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Abstract
Let k ≥ 1 be an integer and let D be a digraph with vertex set V (D). A subset S ⊆
V (D) is called a k-dominating set if every vertex not in S has at least k predecessors in
S. The k-domination number γk(D) of D is theminimumcardinality of a k-dominating
set in D. We know that for any digraph D of order n, γk(D) ≤ n. Obviously the upper
bound n is sharp for a digraph with maximum in-degree at most k − 1. In this paper
we present some lower and upper bounds on γk(D). Also, we characterize digraphs
achieving these bounds. The special case k = 1 mostly leads to well known classical
results.
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1 Introduction

Let D = (V , A) be a digraph (or a directed graph) of order n = |V |, with vertex set
V and a set A ⊆ V × V of directed edges, called arcs. If (x, y) is an arc of D, then
the arc (x, y) is oriented from x to y, x is adjacent to y and y is adjacent from x .
We also say x is an in-neighbor (or a predecessor) of y and y is an out-neighbor (or a
successor) of x, and the arc (x, y) is incident to y and incident from x . An arc (x, y)
in A is called a symmetrical (an asymmetrical, respectively) arc if (y, x) is in A, ( is
not in A, respectively). If for every pair x and y of distinct vertices of D, (x, y) and
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(y, x) are in A, then D is called a symmetric digraph. And if at most one of (x, y)
and (y, x) is in A, then D is called an asymmetric digraph or an oriented graph. The
digraphs considered here are finite and simple (with no loops or multiple arcs).

Given a digraph D = (V , A). Let v be a vertex of D. The out-neighborhood of v is
the set N+

D (v) = {u ∈ V : (v, u) ∈ A} and the in-neighborhoodofv is the set N−
D (v) =

{w ∈ V : (w, v) ∈ A}. The out-degree of v in D is defined as d+
D(v) = |N+

D (v)|.
The maximum out-degree of D is given by �+ (D) = max

{
d+
D (v) : v ∈ V

}
and the

minimum out-degree, δ+ (D) = min
{
d+
D(v) : v ∈ V

}
. Similarly, the in-degree of v is

d−
D(v) = |N−

D (v)|, the maximum in-degree of D is �− (D) = max
{
d−
D(v) : v ∈ V

}
,

the minimum in-degree of D is δ− (D) = min
{
d−
D(v) : v ∈ V

}
. For an integer r > 0,

if for every vertex v ∈ V , d+
D(v) = r (d−

D(v) = r , respectively), then D is called r -out-
regular (r -in-regular, respectively) digraph. If v is an in-neighbor of each vertex of S,

then we use the notation v �⇒ S. ForU ⊆ V , the subdigraph H of D induced byU ,
denoted by H = 〈U 〉 is a digraph H = (U , B) where B = {(x, y) ∈ A : x, y ∈ U }.
If U = V and B ⊂ A, then H is said to be spanning digraph of D.

From a simple graphG = (V , E)we can obtain a digraph D = (V , E) by assigning
a direction (possibly both) to each edge of G. We say that D is an orientation of G.
Also, we can obtain the undirected graph G from D by replacing each arc (u, v) or
symmetrical arc (u, v), (v, u) of D by the edge uv. We say that G is the underlying
graph (or the associated graph ) of D.

A digraph is connected if its underlying graph is connected. A complete digraph
of order n, is a digraph in which its underlying graph is the complete graph Kn . A
tournament of order n denoted by Tn , is a complete oriented graph. A circuit of order
3, denoted by C3, is a tournament T3 of order 3 which its vertices v1, v2 and v3 can
be (uniquely) ordered, i.e., (v1, v2), (v2, v3), (v3, v1) ∈ A. For all the definitions not
given here we refer the reader to the book of Bang and Gutin (2008).

A subset S ⊆ V is a dominating set in a directed graph D = (V , A) if for every
vertex v ∈ V − S there exists a vertex u ∈ S for which (u, v) ∈ A. The minimum
cardinality of a dominating set in D is called the domination number of D, denoted
by γ (D). A γ (D)-set is a dominating set of D with cardinality γ (D). Also, a subset
S ⊆ V is called an independent set if �+ (〈S〉) = 0. An independent set is maximal
if there is no independent set which contains it. The independence number, α (D),
equal the maximum cardinality of a maximal independent set in D. A α (D)-set is an
independent set of D with cardinality α (D).

