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Abstract
In the stable marriage problem, we are given a set of men, a set of women, and each
person’s preference list. Our task is to find a stable matching, that is, a matching admit-
ting no unmatched (man, woman)-pair each of which improves the situation by being
matched together. It is known that any instance admits at least one stable matching.
In this paper, we consider a natural extension where k(≥ 2) sets of preference lists Li

(1 ≤ i ≤ k) over the same set of people are given, and the aim is to find a jointly stable
matching, a matching that is stable with respect to all Li . We show that the decision
problem is NP-complete for the following two restricted cases; (1) k = 2 and each
person’s preference list is of length at most four, and (2) k = 4, each man’s preference
list is of length at most three, and each woman’s preference list is of length at most
four. On the other hand, we show that it is solvable in linear time for any k if each
man’s preference list is of length at most two (women’s lists can be of unbounded
length). We also show that if each woman’s preference lists are same in all Li , then
the problem can be solved in linear time.

Keywords Stable marriage problem · Stable matching · NP-completeness · Linear
time algorithm
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1 Introduction

In this paper, we focus on the stable marriage problem (Gale and Shapley 1962) with
incomplete preference lists (SMI). An instance I of SMI is a triple I = (U ,W , L),
where U and W are the sets of men and women, respectively, such that |U | = |W |(=
n), and L is the set of 2n preference lists, one for each person. A person p’s preference
list in L is denoted by L(p). Each person’s preference list strictly orders a subset of
the members of the opposite gender. If a person p is included in L(q), we say that p is
acceptable to q. If p is acceptable to q and vice versa, (p, q) is called an acceptable
pair.

A matching is a set of acceptable (man, woman)-pairs in which no person appears
more than once. For a matching M , a man m, and a woman w, if (m, w) ∈ M then
we write M(m) = w and M(w) = m. If there is no w (respectively, m) such that
(m, w) ∈ M , we say that m (respectively, w) is single or unmatched in M . For a
matching M , if (i) (m, w) is an acceptable pair, (ii) m is single in M or prefers w to
M(m), and (iii) w is single in M or prefers m to M(w), then we say that (m, w) is a
blocking pair for M in L , or (m, w) blocks M in L . If there is no blocking pair for M
in L , then we say that M is stable in L . It is well-known that any SMI instance admits
at least one stable matching (Gale and Shapley 1962).

In this paper, we consider an extension of SMIwhere two or more sets of preference
lists are given. An instance I of the Stable Marriage problem with k Incomplete
lists (SMkI ) is a (k + 2)-tuple I = (U ,W , L1, L2, . . . , Lk), where U and W are
the same as above, and each Li is a set of preference lists. It asks if there exists a
matching M that is stable in every Li . We call such a matching M a jointly stable
matching. Let a and b be positive integers. The restriction of SMkI where the lengths
of preference lists of men are at most a and those of women are at most b is denoted by
(a, b)-SMkI. Ifa (respectively, b) is∞, itmeans that the lengths ofmen’s (respectively,
women’s) preference lists are unbounded.By symmetry ofmen andwomen,we assume
without loss of generality that a ≤ b. Note that, since the number of stable matchings
grows exponentially in the size of the input (Irving and Leather 1986; Gusfield and
Irving 1989; Thurber 2002; Karlin et al 2018), an algorithm of enumerating all the
stable matchings for each Li and computing their intersection is not polynomial-time
bounded.

Besides its theoretical interest, the problem has several applications: Consider a
scenario of assigning medical residents to hospitals, where each resident needs to
take training in three fixed clinical departments, e.g., surgery, pediatrics, and internal
medicine, at an assigned hospital. A resident r ranks hospitals according to her pref-
erence, but her ranking of hospitals may differ depending on clinical departments. As
a result, she has three (possibly different) preference lists over hospitals, L1(r) for
surgery, L2(r) for pediatrics, and L3(r) for internal medicine. On the other hand, each
clinical department may have its own criteria for ranking residents, so each hospital
h has three independent preference lists over residents, L1(h) from surgery, L2(h)

from pediatrics, and L3(h) from internal medicine. Clearly a blocking pair in some Li

may cause dissatisfaction to the corresponding resident and department, so we want
to avoid such an assignment. Another example is a match making of Judo team com-
petition. Suppose that there are five different weight classes, and one team consists
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of five players, one from each class. As a personal preference, a player p of team
T who belongs to the weight class C is interested in only the players of the same
class C , who are potential candidates for p’s opponent. Therefore, each team has five
preference lists corresponding to weight classes, and a matching avoiding blocking
pairs in any class is desirable. Precisely speaking, the first and the second examples
may be suitable to the Hospitals/Residents and the stable roommates, respectively, but
we consider in this paper the stable marriage model as a first step.

1.1 Our results

On the negative side, we show that (4, 4)-SMkI for k ≥ 2 and (3, 4)-SMkI for k ≥ 4
are NP-complete. On the positive side, we show that (2,∞)-SMkI is solvable in time
O(kn) for any k. These results leave the complexities of (3, 3)-SMkI for k ≥ 2 and
(3, �)-SMkI for � ≥ 4 and k = 2, 3 open.

We also show that SMkI (with unbounded-length preference lists) is solvable in
polynomial time if L1(w) = L2(w) = · · · = Lk(w) holds for every woman w. This
can be thought of as a case where each woman has only one preference list, and one
of its interpretations is a modification of the previous example of assigning residents
to hospitals, where each resident has three preference lists as above, but each hospital
has one preference list determined by e.g., a personnel director of the hospital, rather
than three independent lists coming from each clinical department.

