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Abstract
Search path planning is critical to achieve efficient information-gathering tasks in
dynamic uncertain environments. Given task complexity, most proposed approaches
rely on various strategies to reduce computational complexity, from deliberate sim-
plifications or ad hoc constraint relaxation to fast approximate global search methods
utilization often focusing on a single objective. However, problem-solving search tech-
niques designed to compute near-optimal solutions largely remain computationally
prohibitive and are not scalable. In this paper, a new information-theoretic evolu-
tionary anytime path planning algorithm is proposed to solve a dynamic search path
planning problem in which a fleet of homogeneous unmanned aerial vehicles explores
a search area to hierarchically minimize target zone occupancy uncertainty, lateness,
and travel/discovery time respectively. Conditioned by new observation outcomes and
request events, the evolutionary algorithm episodically solves an augmented static
open-loop search path planning model over a receding time horizon incorporating any
anticipated information feedback. The proposed approach has shown to outperform
alternate myopic and greedy heuristics, significantly improving relative information
gain at the expense of modest additional travel cost.
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1 Introduction

Target search path planning consists in constructing a path that enables one or
many vehicles, robots, or UAVs to successfully search and detect one or multiple
targets. Despite recent progress in information technology and analytics (e.g. com-
putational intelligence), the search path planning problem is NP-Hard (Stone 1975).
Path planning computational complexity is a major challenge for UAVs evolving in
a time-constrained uncertain environment as solution plan must be computed in real
time. Should the path planner fail to generate a feasible solution by a predetermined
deadline, mission failure would possibly occur.

Common target search optimization problem objectives include probability of
detectionmaximization and expected detection timeminimization. Stone (1975) offers
significant insight into the progression of an optimal search. Search plans for static
single targets with optimal effort allocation have been discussed with the restrictive
assumption of exponential detection functions. Lo et al. (2012) and Berger et al.
(2016) addressed the static target search path planning problem with homogeneous
sensors and heterogeneous sensors respectively, using a mathematical programming
framework. Reported results have nonetheless been limited to a small number of
sensors/searchers. Bekhti et al. (2016) similarly used an integer linear programming
framework to model the path planning of autonomous UAVs where tracking capa-
bilities are provided by terrestrial wireless networks. The problem is formalized as a
constrained shortest path problem, where the objective is to minimize the delay for
reaching a destination, while ensuring a certain message delivery rate in reporting
the drone’s positions. Bayesian search focuses on how to estimate the target’s posi-
tion based on probability theory. Search area is generally divided into a finite set of
cells, individually characterizing probability of cell occupancy by the target. The goal
is to determine the optimal path to find the lost or moving target(s). Lanillos et al.
(2012) and Perez-Carabaza et al. (2016) used the cross entropy approach to solve an
optimization problem with a discounted probability of detection objective function,
aimed at minimizing target search time. The problem of searching a lost target at sea
by a single autonomous sensor platform (UAV) is in counterpart discussed in Bour-
gault et al. (2003). In this case, the target may be static or mobile, but not evading.
The paper presents a Bayesian approach to the problem and the feasibility of the
method is investigated using a high fidelity UAV simulator. Many contributions on
search path planning may alternatively be found in the robotics literature, in particu-
lar in the robot motion planning field (see e.g. Botzheim et al. 2012) such as terrain
acquisition and coverage path planning (Wong and MacDonald 2003; Svennebring
and Koenig 2004; Yang and Luo 2004). Robot motion planning envisioned search
path planning primarily focusing on coverage problem instances from a constrained
shortest path perspective (Rekleitis et al. 2008; Agmon et al. 2008). A survey review-
ing the most relevant work for path planning problem for robotics is presented in
(Galceran and Carreras 2013). Robotics path planning heuristic-based algorithms are
reported in (Mac et al. 2016) for coverage problems, while reference (Otte 2017)
summarizes machine learning approaches. Problem variants emphasizing specific
features or settings including collision avoidance, target multiplicity, decentralized
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and dynamic decision-making have also been proposed and are briefly summarized
next.

Search path planning assuming unknown static targets, obstructions and an uncer-
tain environment presents a natural variant of the basic problem. In Lin and Saripalli
(2014), a path planning algorithm reinforcing UAV obstacle avoidance based on 3D
Dubins curves to avoid static and moving obstacles was developed. An operational
UAV platform using a 3D model of a region containing buildings and road structures
to autonomously generate collision-free paths is presented in Pettersson and Doherty
(2006). Similarly, Hrabar (Hrabar 2008) uses probabilistic roadmaps for path plan-
ning and uses stereo vision for detecting obstacles and dynamic path updating. In
Chia et al. (2010), the authors developed an ant colony algorithm to compute a search
path plan ensuring collision-free mobile robot navigation control toward the target
position. However, their ant colony algorithm is limited to single robot systems. Two
approaches are further proposed in Sun et al. (2017) to find the minimum path-time
path for a UAV flying from fixed starting and ending points with avoidance zones.
The first consists in modelling the path planning problem as a constrained quadratic
programming problem whereas the second integrates flight kinematic constraints in a
sampling-based heuristic search to generate smooth paths. A collision-free path plan-
ner exploiting parametrized Euler Spirals for a group of UAVs has also been developed
(Dai and Cochran 2009).

A few open literature contributions on search path planning considering multiple
targets are worth mentioning. Considering a team of UAVs searching for an unknown
number of targets, Wood and Hedrick (2011) use a target density distribution to esti-
mate expected number of targets over a surveillance area. The path planning strategy
involves a two-layer structure. A first layer views target partition as tasks and allocates
them to the UAV team while the second layer determines optimal agent search paths
over partitions characterizing target probability density distribution. More recently,
Freundlich et al. (2015) alternatively proposed an optimal path planning approach for
multiple target localization using Kalman filtering. Accordingly, a dynamic program
aimed at computing optimal trajectories in the joint state-space of uncertain robot
positions and target locations is solved for each target.

Expanding from centralized problem settings, cooperative target search planning
has been partly investigated aswell. Vidal et al. (2002) developed a coordinationmodel
forUAV/UGV (unmanned air/ground vehicles) team searching formultiple targets and
empirically proved their approach to locate evading targets. A cooperative path plan-
ning algorithm for tracking a moving target in urban environments using both UAVs
and UGVs is alternatively proposed by Yu et al. (2015). In that case, the target state is
updated using a Bayesian filter. The path planning algorithm consists in maximizing
the sum of the joint probability of detection over a finite look-ahead horizon for all
vehicles. In counterpart, Bourgault et al. (2003) describe a decentralized Bayesian
approach for locating a single target by coordinating multiple autonomous agents. In
their framework, automated search agents make individual decisions based on local
knowledge (prior probability distribution) and information gathered by the different
sensing platforms. Information is combined using a fully decentralized Bayesian data
fusion technique, and controls are given using a decentralized coordinated control
scheme. Tisdale et al. (2009) proposed an online path planning approach for a team
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of UAVs cooperatively searching for a single stationary target. A Bayesian filter and
a receding-horizon with an objective function that captures information gain has been
used to build path plans. The work proposed by Yang et al. (2005) consists in cooper-
atively optimizing dynamic path planning to successfully search and detect multiple
stationary targets. It relaxes some of the constraints generally imposed by classical
search approaches. These relate to partially observable environment state, explicit
information feedback exploitation, imperfect sensors (e.g. false-alarm), limited com-
putational resources, or a mix of them.