This is well known to those who study kernels and solutions in digraphs, which are
defined as follows. A subset S ⊆ V in a digraph D = (V , A) is called an absorbing
set if from every vertex v ∈ V − S there is a vertex u ∈ S such that (v, u) ∈ A. That
is, S is a dominating set in the directional dual D∗ = (V , A∗), where A∗ = {(u, v) :
(v, u) ∈ A}. A subset S ⊆ V is a kernel of D if S is independent and absorbent and
S is a solution of D if S is independent and dominant.

The theory of domination in graphs was formally introduced by Berge (1962) and
Ore (1962). Lee (1994) introduced in his doctoral thesis the concept of domination in
digraphs, which is a generalization of the concept of domination in graphs where a
graph can be seen as an underlying graph (undirected graph) of a symmetric digraph.
Domination in undirected graphs has been studied extensively and much more than
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directed graphs, about 90%of articles on domination only took into account undirected
graphs. On the other hand, and for various reasons, there has been relatively little
research involving the domination in digraphs. The basic reason is that undirected
graphs form a special class of directed graphs (symmetric digraphs). Another raison
is that in an undirected graph G, any maximal independent set is also a dominant
set, and therefore γ (G) ≤ α (G). However, these inequality is not always true for
digraphs, and as we can see from circuit C3; γ (C3) = 2 > 1 = α (C3) . So a set
S is an independent dominating (solution) set in a digraph D if and only if it is a
kernel in the dual digraph D∗. The decision problem of the existence of a solution and
kernel in a digraph are known to be NP-complete, see Fraenkel (1981) and Garey and
Johnson (1979). For more details, on the domination in graphs and digraphs, see the
two excellent books Haynes et al. (1998a) and Haynes et al. (1998b).

Fink and Jacobson (1985a, b) gave another type of generalization of the concept
of domination in graphs. In their paper they defined the concept of k-domination in
graphs as follows. Given a positive integer k, a subset S ⊆ V (G) is a k-dominating set
for a graphG if every vertex not in S is adjacent to at least k vertices in S. Theminimum
cardinality of a k-dominating set ofG is the k-domination number ofG, denotedγk(G).
When k = 1 the 1-domination is the classical domination, γ1(G) = γ (G). Note that
computing the k-domination number in undirected graphs is NP-hard (Jacobson and
Peters 1989), and as such, many researchers have sought computationally efficient
upper and lower bounds for this parameter. Like domination, k-domination has also
been extensively studied; for results on k-domination, we refer the reader to survey
given by Chellali et al. (2012).

Ramoul and Blidia (2017) transferred the concept of k-domination in undirected
graphs to the k-out-domination in digraphs. In their paper they gave the definition of
k-out-domination in digraphs as follows. For a digraph D = (V , A) and k positive
integer, a subset S of vertices in a digraph D is called an k-out-dominating set if∣∣N+ (u) ∩ S

∣∣ ≥ k, for every vertex u in V − S. And they used this definition to define
the k-kernel concept.

In our paper, we define another extension of k-domination in graphs given by
Fink and Jacobson (1985a, b), which we call it the k-in-domination or simply the
k-domination in digraphs defined as follows. A subset S of vertices in a digraph
D = (V , A) is a k-dominating set if

∣∣N−(u) ∩ S
∣∣ ≥ k for every vertex u in V − S.

The k-domination number of D, denoted by γk(D), is the minimum cardinality of a
k-dominating set in D. A γk (D)-set is a k-dominating set of D with cardinality γk(D).
This new concept is also an extension of the concept of domination in digraph given
by Lee (1994).

In this paper we present some lower and upper bounds for γk(D). Also, we charac-
terize digraphs achieving these bounds. The special case k = 1 mostly leads to well
known classical results.

2 Lower bounds for �k and extremal digraphs

For k ∈ N
∗, clearly if D is a digraph with�− (D) ≥ k, then γk(D) ≥ k. We begin this

section by given a characterization of digraphs D satisfying γk(D) = k. We denote
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by
−→
K p,q the complete bipartite oriented graph with a bipartition X and Y such that

|X | = p, |Y | = q and d−−→
K p,q

(y) = p, ∀ y ∈ Y .

