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Abstract
Given a connected graph G = (V , E), the Connected Vertex Cover (CVC) problem
is to find a vertex set S ⊂ V with minimum cardinality such that every edge is
incident to a vertex in S, and moreover, the induced graph G[S] is connected. In this
paper, we investigate the CVC problem in k-regular graphs for any fixed k (k ≥ 4).
First, we prove that the CVC problem is NP-hard for k-regular graphs,and then we
give a lower bound for the minimum size of a CVC , based on which, we propose a
2k
k+2 + O( 1n )-approximation algorithm for the CVC problem.

Keywords Connected vertex cover problem · Approximation algorithm · k-Regular
graph

Mathematics Subject Classification 05C85 · 05C70

1 Introduction

All the graphs considered in this paper are simple graphs without loops and multi-
edges. Given a graph G, V (G) and E(G) denote the vertex set and edge set of G,
respectively. For a subset X ⊆ V (G), |X | denotes the size of X which is the number
of vertices of X . G[X ] is the subgraph induced by X . For v ∈ V (G), the degree d(v)

is equal to the number of neighbors of v. �(G) denotes the maximum degree of G
and �(G) = maxv∈V (G) d(v). If all the vertices of G have the same degree k, then G
is called a k-regular graph. A connected graph is a graph in which any two vertices
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are connected to each other by a path. A graph in which each pair of distinct vertices
is joined by an edge is called a complete graph. A complete graph with n vertices is
denoted by Kn . A clique of a simple graph G is a subset S of V such that G[S] is
complete. A bipartite graph is one whose vertex set can be partitioned into two subsets
X and Y , so that each edge has one end in X and one end in Y ; such a partition (X ,Y )

is called a bipartition of the graph. A complete bipartite graph is a bipartite graph with
bipartition (X ,Y ) in which each vertex of X is joined to each vertex of Y ; if |X | = m
and |Y | = n, such a graph is denoted by Km,n . For X ,Y ⊆ V (G), the set of edges
between X and Y is denoted by E(X ,Y ).

The vertex cover (VC) problem is a classic problem in combinatorial optimization
and operations research. Given a graph G, the VC problem aims to find a minimum
vertex subset C ⊂ V (vertex cover set) such that every edge in the graph is incident to
a vertex in C . The connected vertex cover (CVC) problem is a variation of the vertex
cover problem, which is to find a vertex cover set F with minimum cardinality such
that G[F] is connected.

The CVC problem was first introduced by Garey and Johnson (1977), which finds
many applications in real life. For example, in the field of wireless network design
(Moser 2005), the vertices and the edges represent the network nodes and transmission
links, respectively. Some relay stations will be placed on some network nodes such
that they form a connected subnetwork and every transmission link is incident to a
relay station. The target is to minimize the number of relay stations. This is exactly
the connected vertex cover problem.

TheCVC problem is NP-hard (Garey and Johnson 1979) in general graphs. Savage
(1982) and Fujito and Doi 2004 have proposed two 2-approximation algorithms for
the connected vertex cover problem, respectively. But this problem is NP-hard to be
approximated within ratio 10

√
5−21 (Fernau andManlove 2006). Recently the fixed-

parameter tractability of the connected vertex cover problemwith respect to the vertex
cover size or to the treewidth of the input graph has been widely studied; see e.g.,
Fernau and Manlove (2006), Guo et al. (2005), Mölle et al. (2008, 2006) and Moser
(2005).

Also, a great deal of efforts have been devoted to this problem on various classes of
graphs. The researchers proved that it is NP-complete in planar graphs of maximum
degree 4 (see Garey and Johnson 1977), in planar bipartite graphs of maximum degree
4 (see Fernau and Manlove 2006), in planar biconnected graphs of maximum degree
4 (see Priyadarsini and Hemalatha 2008) and in 3-connected graphs (see Wanatabe
et al. 1991). In Esc et al. (2010), the authors showed that the connected vertex cover
problem is polynomial-time solvable in chordal graphs and proved that the problem
is APX-complete in bipartite graphs of maximum degree 4, even if each vertex of one
block of the bipartition has a degree at most 3. On the other hand, if each vertex of one
block of the bipartition has a degree at most 2 (and the vertices of the other part have an
arbitrary degree), then the problem is polynomial time solvable. They also showed that
the connected vertex cover problem is 5