1.2 Related work

After publication of the conference version of this paper, we came to be aware of
two closely related works. Aziz et al (2016) consider problems of finding a matching
with the highest stability probability under uncertain circumstances. Among several
problems they consider, the problem “ExistsCertainlyStableMatching”, which asks
to determine whether there is a matching with stability probability 1, under the joint
probability model is equivalent to our SMkI. They focus on complete preference lists
and show that SMkI is NP-complete for k ≥ 16. Their reduction implicitly bounds
the length of preference lists to be at most four; hence they essentially show the NP-
completeness of (4, 4)-SMkI for k ≥ 16. Chen et al (2018) consider similar problems
to ours, where multiple preference lists are given as an input. They introduce three
stability notions and investigate their time complexities. One of their problems called
the globally stable matching problem is equivalent to our SMkI, and they prove NP-
completeness of SMkI (with unbounded-length preference lists) for k ≥ 2.

Weems (1999) has introduced the bistable matching problem; given an instance I of
the stable marriage problem (where preference lists are complete), let Î be the instance
obtained by reversing the ordering of each preference list of I . A matching is bistable
if it is stable in both I and Î . This is a special case of SM2I where all the preference
lists are complete and L1(p) is a reversed order of L2(p) for every person p. Weems
showed an O(n2)-time algorithm to find a bistable matching or to report that none
exists. Sethuraman and Teo (2001) showed that the bistable roommates problem can
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Fig. 1 Preference lists of literal people corresponding to the j th occurrence of the variable xi (1 ≤ j ≤ si )

also be solved in polynomial time. See pages 293–296 of Manlove (2013) for a brief
survey.

2 NP-completeness

In this section, we show two hardness results.

Theorem 1 For k ≥ 2, (4, 4)-SMkI is NP-complete.

Proof It is easy to see that (4, 4)-SMkI is in NP. In the following, we show that
(4, 4)-SM2I is NP-hard. To show the NP-hardness for general k, one may simply set
L2 = L3 = · · · = Lk in the reduction.

We give a polynomial-time reduction from the well-known NP-complete problem
3CNF SAT. The definition of 3CNF SAT is as follows. Let x be a binary variable
that takes 1(true) or 0(false). A literal is a variable x or its negation x . A clause is a
disjunction of literals, and aConjunctive Normal Form (CNF) formula is a conjunction
of clauses. A 3CNF formula is a CNF formula in which each clause contains at most
three literals. An instance of 3CNF SAT is a 3CNF formula f and it asks if there
exists an assignment to variables that makes f true. We may assume without loss of
generality that each clause contains exactly three literals. (If a clause contains less than
three literals, then repeat the same literal.)

Let f be an instance of 3CNF SAT, with variables x1, x2, . . . , xn and clauses
C1,C2, . . . ,Cm . We construct an instance I of (4, 4)-SM2I. For each i (1 ≤ i ≤ n),
let si be the number of occurrences of the variable xi . For the j th literal of the variable
xi (1 ≤ j ≤ si ), we introduce two men ai, j and bi, j and two women ci, j and di, j . We
call them literal men and literal women. For each clause C�, we introduce nine men
ui� (1 ≤ i ≤ 9) and nine women vi� (1 ≤ i ≤ 9). We call them clause men and clause
women. Note that there are 15m men and 15m women in total.

The preference lists of literal people and clause people are given in Figs. 1 and
2, respectively. (Here, for example, the notation “a : b c d” represents person a’s
preference list, where b, c, and d are the first, the second, and the third choices of a,
respectively.)

Itmight be helpful to see a high-level idea of the reduction before getting into the full
construction of preference lists. For the four literal people corresponding to the j th lit-
eral of xi , we have two choices of matchings, namely M1

i, j = {(ai, j , ci, j ), (bi, j , di, j )}
and M0

i, j = {(ai, j , di, j ), (bi, j , ci, j )}. Choosing M1
i, j (M

0
i, j , respectively) corresponds
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Fig. 2 Preference lists of clause people corresponding to the �th clause

to setting the j th occurrence of xi to 1 (0, respectively). For the 18 people correspond-
ing to the clause C�, we have three choices of matchings,

M1
� = {(u1�, v3� ), (u2�, v1� ), (u3�, v2� ), (u4�, v4� ), (u5�, v5� ), (u6�, v6� ), (u7�, v8� ),

(u8�, v
9
� ), (u

9
�, v

7
� )},

M2
� = {(u1�, v2� ), (u2�, v3� ), (u3�, v1� ), (u4�, v6� ), (u5�, v4� ), (u6�, v5� ),

(u7�, v
7
� ), (u

8
�, v

8
� ), (u

9
�, v

9
� )},

and

M3
� = {(u1�, v1� ), (u2�, v2� ), (u3�, v3� ), (u4�, v5� ), (u5�, v6� ),

(u6�, v
4
� ), (u

7
�, v

9
� ), (u

8
�, v

7
� ), (u

9
�, v

8
� )},

depicted in Figs. 5, 6, and 7, respectively, in “Appendix”. Choosing M1
� , M

2
� , and M3

� ,
respectively, corresponds to satisfying C� by its first, second, and third literal. Note
then that main conditions for CNF SAT are (1) the j th occurrence of xi must have the
same value for all j , and (2) each C� is satisfied if and only if at least one of its literals

123



Journal of Combinatorial Optimization (2019) 38:646–665 651

is true. To simulate these conditions by (4, 4)-SM2I, we connect gadgets using some
men and women in such a way that if some illegal choices of partial matchings are
made, then there arises a blocking pair. The persons at the second position of L2 in
Fig. 1 exist for condition (1). They come from the literal gadgets corresponding to the
( j − 1)th and the ( j + 1)th occurrences of the same variable xi , and play a role of
connecting literal gadgets like a chain, so that if M1

i, j1
and M0

i, j2
are chosen for some

j1 and j2, then there arises a blocking pair. Two persons Vi, j and Ui, j in L1 of Fig. 1
and six persons D�,t and B�,t (t = 1, 2, 3) in L1 of Fig. 2 exist for condition (2). They
are placed in such a way that if (i) we attempt to satisfy C� by its t th literal (i.e., Mt

�

is chosen), but (ii) the assignment to this literal is 0 by the choice in the literal gadget
side, then there arises a blocking pair.

