
Journal of Combinatorial Optimization (2019) 38:608–617
https://doi.org/10.1007/s10878-019-00399-w

A tight linear time 13
12-approximation algorithm for the

P2||Cmax problem

Federico Della Croce1,2 · Rosario Scatamacchia1 · Vincent T’kindt3

Published online: 18 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We consider problem P2||Cmax where the goal is to schedule n jobs on two identical
parallel machines to minimize the makespan. We focus on constant factor approxima-
tion algorithms with complexity independent from the required accuracy. We exploit
the famous Longest Processing Time (LPT) rule that requires to sort jobs in non-
ascending order of processing times and then to assign one job at a time to the machine
whose load is smallest so far.We propose an approximation algorithm that applies LPT
to a subset of 2k jobs, then considers a single step of local search on the obtained sub-
schedule and finally applies list scheduling to the remaining jobs. This algorithm,
when applied for k = 5, reaches a tight 13

12 -approximation ratio improving the ratio of
12
11 proposed by He et al. (Nav Res Logist 47:593–601, 2000). We use Mathematical
Programming to analyze the approximation ratio of our approach. As a byproduct,
we also show how to improve the FPTAS of Sahni for any n > 1/ε so as to reach an
approximation ratio (1 + ε) with time complexity O(n + 1

ε3
).

Keywords Two identical parallel machines scheduling · Makespan · LPT rule ·
Mathematical programming · Approximation

B Federico Della Croce
federico.dellacroce@polito.it

Rosario Scatamacchia
rosario.scatamacchia@polito.it

Vincent T’kindt
tkindt@univ-tours.fr

1 DIGEP, Politecnico di Torino, Torino, Italy

2 CNR, IEIIT, Torino, Italy

3 Laboratoire d’Informatique Fondamentale et Appliquée (EA 6300), ERL CNRS 7002, Université
Francois-Rabelais, Tours, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-019-00399-w&domain=pdf
http://orcid.org/0000-0003-2897-183X

Journal of Combinatorial Optimization (2019) 38:608–617 609

1 Introduction

We consider the problem of scheduling n jobs on 2 identical parallel machines M1 and
M2 to minimize the makespanCmax. Each job j is defined by a processing time p j and
is required to be executed by one of themachines.We denote by c j the completion time
of job j in any given schedule and we haveCmax = max1≤ j≤n(c j). Using the standard
three-field notation (Graham et al. 1979) this problem is denoted by P2||Cmax. It is
NP-hard in the ordinary sense.

We tackle problem P2||Cmax from the approximation point of view. For any prob-
lem instance, we denote by C∗

max the optimal makespan and by CX
max the makespan

provided by a generic algorithm X . We say that algorithm X has approximation ratio
ρ ≥ 1, if CX

max ≤ ρ · C∗
max for every instance of P2||Cmax.

A pioneering approximation algorithm for this problem is the Longest Processing
Time (LPT) rule proposed by Graham (1969) for the more general P||Cmax problem
withm machines. It requires to sort the jobs in non-ascending order of their processing
times p j (j = 1, . . . , n) and then to assign one job at a time to the machine whose
load is smallest so far. This assignment of jobs to machines is also known as List
Scheduling (LS). LPT has time complexity of O(n log n) due to the initial sorting of
the jobs. Several properties have been established for LPT in the last decades (Blocher
and Sevastyanov 2015; Chen 1993; Coffman and Sethi 1976; Graham 1969). LPT
generally exhibits much better performance in practice than the expected theoretical
approximation ratios, especially as the number of jobs gets larger. Due to its simplicity
and practical effectiveness, LPT became a cornerstone for the design ofmore involving
exact or heuristic algorithms for problem P||Cmax. Very recently, a revisiting of the
LPT rule has been proposed in Della Croce and Scatamacchia (2018).

