have r(bi ci |S1) = r(bi ci+1|S1).
In other cases, there are no two edges having same edge metric representation. For
odd i , where 1 ≤ i ≤ n and i �= 1, 3, l + 2, we have r(bi−1ci−1|S1 ∪ {ci }) �=
r(bi−1ci |S1 ∪ {ci }) and r(bi ci |S1 ∪ {ci }) �= r(bi ci+1|S1 ∪ {ci }). It follows that
r(bi ci |SE ) �= r(bi ci+1|SE ) for 1 ≤ i ≤ n. Combining the above and Lemma 8, we
see that SE is an edge metric generator for D∗

n , which implies thatμE (D∗
n) = � n

2 	+1.
Let SE = {a1, c1, c3, c5, . . . , c2l−1, c2l+1}. We will show that SE is an edge metric

basis of D∗
n in Case (III) and (IV), respectively.

Case (III) n ≡ 1 (mod 4).
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In this case, we can write n = 2l + 1, where l ∈ Z. Let S1 = {a1, c1, c3, cl+3}.
Next, we give representations of any edge of E(D∗

n) with respect to S1. They are

r(aiai+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i − 1, i + 1, 2, l + 1), 1 ≤ i ≤ 2,
(i − 1, i + 1, i − 1, l − i + 3), 3 ≤ i ≤ l,
(2l − i + 1, 2l − i + 2, i − l, 2), l + 1 ≤ i ≤ l + 2,
(2l − i + 1, 2l − i + 2, 2l − i + 4, i − l − 1), l + 3 ≤ i ≤ 2l,
(0, 2, 3, l), i = 2l + 1.

r(aibi |S1) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, i, 3 − i, l + i − 1), 1 ≤ i ≤ 2,
(i − 1, i, i − 2, l − i + 3), 3 ≤ i ≤ l + 1,
(l, l, l, 1), i = l + 2,
(2l − i + 2, 2l − i + 2, 2l − i + 4, i − l − 2), l + 3 ≤ i ≤ 2l + 1.

r(bibi+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i, i, 1, l), 1 ≤ i ≤ 2,
(i, i, i − 2, l − i + 2), 3 ≤ i ≤ l,
(2l − i + 2, 2l − i + 1, i − 2, 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l − 2), l + 3 ≤ i ≤ 2l,
(1, 1, 2, l − 1), i = 2l + 1.

r(bi ci |S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0, 2, l), i = 1,
(i, i, 3 − i, l − i + 3), 2 ≤ i ≤ 3,
(i, i, i − 2, l − i + 3), 4 ≤ i ≤ l + 1,
(2l − i + 3, 2l − i + 2, i − 2, l − i + 3), l + 2 ≤ i ≤ l + 3,
(2l − i + 3, 2l − i + 2, 2l − i + 4, i − l − 2), l + 4 ≤ i ≤ 2l + 1.

r(bi ci+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 1, 2, l), i = 1,
(i, i, i − 2, l − i + 3), 2 ≤ i ≤ l + 1,
(2l − i + 2, 2l − i + 1, i − 2, i − l − 2), l + 2 ≤ i ≤ l + 3,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l − 2), l + 4 ≤ i ≤ 2l,
(2, 0, 3, l − 1), i = 2l + 1.

Again we see that when 1 ≤ i ≤ n and i �= 1, 2, 3, l + 2, l + 3, 2l + 1, we
have r(bi ci |S1) = r(bi ci+1|S1). In other cases, there are no two edges having same
edge metric representation. For odd i , where 1 ≤ i ≤ n and i �= 1, 3, l + 3, we have
r(bi−1ci−1|S1∪{ci }) �= r(bi−1ci |S1∪{ci }) and r(bi ci |S1∪{ci }) �= r(bi ci+1|S1∪{ci }).
It follows that r(bi ci |SE ) �= r(bi ci+1|SE ) for 1 ≤ i ≤ n. Combining the above and
Lemma 8, we see that SE is an edge metric generator for D∗

n , which implies that
μE (D∗

n) = � n
2 	 + 1.