Now we formally explain how to construct preference lists. In ai,1 and di,1’s pref-
erence lists of L2 in Fig. 1, ci, j−1 and bi, j−1 are null; hence their preference lists are
of length two. Similarly, in bi,si and ci,si ’s preference lists of L2, di, j+1 and ai, j+1 are
null. We then explain Ui, j and Vi, j in Fig. 1. Suppose that the j th occurrence of xi is
the t th literal of the clause C�. If this literal is positive, thenUi, j is null and Vi, j = v4�
if t = 1, Vi, j = v7� if t = 2, and Vi, j = v1� if t = 3. If it is negative, then Vi, j is null
andUi, j = u1� if t = 1,Ui, j = u4� if t = 2, andUi, j = u7� if t = 3. Finally, we explain
B�,1, B�,2, B�,3, D�,1, D�,2, and D�,3 in Fig. 2. Suppose that, for t = 1, 2, 3, the t th
literal of the clause C� is the j th occurrence of xi . If this literal is positive, then D�,t

is null and B�,t = bi, j ; otherwise, B�,t is null and D�,t = di, j . Now the reduction
is completed. It is not hard to see that the reduction can be performed in polynomial
time and each person’s preference list is of length at most four.

We then proceed to the correctness proof. Suppose that f is satisfiable and let T
be a satisfying assignment. We will construct a jointly stable matching M for I . For
each i , if T (xi ) = 1, then we let M1

i, j ⊆ M for all j , and if T (xi ) = 0, then we let

M0
i, j ⊆ M for all j . For each �, suppose that the clause C� is satisfied by its t th literal

(if there are more than one true literal, choose one arbitrarily). Then we let Mt
� ⊆ M .

We next show that M is jointly stable.

Lemma 1 The matching M constructed as above is jointly stable.

Proof Consider literal people corresponding to xi , namely ai, j , bi, j , ci, j , and di, j
(1 ≤ j ≤ si ). If T (xi ) = 1, then all the men are matched with their first choices in
both L1 and L2. Similarly, if T (xi ) = 0, then all the women are matched with their
first choices. Therefore, no blocking pair arises within literal people corresponding
to the same variable. Since literal people corresponding to different variables are
unacceptable to each other, no blocking pair occurs between them.

As for the 18 people corresponding to the clause C�, we can easily verify that, in
any of M1

� , M
2
� , and M3

� , no blocking pair arises among them by investigating Figs. 5,
6 and 7. Also, since clause people corresponding to different clauses are unacceptable
to each other, no blocking pair occurs between them.

Finally, we consider a possibility of a blocking pair between a literal person and
a clause person. Consider a clause C�. First, suppose that M1

� is chosen as a part of
M . By construction of M , this means that the clause C� is satisfied by its first literal.
Suppose that this literal is the j th occurrence of xi , and that it is a positive literal. Then
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by construction of preference lists, D�,1 is null and B�,1 = bi, j , so only the possible
blocking pair is (bi, j , v�,4) in L1. However, since C� is satisfied by the first literal, it
must be the case that T (xi ) = 1. By construction of M , M1

i, j ⊆ M and hence bi, j is
matched with his first choice woman in L1, so he cannot form a blocking pair. Now
suppose that the first literal of C� is the j th occurrence of xi and it is a negative literal.
Then B�,1 is null and D�,1 = di, j , so only the possible blocking pair is (u�,1, di, j )
in L1. However, since C� is satisfied by the first literal, we have that T (xi ) = 0 and
hence di, j is matched with her first choice man in L1, so di, j cannot form a blocking
pair. For the other two cases, that is, the case that M2

� is chosen and that M3
� is chosen,

we can show that there is no blocking pair by a similar argument. ��

Conversely, suppose that I admits a jointly stable matching M . We construct a
satisfying assignment T of f . First, we see basic properties of M .

Lemma 2 For each i , either M1
i, j ⊆ M for all j , or M0

i, j ⊆ M for all j .

Proof We first show that, for each i and j , either M1
i, j ⊆ M or M0

i, j ⊆ M . Suppose
not. Since ci, j and di, j are the only acceptable men to ai, j and bi, j in L1 and L2 in
common, at least one of ai, j and bi, j , say mi, j , is single in M . For the same reason,
at least one of ci, j and di, j , say wi, j , is single in M . Then (mi, j , wi, j ) blocks M (in
both L1 and L2), a contradiction.

Now suppose that the statement of the lemma is false. Then there are i and j
(1 ≤ j ≤ si − 1) such that (i) M1

i, j ⊆ M and M0
i, j+1 ⊆ M or (ii) M0

i, j ⊆ M

and M1
i, j+1 ⊆ M . In case of (i), (ai, j+1, ci, j ) blocks M in L2, while in case of (ii),

(bi, j , di, j+1) blocks M in L2, a contradiction. ��

Lemma 3 For each �, either M1
� ⊆ M, M2

� ⊆ M, or M3
� ⊆ M.