We mention other popular approximation algorithms which exploit connections of
P||Cmax with bin packing:Multifit (Coffman et al. 1978), Combine (Lee and Massey
1988) and Listfit (Gupta and Ruiz-Torres 2001). Such algorithms provide better worst
case performance than LPT but at the cost of higher running times. Also, Polyno-
mial Time Approximation Schemes (PTASs) were derived for the problem. The first
PTAS was given Hochbaum and Shmoys (1987). PTASs with improved running times
were then provided in Alon et al. (1998), Hochbaum (1997), Jansen (2010) and in
Jansen et al. (2017). In Sahni (1976), a Fully Polynomial TimeApproximation Scheme
(FPTAS)was devised for P2||Cmax (and for themore general Pm||Cmax, if the number
of machines is fixed) which solves the problemwith accuracy (1+ε) in time O(n2/ε).
The current best performing algorithm for P2||Cmax running with polynomial time
complexity independent from the accuracy and providing a constant approximation
ratio of 12

11 was presented in He et al. (2000), while an approximation algorithm with
ratio limited to 9

8 was given in Della Croce and Scatamacchia (2018).
In this paper, we propose an approximation algorithm with a constant ratio that first

applies LPT to a subset of 2k jobs, then considers a single step of local search on the
obtained subschedule and finally applies list scheduling to the remaining jobs. This
algorithm, when applied for k = 5, reaches a tight 13

12 -approximation ratio improving
the ratio of 12

11 established in He et al. (2000). We use Mathematical Programming
(MP) to analyze the approximation ratio of our approach. In a sense, the proposed

123

610 Journal of Combinatorial Optimization (2019) 38:608–617

approach resembles the reasoning employed in Mireault et al. (1997), where several
LPs were used to determine the worst case approximation ratio of LPT rule on two
uniform machines, and the reasoning in Della Croce and Scatamacchia (2018) where
theoretical results were derived by means of Mathematical Programming techniques.
Also, recently a growing attention has been given to Mathematical Programming as
an alternative to mainstream proof systems based on analytical derivation [see, e.g.,
Abolhassani et al. (2016), Chimani and Wiedera (2016), Della Croce et al. (2018)].
Finally, in Sect. 3, we show how to improve the running time of the FPTAS of Sahni
(1976) under mild restrictions.

2 A linear time 13
12-approximation algorithm

2.1 Preliminaries

We consider the jobs are sorted by non-ascending values of their processing time,
i.e. p j ≥ p j+1, j = 1, . . . , n − 1. We denote by critical the job that provides the
makespan of a given schedule. The following proposition holds.

Proposition 1 Consider a given algorithm H that assigns jobs 1, . . . , 2k to the
machines according to some policy and then applies LS to the remaining jobs
2k + 1, . . . , n. If the critical job j is such that j ≥ 2k + 1, then

CH
max

C∗
max

≤ 1 + 1

2(k + 1)
= ρ.

Proof Assume w.l.o.g. that j is assigned to machine M1 and denote by t2 the com-
pletion time of machine M2 before processing jobs j, . . . , n. Then, as j is scheduled
according to LS, we have CH

max − p j ≤ t2 and CH
max + t2 = ∑ j

i=1 pi ≤ ∑n
i=1 pi ≤

2C∗
max. Correspondingly, we have 2CH

max − p j ≤ CH
max + t2 ≤ 2C∗

max, that is

CH
max ≤ C∗

max + p j
2 . Hence, we have CH

max
C∗
max

≤ C∗
max+

p j
2

C∗
max

= 1 + p j
2C∗

max
. Besides, as

j ≥ 2k + 1, in the optimal solution, one of the machines will be assigned at least
(k + 1) jobs with processing time not inferior to p j , that is C∗

max ≥ (k + 1)p j . But
then

CH
max

C∗
max

≤ 1 + p j

2C∗
max

≤ 1 + p j

2(k + 1)p j
= 1 + 1

2(k + 1)
= ρ. ��

The following corollary immediately follows.

Corollary 1 Given a problem P1 with n jobs, consider the subproblem Pred with the
first 2k jobs only. If problem Pred is solved by an algorithm with approximation ratio
1 + 1

2(k+1) , then the same approximation ratio holds for P1 by applying LS to the
remaining subset of jobs.