Proposition 1 Let D = (V , A) be a digraph of order n, k a positive integer and

�− (D) ≥ k. Then, γk(D) = k if and only if D contains
−→
K k,n−k as a spanning

digraph.

Proof Necessity.Assume thatγk(D) = k and let S be aγk (D)-set of D, so every vertex
of V − S has exactly k in-neighbors in S. Let A[S, V − S] = {(u, v) ∈ A : u ∈ S and
v ∈ V − S}, it is clear that the spanning digraph (S, V − S, A[S, V − S]) is a complete
bipartite oriented graph with a bipartition S and V − S and |S| = k, |V − S| = n− k.

Sufficiency. If D contains
−→
K k,n−k as a spanning digraph, then

−→
K k,n−k has a bipar-

tition X and Y such that |X | = k, |Y | = n − k and d−−→
K k,n−k

(y) = k for every y ∈ Y .

So X is a k-dominating set. Moreover, γk(D) ≤ γk(
−→
K k,n−k) ≤ |X | ≤ k, and since

γk(D) ≥ k, we obtain γk(D) = k. ��
Fink and Jacobson (1985a) gave in their paper a lower bound on the domi-

nation number of a graph, γ (G) ≥ n

�(G) + 1
. The same authors in Fink and

Jacobson (1985b), generalized this bound to γk(G) ≥ kn

�(G) + k
, where k a pos-

itive integer with � ≥ k. Ghoshal et al. (1998) extended this bound in digraphs,

γ (D) ≥ n

�+ (D) + 1
. In this section, we give a lower bound for γk(D) in term of n,

k and �+ (D), which is a natural extension for these two lower bounds given above.
We also give a characterization of digraphs attaining this bound, which improve the
previous bound, when �+ (D) < n − k.

Theorem 2 Let D be a digraph on n vertices with maximum out-degree �+ (D) ≥ k,
where k is a positive integer. Then

γk(D) ≥ kn

�+ (D) + k
,

with equality if and only if V = X ∪ Y , where X is independent, each vertex of X has
out-degree �+ (D) and each vertex of Y has exactly k in-neighbors in X.

Proof Let k be a positive integer. We first prove the lower bound. Let S be a γk(D)-set.
The numberm(S, V −S) of arcs from S to V −S satisfies k |V − S| ≤ m(S, V −S) ≤
�+ |S|. Therefore γk(D) = |S| ≥ kn

k + �+ (D)
.

Now assume that γk(D) = kn

k + �+ (D)
. Then we have equality throughout the

previous inequality chain. It is clear that each vertex in S has �+ (D) out-neighbors
in V − S, and so the set S is independent and each vertex of V − S has exactly k
in-neighbors in S.

Conversely, clearly, if D is one of the digraphs described above, then each vertex
of X has exactly �+ (D) out-neighbors in Y and each vertex of Y has exactly k
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in-neighbors in X . Thus X is a k-dominating set of D and |V − X | k = |Y | k =
m(X ,Y ) = �+ (D) |X |, and so γk(G) ≤ |X | = kn

k + �+ (D)
. Equality holds from

the fact that γk(G) ≥ kn

k + �+ (D)
. ��

For k = �− (D), we have the following.

Corollary 1 Let D be a digraph on n vertices with maximum out-degree �+ (D) and

maximum in-degree�− (D). Then γ�−(D) = �− (D) n

�− (D) + �+ (D)
if and only if D is a

bipartite digraph with partite sets X and Y , such that every vertex of X has out-degree
�+ (D) and every vertex of Y has in-degree �− (D).

3 Upper bounds for �k and extremal digraphs

Let D be a digraph, and let k be a positive integer. It is clear that for any digraph
D, γk(D) ≤ γk+1(D) and γk(D) ≤ n with equality if and only if �− (D) ≤ k − 1.
Hence, if D is a digraph with maximum in-degree �− (D) ≥ k, then γk(D) ≤ n − 1.
We begin this section by these tow observations which are useful for the next.

Observation 3 Let k be a positive integer, and let Tn = (V , A) be a k-in-regular
tournament of order n. Then n = 2k + 1.

Proof Let Tn = (V , A) be a k-in-regular tournament of order n. Then, kn = |A| =
∑

v∈V d−
Tn

(v) = n (n − 1)

2
, which implies that n = 2k + 1. ��

Observation 4 Let k be a positive integer, and let Tn = (V , A) be a k-in-regular
tournament of order n. Then γk(Tn) = 2k.