Proof Suppose that there is a man m� ∈ {u1�, u2�, u3�} who is not matched with any
of v1� , v2� , and v3� in M . Note that D�,1 is a literal woman (if not null), who is not
acceptable to u1� in L2. Hence it must be the case that m� is single in M . By a similar
argument, there is a woman w� ∈ {v1� , v2� , v3� } who is single in M . Then (m�, w�)

blocks M in L1 and L2, a contradiction. Therefore, u1�, u
2
� , and u3� are matched with

v1� , v
2
� , and v3� in M . There are six possible ways, namely,

X1
� = {(u1�, v1� ), (u2�, v2� ), (u3�, v3� )}, X2

� = {(u1�, v2� ), (u2�, v3� ), (u3�, v1� )},
X3

� = {(u1�, v3� ), (u2�, v1� ), (u3�, v2� )},X4
� = {(u1�, v1� ), (u2�, v3� ), (u3�, v2� )},

X5
� = {(u1�, v2� ), (u2�, v1� ), (u3�, v3� )}, and X6

� = {(u1�, v3� ), (u2�, v2� ), (u3�, v1� )}.

It is easy to see that X4
� is blocked by (u3�, v

1
� ), X

5
� is blocked by (u2�, v

3
� ), and X6

� is
blocked by (u1�, v

2
� ) in L1. Therefore, only X1

� , X
2
� , and X3

� can be a part of M . The
same argument applies to u4� , u

5
� , u

6
�, v4� , v5� , v6� and u7�, u

8
�, u

9
�, v7� , v8� , v9� , implying

that only
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Table 1 27 matchings and corresponding blocking pairs in L2

Matching BP Matching BP Matching BP

X1
�

∪ Y 1
�

∪ Z1
�

(u7
�
, v1

�
) X2

�
∪ Y 1

�
∪ Z1

�
(u5

�
, v8

�
) X3

�
∪ Y 1

�
∪ Z1

�
(u5

�
, v8

�
)

X1
�

∪ Y 1
�

∪ Z2
�

(u7
�
, v1

�
) X2

�
∪ Y 1

�
∪ Z2

�
(u8

�
, v2

�
) X3

�
∪ Y 1

�
∪ Z2

�
–

X1
�

∪ Y 1
�

∪ Z3
�

(u4
�
, v7

�
) X2

�
∪ Y 1

�
∪ Z3

�
(u5

�
, v8

�
) X3

�
∪ Y 1

�
∪ Z3

�
(u5

�
, v8

�
)

X1
�

∪ Y 2
�

∪ Z1
�

(u7
�
, v1

�
) X2

�
∪ Y 2

�
∪ Z1

�
(u1

�
, v4

�
) X3

�
∪ Y 2

�
∪ Z1

�
(u1

�
, v4

�
)

X1
�

∪ Y 2
�

∪ Z2
�

(u7
�
, v1

�
) X2

�
∪ Y 2

�
∪ Z2

�
(u1

�
, v4

�
) X3

�
∪ Y 2

�
∪ Z2

�
(u1

�
, v4

�
)

X1
�

∪ Y 2
�

∪ Z3
�

– X2
�

∪ Y 2
�

∪ Z3
�

(u1
�
, v4

�
) X3

�
∪ Y 2

�
∪ Z3

�
(u1

�
, v4

�
)

X1
�

∪ Y 3
�

∪ Z1
�

(u7
�
, v1

�
) X2

�
∪ Y 3

�
∪ Z1

�
– X3

�
∪ Y 3

�
∪ Z1

�
(u2

�
, v5

�
)

X1
�

∪ Y 3
�

∪ Z2
�

(u7
�
, v1

�
) X2

�
∪ Y 3

�
∪ Z2

�
(u8

�
, v2

�
) X3

�
∪ Y 3

�
∪ Z2

�
(u2

�
, v5

�
)

X1
�

∪ Y 3
�

∪ Z3
�

(u4
�
, v7

�
) X2

�
∪ Y 3

�
∪ Z3

�
(u4

�
, v7

�
) X3

�
∪ Y 3

�
∪ Z3

�
(u2

�
, v5

�
)

Y 1
� = {(u4�, v4� ), (u5�, v5� ), (u6�, v6� )}, Y 2

� = {(u4�, v5� ), (u5�, v6� ), (u6�, v4� )},
Y 3

� = {(u4�, v6� ), (u5�, v4� ), (u6�, v5� )}, Z1
� = {(u7�, v7� ), (u8�, v8� ), (u9�, v9� )},

Z2
� = {(u7�, v8� ), (u8�, v9� ), (u9�, v7� )}, and Z3

� = {(u7�, v9� ), (u8�, v7� ), (u9�, v8� )}

are valid.
Therefore, there are 27 possible combinations. Note that M1

� = X3
� ∪ Y 1

� ∪ Z2
� ,

M2
� = X2

� ∪ Y 3
� ∪ Z1

� , and M3
� = X1

� ∪ Y 2
� ∪ Z3

� . We show that the remaining 24
matchings are unstable in L2. Table 1 shows 27 matchings in “Matching” columns
and corresponding blocking pairs of 24 matchings in “BP” columns. This completes
the proof. ��

By Lemma 2, either M1
i, j ⊆ M for all j or M0

i, j ⊆ M for all j holds. In the former
case, we set T (xi ) = 1, otherwise, we set T (xi ) = 0. We show that T satisfies f .
Suppose not, and let C� be an unsatisfied clause. For t = 1, 2, 3, let the t th literal of
C� be the jt th occurrence of the variable xit . We will show three claims:

Claim 1 M1
� � M . Consider the first literal of C�. Suppose that it appears positively

in C�. Then by construction of the preference lists, the lists of bi1, j1 and v4� in L1 are
as follows:

bi1, j1 : di1, j1 v4� ci1, j1 v4� : u5� u
6
� bi1, j1 u

4
�

Since C� is unsatisfied, T (xi1) = 0 and so by construction of T , M0
i1, j1

⊆ M , i.e.,

M(bi1, j1) = ci1, j1 . If M
1
� ⊆ M , then M(v4� ) = u4� and hence (bi1, j1 , v

4
� ) blocks M in

L1, a contradiction.
Next, suppose that the first literal of C� is negative, i.e., xi1 . Then by construction,

the preference lists of di1, j1 and u1� in L1 are as follows:

u1� : v1� v2� di1, j1 v3� di1, j1 : ai1, j1 u
1
� bi1, j1
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Since C� is unsatisfied, T (xi1) = 1 and so by construction of T , M1
i1, j1

⊆ M , i.e.,

M(di1, j1) = bi1, j1 . If M
1
� ⊆ M , then M(u1�) = v3� and hence (u1�, di1, j1) blocks M in

L1, a contradiction. Therefore, we can conclude that M1
� � M .