123

Journal of Combinatorial Optimization (2019) 38:608–617 611

Proof Indeed, if the critical job in P1 ∈ {1, . . . , 2k}, the approximation ratio cannot
be superior to (1 + 1

2(k+1)). Besides, if the critical job in P1 ∈ {2k + 1, . . . , n}, then
the result of Proposition 1 holds. ��
Remark 1 In Graham (1969), a somewhat similar result was proved (and generalized
to m machines) stating that, if problem Pred is solved to optimality, then the approxi-
mation ratio 1 + 1

2(k+1) holds for P1 by applying LS to the remaining subset of jobs.
We remark, however, that requiring to solve problem Pred to optimality makes such
algorithm inapplicable as soon as k becomes non negligible. For this reason, it has
always been considered of interest, well after the publication of the findings in Graham
(1969), to determine low complexity polynomial time algorithms providing constant
time approximation ratio [see, for instance, the work in He et al. (2000)].

2.2 The approximation algorithm

We now turn to the presentation of a 13
12 -approximation algorithm (Algorithm A1)

which combines the LPT rule with a simple local search.

Algorithm A1

1: Input: An instance I with n jobs and 2 machines, a parameter k.
2: Select the 2k largest processing time jobs of instance I inducing a reduced instance

I ′ and apply LPT to I ′ obtaining schedule S′.
3: Search for the best swap SW 1

i, j (if any) between any job i on machine M1 and any
job j on machine M2 that improves the makespan of S′.

4: Search for the best swap SW 2
i, j,k (if any) between any job i on machine M1 and

any pair of jobs j, k on machine M2 that improves the makespan of S′.
5: Search for the best swap SW 3

i, j,k (if any) between any job i on machine M2 and
any pair of jobs j, k on machine M1 that improves the makespan of S′.

6: Apply the best swap (among SW 1
i, j , SW

2
i, j,k , SW

3
i, j,k) to S′ reaching schedule S′′

.

7: Given S
′′
, apply LS to the remaining (n−2k) jobs and return the complete schedule.

In practice, Algorithm A1 applies first LPT to the reduced instance I ′ composed by
the 2k largest jobs yelding subschedule S′. Then, a single step of local search between
pairs or triples of jobs is applied to I ′ yelding subschedule S

′′
. Finally, starting from

S
′′
, LS is applied to the remaining (n − 2k) jobs.

Proposition 2 Algorithm A1 runs with complexity O(k2 log k + n).

Proof We proceed by analyzing the execution time of each step of the algorithm. It
is well known that finding the k-th element in a vector of n elements can be done in
linear time by adapting the median algorithm in Blum et al. (1973). Correspondingly,
determining the largest 2k processing times can be done in O(n) time. Step 2 requires
then O(n+k log k) due to the additional application of LPT to instance I ′. Computing
the best swap between two jobs in Step 3 can be done inO(k) bymeans of the following
procedure. Denote by δ the difference between the completion times of the critical and
non-critical machine and by di, j the difference in processing time produced by SW 1

i, j
for any jobs i and j . Notice also that jobs are ordered by non-ascending processing

123

612 Journal of Combinatorial Optimization (2019) 38:608–617

time on both machines due to the application of LPT at Step 2. We first seek for swaps
with di, j as close as possible to δ

2 by coupling the first job i (= 1) on the critical
machine with jobs j = 1, 2, . . . on the non-critical machine as long as 0 ≤ di, j ≤ δ

2 .
This determines the best job j , say job j ′, for the first job i . Then, we analyze the next
possible swap by considering the second largest job on the critical machine (i = 2)
and jobs j ≥ j ′ + 1 on the non critical machine. After processing all jobs on the non-
critical machine, we then re-apply the same procedure where, for a given candidate i ,
we look for the first job j such that di, j > δ

2 . Overall, the best swap SW 1
i, j is found

in O(k). In Step 4, we first compute and sort by non-ascending order of processing
times all pairs (j, k) of jobs on the non-critical machine in O(k2 log k). Then, we can
apply the same procedure of Step 3 by comparing jobs on the critical machine with the
array of O(k2) processing time entries of the ordered pairs of jobs (j, k). Therefore,
the execution time of Step 4 is in O(k2 log k). A similar reasoning also applies in Step
5. In Step 7, LS runs with complexity O(n). The overall time complexity is hence
O(k2 log k + n). ��

Theorem 1 Algorithm A1 applied to the largest jobs 1, 2, . . . , 10 (where dummy jobs
with null processing times are added if n < 10), i.e. with parameter k = 5, reaches a
tight 13

12 -approximation ratio.