Wenow give a descriptive characterization of digraphs D satisfying γk(D) = n−1.
We denote by Xk the set of vertices of a digraph D = (V , A), with in-degree at least
k, i.e.,

Xk = {
x ∈ V : d−

D (x) ≥ k
}
and Yk = Xk − Xk+1 = {

x ∈ V : d−
D (x) = k

}
.

Theorem 5 Let D = (V , A) be a digraph of order n, and let k be a positive integer
with �− (D) ≥ k. Then, γk(D) = n − 1 if and only if |Xk+1| ≤ 1, 〈Xk〉 is a complete
digraph, and if Xk+1 = {v}, then v ⇒ Yk.

Proof Necessity. If |Xk+1| ≥ 2, then Xk+1 has two vertices say, x and y such that
V − {x, y} is a k-dominating set of D, a contradiction.

Now, assume to the contrary that the underlying graph of 〈Xk〉 is not a complete
digraph. This means that there exist two nonadjacent vertices in Xk , say x and y. It is
clear that V − {x, y} is also a k-dominating set of D and we obtain a contradiction.
Finally assume that Xk+1 = {v} and there exists at least a vertex u in Yk such that
(v, u) /∈ A. Then V−{u, v} is a k-dominating set of D, againwe obtain a contradiction.

123



Journal of Combinatorial Optimization (2019) 38:680–688 685

Sufficiency. Suppose to the contrary that γk(D) �= n−1. Let S be a γk(D)-set of D.
Since�− (D) ≥ k, γk(D) ≤ n−2, which implies that V − S has at least two vertices,
say x and y. If x and y are in Yk , then we obtain a contradiction with the fact that
〈Xk〉 is a complete digraph. Since |Xk+1| ≤ 1, we must have x ∈ Yk and y ∈ Xk+1 or
x ∈ Xk+1 and y ∈ Yk . So, without loss of generality, suppose that Xk+1 = {y}. Thus,
(y, x) /∈ A which gives a contradiction with y ⇒ Yk . ��
Corollary 2 Let D be a r-in-regular digraph of order n ≥ 2 and k a positive integer
with r ≥ k. Then, γk(D) = n − 1 if and only if D is a k-in-regular complete digraph.

Proof Let D be a r -in-regular digraph of order n ≥ 2 and k a positive integer with
r ≥ k. If γk(D) = n − 1, then by Theorem 5, r = k , otherwise, if r ≥ k + 1 then
Yk = ∅ and V = Xk+1. Thus, n = |V | = |Xk+1| ≤ 1, a contradiction with n ≥ 2. So,
D is a complete k-in-regular digraph. The converse is obvious, since we cannot have
a k-dominating set S of a k-in-regular complete digraph with |S| ≤ n − 2. ��
Corollary 3 Let D be an oriented graph of order n and k a positive integer with
δ− (D) ≥ k. Then, γk(D) = n − 1 if and only if D is k-in-regular tournament Tn of
order n = 2k + 1.

Proof Let D be an oriented graph of order n and k a positive integerwith δ− (D) ≥ k ≥
1. Then V = Xk , and by Theorem 5, D is a complete oriented digraph, which means
that D is a tournament Tn . Suppose that D has a vertex v in Xk+1. Then v ⇒ V −{v},
and so D has at least δ− (D) symmetrical arcs in D a contradiction. So, Xk+1 = ∅,

and thus Tn is k-in-regular. By Observations 3, n = 2k + 1.
The converse is obvious. ��
In the next, we give an upper on γk(D) for δ− (D) ≥ k, which generalizes the

known upper bound γ (D) ≤ 2n

3
given by Lee (1998), also we provide a descriptive

characterization of digraphs attaining this bound. First, we recall an lower bound for
the independence number due to Caro (1980) and Wei (1981), which is fundamental
for our main result.

Theorem 6 (Wei 1981) If G = (V , E) is a graph of order n, then

α (G) ≥
∑

v∈V

1

dG (v) + 1
,

with equality if and only if every component of G is a complete graph.