Claim 2 M2
� � M . Consider the second literal of C�, and first suppose that it is a

positive literal, i.e., xi2 . Then by construction, the preference lists of bi2, j2 and v7� in
L1 are as follows:

bi2, j2 : di2, j2 v7� ci2, j2 v7� : u8� u
9
� bi2, j2 u

7
�

Since C� is unsatisfied, T (xi2) = 0 and hence by construction of T , M0
i2, j2

⊆ M , i.e.,

M(bi2, j2) = ci2, j2 . If M
2
� ⊆ M , then M(v7� ) = u7� and hence (bi2, j2 , v

7
� ) blocks M in

L1, a contradiction.
Next, suppose that the second literal of C� is xi2 . Then by construction, the prefer-

ence lists of di2, j2 and u4� in L1 are as follows:

u4� : v4� v5� di2, j2 v6� di2, j2 : ai2, j2 u
4
� bi2, j2

Since C� is unsatisfied, T (xi2) = 1 and by construction of T , M1
i2, j2

⊆ M , i.e.,

M(di2, j2) = bi2, j2 . If M
2
� ⊆ M , then M(u4�) = v6� and hence (u4�, di2, j2) blocks M in

L1, a contradiction. Therefore, we can conclude that M2
� � M .

Claim 3 M3
� � M . Consider the third literal of C�. First, suppose that it is a positive

literal xi3 . Then by construction, the preference lists of bi3, j3 and v1� in L1 are as
follows:

bi3, j3 : di3, j3 v1� ci3, j3 v1� : u2� u
3
� bi3, j3 u

1
�

Since C� is unsatisfied, T (xi3) = 0 and thus by construction of T , M0
i3, j3

⊆ M ,

i.e., M(bi3, j3) = ci3, j3 . If M
3
� ⊆ M , then M(v1� ) = u1� and hence (bi3, j3 , v

1
� ) blocks

M in L1, a contradiction.
Next, suppose that the third literal of C� is negative, i.e., xi3 . Then by construction,

the preference lists of di3, j3 and u7� in L1 are as follows:

u7� : v7� v8� di3, j3 v9� di3, j3 : ai3, j3 u
7
� bi3, j3

Since C� is unsatisfied, T (xi3) = 1 and by construction of T , M1
i3, j3

⊆ M , i.e.,

M(di3, j3) = bi3, j3 . If M
3
� ⊆ M , then M(u7�) = v9� and hence (u7�, di3, j3) blocks M in

L1, a contradiction. Therefore, we can conclude that M3
� � M .

From Claims 1, 2, and 3, none of M1
� , M

2
� , and M3

� can be a part of M , but this
contradicts Lemma 3. Hence we conclude that T satisfies f , which completes the
proof of Theorem 1. ��

By modifying the reduction in the proof of Theorem 1, we can show the NP-
completeness of another restricted case.
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Fig. 3 Preference lists of literal people corresponding to the j th occurrence of the variable xi (1 ≤ j ≤ si )

Theorem 2 For k ≥ 4, (3, 4)-SMkI is NP-complete.

Proof We assume that the readers have read the proof of Theorem 1, and give only a
proof sketch. It is easy to see that (3, 4)-SMkI is in NP. It suffices to show the NP-
hardness of (3, 4)-SM4I, and to achieve this, we give a polynomial-time reduction
from 3CNF SAT.

Let f be an instanceof 3CNFSAT, consistingof variables x1, x2, . . . , xn and clauses
C1,C2, . . . ,Cm . We construct an instance I of (3, 4)-SM4I. For each i (1 ≤ i ≤ n),
let si be the number of occurrences of the variable xi . For the j th literal of the variable
xi (1 ≤ j ≤ si ), we introduce two literal men ai, j and bi, j and two literal women ci, j
and di, j . For each clause C�, we introduce three clause men ui� (1 ≤ i ≤ 3) and three
clause women vi� (1 ≤ i ≤ 3). Note that there are 9m men and 9m women in total.

The preference lists of literal people are given in Fig. 3. As in the previous proof,
their lists restrict a part of stable matchings to M1

i, j = {(ai, j , ci, j ), (bi, j , di, j )} and
M0

i, j = {(ai, j , di, j ), (bi, j , ci, j )}. The structures of L1 through L3 depend on whether
the corresponding literal (i.e., the j th occurrence of xi ) is positive or negative. If it is
positive, then selecting M0

i, j matches the man bi, j to the worse partner, which yields

the risk of bi, j forming a blocking pair with V k
i, j , while if it is negative, then selecting

M1
i, j does so. Suppose that the j th occurrence of xi is the t th literal of the clause C�.