Proof If n < 10, it is immediate to see that an equivalent instancewith 10 jobs exists by
adding 10−n dummy jobswith null processing times. If n ≥ 10, then, due toCorollary
1, it is sufficient to show that steps 2−6 of Algorithm A1 applied to the largest 2k = 10
jobs provide approximation ratio not superior to 1 + 1

2(k+1) = 13
12 . To this extent, we

rely on Mathematical Programming to evaluate the worst-case performance ratio of
Algorithm A1 on any instance with up to 10 jobs. We propose a complete enumeration
approach that considers all possible LPT sequences, denoted by SLPTi , where by
construction job 1 is assigned to machine M1, while jobs 2 and 3 are assigned to M2.
Correspondingly, LPT rule may generate 27 = 128 possible different SLPTi sequences
depending on the processing times values, where the makespan may be either on M1
or on M2. Similarly, we consider all possible optimal SOPT

j sequences where, without

loss of generality, we assume job 1 is assigned to M1. Correspondingly, 29 = 512
possible different sequences may be optimal. Actually, this value can be reduced to
260 by eliminating all dominated jobs assignments. For instance, the assignment of
jobs 1, . . . , 5 to M1 and jobs 6, . . . , 10 to M2 is always dominated by the assignment
of jobs 1, . . . , 4, 6 to M1 and jobs 5, 7, . . . , 10 to M2 as in both cases the makespan
is on machine M1 and p1 + p2 + p3 + p4 + p5 ≥ p1 + p2 + p3 + p4 + p6.

For every pair SLPTi , SOPT
j of candidate solutions (for a total of 260×128 pairs),

we generate two LP models (taking into account whether the makespan of LPT is
either on M1 or on M2) that search for the jobs processing times that maximize the
makespan determined by Algorithm A1 provided that the optimal makespan is not
superior to a given constant value denoted by C∗ where, without loss of generality,
we may arbitrarily set C∗ = 1: any other assignment C∗ = α would simply scale
by a factor α the related processing times values and correspondingly the objective
function value without affecting the approximation ratio.

123

Journal of Combinatorial Optimization (2019) 38:608–617 613

More precisely, we consider an MP formulation with non-negative variables p j

(j = 1, . . . , 10) denoting the processing times, non-negative variablesCM1
max andC

M2
max

representing the completion time of M1 and M2, respectively, in the LPT schedule and
a non-negative variable δ representing the difference between the above completion
times. Finally, we introduce a non-negative variable δ̂ representing the maximum
among the improvements reachable by the best possible swaps SW 1

i, j , SW
2
i, j,k and

SW 3
i, j,k , respectively, determined in steps 3 − 5 of Algorithm A1.

The processing times must satisfy the List Scheduling constraints of the LPT
solution and the requirement that the optimal makespan cannot exceed the constant
parameter. Further constraints connecting variables p j and δ̂ are also induced by the
swaps considered in Steps 3-5 of Algorithm A1. We consider here the case where
LPT gives the makespan on M1. Hence, the objective function value is given by the
difference (CM1

max − δ̂) to be maximized as we search for the worst-case. Let us denote
by wk,� a 0/1 coefficient indicating if job � is assigned to machine Mk in sequence
SLPTi . Similarly, let us denote by w∗

k,� a 0/1 coefficient indicating if job � is assigned

to machine Mk in the optimal sequence SOPT
j . The following model is implied:

Maximize (CM1
max − δ̂) (1)

p j ≥ p j+1 j = 1, . . . , 9 (2)
�−1∑

j=1

w1, j p j ≤
�−1∑

j=1

w2, j p j , ∀2 ≤ � ≤ 10 | w1,� = 1 (3)

�−1∑

j=1

w2, j p j ≤
�−1∑

j=1

w1, j p j , ∀2 ≤ � ≤ 10 | w2,� = 1 (4)

10∑

j=1

w∗
1, j p j ≤ C∗ (5)

10∑

j=1

w∗
2, j p j ≤ C∗ (6)

CM1
max =

10∑

j=1

w1, j p j (7)

CM2
max =

10∑

j=1

w2, j p j (8)

δ = CM1
max − CM2

max (9)

δ̂ ≥ min{pi − p j , δ − pi + p j }, ∀i < j | w1,i = w2, j = 1 (10)

δ̂ ≥ min{pi − p j − pk, δ − pi + p j + pk}, ∀i, j < k | w1,i = w2, j = w2,k = 1

(11)