Theorem 7 Let D = (V , A) be a digraph of order n with δ− (D) ≥ k and k a positive
integer. Then,

γk(D) ≤ 2k

2k + 1
n,

with equality if and only if D is a disjoint union of copies of k-in-regular tournaments
of order 2k + 1.
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Proof Let D = (V , A) be a digraph of order n with δ− (D) ≥ k, where k is a positive
integer. Let H = (V , B) be a spanning digraph of D defined as follows: while there
exists a vertex v in V of in-degree greater than k, we remove an arc incident to v.
Finally, we obtain, d− (v) = k for every vertex v ∈ V and so, H is k-in-regular. Now,
let G = (V , E) be the underlying graph of H . It follows from Theorem 6, that

α (G) ≥
∑

v∈V

1

dG (v) + 1
≥ n2

∑
v∈V (dG (v) + 1)

. (1)

Since 2 |E | = ∑
v∈V d (v) and |E | ≤ |B| = kn,

α (G) ≥ n2

2 |E | + n
≥ n2

2 |B| + n
= n

2k + 1
. (2)

Let I be a α (H)-set. Then every vertex in I has k-in-neighbors in V − I and so,
V − I is a k-dominating set of H . Moreover, since α (G) = α (H) and deleting an
arc cannot decrease the k-domination number of D. The upper bound is then deduced
by:

γk (D) ≤ γk(H) ≤ |V − I | = n − α (G) ≤ 2kn

2k + 1
. (3)

To prove equality, we begin with the sufficient condition. Let p be any positive
integer and consider the digraph D consisting of the disjoint union of p copies of the
k-in-regular tournaments of order 2k+1. Then n = (2k + 1) p, and by Observation 4,

we have γk (D) = pγk(T2k+1) = 2kp = 2kn

2k + 1
.

For the necessary condition, assume that γk(D) = 2kn

2k + 1
. Then we have equality

in (1)–(3). In particular,

|E | = |B| and α (G) =
∑

v∈V

1

d (v) + 1
. (4)

The first equality in (4) implies that H is an oriented graph. By Theorem 6, the second
equality implies that G has α (G) = α components, each of which is a complete
graph. Hence, H is a k-in-regular oriented graph, and every component of H , is a
k-in-regular tournament T j

r , for j = 1, . . . , α. By Observations 3 and 4 , we have r =
2k + 1 ≥ 3 and γk(T

j
2k+1) = 2k, for j = 1, . . . , α, respectively. Now to finish the

proof of Theorem 7,we show that H is exactly D, i.e., A = B. To do this, assume to the
contrary that D has at least an arc, say, (y, x)which is not present in H , i.e., (y, x) ∈ A
but (y, x) /∈ B, and without loss of generality assume that x is in V

(
T 1
2k+1

)
and y my

be in V
(
T 1
2k+1

)
or not. Since T 1

2k+1 is a k-in-regular tournament of order at least three,
x has at least an in-neighbor, say, z �= y in V

(
T 1
2k+1

)
(note that in case y ∈ V

(
T 1
2k+1

)
,

(y, x) is a symmetrical arc of D). Thus, we can construct a k-dominating set of D by
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taking V
(
T 1
2k+1

) − {x, z} and 2k vertices of each T j
2k+1, for j = 2, . . . , α, among

them y. Since n = (2k + 1) α, we have, γk (D) ≤ (2k − 1) + 2k (α − 1) <
2kn

2k + 1
,

a contradiction. Hence, D is a disjoint union of copies of k-in-regular tournaments of
order 2k + 1. ��
Remark 1 For undirected graphs G of order n with δ (G) ≥ k and k a positive integer,

the bound, γk (G) ≤ kn

k + 1
given by Cockayne et al. (1985), is true only if G is the

underlying graph of a symmetrical digraph D. However, this inequality is not true for
any digraph D with δ− (D) ≥ k. Consider the k-in-regular tournament Tn of order

n = 2k + 1. For this digraph, γk (Tn) = 2k = 2kn

2k + 1
>

kn

k + 1
.

For the case k = 1, we have the upper bound of Lee (1998). Note that the technique
proof given in Theorem 7 is different from Lee’s technique proof.

Corollary 4 (Lee 1998) Let D be a digraph with order n and minimum in-degree
δ− (D) ≥ 1. Then,

γ (D) ≤ 2n

3
,

with equality if and only if D is a disjoint union of copies of C3.
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