Case (IV) n ≡ 3 (mod 4).
In this case, we can write n = 2l + 1, where l ∈ Z. Let S1 = {a1, c1, c3, cl+2}. Next,
we give representations of any edge of E(D∗

n) with respect to S1. They are

r(aiai+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i − 1, i + 1, 2, l − i + 2), 1 ≤ i ≤ 2,
(i − 1, i + 1, i − 1, l − i + 2), 3 ≤ i ≤ l,
(2l − i + 1, 2l − i + 2, i − 1, 2), l + 1 ≤ i ≤ l + 2,
(2l − i + 1, 2l − i + 2, 2l − i + 4, i − l), l + 3 ≤ i ≤ 2l,
(0, 2, 3, l + 1), i = 2l + 1.
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r(aibi |S1) =

⎧⎪⎪⎨
⎪⎪⎩

(i − 1, i, 3 − i, l − i + 2), 1 ≤ i ≤ 2,
(i − 1, i, i − 2, l − i + 2), 3 ≤ i ≤ l + 1,
(l, l, l, 1), i = l + 2,
(2l − i + 2, 2l − i + 2, 2l − i + 4, i − l − 1), l + 3 ≤ i ≤ 2l + 1.

r(bibi+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i, i, 1, l − i + 1), 1 ≤ i ≤ 2,
(i, i, i − 2, l − i + 1), 3 ≤ i ≤ l,
(2l − i + 2, 2l − i + 1, i − 2, 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 2, 2l − i + 1, 2l − i + 3, i − l − 1), l + 3 ≤ i ≤ 2l,
(1, 1, 2, l), i = 2l + 1.

r(bi ci |S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0, 2, l + 1), i = 1,
(i, i, 3 − i, l − i + 2), 2 ≤ i ≤ 3,
(i, i, i − 2, l − i + 2), 4 ≤ i ≤ l + 1,
(l + 1, l, l, 0), i = l + 2,
(2l − i + 3, 2l − i + 2, 2l − i + 4, i − l − 1), l + 3 ≤ i ≤ 2l + 1.

r(bi ci+1|S1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 1, 2, l + 1), i = 1,
(i, i, i − 2, l − i + 2), 2 ≤ i ≤ l,
(l + 1, 2l − i + 2, i − 2, i − l − 1), l + 1 ≤ i ≤ l + 2,
(2l − i + 3, 2l − i + 2, 2l − i + 4, i − l − 1), l + 3 ≤ i ≤ 2l,
(2, 0, 3, l), i = 2l + 1.

When 1 ≤ i ≤ n and i �= 1, 2, 3, l + 1, l + 2, 2l + 1, we have r(bi ci |S1) =
r(bi ci+1|S1). In other cases, there are no two edges having same edge metric represen-
tation. For odd i , where 1 ≤ i ≤ n and i �= 1, 3, l+2, we have r(bi−1ci−1|S1∪{ci }) �=
r(bi−1ci |S1 ∪ {ci }) and r(bi ci |S1 ∪ {ci }) �= r(bi ci+1|S1 ∪ {ci }). It follows that
r(bi ci |SE ) �= r(bi ci+1|SE ) for 1 ≤ i ≤ n. Combining the above and Lemma 8,
we see that SE is an edge metric generator for D∗

n , which implies that μE (D∗
n) =

� n
2 	 + 1. ��

Remark 4 For n ≥ 6, we obtain μ(D∗
n) < μE (D∗

n) by Lemma 3.

5 The graph of convex polytopeDn

The graph of convex polytope Dn (Fig. 4) defined in Bača (1988) is the trivalent plane
graph which consists of 2n 5-sided faces and a pair of n-sided faces, respectively. We
have the vertex set V (Dn) = {ai , bi , ci , di |1 ≤ i ≤ n}, and the edge set E(Dn) =
{aiai+1, ai ci , ci di , ci+1di , bidi , bibi+1|1 ≤ i ≤ n}.

It has been proved in Imran et al. (2012) that the metric dimension of the convex
polytopeDn is constant. In the following, wewill prove that the edgemetric dimension
of Dn is the same as the metric dimension of Dn .

Theorem 4 Let the graph of convex polytope Dn be defined above. Then we have
μE (Dn) = 3

Proof We consider the following two cases.

Case (I) n is even.
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Fig. 4 The graph of convex
polytope Dn

In this case, we set n = 2l, where l ∈ Z. Let SE = {a1, b1, cl}. To show that SE is
an edge metric generator for Dn , we give representations of any edge of E(Dn) with
respect to SE . They are

r(aiai+1|SE ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 3, l − 1), i = 1,
(i − 1, i + 1, l − i), 2 ≤ i ≤ l − 1,
(l − 1, l + 1, 1), i = l,
(2l − i, 2l − i + 3, i − l + 1), l + 1 ≤ i ≤ 2l − 1,
(0, 3, l), i = 2l.

r(ai ci |SE ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 2, l), i = 1,
(i − 1, i, l − i + 1), 2 ≤ i ≤ l − 1,
(l − 1, l, 0), i = l,
(l, l + 1, 2), i = l + 1,
(2l − i + 1, 2l − i + 3, i − l + 1), l + 2 ≤ i ≤ 2l.

r(cidi |SE ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i, i, l − i + 2), 1 ≤ i ≤ l − 3,
(l − 2, l − 2, 3), i = l − 2,
(l − 1, l − 1, 1), i = l − 1,
(l, l, 0), i = l,
(l + 1, l + 1, 2), i = l + 1,
(2l − i + 2, 2l − i + 2, i − l + 2), l + 2 ≤ i ≤ 2l.