3 -approximable in any class of graphs where
the vertex cover problem is polynomial time solvable (in particular in bipartite graphs,
or more generally in perfect graphs). Then, they presented a polynomial approxima-
tion scheme for the connected vertex cover problem in planar graphs. Cardinal and
Levy (2010) gave new approximation results for the connected vertex cover problem
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in dense graphs, in which either the minimum or the average degree is linear. In par-
ticular, they proved tight parameterized upper bounds on the approximation returned
by Savages algorithm (1982), and extended a vertex cover algorithm from Karpinski
and Zelikovsky (1997) to the connected case. The new algorithm approximates the
minimum connected vertex cover problem within a factor strictly less than 2 on all
dense graphs. Also, Zhang et al. (2009) gave the first polynomial time approximation
scheme for the connected vertex cover problem in unit disk graphs.

Ueno et al. (1988) proved that the connected vertex cover problem can be solved in
polynomial time for graphs with no vertex degree exceeding 3. Thus, this problem can
be polynomial-time solved for 3-regular graph. But, Li et al. (2017) proved that the
connected vertex cover problem is NP-hard on 4-regular graphs. They also presented a
4
3 + O( 1n )-approximation algorithm and compare it to the 2-approximation algorithm
in Fujito and Doi (2004).

In this paper, we shall investigate theCVC problem in k-regular graphs.We proved
that theCVC problem is NP-hard in k-regular graphs for any fixed k (k ≥ 4) and gave
a lower bound for the minimum size of a CVC . Then we proposed an approximation
algorithm with approximation ratio 2k

k+2 + O( 1n ) for the CVC problem in k-regular
graphs.

In Sect. 2, we show thatCVC is NP-hard in k-regular graphs for any fixed k(k ≥ 4).
In Sect. 3, we present a lower bound for CVC problem. In Sect. 4, we propose a
2k
k+2 + O( 1n )-approximation algorithm. Conclusions and future works are given in
Sect. 5.

2 The connected vertex cover problem is NP-hard in k-regular graphs
for any fixed k(k ≥ 4)

In this section, we show the NP-hardness of the CVC problem on k-regular graphs,
for any fixed k ≥ 4.

Theorem 1 The CVC problem is NP-hard in k-regular graphs for any fixed k(k ≥ 4).

Proof We reduce the CVC problem for 4-regular graphs, which is proved to be NP-
hard (Li et al. 2017), to the CVC problem in k-regular graphs for any fixed k(k ≥ 5).

Given a 4-regular graph H , we construct a new graph G in the following way.
For every vertex u ∈ V (H) (adjacent to α, β, γ and δ), split it into a four cycle
u1u2u3u4 with 4 edges u1α, u2β, u3γ and u4δ. Then add a clique Kk−3 with vertices
labeled u5, u6, . . . , uk+1. At last, connect vertices ui (i = 1, 2, 3, 4) and vertices u j

( j = 5, 6, . . . , k + 1) by edges uiu j . Hence, all the vertices in graph G has degree k,
see Fig. 1.

Let S ⊆ V (H) be a connected vertex cover set in H . Let S′ = {u1, u2, . . . , uk |u ∈
S} ∪ {u2, u4, u5, . . . , uk+1|u ∈ V \S}. S′ is a connected vertex cover set in G and
|S′| = |S| + (k − 1)|V (H)|.

Conversely, let S′ be a connected vertex cover set inG. It is obvious that at most two
vertices of {u1, u2, . . . , uk+1|u ∈ V (H)} are not in S′. Let S′′ = {u1, u2, . . . , uk

∣
∣|S′ ∩

{u1, u2, . . . , uk+1}| ≥ k, u ∈ V (H)}∪{u2, u4, u5, . . . , uk+1
∣
∣|S′∩{u1, u2, . . . , uk+1}|

= k − 1, u ∈ V (H)}. Thus, we construct another connected vertex cover set S′′ ⊆
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Fig. 1 The transformation in the reduction from a 4-regular graph to a k-regular graph

V (G). Obviously S′′ is also a connected vertex cover set in G and |S′′| ≤ |S′|. Let
S = {u∣

∣|S′′ ∩ {u1, u2, . . . , uk+1}| = k, u ∈ V (H)}. Clearly, S is a connected vertex
cover set in H and |S| = |S′′| − (k − 1)|V (H)|.