Reported work on dynamic target search path planning presents a different problem
perspective. Dynamic task allocation and multiple autonomous vehicles path planning
are concurrently handled by Yuan et al. (2009). It combines multiple autonomous sys-
tems dynamically planning collision-free paths. Peng and Demin (2012) alternatively
present an intelligent online path planner (OPP) computing UAV paths, where the
problem ismodeled as a dynamicmulti-objective optimization problem. The Bayesian
network and fuzzy logic are used to quantify respective bias introduced by each opti-
mization objective to successfully select the best path from the output of the OPP. The
main idea is to use historical information and collected Pareto sets to construct several
time series to guide search.

Despite problem diversity, most proposed problem-solving approaches often rely
on common computational complexity reduction strategies to mitigate the curse of
dimensionality, from ad hoc constraint relaxation to fast or global search methods uti-
lization promoting low-cost computation. Some of these techniques include sampling
(Lanillos et al. 2013), coarse-grained environment representation (Lanillos et al. 2012)
and limiting action parameter specification (Lanillos et al. 2014). Problem complexity
reduction strategies are coupled to traditional search theory methods such as branch
and bound (Washburn 1998; Lau and Dissanayake 2005) or A* search techniques
and related variants. However, in this case, the main challenge in designing efficient
heuristics lies on the discovery and computation of tight bounds which remain largely
difficult to achieve in practice (Lau 2007). In counterpart, exact closed-loop model-
ing and problem-solving techniques such as policy-iteration, value-iteration or related
dynamic programing method variants are also exploited to handle partially observable
Markov sequential decision problem formulations (Brooks et al. 2006; Seuken and
Zilberstein 2008). But, these approaches are prohibitive and do not scale showing
serious practical limitations.

In this paper, a new information-theoretic-based evolutionary approach is proposed
to solve the dynamic search path planning problem. The effectiveness of the pro-
posed approach is assessed using a modified version of a hybrid genetic algorithm
(GA), previously reported in Barkaoui et al. (2014, 2015). The algorithm developed
in Barkaoui et al. (2015) was designed for the dynamic vehicle routing problem with
time windows to capture customer satisfaction over multiple visits. In Barkaoui et al.
(2014), some preliminary results for the dynamic search path planning problem were
reported. The new approach defines an information-theoretic evolutionary anytime
path planning algorithm to solve a dynamic search path planning problem in which a
fleet of homogeneous unmanned aerial vehicles (UAVs) explores a search area to hier-
archically minimize target zone occupancy uncertainty (entropy), lateness, and travel
time respectively. Conditioned by new observation outcome and exogenous request
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events, the evolutionary algorithm episodically solves an augmented static open-loop
search path planningmodel over a receding time horizon incorporating any anticipated
information feedback. The problem search area decomposed in zones, assumes a prior
zone occupancy (target) probability distribution to be known. Entropy objective con-
tribution function separability over local zones, coupled to conditional independence
of anticipated observation outcome events, enable efficient prior objective function
precomputing, leading to a novel decision problem model formulation. The new deci-
sion model which incorporates sensor false alarms and anticipated action outcome
feedback naturally lends itself to parallel computing, paving the way to rapidly solve
practical size problems. Problems with a large time horizon are dynamically handled
by repeatedly solving a revisited open-loop problem instance triggered by a new event
over a receding horizon, using real information feedback (observation outcome) from
the previous episode. The advocated strategy exploits episodic information feedback
to opportunistically improve solution quality over a limited period rather than aver-
aging path solution performance over a distant time horizon for all possible outcome
sequences. We use a genetic algorithm to construct a set of potential paths containing
existing zone visits as well as possible future revisits. The algorithm refines current
zone visit plans while considering optional local revisit requests. A comparative com-
putational experiment has been conducted to show potential gain of the proposed
approach. The algorithm outperforms alternate myopic and greedy heuristics, signifi-
cantly improving relative information gain at the expense of a small additional travel
cost.

The remainder of the paper is organized as follows. Problem definition, describ-
ing the main characteristics of the dynamic target search path planning problem, is
first introduced. Then, the main solution concept is presented, introducing a new
information-theoretic-based evolutionary approach to compute a near-optimal solu-
tion. The next section reports and discusses computational results comparing the value
of the proposed method with alternative techniques. Finally, a conclusion is given in
the last section.

2 Target search path planning problem description

The problem involves a fleet of homogeneous UAVs, searching stationary targets in a
bounded environment over a given time horizon. It is considered as a targeted closed-
loop search centralized path planning problem with a hierarchy of objectives. The
first objective is to maximize information gain or equivalently to minimize uncer-
tainty or entropy about target occupancy within a given search region, the second
consists in minimizing lateness, and the third aims at minimizing target discovery
time. The proposed multi-objective hierarchy is aligned to a lexicographic ordering,
for which overall quality of computed solutions are ranked against the respective
related objectives, in that order. Remaining responsive to dynamic exogenous events,
the evolutionary approach consists in solving an open-loop search path planning with
anticipated feedback (action outcomes/observations) problem model over a rolling
horizon while gradually incorporating information feedback made available. Per-
formed by a single base control station, a path planning episode takes place over a
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Fig. 1 Graph representation of a search area forming multiple zones. Nodes capture geographical zones or
search sub-regions while edges connecting zones reflect feasible UAV moves at each decision cycle

period separating two successive events. The search region is composed of geograph-
ically distributed zones, possibly populated by non-cooperative stationary targets.
A representation of the search region is given in Fig. 1. The search area is repre-
sented as an undirected graph in which a node reflects a geographical zone or search
sub-region and an edge defines a feasible zone transition describing a legal UAV
move. Targets separately occupy a single zone, and a zone may contain multiple tar-
gets. Target cardinality and respective positions are assumed unknown. Derived from
domain-dependent situation models reflecting specific conditions as well as terrain
and intrinsic target behavioral properties, a probability density distribution defining
individual zone occupancy characterizing prior single or multiple targets presence
in related location is assumed to be known. Occupancy probability distribution is
assumed zone-independent. Zones are visited by a homogeneous fleet of UAVs, ini-
tially located at a central base station. Paths are assumed to start and end at the central
base station. All zones must be visited within a specified time interval and a specific
deadline is set to safely complete all surveillance/reconnaissance tasks. Under cen-
tralized control, UAVs (typically surveillance/reconnaissance drones) act as stand-off
imperfect sensing agents collecting sensor readings while periodically communicating
state and plan information back and forth with the base control station. UAV’s speed
and zone visit time are assumed constant. Reflecting vehicle’s autonomy, UAV flight
time should not exceed a predetermined maximum travel time. The team embraces a
simple collision avoidance policy in which members fly at different altitudes. A UAV
path solution to the search problem aims at minimizing uncertainty (entropy) over
zone target occupancy, lateness and target discovery time respectively.

In the current dynamic problem setting, we assume the next UAV destination
(intended) to be communicated by the dispatching system at each visit location, or
upon zone visit completion. The next destination is determined according to the best
computed path plan available. The dispatching systemmay advise of any new destina-
tions during the problem-solving process as necessary. It should be emphasized that a
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UAV traveling to its next destination is fully committed to visit its target. Consequently,
aspects such as diversions for a moving UAV have not been considered.

2.1 Probabilistic observationmodel

Our sensing model is based on the fact that during period t, a UAV visits a zone to
determine target occupancy (i.e. presence of at least one target).Modeling partialworld
state agent observability, the observation model governs agent sensor’s perception
(Berger et al. 2009). A sensor reading obst at time t may then be either positive (obst
� 1) or negative (obst � 0) as determined through a probabilistic observation model.
The uncertainty is modeled using conditional probability of detection and false alarm,
given zone target vacancy or occupancy state x ∈ X � {0,1}. If we suppose obst is the
observation of zone occupancy at the end of period t: {positive � 1, negative � 0},
then we have pc � p (obst � 1| x � 1) indicating the probability of correct observation
and pf � p (obst � 1| x � 0) the probability of false alarm.