r(di ci+1|SE ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i + 1, i, l − i + 1), 1 ≤ i ≤ l − 3,
(l − 1, l − 2, 2), i = l − 2,
(l, l − 1, 0), i = l − 1,
(l + 1, l, 1), i = l,
(l, l + 1, 3), i = l + 1,
(2l − i + 1, 2l − i + 2, i − l + 3), l + 2 ≤ i ≤ 2l − 1,
(l, 2, l + 1), i = 2l.

r(bidi |SE ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i + 1, i − 1, l − i + 1), 1 ≤ i ≤ l − 2,
(l, l − 2, 1), i = l − 1,
(l + 1, l − 1, 1), i = l,
(2l − i + 2, 2l − i + 1, i − l + 2), l + 1 ≤ i ≤ 2l − 1
(2, 1, l + 1), i = 2l.
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r(bibi+1|SE ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i + 2, i − 1, l − i), 1 ≤ i ≤ l − 2,
(l + 1, l − 2, 2), i = l − 1,
(l + 1, l − 1, 2), i = l,
(2l − i + 2, 2l − i, i − l + 2), l + 1 ≤ i ≤ 2l − 1
(3, 0, l), i = 2l.

Note that there are no two edges having same edge metric representation, which
implies that μE (Dn) ≤ 3. It follows from Proposition 2 that μE (Dn) = 3 in this case.

Case (II) n is odd.
In this case, we set n = 2l + 1, where l ∈ Z. Let SE = {a1, b1, cl+1}. To show that

SE is an edge metric generator for Dn , we give representations of any edge of E(Dn)

with respect to SE . They are

r(aiai+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 3, l), i = 1,
(i − 1, i + 1, l − i + 1), 2 ≤ i ≤ l,
(l, l + 2, 1), i = l + 1,
(2l − i + 1, 2l − i + 4, i − l), l + 2 ≤ i ≤ 2l + 1.

r(ai ci |SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(0, 2, l + 1), i = 1,
(i − 1, i, l − i + 2), 2 ≤ i ≤ l,
(l, l + 1, 0), i = l + 1,
(2l − i + 2, 2l − i + 4, i − l), l + 2 ≤ i ≤ 2l + 1.

r(cidi |SE ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i, i, l − i + 3), 1 ≤ i ≤ l − 2,
(l − 1, l − 1, 3), i = l − 1,
(l, l, 1), i = l,
(l + 1, l + 1, 0), i = l + 1,
(l + 1, l + 1, 2), i = l + 2,
(2l − i + 3, 2l − i + 3, i − l + 1), l + 3 ≤ i ≤ 2l + 1.

r(di ci+1|SE ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i + 1, i, l − i + 2), 1 ≤ i ≤ l − 2,
(l, l − 1, 2), i = l − 1,
(l + 1, l, 0), i = l,
(l + 1, l + 1, 1), i = l + 1,
(l, l + 1, 3), i = l + 2,
(2l − i + 2, 2l − i + 3, i − l + 2), l + 3 ≤ i ≤ 2l,
(l, 2, l + 2), i = 2l + 1.

r(bidi |SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(i + 1, i − 1, l − i + 2), 1 ≤ i ≤ l − 1,
(l + 1, l − 1, 1), i = l,
(l + 2, l, 1), i = l + 1,
(2l − i + 3, 2l − i + 2, i − l + 1), l + 2 ≤ i ≤ 2l + 1.

r(bibi+1|SE ) =

⎧⎪⎪⎨
⎪⎪⎩

(i + 2, i − 1, l − i + 1), 1 ≤ i ≤ l − 1,
(l + 2, l − 1, 2), i = l,
(2l − i + 3, 2l − i + 1, i − l + 1), l + 1 ≤ i ≤ 2l
(3, 0, l + 1), i = 2l + 1.

123



Journal of Combinatorial Optimization (2020) 39:334–350 349

Again we see that there are no two edges having same edge metric representation,
which implies that μE (Dn) ≤ 3. It follows from Proposition 2 that μE (Dn) = 3 in
this case. ��

Remark 5 For the graph of convex polytope Dn with n ≥ 3, then we have μ(Dn) =
μE (Dn) by Lemma 4.

6 Conclusion

In this paper, we have determined the exact value of the edge metric dimension of
convex polytopes antiprism An , the web graph Wn , the prism related graph D∗

n and
convex polytope Dn . We conclude that the edge metric dimension of web graph Wn

and convex polytope Dn are constant, and antiprism An has bounded edge metric
dimension while the prism related graph D∗

n has unbounded edge metric dimension.
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