123

614 Journal of Combinatorial Optimization (2019) 38:608–617

δ̂ ≥ min{pi + p j − pk, δ − pi − p j + pk} ∀i < j, k | w1,i = w1, j = w2,k = 1

(12)

p j ≥ 0 j = 1, . . . , 10 (13)

δ, δ̂,CM1
max,C

M2
max ≥ 0 (14)

Here constraints (2) ensure that jobs are ordered by non-increasing processing times.
Constraints (3) and (4) impose to the p j variables the fulfillment of the List Scheduling
requirement. Also, constraints (5) and (6) require that the completion times of both
machines in the optimal solution is not superior to the optimal makespan C∗

max. Then,
constraint (7) indicates that the completion time of the critical machine is given by
the sum of the processing times of the jobs assigned to that machine. Similarly, con-
straint (8) provides the same information for the non-critical machine. Constraint (9)
indicates that δ is the difference between the completion times of the two machines.
Constraints (10)–(12) indicate that δ̂ must be not inferior to the value of the largest pos-
sible improvement reachable by the best possible swaps SW 1

i, j , SW
2
i, j,k and SW 3

i, j,k ,
respectively. Notice that for conciseness we kept in constraints (10)–(12) a non-linear
min notation that can be easily transformed into sets of linear constraints by means
of big-M coefficients and the introduction of dedicated 0/1 variables. We report in
“Appendix” the explosion of constraint (10). A similar reasoning is employed in the
modeling of constraints (11)–(12)which is omitted in the paper for sake of conciseness.

Finally, constraints (13) and (14) indicate that all variables are non-negative. Thus,
the MP model to be solved turns out to be a MILP formulation.

Then, by iterating (twice, in order to handle the makespan of LPT either on M1 or
on M2) the solution of the MILP model on all possible pairs SLPTi , SOPT

j and taking
the maximum value, we get the worst-case instance with up to 10 jobs.

After solving 2 × 260 × 128 = 66560 MILP models,1 we found that the
worst-case is reached by the following example with vector of processing times
{7/12, 5/12, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0, 0}. An LPT solution assigns jobs 1, 4, 6,
8 to M1 and jobs 2, 3, 5, 7, 9, 10 to M2 and has makespan = 13/12. Any swap of the
type indicated in Steps 2-6 of A1 does not lead to improvement. The optimal solution
assigns jobs 1 and 2 to one machine and jobs 3, . . . , 10 to the other machine reaching
makespan =1. Correspondingly, the approximation ratio is 13

12 . ��
We can also state the following side result for algorithm A1 applied to problem

P2||∑2
i=1(CMi)

2 where CMi refers to the completion time of the last job processed
on Mi and the goal is to minimize the sum of the squares of the machine completion
times.

Corollary 2 Forany P2||∑2
i=1 C

2
Mi

instance, algorithm A1 hasa tight
145
144 -approxima-

tion ratio.

1 All LPTs with related optimal sequences, the generation code of model (1)–(14) embedding the extended
linear formulation of constraints (10)–(12) and taking in input a given pair SLPTi , SOPT

j and the MILP
model to which corresponds the worst-case instance are available at: https://drive.google.com/open?
id=1IdII7LoSHhYPbmupRCTpThnmuSt-35gi.

123

https://drive.google.com/open?id=1IdII7LoSHhYPbmupRCTpThnmuSt-35gi
https://drive.google.com/open?id=1IdII7LoSHhYPbmupRCTpThnmuSt-35gi

Journal of Combinatorial Optimization (2019) 38:608–617 615

Proof As indicated in Walter (2017), problems P2||Cmax and P2||∑2
i=1 C

2
Mi

are
equivalent. Correspondingly, the tight instance provided above for problem P2||Cmax
constitutes also a worst-case instance for problem P2||∑2

i=1 C
2
Mi
. Since for this

instance we have CM1 = 13
12 , CM2 = 11

12 in the LPT schedule and CM1 = CM2 = 1 in

the optimal solution, the approximation ratio of Algorithm A1 is
(1312)2+(1112)2

1+1 = 145
144 . ��

We remark that the result of Corollary 2 improves upon the approximation ratio of
50
49 derived in Koulamas and Kyparisis (2008).