These two probabilities are zone-dependent reflecting specific sensor sensitivity
and terrain features and conditions (e.g. landscape, visibility, obstacles, clutter,). It is
assumed that the observation model is known by the decision-maker. Agent sensor’s
range defining visibility or footprint (coverage of observable zones given the current
sensor position) is limited to the zone being searched.

The local zone target occupancy beliefs, p(x � 1), can be updated using Bayesian
filtering (from a real or anticipated UAV sensor observation):

pt (x |obst ) � p(obst |x)pt−1(x)
∑

x∈X�{0,1}
p(obst |x)pt−1(x)

(1)

Probabilities pt−1 and pt refer to prior and posterior zone target occupancy probability
respectively.

2.2 Entropy function

A centralized decision-making process episodically makes a vehicle’s search path
planning decision based on vehicle’s position. The objective consists in constructing
a plan modeled as a sequence of moves to minimize entropy (target occupancy uncer-
tainty) over the entire region. From information theory (Cover and Thomas 2006), the
entropy function E is defined as:

E �
∑

x∈{0,1}
p(x) log2 p(x) (2)

where p(x) specifies the current probability/belief of zone target occupancy, and x a
binary zone occupancy state.A zonewith a zero entropy valuemeans absolute certainty
about occupancy or vacancy, whereas a maximum entropy value (1) refers to complete
uncertainty. The path planning objective consists in minimizing the entropy function
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and the decision-making is subject to limited computational resources imposed by
episode duration.

We define in our model an entropy threshold E* to determine a maximum number
of zone visits. Consequently, when zone entropy is smaller than E*, then certainty
may be assumed about target occupancy otherwise, a new visit is made. The resort
to a maximum number of visits helps prevents excessive zone revisit requests. Visit
ordering on a given zone has no impact on zone entropy even if the zone is vis-
ited by different UAVs. However, cumulative lateness and total travel time may be
affected.

3 Genetic-based target search heuristic approach

A hierarchical approach provides a way to specify relative objectives importance
to the decision maker who ranks them accordingly. It is deemed preferable to a
weighted multi-objective approach for the target search path planning problem pre-
senting a high-level hierarchy of preferences over natural solutions ordering. The
information-theoretic target search framework proposed in this paper is inspired from
the genetic algorithm paradigm. Target search ultimately results from the simulta-
neous evolution of two populations of “plan” individuals describing a sequence of
zone visits over a given horizon. An individual’s score is computed and ranked
according to the hierarchical objective structure following lexicographic ordering,
that is: minimize uncertainty or expected system entropy about target occupancy
within a given search region, minimizing lateness, and minimizing travel discovery
time.

3.1 Objective function

The information-theoretic based approach captures uncertainty related to target occu-
pancy, projecting expected entropy resulting from anticipated path plan execution. As
target occupancy may be assumed independent with respect to the zones of interest,
and observation outcome mainly rely on current UAV position, the objective function
is composed of separate contributions partitioning subsets of decision variables. As
zone entropy essentially depends on effective local visits, the global expected entropy
objective function is separable. Objective separability enables expected zone entropy
Êz,l precomputation, where z is the zone (node in the graph) and l is number of vis-
its (multiplicity). Expected entropy is determined over possible future observation
outcome scenarios involving imperfect UAV sensors which characterize partial envi-
ronment observability and ultimately anticipated information feedback resulting from
path plan execution. Simulating a given path plan, expected zone entropy (uncertainty)
is computed over all possible courses of observation outcomes. As zone visit ordering
is ultimately invariant with respect to expected zone entropy, symmetry on sequence
of observation outcomes may be further exploited. Hence, for a given number s of
success (anticipated positive observations) and l-s failure (anticipated negative obser-
vation outcomes) events, an l-visit scenario is governed by a binomial distribution over
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possible observation outcomes.Accordingly, usingEq. (2), local expected entropy Êz,l

resulting from a simulated path plan which assumes l visits over zone z is defined as
follows:

Êz,l �
∑l

s�0
pz(s|l) E({pz(x |s, l)}) l ≥ 1 (3)

where

pz(x � 1|s, l) � 1

1 + αs
zβ

l−s
z

(
1

pz,0(x�1) − 1
) ; pz(x � 0|s, l) � 1 − pz(x � 1|s, l)

(4)

and

pz(s|l) �
∑

x∈X pz(s|l, x)pz,0(x) � pz(s|l, x � 1)pz,0(x � 1)

+ pz(s|l, x � 0)
(
1 − pz,0(x � 1)

)
(5)

with

pz(s|l, x � 1) � l!

s! (l − s)!

(
pcz

)s(1 − pcz
)l−s

and

pz(s|l, x � 0) � l!

s! (l − s)!

(
p f
z

)s(
1 − p f

z

)l−s

and

αz � p f
z

pcz
; βz � 1 − p f

z

1 − pcz
(6)

Êz,0 � Ez,0 (7)

Equation (3) reflects average entropy over possible scenario combinations character-
izing s successful observations out of l visits in zone z. Conditional (s|l) scenario
entropy contribution is weighted by the probability p(s|l) of such a scenario (s antic-
ipated positive observations given l visits). Posterior zone z target occupancy belief
for a s-success l visit scenario is represented by Eq. (4). It naturally emerges from
expression (1) after multiple observations, where pz,0 stands for the initial target occu-
pancy belief in zone z. The expression pz(s|l,x) is a binomial probability distribution
of positive observations, giving the probability to obtain s success out of l visits on
zone z, conditional on occupancy state x. The probability of correct observation in
zone z is described by pcz and the probability of false alarm (not correct observation)

in zone z is described by p f
z , as introduced earlier. Ez,0 reflects current zone z entropy.

The use of homogeneous vehicles and the exploitation of symmetry over equivalent
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sequence of success/failure events reduce complexity to a linear number of scenarios
to be examined, as specific scenario event order does not matter.

3.2 Information-theoretic-based evolutionary approach

The objective function consists in minimizing uncertainty or entropy about target
occupancy within a given region. Therefore, anticipatory information about zones
that may require subsequent visits (revisits) in the near future is explicitly consid-
ered. Consequently, the approach consists in continuously generating plans that are
consistent with past decisions while anticipating future requests by considering both
existing and potential future visit requests during plan generation. More specifically,
the strategy introduces “dummy” revisits representing likely revisit request projec-
tions in UAV paths. The expected number of such visits vis for a given zone z, which
may require service in the near future, is conditionally determined by the following
formulas:

⎧
⎨

⎩

1

1 + βvis
z

(
1

pz,0(x�1) − 1
) ≤ p∗

1 i f pz,0(x � 1) ≤ 0.5 (8)

⎧
⎨

⎩

1

1 + αvis
z

(
1

pz,0(x�1) − 1
) ≥ p∗

2 otherwise (9)

where vis represents the minimum number of zone z visits assumed necessary to
confirm target occupancy state. User-defined target occupancy probability thresholds
p∗
1 and p∗

2 are used to confirm target vacancy and occupancy respectively.
A genetic algorithm is used to construct a set of potential paths containing existing

zone visits as well as possible future revisits. Consequently, the algorithm captures
path construction look ahead without violating temporal constraints. The advantage
of that is a larger number of zone visits can then be considered in building a solution,
leading possibly to some quality improvement. The strategy is based on the assump-
tion that better solutions may emerge when taking advantage of a possibly larger
number of zone visits due to additional requests that may occur in the near future. It is
therefore assumed that better opportunities generated by considering possible future
requests compensate the cost of myopic scheduling opportunities, ultimately resulting
in solution improvement. The maximum number of revisits (user-defined parameter)
represents the number of steps to plan ahead.