The conclusion follows since G can be constructed in polynomial time from H . ��

3 A lower bound

In this section, we give a sharp lower bound for the minimum size of a CVC .

Theorem 2 Let G be a k-regular graph of order n, if S′
opt is a minimum connected

vertex cover set of G, then |S′
opt | ≥ kn−2

2k−2 and this lower bound is sharp.

Proof Let S′ be a connected vertex cover set of G. Since G[S′] is connected,
E(G[S′]) ≥ |S′| − 1. So there are at most k|S′| − 2(|S′| − 1) edges between S′
and V \S′. On the other hand, E(G[V \S′]) = 0 otherwise there must exist uncovered
edge. So E(S′, V \S′) = k|V \ S′|. Thus we have

E(S′, V \S′) = k|V \ S′| ≤ k|S′| − 2(|S′| − 1).

Since |V \S′| = n − |S′|, we obtain |S′| ≥ kn−2
2k−2 . ��

The example in Fig. 2 shows the lower bound is sharp. In this graph, u is connected
to {u1, u(n−1)k+2, u(n−1)k+3, . . . , unk} and u1u2 . . . u(n−1)ku(n−1)k+1 is a path. In each
rectangle, the vertices and the edges between ui and v j construct a complete bipartite
graph. Clearly the graph in Fig. 2 is a k-regular graphwith nk+1+(n−1)(k−2)+k−
1 = 2(k − 1)n + 2 vertices and {u, u1, u2, . . . , unk} is a connected vertex cover set in
this graph. Since any vertex cover set in this graph has at least k×[2(k−1)n+2]−2

2k−2 = nk+1
vertices, {u, u1, u2, . . . , unk} is the minimum connected vertex cover set. This implies
that the lower bound is sharp.
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Fig. 2 An example for Theorem 2

4 A 2k
k+2 + O

(1
n

)
-approximation algorithm

In this section, we shall present a polynomial time approximation algorithm for the
CVC problem on k-regular graphs, for any fixed k ≥ 4.

For the convenience of the reader, first we give some definitions.
Recall that a polynomial time ρ-approximation algorithm A for a minimization

problem is an algorithm whose running time is bounded by a polynomial in the size
of the input and always outputs a feasible solution with objective value guaranteed to
be within ρ times the optimal one.

A subset S of V (G) is called an independent set of G if no two vertices of S are
adjacent in G. A set S ⊆ V is an independent set of G if and only if V \S is a vertex
cover set of G. So if we find an independent set F such that G[V \F] is connected,
then V \F is a connected vertex cover set in G.

A vertex v of G is a cut vertex if E can be partitioned into two nonempty subsets
E1 and E2 such that G[E1] and G[E2] have just the vertex v in common. A connected
graph that has no cut vertices is called a block. A block of a graph is a subgraph that
is a block and is maximal with respect to this property. Every graph is the union of its
blocks.

Now we briefly describe our algorithm. Given a connected graph G. First, we find
all blocks {B1, B2, . . . , Bs} in G. For each block Bi (i = 1, 2, . . . , s), if there is a
k-degree vertex v in it, we delete v from graph G. After this round, we obtain a new
graph, still denoted by G, then repeat above process, until either there is no blocks in
G or no k-degree vertex left in each block. Algorithm 1 is a formal description of our
algorithm.

Theorem 3 The vertex set F computed by Algorithm 1 is a connected vertex cover set
in a k-regular graph G.

Proof For each block in current graph, we choose a k-degree vertex if there exists
one. This ensures that the chosen vertices are not cut vertices. So, deleting them from
current graph can still make the remaining graph connected. Thus we update the graph
by deleting the chosen vertices from the current graph. Notice that each two chosen
vertices are not adjacent. Then I is a independent set. This implies that F = V (G)\I is
a vertex cover set inG. Thus, the vertex set F computed by Algorithm 1 is a connected
vertex cover set since G[F] = G[V (G)\I ] is connected. ��
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Algorithm 1 A 2k
k+2 + O( 1n )-approximation algorithm

Require: A k-regular graph G = (V , E)

Ensure: A connected vertex cover set F
1: I = ∅, G′ = G
2: while there exists block in G′ do
3: Compute all the blocks B = {B1, B2, . . . , Bk } in G′
4: for i = 1, 2, . . . , k do
5: if there exists k-degree vertex in Bi then
6: Find a k-degree vertex v in Bi
7: G′ = G′\{v}, I = I ∪ {v}
8: end if
9: end for
10: end while
11: Output F = V (G)\I

The following lemma is a key to the analysis of the performance of Algorithm 1.