Then V k
i, j is defined as v1� if k = t and it is null if k 
= t . L4 is the same as L2 in Fig. 1,

whose role is to ensure that for each i , either M1
i, j ⊆ M for all j , or M0

i, j ⊆ M for all
j , as was shown in Lemma 2.
The preference lists of clause people are given in Fig. 4. The role of L4 is to

restrict a part of stable matchings to M1
� = {(u1�, v1� ), (u2�, v2� ), (u3�, v3� )}, M2

� =
{(u1�, v2� ), (u2�, v3� ), (u3�, v1� )}, and M3

� = {(u1�, v3� ), (u2�, v1� ), (u3�, v2� )}. Suppose that,
for t = 1, 2, 3, the t th literal of the clause C� is the j th occurrence of xi . Then B�,t is
defined as bi, j . Now the reduction is completed. It is not hard to see that the reduction
can be performed in polynomial time and each man’s (woman’s) preference list is of
length at most three (at most four, respectively).
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Fig. 4 Preference lists of clause people corresponding to the �th clause

Finally, we briefly explain the correctness of the reduction. Suppose that f is satis-
fiable and let T be a satisfying assignment. We will construct a jointly stable matching
M for I as follows: For each i , if T (xi ) = 1, then we let M1

i, j ⊆ M for all j , and if

T (xi ) = 0, then we let M0
i, j ⊆ M for all j . For each �, if the clause C� is satisfied by

its t th literal, then we let Mt
� ⊆ M . It is not hard to see that M is jointly stable.

Conversely, suppose that I admits a jointly stable matching M . We construct a
satisfying assignment T of f in a straightforward manner. That is, we know that for
each i ,M1

i, j ⊆ M for all j , orM0
i, j ⊆ M for all j . In the former case, we set T (xi ) = 1,

whereas in the latter case, we set T (xi ) = 0. In a similar way as the proof of Theorem
1, we can observe that T satisfies f . ��

In the above reductions, we have exploited existence of pairs that are acceptable
in some Li but not in L j ( j 
= i). Then one may be curious about whether SMkI is
solvable in polynomial time if the set of acceptable pairs is the same in all Li . However,
this is unlikely, as shown in the following corollary. Let SMk denote the special case
of SMkI where all the preference lists are complete. Clearly SMk satisfies the above
mentioned condition.

Corollary 1 For k ≥ 2, SMk is NP-complete.

Proof Apparently SMk ∈NP. For the NP-hardness, in the reduction given in the proof
of Theorem 1, make every preference list complete by appending missing persons to
the tail of the list in an arbitrary order. It is not hard to see that the same correctness
proof (with slight modifications) applies. ��
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3 Tractable cases

3.1 Length-two preferences lists of one side

Our first positive result is for instances in which the length of preference lists of one
side, say men’s side, is bounded by two. In this subsection, we assume without loss of
generality that acceptability is mutual, i.e., m is acceptable to w in Li if and only if w

is acceptable to m in Li . This is because, if for example m is acceptable to w while w

is not acceptable to m, then (m, w) can neither be a part of a matching nor a blocking
pair. Hence we may remove m from w’s list safely, without changing the set of jointly
stable matchings. This preprocessing can be done in time linear in the total length of
the input preference lists.

However, even if (m, w) is an acceptable pair in Li but is an unacceptable pair
in L j ( j 
= i), we must not remove m and w from each other’s list in Li . This is
because, although (m, w) cannot be a pair in a jointly stable matching, it may block
some matching in Li and removing it may change the set of jointly stable matchings.

The proof of Theorem 3 exploits a partially-ordered set (poset) of rotations and
its relation to the whole set of stable matchings. These structural properties were
originally studied for complete preference lists, but they can be extended easily and
naturally to incomplete preference lists. Here we give brief explanations about them.
See (Gusfield and Irving 1989) for more detail. Readers who are familiar with these
notions may skip the following two paragraphs.

Let I be an instance of SMI and M be a stable matching for I . For a manm matched
in M , sM (m) denotes the first woman w in m’s list such that w is matched in M and
w prefers m to M(w). Note that m prefers M(m) to sM (m); otherwise, (m, sM (m))

blocks M . Also, nextM (m) denotes the partner of sM (m) in M , that is, nextM (m) =
M(sM (m)). Let ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1) (r ≥ 2) be a sequence
of pairs such that each pair in ρ is contained in M and mi+1 = nextM (mi ) for each i ,
where i+1 is taken modulo r . Then we call ρ a rotation exposed in M . By eliminating
a rotation ρ from M , we mean to replace pairs (m0, w0), (m1, w1), . . . , (mr−1, wr−1)

by (m0, w1), (m1, w2), . . . , (mr−1, w0) in M . The resulting matching, denoted by
M/ρ, is also stable in I . Note that each man included in ρ has a worse partner in M/ρ

than in M .
Let Π be the set of rotations that are exposed in one or more stable matchings

for I . We can define a partial order � on Π , and (Π,�) is called the rotation poset
of I . A subset P ⊆ Π is called a closed subset of Π if for any ρ ∈ P and any
ρ′ � ρ, ρ′ ∈ P holds. There is a one-to-one correspondence between the stable
matchings for I and the closed subsets of Π by the mapping defined as follows. Let
M0 be the man-optimal stable matching of I (which is guaranteed to exist and can be
found by the men-oriented Gale-Shapley algorithm in time linear in the total length
of preference lists). Let P be a closed subset of Π . If we eliminate rotations in P
one by one according to the order �, we obtain a stable matching for I . Conversely,
any stable matching for I is obtained by this procedure for some closed subset of Π .
In particular, the empty set corresponds to the man-optimal stable matching and the
whole setΠ corresponds to thewoman-optimal stable matching (which is the opposite
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extreme to the man-optimal stable matching). The rotation poset can be constructed
in time linear in the total length of preference lists (Sect. 3.3 of Gusfield and Irving
1989).

Theorem 3 (2,∞)-SMkI is solvable in time O(kn).