Individuals represent expandable solutions capturing currently planned visits, as
well as previously serviced zones, while dynamically accommodating incoming zone
visit requests. Individuals are represented as chromosomes encoding for a given time
step, a feasible path plan expressed as a sequence of intended zone visit actions (phys-
ical moves) to be executed over a specific time horizon T . Each UAV is connected with
one path. Zones may require several visits before confirming target occupancy state
(zone entropy reaches some threshold value E*). Zone entropy is updated after each
visit using Eq. (2) and (4). When a zone is visited, outdated planned visits from all
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solution individuals are then delayed accordingly and updated using a large penalty
cost for lateness. Feasible solutions for initial populations are first generated using
a sequential insertion heuristic in which zone visits are arbitrarily inserted in ran-
dom insertion positions within paths. This strategy is fast and simple while ensuring
unbiased solution generation.

The processing of new zone visit request is primarily entropy-driven. A new zone
service request automatically occurs when zone entropy resulting from the latest visit
is still significantly large. If multiple visits are candidates for insertion in planned
paths, the first visit to insert will be the one minimizing expected zone entropy defined
by Eq. (3). The insertion strategy related to zone visit requests is described as follows:

– A new visit request is inserted to minimize solution expected entropy. Visit requests
and potential future revisit requests are calculated using Eqs. (8) and (9), and con-
sidered for insertion.

– A new zone visit request alongwith its potential future revisit requests using Eqs. (8)
and (9) are first considered for insertion in the current plan solution.

– New revisit request on a given zone replaces one of its anticipated revisit, if any; oth-
erwise it will be inserted in one of the planned paths of the current solution, assuming
an admissible insertion position. Should such admissible insertion position not exist,
a beneficial exchange with planned revisits would be explored. Otherwise the zone
revisit request will be stored and reconsidered for future insertion.

– A zone visit can be removed (for exchange purposes) from planned path to insert
another visit (visit with the maximum expected information gain) which could
minimize entropy. Removed visits can be subsequently reinserted in the planned
paths.

– Anticipated zone revisits that do not occur are ultimately removed from planned
paths.

– Zone visit insertion is biased toward entropy minimization first, and then condi-
tionally on at least one feasible insertion position, the resulting solution is further
refined to minimize lateness and travel time. Accordingly, once a zone visit can be
inserted in a solution path plan, alternate solutions may be explored for lateness and
travel time as entropy is order-independent in terms of zone visits. Alternatively,
should feasible insertion of a new zone request fail in the first place, an exchange
procedure would be used to search alternate high-quality solutions.

3.2.1 Information-theoretic-based evolutionary algorithm

The new information-theoretic-based evolutionary approach is performed within a
previously reported hybrid genetic algorithm heuristic (Barkaoui et al. 2015). Zone
entropy and zone revisits are included for consideration in the overall problem-solving
process. With this modification, the overall problem-solving process algorithm can be
outlined as follows:

123



Journal of Combinatorial Optimization (2019) 38:808–835 819

Initialize populations with currently known zones

Repeat 

If (no external event occurs) Then 

Search dynamically optimizing paths using a genetic algorithm  

Schedule (visit commitment) next visit(s) if required  

Update best computed solution 

Else -- event occurrence 

Stop the genetic algorithm  

If (end of visit at zone location) Then 

Calculate zone entropy using Eq. (2) and (4) 

If (zone entropy > E*) Then
Generate new zone visit request (should the maximum number of visits is not 

reached) 

Else – target occupancy state confirmed  

Remove anticipated visits of the zone, if any, from planned paths 

Determine UAV’s next planned visit from best computed solution 

If (planned next visit involves a waiting time) Then 

Delay UAV’s departure for that period 

Update population solutions incorporating the next planned UAV’s visit (next 

planned destination) 

Else -- new zone visit request 

If (it is an anticipated visit) Then 

 Replace the anticipated visit by the new visit 

Else – not an expected visit 

Explore admissible visit insertion in population solutions – using the insertion 

procedure, or should it fail, the exchange procedure described below. 

If (at least one admissible insertion position or one beneficial visit exchange 

exists) Then 

Update population members and best-computed solution accordingly 

Else -- no admissible solution 

Request will be reconsidered for future insertion  

Reactivate the genetic algorithm (the GA continues from the point when it was stopped)

Until (end of the horizon period) 

3.2.2 Genetic algorithm

General description The algorithm mainly relies on the basic principles of genetic
algorithms, disregarding explicit solution encoding issues for problem representation.
During a pre-optimization phase, solutions are first generated as a set of paths, covering
known zones. These solutions are expanded to handle incoming visit requests while
properly accounting for previously visited zones or committed visits. Zone cardinality
is identical across both populations and the number of paths is bounded by the size
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of the vehicle fleet. Key events dynamically changing solution individuals include
“visit commitment” and “new visit request”. Visit commitment modifies the active
root (latest scheduled zone) of the developing path whilemaintaining state consistency
across solution individuals. The occurrence of a new visit request expands the length of
the solution individual incorporating an additional zone visit. Feasible zone insertions
are explored to minimize lateness and travel time. If all possible insertions across
populations ultimately violate the deadline associated with the problem time horizon
or the path time constraint, the zone visit will be reconsidered for future insertion
in the planned paths. When a new zone visit is successfully inserted in at least one
solution, the insertion is also included in alternate population members, even at the
cost of reconstructing some solution individuals. This requirement ensures solution
homogeneity (same set of visits) and amaximumnumber of serviced zones. Since visit
ordering on a given zone has no impact on zone entropy, only travel time and lateness
are considered in fitness and objective functions to evaluate solution individuals. An
exchange procedure exploring alternate path visit insertion swaps from a subset of
pending requests to maximize information gain is then executed. A post-processing
procedure aimed at reordering zone visits is further applied to improve the current best
solution. The evolutionary process is repeated until a predefined stopping condition is
met.

A steady-state genetic algorithm involving two overlapping populations is pro-
posed. At first, new individuals are generated and added to the current population
Popp. The process continues until the overlapping population outnumbers the initial
population by np. Then, the np worst individuals are eliminated to maintain popula-
tion size using the evaluation function. Individual evaluation (Evali) is computed as
follows:

Evali � εi + CVi , (10)

where

εi � ri + γ ti , (11)

CVi �
n∑

z�0

μzmax{0, biz − lz} + δ V ioli (12)

εi : basic evaluation of individual (solution) i,
ri: number of UAV paths in individual i,
γ : relative user-defined weight parameter controlling the time contribution. The
value of γ is selected to privilege solutions having a smaller number of paths (e.g.,
γ � 1/tm, where tm refers to the maximum travel time over the individuals forming
the initial population),
CVi: time period constraint violation associated to individual i,
ti: total travel time related to individual i,
n: number of zones (z � 0 refers to the central base station),
μz : penalty associated with time period constraint violation z,
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biz : scheduled time to visit zone z in individual i,
lz : latest time (upper bounds of time period) to visit zone z,
δ : penalty associated with the number of violated time period constraints,
V ioli : number of time period constraints violated in individual i.