3 Improving the FPTAS of Sahni

By exploiting Proposition 1 and Corollary 1, it is possible to improve upon the time
complexity of O(n2/ε) of the FPTAS proposed by Sahni (1976). Consider a simple
procedure that first runs the FPTAS in Sahni (1976) to the subinstance only composed
by the largest 2k jobs, with k =
 1

2ε − 1�. Then, LS is applied to the remaining subset
of jobs. The following proposition holds.

Proposition 3 Given a P2||Cmax instance with n jobs, an approximation ratio (1+ ε)

can be reached with complexity O(1
ε3

+ n) for all n > 1/ε.

Proof As the proposed procedure sets k =
 1
2ε − 1�, the results of Proposition 1 and

Corollary 1 guarantee an approximation ratio 1+ 1
2(k+1) ≤ 1+ε. To bound the running

time, notice that the FPTAS is applied to the subset of 2k jobs, with k =
 1
2ε −1�, thus

yielding a time complexity of O(
(2k)2

ε
) = O(1

ε3
). The additional linear contribution

of n to the time complexity is due to the running of LS. ��
We remark that the difference in terms of complexity of the proposed procedure,

with respect to the FPTAS in Sahni (1976), can be extremely large if n >> 1
ε
. For

instance, with n = 10000 and ε = 0.01, while the FPTAS in Sahni (1976) runs in
O(n

2

ε
) = O(1010), we get a time complexity of O(1

ε3
+ n) = O(106 + 104) that

represents a difference of more than 4 orders of magnitude.

4 Conclusions

We considered problem P2||Cmax and showed that the well-known LPT rule followed
by a single step of local search reaches in linear time a tight 13

12 -approximation ratio.
As a byproduct, we also showed that for any n > 1/ε an approximation ratio (1 + ε)

can be reached by means of an algorithm running with complexity O(n + 1
ε3

).
In our analysis we deployed an approach relying onMixed Integer Linear Program-

ming modeling. The proposedMILP reasoning could be considered a valid alternative
to techniques based on analytical derivation. An attempt in this direction has been
recently proposed in Della Croce et al. (2018) for amultiperiod variant of the knapsack
problem. Due to the implications of Proposition 1, a generalization of the proposed
approach for larger values of k, possibly combining LPT and other basic greedy rules

123

616 Journal of Combinatorial Optimization (2019) 38:608–617

such as, for instance, Multifit followed by a single step of local search, may possibly
induce further improvement of the current result and is, therefore, definitely worthy
of future investigation.

Acknowledgements This work has been partially supported by “Ministero dell’Istruzione, dell’Università
e della Ricerca” Award “TESUN-83486178370409 finanziamento dipartimenti di eccellenza CAP. 1694
TIT. 232 ART. 6”.

Appendix: Extended linear formulation of constraint (10)

A linear formulation of constraint (10) can be expressed by introducing for each pair of
jobs i, j the binary variables v′

i j , v
′′
i j and v′′′

i j . Variable v′
i j is equal to 1 iff pi − p j ≤ δ

2 ,

variable v′′
i j is equal to 1 iff δ

2 < pi − p j ≤ δ and variable v′′′
i j is equal to 1 iff

δ < pi − p j . Correspondingly, ∀i < j | w1,i = w2, j = 1, the following set of big-M
constraints (for a reasonable large value of M , e.g. M = 1000) are introduced.

v′
i j + v′′

i j + v′′′
i j = 1; (15)

δ

2
− pi + p j ≤ Mv′

i j (16)

− δ

2
+ pi − p j ≤ M(1 − v′

i j) (17)

δ − pi + p j ≤ M(v′
i j + v′′

i j) (18)

−δ + pi − p j ≤ Mv′′′
i j (19)

δ̂ ≥ pi − p j − M(1 − v′
i j) (20)

δ̂ ≥ δ − pi + p j − M(1 − v′′
i j) (21)

Indeed, constraint (15) indicates that either v′
i j = 1, or v′′

i j = 1 or v′′′
i j = 1.

Then, if v′
i j = 1, constraint (17) implies that pi − p j ≤ δ

2 . Correspondingly,
constraints (16, 18, 21) are inactive, while constraint (19) that implies that pi − p j ≤ δ

is dominated by constraint (17). Hence, the swap induces the makespan reduction
δ̂ = pi − p j through constraint (20) in combination with the objective function (1).