Proof We first compute the man-optimal stable matchings Mi for Li (i = 1, 2, . . . , k)
using the men-oriented version of the Gale-Shapley algorithm. For each Li , any stable
matching leaves the same set of men and women unmatched (Gale and Sotomayor
1985). Thus if there are i and j (i 
= j) such that the set of matched people in Mi and
that in Mj are different, then we can immediately answer “no”. In the following, we
assume that the sets of matched people are the same in all Mi .

For each i , we compute all the rotations ρi
1, ρ

i
2, . . . , ρ

i
ni with respect to Li . Since

the length of each man’s preference list is at most two, each man is contained in
at most one rotation. This means that all the rotations are mutually incomparable
in the rotation poset. Hence there is a one-to-one correspondence between the set
of stable matchings for Li and the power set of {ρi

1, ρ
i
2, . . . , ρ

i
ni }: the subset S ⊆

{ρi
1, ρ

i
2, . . . , ρ

i
ni } corresponds to the stable matching Mi,S obtained by eliminating all

the rotations in S from Mi . Consider a man m who is matched in Mi . If m is not
included in a rotation, his partner is the same in all the stable matchings of Li . If he
is included in a rotation ρi

j , then he is matched in Mi,S with his first choice if ρi
j /∈ S

and with his second choice if ρi
j ∈ S.

The remaining task is to check if there are k subsets Si ⊆ {ρi
1, ρ

i
2, . . . , ρ

i
ni } (1 ≤

i ≤ k) such that M1,S1 = M2,S2 = · · · = Mk,Sk . For this purpose, we introduce a
binary variable xij for ρi

j (1 ≤ i ≤ k, 1 ≤ j ≤ ni ), where xij = 1 means to put ρi
j in

Si . We then construct a 2CNF SAT instance as follows.
For each man m who is matched in M1 (and equivalently in all Mi ), we fix the

value of variables or construct 2CNF clauses to ensure that m’s partners coincide in
all M1,S1, M2,S2 , . . . , Mk,Sk . If (m, w) is a pair in some stable matching of L , w is
calledm’s stable partner in L . Also, ifw ism’s stable partner in all Li ,w is calledm’s
jointly stable partner. If m has no jointly stable partner, we immediately output “no”.
If m has one jointly stable partner w, then for each i , we enforce the variable (if any)
to matchm with w in Mi,Si . Namely, ifm is not included in a rotation, then there is no
variable and we do nothing. Ifm is included in a rotation ρi

j and w is his first (second)

choice in Li , then we set xij = 0 (xij = 1). During this course, if some variable is
fixed differently, then we immediately output “no”. Finally, suppose that m has two
jointly stable partners w′ and w′′. This means that for each i , Li (m) contains both w′
and w′′ and m is included in a rotation of Li . Let ρi

ji
be the rotation that includes m.

For each i = 2, . . . , k, we construct two clauses as follows: If the orders of w′ and
w′′ are same in L1(m) and Li (m), then we construct (x1j1 ∨ xiji ) and (x1j1 ∨ xiji ); these

two clauses force x1j1 = xiji , meaning that inclusion of ρ1
j1
and ρi

ji
to the respective

posets should be the same. Otherwise, i.e. if the orders of w′ and w′′ are different

in L1(m) and Li (m), we construct (x1j1 ∨ xiji ) and (x1j1 ∨ xiji ). The construction of
2CNF formula is completed by doing this for all the men m who are matched in M1.

123



Journal of Combinatorial Optimization (2019) 38:646–665 659

It is not hard to see that a satisfying assignment corresponds to subsets Si such that
M1,S1 = M2,S2 = · · · = Mk,Sk .

Recall that men’s preference lists are of length at most two and acceptability is
mutual by assumption, so the total lengths of Li is O(n). Therefore, for each i , finding
Mi and computing the set of rotations of Li can be done in O(n) time, and hence in
O(kn) time in total. Constructing 2CNF clauses for each man can be done in time
O(k), and therefore O(kn) for at most n men. The resulting 2CNF formula has size
O(kn). Finally, solving 2CNF satisfiability problem can be done in linear time (Even
et al 1976; Aspvall et al 1979). Thus the overall time-complexity is O(kn). ��

3.2 Identical preference lists of one side

The next polynomial-time solvable case is that each woman’s preference lists are
identical in all Li . It should be noted that this condition is different from the so-called
master lists where, in each Li , all the women have the same preference order derived
from a fixed master list. (See, e.g., page 30 of Manlove 2013 for a formal definition
of master lists.) In our case, w and w′ may have different preference lists.

In this subsection, we restrict inputs so that acceptability is mutual in each pref-
erence list set Li . Note that this assumption was made without loss of generality in
Sect. 3.1, but we cannot do so here because preprocessing described in Sect. 3.1 (in
particular, deleting some men from women’s lists) would make some woman’s list
differ in Li and L j .

Remark The case of the master list setting can be solved easily. In this case, each
preference list set Li admits only one stable matching. Hence it suffices to compute
the unique stablematching for each Li and see if the obtained kmatchings are identical
or not.

Theorem 4 If each woman’s preference lists are identical in all Li (1 ≤ i ≤ k) and if
in each Li acceptability is mutual, then SMkI is solvable in time O(N ), where N is
the total length of preference lists in an input.