The evaluation function indicates that better individuals generally (but not necessar-
ily) include fewer paths (UAVs), and smaller total travel time,while satisfying temporal
constraints. It is consistent with the three objectives mentioned earlier, namely the
minimization of entropy and, total lateness and then target discovery time.

A cycle of the proposed genetic algorithm is specified as follows:

p=1

Repeat {evolve population Popp - new generation} 

For j =1..np do

Select two parents from Popp

Generate a new solution Sj using crossover and mutation operators associated with Popp

Add Sj to Popp

end for 

Remove from Popp the np worst individuals using the evaluation function (Eq. 10) 

p=p+1  

Until (all populations Popp have been visited) 

Apply the post-processing procedure on the best solution {visit reordering} 

Population migration {local best solutions exchange across populations} 

Fitness The used genetic algorithm relies upon concurrent population evolution
and partial temporal constraint relaxation (Barkaoui et al. 2015). For a matter of
convenience, two populations Pop1 and Pop2 are chosen to emphasize solution diver-
sification. Individual fitness is computed as follows:

Pop1 : f i tnessi � ti +
n∑

z�0

μzmax{0, biz − lz} + δ V ioli (13)

Pop2 : f i tnessi �
n∑

z�0

μzmax{0, biz − lz} + δ V ioli (14)

The notations are the same as in Eq. (10)–(12). Better individuals generally (but not
necessarily) tend to include short total travel time inPop1 and satisfy asmany temporal
constraints as possible in Pop2.

Genetic operators The proposed genetic operators mostly rely on two basic prin-
ciples. First, for a given number of paths, an attempt is made to construct feasible
solutions with as many zone visits as possible. Second, remaining zones are inserted
within existing paths, violating temporal constraints to keep the total number of paths
allowed to a fixed value. The proposed genetic operators incorporate some key fea-
tures of the best heuristic routing techniques such as Solomon’s insertion heuristic I1
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(Solomon1987), large neighborhood search (Shaw1998), and the neighborhood-based
two-stage metaheuristic (Liu and Shen 1999). Two crossover operators are developed,
namely IB_X and LNSB_X (large neighborhood search-based), and a suite of five
mutation operators is proposed, namely EE_M, RS_M, IEE_M, RSP_M and RZ_M.
Each operator is briefly described next.

Selection A fitness proportional scheme is used to select parent candidates. Accord-
ingly, an individual is selected with a probability proportional to its fitness value.
Fitness functions given by Eq. (13), (14) are used for Pop1 and for Pop2 respectively.

Crossover The insertion-based IB_X(k) crossover operator creates an offspring by
combining, one at a time, k paths (R1) of parent solution P1 with a subset of zones,
formed by nearest-neighbour paths (R2) in parent solution P2. The neighbourhood
R2 includes the paths of P2 whose centroid is located within a certain range of r1 ∈
R1 (centroid). This range corresponds to the average distance separating r1 from the
paths defining P2. The paths of R1 are selected either randomly, with a probability
proportional to the number of zones characterizing a path or based on average distance
separating consecutive zones over a path. A stochastic removal procedure is first car-
ried out to remove from r1, zones’ subject to be migrated to alternate paths. Targeted
zones are either selected according to waiting times, distance separating them from
their immediate neighbours, or randomly. Then, using a modified insertion heuristic
inspired fromSolomon (Solomon 1987) a feasible child path is constructed, expanding
the alteredpath r1by inserting zonevisit candidates derived from thenearest-neighbour
pathsR2 defined earlier. The proposed insertion technique consists in adding a stochas-
tic feature to the standard insertion heuristic I1 (Solomon 1987) by selecting randomly
the next zone visit over the three best candidates with a bias toward the best. Once
the construction of the child path is completed, and reinsertion is no longer possible,
a new path construction cycle is initiated. The overall process is repeated for the k
paths of R1. Finally, the child inherits the remaining “diminished” paths (if any) of
P1. If unrouted zones still remain, additional paths are built using a nearest-neighbour
procedure. The whole process is then iterated once more to generate a second child
by interchanging the roles of P1 and P2. The operator is briefly sketched in Fig. 2.

The LNSB_X crossover operator relies on the concept of the Large Neighborhood
Search (LNS) method proposed by Shaw (Shaw 1998) to create an offspring. LNS
consists in exploring the search space by repeatedly removing a subset of zones (R)
from parent solution P1 and reinserting them using constraint-based tree search (con-
straint programming). The subset R includes related zones in parent solution P2 and
zones violating temporal constraints. Zone relatedness defines a relationship linking
two zones based upon specific properties (e.g., proximity and/or identical path mem-
bership), such that when both zones are considered simultaneously for a visit, they
can compete with each other for reinsertion creating new opportunities for solution
improvement. Therefore, zones close to one another naturally offer interchange oppor-
tunities to improve solution quality. Similarly, the number of paths in a solution ismore
likely to decrease when zones sharing path membership are removed all together.

As stated in Shaw (1998), a set of related zones is first removed. Then, zones
violating temporal constraints are takenout aswell, before proceeding to the reinsertion
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Fig. 2 Insertion-based (IB_X) crossover creates an offspring by combining iteratively various paths of a
parent solution P1 with a subset of visits, formed by nearest-neighbor paths from parent solution P2.
Exhaustive parent solution path representations have been omitted for clarity purposes

phase. The proposed zone reinsertion method differs from the procedure proposed
by Shaw (1998) in two respects, namely, the insertion cost function used, and the
order in which zones are visited for insertion through the search process. Insertion
cost is defined by the sum of key contributions referring respectively to increased
traveled distance, and delayed service time, as prescribed in Solomon’s procedure I1,
as well as constraint violation (see Eq. (12)). As for zone ordering, zones ({c}) are
sorted (CustOrd) according to a composite ranking, departing from themyopic scheme
originally proposed by Shaw. The ranking is defined as an additive combination of two
separate rankings, previously achieved over best insertion costs (RankCost(c)) on the
one hand, and number of feasible insertion positions (Rank |Pos|(c)) on the other hand:

CustOrd ← Sort(RankCost (c) + Rank|Pos|(c)) (15)

The smaller the insertion cost (short total distance, traveled time) and the number of
positions (opportunities), the better the ranking. The next zone to be visited within the
search process is selected according to the following expression:

zone ← CustOrd
[
I NT EGER

(
L randD

)]
(16)

in which L � current number of zones to be inserted, rand � real number over
the interval [0,1] (uniform random number generator), D � parameter controlling
determinism. If D � 1 then selection is purely random (default: D � 15).

Once a zone is selected, search is carried out over its different insertion positions,
exploiting limited discrepancy search as specified in Shaw (1998). However, search
tree expansion is achieved using a non-constant discrepancy factor d, selected ran-
domly (uniform probability distribution) over the set {1, 2, 3}. Despite the implicit
contribution of constraint violation in the insertion method, all legal zone visits are
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first successfully explored. Unvisited zones (if any) are then routed relaxing temporal
constraints.

Mutation The EE_M (edge exchange) and RS_M (repair solution) mutators focus
on inter-path improvement. EE_M attempts to shift zones to alternate paths as well
as to exchange sets of zones between two paths. It is inspired from the λ-interchange
mechanism in Osman (1993), performing reinsertions of zone sets over two neighbor-
ing paths. In the proposed mutation procedure, each zone is explored for reinsertion
in its surrounding path neighborhood made up of two paths. Paths are being selected
such that the distance separating their centroid from zone location is minimal. Zone
exchanges occur as soon as the solution improves, i.e., we use a “first admissible”
improving solution strategy. Assuming the notation (x, y) to describe the different
sizes of customer sets to be exchanged over two routes, the current operator explores
values running over the range (x� 1, y� 0, 1, 2). As for the RS_Mmutation operator,
it focuses on exchanges involving one illegal zone visit. In that scheme, each illegal
visit in a path is exchanged with an alternate legal one or two-zone visit sequence
in order to generate a new set of zones with either violated or non-violated temporal
constraints. The IEE_M (intra-path edge exchange) mutation operator is similar to
EE_M except that zone migration is restricted to the same path.