Lemma 4 Given a connected simple graph G with maximum degree � ≤ k, and all
k-degree vertices are cut vertices. Then

2|E(G)| =
∑

v∈V (G)

d(v) <
k2 − k + 2

k
|V (G)|.

To prove this lemma, we first introduce two definitions to illustrate the connectivity
and the structure of the given graph in Lemma 4.

Definition 1 (Diestel 2000) The block graph of a graph G is defined as follows:

• All vertices in block graph represent blocks and cut vertices in the original graph
G.

• There is an edge in block graph if and only if the corresponding cut vertex is in
the corresponding block.

Proposition 5 (Diestel 2000) The block graph of a connected graph is actually a tree.

It is usually called the block tree instead of the block graph if the base graph G
is connected, and notation TB(G) is used to represent the structure tree in this case.
Sometimes what we concern about is not all blocks or the structure of the blocks,
but the structure of block groups of the original graph. Thus, following definition of
i-block tree comes out.

Definition 2 The i-block tree (i ∈ N+) Ti (G) of a connected graphG is a tree obtained
from the original graph G by following steps:

• Find out all blocks and all cut vertices in G to build a block tree TB(G).
• Contract all edges incident to a vertex, which is corresponding to a cut vertex
whose degree is not i , in tree TB(G).

• Simplify the graph by loop and multiple edge deletion.
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Fig. 3 Graph G (left) and all blocks and cut vertices in G (right)
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Fig. 4 Block tree TB (G) of G (left) and 4-block tree T4(G) of G (right)

Actually, i-block tree is a real tree since it is created by edge contraction and
simplification from a tree.We denote this kind of trees by Ti (G) for original connected
graph G. Especially, Tk(G) gives the structure of k-degree cut vertices and block
groups.

Figures 3 and 4 show the creation of block tree and 4-block tree of connected graph
G. The left graph in Fig. 3 is a connected graph G with � = 4 and the right graph
demonstrates all its cut vertices and blocks. The left graph in Fig. 4 shows the block
tree TB(G) of graph G. In TB(G), u3, u4 represent 4-degree cut vertices in graph G
and u1, u2, u5, u6 are 3-degree cut vertices inG. bi (i = 1, 2 . . . , 8) represent the eight
blocks in graph G. The right graph in Fig. 4 is the 4-block tree T4(G) of graph G.

Next, we will prove Lemma 4.

Proof Let λ(G) and μ(G) denote the number of k-degree vertices and (k − 1)-degree
vertices in graph G, respectively. We will prove the lemma by induction on λ(G).
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Fig. 5 The transformation from
G to G′
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The conclusion is obviously when λ(G) = 0 since the maximum degree is k − 1
in the graph. We assume 2|E(G)| < k2−k+2

k |V (G)| for all λ(G) ≤ l. Then we will
consider the situation λ(G) = l + 1.

Case 1 ∃v0 ∈ V (G), d(v0) ≤ k − 2.

Let u be a k-degree cut vertex and v1 is one of its neighbors, which belongs to
different connected component in G − u with v0. Transform the graph G to G ′ by
deleting the edge (u, v1) and adding an edge (v0, v1) as Fig. 5 shows. Namely, G ′ −
(v1, v0) = G − (u1, v1). Therefore, λ(G ′) = λ(G) − 1 = l and the induction works
in this case.

Case 2 ∀v ∈ V (G), d(v) ≥ k − 1.

In this case, the vertex in graph G is either (k − 1)-degree or k-degree, and all
k-degree vertices are cut vertices. The statement of induction can be modified slightly
as the number of k-degree vertices is less than 2

k−2 times the number of (k−1)-degree
vertices.