Proof Let I = (U ,W , L1, L2, . . . , Lk) be an instance of SMkI. We first note that,
since L1(w) = L2(w) = · · · = Lk(w) for every woman w, for each man m the sets
of women included in Li (m) are the same for all i , due to the mutual-acceptability
assumption made at the beginning of this subsection. Now we construct a set L of
preference lists from L1, L2, . . . , Lk as follows: For each woman w, let L(w) :=
L1(w). For each man m, the set of women included in L(m) is the same as in Li (m),
and their order is defined as follows. Let w′ and w′′ be women in L(m). If m prefers
w′ to w′′ in all Li (m), then m prefers w′ to w′′ in L(m). If m prefers w′ to w′′ in some
Li (m) andw′′ tow′ in some L j (m), thenm is indifferent betweenw′ andw′′ in L(m).
It is not hard to see that L(m) is a partially-ordered list and hence I ′ = (U ,W , L)

can be regarded as an instance of the Stable Marriage problem with Partially-ordered
and Incomplete lists (SMPI).

We now recall the super-stability (Gusfield and Irving 1989; Irving 1994) in the
case that preference lists are not necessarily in a total order. For a matching M , (m, w)

is a blocking pair in super-stability if (1) (m, w) /∈ M but (m, w) is an acceptable pair,
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(2) m is single in M , or prefers w to M(m), or is indifferent between w and M(m),
and (3)w is single in M , or prefersm to M(w), or is indifferent betweenm and M(w).
We say that a matching is super-stable if it admits no blocking pair in super-stability.
Irving (1994) developed an O(n2)-time algorithm to find a super-stable matching or
to report that no super-stable matching exists when preference lists are complete and
may include ties. Manlove (1999) extended this algorithm for incomplete preference
lists, and showed that it runs in time O(N ) where N is the total length of preference
lists in an input. Also, Manlove showed that the same algorithm is applicable for
partially-ordered preference lists, i.e., SMPI (page 169 of Manlove 2013). Therefore,
to complete the proof, it suffices to show that a matching M is jointly stable in I if
and only if M is super-stable in I ′.

First suppose that M is super-stable in I ′. Due to Lemma 3.24 in page 160 and
observations in page 169 of Manlove (2013), M is stable in any SMI instance derived
by linear extension of the partial orders in I ′. Since each Li is a linear extension of L ,
M is stable in each Li , that is, M is jointly stable in I .

Conversely, suppose that M is not super-stable in I ′. Then, there is a blocking pair
(m, w) in super-stability. Since L(w) is a total order, w is unmatched in M or prefers
m to M(w) in L(w). In the latter case, w prefers m to M(w) in all Li (w). Note that m
either (i) is unmatched in M , or (ii) prefers w to M(m) in L(m), or (iii) is indifferent
betweenw and M(m) in L(m). In the case of (i), (m, w) is a blocking pair for M in all
Li . In the case of (ii),m prefersw to M(m) in all Li (m), so again (m, w) is a blocking
pair for M in all Li . In the case of (iii), m prefers w to M(m) in Li (m) for some i , so
that (m, w) is a blocking pair for M in Li . In any case, M in not jointly stable in I .

Constructing I ′ from I and solving I ′ can both be done in O(N ) time, hence the
theorem follows. ��

As a byproduct of the above proof, we can show the existence of the man-optimal
and woman-optimal stable matchings. Let us call a jointly stable matching M man-
optimal if for any man m and any jointly stable matching M ′, either M(m) = M ′(m)

or m prefers M(m) to M ′(m) in all Li . The woman-optimal jointly stable matching is
defined similarly.

Let I = (U ,W , L1, L2, . . . , Lk) be an SMkI instance and I ′ = (U ,W , L) be the
SMPI instance constructed as in the above proof. It is known that the set of super-stable
matchings for an SMPI instance form a distributive lattice (Spieker 1995; Manlove
2002; and page 169 of Manlove 2013), so there are the man-optimal and the woman-
optimal stable matchings for I ′, denoted MU and MW , respectively. Since women’s
preference lists are the same in L and all Li , MW is the woman-optimal jointly stable
matching for I . Consider a man m and suppose that m is indifferent between w1 and
w2 in L(m). It is known that it cannot be the case that m is matched with w1 in one
super-stablematching andwithw2 in another super-stablematching. Thus by theman-
optimality of MU , for every man m, either MU (m) = M(m) or m prefers MU (m) to
M(m) in L(m) for any super-stable matching M . This implies that by construction of
L , either MU (m) = M(m) or m prefers MU (m) to M(m) in Li (m) for all i , leading
to the existence of the man-optimal jointly stable matching.
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4 Conclusion

In this paper, we considered a variant of the stable marriage problem in which we
are given k sets of preference lists L1, L2, . . . , Lk , and are asked to determine the
existence of a matching that is stable with respect to all Li (1 ≤ i ≤ k). We have
shown two NP-complete cases and one polynomially solvable case with respect to the
lengths of preference lists. We also showed that the problem is solvable in linear time
if every woman has an identical preference list in all Li .

An important future work is to determine the complexity of (3, 3)-SMkI for k ≥ 2
and (3, �)-SMkI for � ≥ 4 and k = 2, 3. Another direction is approximability of
SMkI; given an instance, find a matching that is stable in as many Li as possible.
Finding a stable matching in any one list is a trivial k-approximation algorithm. On
the other hand, using Theorem 1 we can easily deduce an approximation hardness
of 2 − ε for even k and 2 − 2

k+1 − ε for odd k, for any positive constant ε under
P
=NP. Narrowing this gap is an interesting future work. Considering an alternative
optimization criteria, e.g., minimizing the total number of blocking pairs over all Li ,
would also be attractive.

Acknowledgements The authors would like to thank the reviewers for their constructive comments, which
helped to improve the presentation of the paper considerably.

Appendix: Partial matchingsM1
�
,M2

�
, andM3

�

See Figs. 5, 6 and 7.
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Fig. 5 Partial matching M1
�
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Fig. 6 Partial matching M2
�
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Fig. 7 Partial matching M3
�
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