The RSP_M (reinsert shortest path) mutation operator eliminates the shortest path
of the solution, reducing by one the total number of paths. Zones from the short-
est path are first removed. Then, following an iterative process, various solutions are
explored, in which unvisited zones are reinserted within existing paths using the inser-
tion heuristic. The entire iterative process is repeated over I different sets (e.g. I � 20)
of randomly generated parameter values, and returns the best solution computed. The
RZ_M (reorder zones) mutation operator is an intensification procedure intended to
reduce total traveled distance of feasible solutions by reordering zones within a path.
The procedure consists in repeatedly reconstructing a new path using the sequential
insertion heuristic I1 over I different sets (e.g. I� 2) of randomly generated parameter
values, returning the best solution generated shall an improved one emerge.

3.2.3 Exchange procedure

The exchange procedure focuses on local path improvement. It attempts to exchange
sets of zone visits involving pending visits for insertion. In that scheme, each pend-
ing visit is exchanged with alternate planned zone visits in order to generate better
path plans. Each current and pending visit pair is explored for swapping using the
insertion procedure. Using a “first admissible” improving solution strategy, zone visit
exchanges occur as soon as solution quality increases. The exchange procedure may
be summarized as follows:

– For each possible “planned visit—pending visit” insertion swap, calculate related
information gain.

– Identify visits to eliminate from current planned paths. Visits to be eliminated are
those showing smaller gain than prospective gain from pending visits. Elimination
does respect visit order.
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– Eliminated visits and pending visits are sorted over information gain, in descending
order.

– The insertion procedure favors visits with highest information gain first. Eliminated
visits remain eligible for insertion in future iterations.

3.2.4 Time complexity

Several proofs have been developed that describe the expected convergence time and
provide worst-case and average-case convergence time of genetic algorithms (Anken-
brandt 1991; Rylander and Foster 2001; Rylander et al. 2001). Ankenbrandt (1991)
demonstrated that, with proportional selection, genetic algorithms have average and

worst case time complexity in, O
(
O(Evaluate(X)) ∗ m log(m)

log(r)

)
wherem is the popu-

lation size, r is the fitness ratio (the average fitness of a chromosome over the average
fitness function of all other chromosomes in the generation), and “Evaluate” rep-
resents the combined domain-dependent evaluation and decoding functions of the
chromosome X (complexity of the fitness, mutation and crossover functions). The
O(Evaluate(X)) is the order of the combined functions computed in every step. For
the fitness and objective functions, it is in the order of O(n*m), where n is the chro-
mosome length. The crossover operator is also in the order of O(cp*n*m), where cp
is the crossover probability. The mutation complexity is in the order of O(mp*n*m),
where mp is the mutation probability. Finally, the exchange procedure is in the order
of O(n*m). The same bounds are assumed to be valid in our proposed approach to the
dynamic search path-planning problem since basic genetic operators have been aug-
mented, exploiting problem structure to better explore the solution space. Algorithm
execution is alternately interrupted at the end of the time horizon (900 s, as defined in
Sect. 4), as stochastic observation outcomes describe various dynamic evolutionary
behaviours prone to a variety of performance results over a given run-time.

4 Numerical Experiments

Numerical experiments have been conducted to show the value of the proposed
approach for dynamic target search problem. The experiment aims at comparing per-
formance of the proposed evolutionary approach to alternate heuristics. Computed
solutions from respective methods are reported against differential relative informa-
tion gain. Differential relative information gain RIG(T ) between two heuristics (1 and
2) shown at the end of time horizon T is defined as follows:

RIG(T ) �
∣
∣g1T − g2T

∣
∣

max
(
g1T , g2T

) �
∣
∣
∣
(
E0 − Ê1

T

)
−

(
E0 − Ê2

T

)∣
∣
∣

E0 − min
(
Ê1
T , Ê2

T

)

�
∣
∣
∣Ê2

T − Ê1
T

∣
∣
∣

E0 − min
(
Ê1
T , Ê2

T

) (17)
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where E0 and Ê i
T are the initial system entropy and the expected entropy computed

by the heuristic i at the end of the time horizon T respectively. The larger the final
entropy gap, the better the relative performance.

To our knowledge there is nowell-known benchmark data available on target search
path planning. Computer simulations were conducted for two problem instances under
the following conditions. Each problem instance involves 100 zones (nodes), randomly
distributed over a geographical area. The travel time separating two zones corresponds
to their relative Euclidean distance. Zone locations for a problem instance are either
generated randomly using a uniform distribution (problem R1) or combining ran-
domly distributed and clustered zones (problem RC1). Problem set R1 contains 12
problem instances (r101–r112) and problem set RC1 contains 8 problem instances
(rc101–rc108). Scenarios for both problem instances R1 and RC1 convey different
levels of difficulty. The proportion of unknown zone requests lies between 10 and
50% (degree of dynamism). Real-time requests are generated over specific simula-
tion time horizons (900 s). Such a scenario involves approximately three requests per
minute. The total number of UAVs is fixed in advance for each scenario. The initial
zone entropy value is generated from an exponential distribution.

4.1 Myopic algorithms

To the best of our knowledge no known detailed approach implementation is available
for our problem instances. The performance of the proposed genetic algorithm (GA)
has been compared with a myopic version of our approach (GA_Myopic), in which
potential future visit requests associated with unconfirmed target occupancy state are
explicitly ignored during plan generation. Also, a greedy one-step limited look ahead
method (Greedy) is used for comparison purposes. The greedy procedure consists in
myopically planning moves one step ahead of time, progressively visiting the zone
with highest expected information gain. After a zone visit, zone entropy is updated
accordingly and the next destination is the onemaximizing expected information gain.
The procedure is then reiterated for each episode over time horizon T .

4.2 Genetic algorithm settings

The proposed algorithm is borrowed from a previously reported hybrid genetic algo-
rithmheuristic (Barkaoui et al. 2008, 2015) inwhichparameter valueswere empirically
determined. In Barkaoui et al. (2008, 2015) parameter selection is mainly driven by
good performance shown from empirical experiments trading-off run-time and solu-
tion quality. A finite set of parameter assignments is explored, discretizing the range
of possible parameter values.

GA and GA_myopic both use crossover and mutation rates of 0.8 and 0.6 respec-
tively. The migration parameter refers to the number of (best) solutions mutually
exchanged between populations after each generation (Migration parameter� 2). The
population size is fixed to 10 individuals and an elitist strategy is employed for both
approaches. The elitist strategy consists to preserve the best two individuals to the next
generation (Population overlap per generation � 2). Past experience has proved these
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Table 1 Parameter values Parameter μz δ pcz p f
z E∗ p∗

1 p∗
2

Value 100 100 0.8 0.1 E (0.96) 0.04 0.96

parameters to be fairly acceptable for a variety of problems, and therefore, turn out
to be a natural choice for both approaches. Further information on parameter values
and operator combinations for GA and GA_Myopic can be found in Barkaoui et al.
(2008, 2015). Parameters in fitness and evaluation functions as well as Eq. (3)–(9) are
given in Table 1.