Find a leaf b1 in the k-block tree Tk(G). Denote its corresponding block or may
be a group of blocks and adjacent cut vertex by B1 and u1, respectively. Note that the
degree of the cut vertex dG(u1) = k in original graph G, according to the definition
of k-block tree. Obviously, there exists a vertex in B1 adjacent to the cut vertex u1
in graph G. Denote the vertex by v1. Thus, resulting from the property of graph G,
dG(v1) = k − 1 and all the neighbors of v1 besides u1 are in B1 as it shows in Fig. 6.
Namely, the number of (k − 1)-degree vertices in V (B1) is |V (B1 − u1)| ≥ k − 1.

On the other hand, let G ′ := G − (V (B1)\{u1}) be the graph obtained by deleting
the block group B1 but not the cut vertex u1 in graphG. Hence,μ(G ′)+k−2 ≤ μ(G)

and λ(G ′) = λ(G) − 1 = l so that λ(G ′) < 2
k−2μ(G ′) by induction. Therefore,

λ(G) = λ(G ′) + 1

<
2

k − 2
μ(G ′) + 1

≤ 2

k − 2
(μ(G) − k + 2) + 1
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Fig. 7 Sharp example of Lemma 4

= 2

k − 2
μ(G) − 1

<
2

k − 2
μ(G).

That completes the proof. ��
The group of graphs in Fig. 7 gives a sharp example of Lemma 4. In these graphs,

The vertices in each rectangle induce a complete graph Kk . Then, the asymptotically
average degree is

lim
n→∞

k × (2n) + (k − 1) × (k − 2)n + 2

kn + 2
= k2n − kn + 2n + 2

kn + 2
= k2 − k + 2

k
.

Theorem 6 Algorithm 1 is a 2k
k+2 + O( 1n )-approximation algorithm which runs in

O(n3) time.

Proof When Algorithm 1 stops, either there is no blocks or no k-degree vertices in
each block in the current graph.

In the first case, there is only one vertex v in the current graph. The vertex v has
k neighbors u1, u2, . . . , uk since the input is a k-regular graph. So there are at least
k + 1 vertices in the input graph. By Theorem 2, there are at least three vertices
( k(k+1)−2

2k−2 = k+2
2 ≥ 3) in the connected vertex cover set. But in this case, only one

vertex is in the connected vertex cover set. This is a contradiction. So this situation
does not happen.

It follows that there are no k-degree vertices in each block in the current graph
G[F], then G[F] is a graph with maximum degree k and all the k-degree vertices are
cut vertices. We consider the number of edges in G[F]. By Lemma 4, 2|E(G[F])| <
k2−k+2

k |V (G[F])|.
Now, let us compute the total number of edges in the input graph G. We have
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E(G[F]) + k(n − |F |) = k

2
n

k2 − k + 2

2k
|F | + k(n − |F |) >

k

2
n

|F | <
k2

k2 + k − 2
n.

So, the size of output set F of Algorithm 3 is less than k2

k2+k−2
n. By Theorem 2,

we have

|F |
|S′

opt |
<

k2

k2+k−2
n

kn−2
2k−2

= 2k

k + 2
+ O

(
1

n

)

Now we analyze the running time of Algorithm 1. Computing all the blocks in
current graph requires O(n) time. Finding a k-degree vertex in one block Step 6 can
be done in O(n) time. Since there are O(n) blocks, Step 4 to Step 9 runs in O(n2)
time. Thus, Algorithm 1 runs in O(n3) time. ��

5 Conclusions and future work

In this paper, we have investigated the connected vertex cover (CVC) problem in k-
regular graphs. We proofed the CVC problem is NP-hard in k-regular graphs for any
fixed k(k ≥ 4) and gave a sharp lower bound for it. Then we presented a 2k

k+2 +O( 1n )-
approximation algorithm forCVC problem in k-regular graphswhich is better than the
2-approximation algorithm in Fujito and Doi (2004). As a future work, we will study
the CVC problem in some other special classes of graphs and design approximation
algorithms with better approximation ratio or efficient algorithms for it. Also there
is a variation of the connected vertex cover problem: the connected vertex cover Pk
problem. The connected vertex cover Pk (CVCPk) problem is to find a minimum
vertex set F which is additional required to induce a connected subgraph in a given
connected graph G such that every path of order k in G contains at least one vertex
from F . We will explore this problem in general graphs and special graphs in the
future.
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