The maximum number of visits per zone is bounded to four. We assume that all
zones have the same values of μz ,pcz and p f

z .
As the purpose of the experiments is to show the feasibility and the high level of

competitiveness of the proposed approach, extensive investigation of best parameter
selection strategies for genetic algorithm have been deliberately overlooked.

The proposed algorithms have been implemented in C++, using the GAlib genetic
algorithm library.1 The experiment consisted in running four simulation runs and
reporting average performance for each possible scenario occurrence uniformly dis-
tributed over R1 and RC1 problem instances, leading to a sample larger than thirty
scenarios in each case, permitting statistical performance analysis to compare exam-
ined methods.

4.3 Results

Solutions are analyzed based on hierarchical ranking considering information gain
first, total lateness second, and then, total travel time. The first analysis of the data
focuses on the entropy, since this is the first objective. Since hierarchically the entropy
is the first element to minimize, total lateness becomes relevant only if approaches
obtain a final solution displaying the same entropy. Travel time is considered to break
ties over entropy and total lateness.

Results obtained for the two problems R1 and RC1 over respective possible scenar-
ios (i.e. 12/R1, 8/RC1) are summarized in Tables 2 and 3. The first column presents
scenario identifiers. Measures of performance are the entropy (Entropy), total lateness
(Lateness) and total travel time (Travel Time).

OurGAapproachoutperforms the greedyprocedure as it clearly showsbetter results
for all scenarios. The overall average comparative performance gap for the examined
problem instances is more than 74% as shown in Table 2. Some scenarios even exhibit
an 81% gain. The differential relative entropy clearly demonstrates the value of predic-
tive/advance planning over a limited look ahead myopic attitude. Furthermore, results
of the greedy approach may be explained by the ignorance of travel time in selecting
next UAV destination. This often leads to long UAV paths to visit remote zones at
the expense of other zones due to time constraints. In GA_Myopic and GA, visits are
inserted into path plan positions minimizing lateness and total travel time. Genetic
operators are naturally inclined to generate path plans with the maximum number

1 http://lancet.mit.edu/ga/.
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Table 2 Performance comparison and relative information gain of GA over Greedy

Problem
instances

Greedy GA RIG(T)

Entropy Lateness Travel Time Entropy Lateness Travel Time

r101 44.85 925.27 5986.15 29.80 90.13 5817.45 0.65

r102 44.11 954.05 5936.79 29.51 136.77 5807.75 0.63

r103 45.95 519.96 5961.96 28.28 108.07 5898.52 0.72

r104 46.00 595.82 5917.94 26.01 26.64 5927.26 0.75

r105 47.30 1859.47 5906.28 30.70 20.97 5930.67 0.75

r106 46.22 1284.71 5331.65 29.52 20.44 5381.64 0.72

r107 46.31 843.91 5363.37 29.68 58.68 5275.37 0.72

r108 45.84 95.24 5049.39 31.45 7.73 5065.40 0.67

r109 47.60 2159.29 5688.93 28.36 0.00 5631.07 0.79

r110 47.66 544.99 5363.69 29.29 0.00 5384.36 0.78

r111 47.08 392.78 5964.29 26.25 0.00 5947.78 0.79

r112 47.29 247.85 5961.35 25.34 0.00 5938.34 0.80

rc101 47.47 1235.72 6200.75 30.29 45.73 6154.25 0.76

rc102 46.96 1093.63 6177.72 28.98 59.78 6195.72 0.75

rc103 48.04 480.76 5547.41 30.71 3.62 5621.49 0.78

rc104 45.74 197.09 5918.94 26.69 5.22 5948.12 0.73

rc105 48.01 1032.15 6177.83 28.04 37.12 6195.65 0.81

rc106 46.79 826.79 5643.98 31.80 0.00 5639.69 0.71

rc107 47.10 632.48 5563.92 29.32 0.00 5579.09 0.76

rc108 49.01 64.06 4959.16 32.34 0.00 4961.11 0.81

Average 46.77 799.30 5731.08 29.12 31.04 5715.04 0.74

of visits. GA is shown to significantly improve information gain over GA-Myopic.
Table 3 indicates that on average, GA decreases uncertainty by 12%, a substantial
benefit. Solutions generated by GA further exhibit slightly better comparative average
performance in terms of lateness and total travel time,while servicingmore zones. This
observation certainly reflects the value of considering potential future visit requests
for a dynamic environment during plan generation.

Statistical analysis has been conducted to compareGAwith greedy andMyopic_GA
approaches respectively. Assuming “entropy” (first/primary objective) for a given
problem instance to be a random variable, and a sufficiently large simulation sam-
ple (e.g.>30) to approximately match a normal distribution by virtue of the central
limit theorem, an analysis based on the standard student t test can be readily achieved.
The t distribution can conservatively approximate a normal distribution as sample size
gets larger. Accordingly, the null hypothesis H0 asserts similar average entropy for
both approaches; both algorithms in each comparison (GA vs Myopic_GA and GA vs
Greedy) do not exhibit significant difference between average entropy. A bilateral stu-
dent t-test to test the hypothesis H0 with a 5% level of significance was then realized.
Assuming the occurrence of scenarios composing a given problem (population) to be
the same, a computational experiment was carried out performing 4 simulation runs
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Table 3 Performance comparison and relative information gain of GA over GA_Myopic

Problem
instances

GA_Myopic GA RIG(T)

Entropy Lateness Travel Time Entropy Lateness Travel Time

r101 33.21 109..56 6006.03 29.80 90.13 5817.45 0.15

r102 32.53 335.27 6000.91 29.51 136.77 5807.75 0.13

r103 31.03 50.39 5989.47 28.28 108.07 5898.52 0.11

r104 28.54 0.00 5900.44 26.01 26.64 5927.26 0.09

r105 31.03 22.23 5949.60 30.70 20.97 5930.67 0.01

r106 33.72 12.38 5393.72 29.52 20.44 5381.64 0.18

r107 32.98 14.29 5367.23 29.68 58.68 5275.37 0.14

r108 32.82 15.18 5048.16 31.45 7.73 5065.40 0.06

r109 30.70 0.00 5688.70 28.36 0.00 5631.07 0.10

r110 34.02 0.00 5365.57 29.29 0.00 5384.36 0.20

r111 30.08 0.00 5892.45 26.25 0.00 5947.78 0.14

r112 28.20 0.00 5954.56 25.34 0.00 5938.34 0.10

rc101 35.14 1.07 6198.55 30.29 45.73 6154.25 0.22

rc102 31.34 5.36 6228.70 28.98 59.78 6195.72 0.10

rc103 32.36 2.18 5592.80 30.71 3.62 5621.49 0.08

rc104 30.68 10.70 5836.01 26.69 5.22 5948.12 0.15

rc105 33.35 5.09 6227.40 28.04 37.12 6195.65 0.21

rc106 32.32 36.73 5603.45 31.80 0.00 5639.69 0.03

rc107 31.60 30.75 5621.87 29.32 0.00 5579.09 0.10

rc108 34.01 4.71 4950.53 32.34 0.00 4961.11 0.08

Average 31.98 32.79 5740.81 29.12 31.04 5715.04 0.12

Table 4 Results of student’s t-test for the validation of the solution approach comparison

Problem Sample size Degrees of freedom Critical t-value T -value

GA versus GA_Myopic R1 48 94 1.986 4.858

RC1 32 62 1.999 4.046

GA versus greedy R1 48 94 1.986 48.829

RC1 32 62 1.999 36.590

per scenario. The results presented in Table 4 show the t-values to exceed the critical
t-values over the two problem instances for the two comparisons. Thus, H0 is rejected
over all problem instances at a 95%-significance level. Consequently, statistically dis-
similar performances expectedly demonstrate a clear dominance of the proposed GA
over its myopic counterpart as well as the examined greedy approach for the targeted
entropy minimization primary objective.

Differential relative information gains reported in Tables 2 and 3 comparing the
proposed GA with the two examined methods are graphically represented in Fig. 3.
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Fig. 3 Differential relative
information
gain RIG(T ) between two
heuristics (Greedy and
GA_Myopic) and the proposed
genetic algorithm (GA) shown at
the end of time horizon T for the
20 problem instances reported in
Tables 2 and 3

4.3.1 Results for different degrees of dynamism

A measure to describe system dynamics is very helpful when examining the perfor-
mance of a specific algorithm under varying conditions. Such suitable basic measure
in a path-planning context may be defined by the ratio of the number of visit requests
generated dynamically relative to the total number of visit requests characterizing the
problem. Accordingly, the notion of degree of dynamism was introduced as follows
(Larsen et al. 2002):

degree of dynamism � number of visit requests generated dynamically

total number of visit requests

Thismeasure defines values running over the interval [0, 1], with higher values indicat-
ing increasingly dynamic problems. Tables 5 and 6 present the result for each problem
(R1 and RC1) and degree of dynamism (Larsen et al. 2002). Examined degree of
dynamism oscillates between 10 and 90% with uniform increments. Reported mea-
sures of performance for each problem instance and selected degrees of dynamism
include respectively entropy, total lateness and total travel time in that order, averaged
over 10 simulation runs.

From Tables 5 and 6 it can be observed that GA outperforms competing algo-
rithms by a large margin of more than 31% with respect to entropy, the first objective.
However, this comes at the expense of an increase in travel time less than 3.5% in
comparison to the alternate methods. This simply reflects the strong bias of the GA
toward entropy minimization in exploring the solution space, and indicates entropy
to negatively correlate with travel time, as significant reduction in entropy generally
translates in servicing more requests which tend to augment travel time. In contrast,
results inTables 5 and6 showmitigated impact of dynamismas performance for a given
algorithm barely change. However, entropy for a given genetic-based method slightly
escalates with uncertainty conditioned by initially known visit request, suggesting
that entropy is still inclined to increase with degree of dynamism. In counterpart, the
proposed GA seems to adapt with growing dynamism to ultimately repair solutions
and nearly match the quality observed in the static case. This is evidenced through
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Table 5 Performance comparison and relative information gain of GA over Greedy for different degrees of
dynamism

Degree of
dynamism

Problem Greedy GA RIG(T)

Entropy Lateness Travel time Entropy Lateness Travel time

10% R1 35.26 90.03 5548.03 23.03 4.72 5680.07 0.41

RC1 37.02 54.81 5636.62 23.83 3.10 5776.07 0.46

30% R1 35.47 9.08 5521.88 23.49 3.47 5670.68 0.41

RC1 36.56 0.84 5565.72 23.93 2.48 5768.20 0.44

50% R1 35.56 6.52 5478.45 23.54 6.55 5657.11 0.41

RC1 35.89 2.04 5585.03 24.37 4.71 5765.83 0.41

70% R1 35.40 5.29 5488.57 24.03 4.68 5658.19 0.40

RC1 36.29 1.88 5576.27 24.84 7.23 5762.03 0.41

90% R1 35.39 10.64 5466.61 24.17 12.66 5658.14 0.39

RC1 36.60 4.18 5553.88 24.61 5.14 5763.61 0.43

Average 35.94 18.53 5542.11 23.98 5.47 5715.99 0.42

Table 6 Performance comparison and relative information gain ofGAoverGA_Myopic for different degrees
of dynamism

Degree of
dynamism

Problem GA_Myopic GA RIG(T)

Entropy Lateness Travel time Entropy Lateness Travel time

10% R1 32.29 2.14 5594.58 23.03 4.72 5680.07 0.31

RC1 33.56 1.26 5698.95 23.83 3.10 5776.07 0.34

30% R1 32.90 0.86 5540.06 23.49 3.47 5670.68 0.32

RC1 33.82 1.47 5655.43 23.93 2.48 5768.20 0.34

50% R1 32.96 2.18 5502.70 23.54 6.55 5657.11 0.32

RC1 33.73 1.72 5640.80 24.37 4.71 5765.83 0.33

70% R1 33.13 2.61 5458.83 24.03 4.68 5658.19 0.32

RC1 34.05 1.41 5650.81 24.84 7.23 5762.03 0.33

90% R1 33.48 9.28 5477.92 24.17 12.66 5658.14 0.33

RC1 34.32 8.54 5634.36 24.61 5.14 5763.61 0.34

Average 33.42 3.15 5585.44 23.98 5.47 5715.99 0.33

small RIG measure of performance variations. Exhibited fluctuations may be due to
average performance compilation over problem instances. In other respect, recorded
lateness is naturally coupled with uncertainty, as increasing rate of real-time visit
request occurrence tend to degrade overall solution quality and further delay visits. It
is also worth noticing that GA undermaximum uncertainty (90%) still outperforms the
greedy and GA_Myopic methods under minimum uncertainty (10%), reflecting the
gain provided by forward-looking planning over myopic approaches. In fact, ignor-
ing potential future visit requests associated with an unconfirmed target as promoted
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Fig. 4 Differential relative
information
gain RIG(T ) between two
heuristics (Greedy and
GA_Myopic) and the proposed
genetic algorithm (GA) at the
end of time horizon T for
different degrees of dynamism
over R1 and RC1 problem
instances

by myopic approaches may lead to the impossibility of accepting certain zone visits
which might have been accepted otherwise.

Differential relative information gains reported in Tables 5 and 6 comparing the
proposed GA with the two examined methods over various degrees of dynamism
(dynamic request distribution) are graphically represented in Fig. 4.

5 Conclusion

The proposed work consists in optimizing dynamic path planning to successfully
search and detect multiple stationary targets. The developed approach relies on a
new information-theoretic evolutionary algorithm to solve target search path plan-
ning. Problems having large time horizons may be adapted to a dynamic setting by
repeatedly solving new static problem instances over a rolling horizon, incorporating
observation outcomes from the last episode. The proposed approach takes advantage of
objective function separability and conditional observation probability independence
to hierarchicallyminimize expected system entropy, lateness and travel/discovery time
respectively. A computational experiment has been carried out to conduct comparative
performance analysis. The proposed GA approach turns out to be very efficient and
competitive when compared to alternate heuristics such as myopic genetic algorithms
and a greedy method as it clearly shows better results for all conducted simulations.
Comparative performance over various degree of dynamism reflecting the proportion
of requests dynamically generated for a given scenario, further indicates GA to out-
perform competing algorithms by more than 31% with respect to entropy, the first
objective. This gain comes at the expense of less than a 3.5% travel time increase in
comparison to the alternate methods.

Future work aims at naturally extending the current decision model to capture
heterogeneous UAVs, and investigate its practical limitations. Alternate directions
consist in adapting the approach to different search objectives such as proportion
of target discovery or expected detection time minimization. Other challenges lie in
modeling search problem variants incorporating more complex observation models
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and various target occupancy dependency and domain constraints, possibly infringing
separability and symmetry assumptions.Multi-dimensional search problems involving
complex domain knowledge modeled as belief networks represent another challenge
as well.
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