Else, if v′′
i j = 1, constraint (16) implies that pi − p j ≥ δ

2 , while constraint (19)
implies that pi − p j ≤ δ. Also, constraints (17, 18, 20) are inactive. Hence, the
binding constraint is in this case constraint (21) that is satisfied as an equality, that is
δ̂ = δ − pi + p j . Correspondingly, due to constraint (9), the new makespan will be

on machine M2 and its value in the objective function (1) will be CM2
max + pi − p j .

Else, v′′′
i j = 1. In this case, constraint (16) induces pi − p j ≥ δ

2 , and constraint (18)
induces pi − p j ≥ δ, that is swap will not occur as it can only worsen the objective
function value. Besides, constraints (17, 18, 20, 21) are inactive. Correspondingly, as
δ̂ must be positive or null, it has negative coefficient in the objective function and is
not further constrained, we have δ̂ = 0.

123

Journal of Combinatorial Optimization (2019) 38:608–617 617

References

Abolhassani M, Chan HT-H, Chen F, Esfandiari H, Hajiaghayi M, HamidM,WuX (2016) Beating ratio 0.5
for weighted oblivious matching problems. In: Sankowski P, Zaroliagis C (ed) 24th annual European
symposium on algorithms (ESA 2016), vol 57, pp 3:1–3:18. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik

AlonN,AzarY,WoegingerGJ,YadidY (1998)Approximation schemes for schedulingonparallelmachines.
J Sched 1:55–66

Blocher JD, Sevastyanov D (2015) A note on the Coffman-Sethi bound for LPT scheduling. J Sched
18:325–327

Blum M, Floyd RW, Pratt V, Rivest RL, Tarjan RE (1973) Time bounds for selection. J Comput Syst Sci
7:448–461

Chen B (1993) A note on LPT scheduling. Oper Res Lett 14:139–142
Chimani M,Wiedera T (2016) An ILP-based proof system for the crossing number problem. In: Sankowski

P, Zaroliagis C (eds) 24th annual European symposium on algorithms (ESA 2016), vol 57, pp 29:1–
29:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

Coffman EG Jr, Sethi R (1976) A generalized bound on LPT sequencing. Rev Fr d’Automatique Inform
Rech Oper Suppl 10:17–25

Coffman EG Jr, GareyMR, JohnsonDS (1978) An application of bin-packing tomultiprocessor scheduling.
SIAM J Comput 7:1–17

Della Croce F, Scatamacchia R (2018) The longest processing time rule for identical parallel machines
revisited. J Sched. https://doi.org/10.1007/s10951-018-0597-6

Della Croce F., Pferschy U., Scatamacchia R. (2018) Approximation results for the incremental knapsack
problem. In: Combinatorial algorithms: 28th international workshop, IWOCA 2017, vol 10765 of
Springer lecture notes in computer science, pp 75–87

Graham RL (1969) Bounds on multiprocessors timing anomalies. SIAM J Appl Math 17:416–429
Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deter-

ministic sequencing and scheduling: a survey. Ann Discrete Math 5(C):287–326
Gupta JND, Ruiz-Torres AJ (2001) A listfit heuristic for minimizing makespan on identical parallel

machines. Prod Plan Control 12(1):28–36
HeY, Kellerer H, Koto V (2000) Linear compound algorithms for the partitioning problems. Nav Res Logist

47:593–601
Hochbaum DS (ed) (1997) Approximation algorithms for NP-hard problems. PWS Publishing Co., Boston
Hochbaum DS, Shmoys DB (1987) Using dual approximation algorithms for scheduling problems theoret-

ical and practical results. J ACM 34:144–162
Jansen K (2010) An eptas for scheduling jobs on uniform processors: using an milp relaxation with a

constant number of integral variables. SIAM J Discrete Math 24:457–485
Jansen K, Klein KM, Verschae J (2017) Improved efficient approximation schemes for scheduling jobs on

identical and uniform machines. In: Proceedings of the 13th workshop on models and algorithms for
planning and scheduling problems (MAPSP 2017), Seeon Abbey, Germany

Koulamas C, Kyparisis GJ (2008) An improved delayed-start LPT algorithm for a partition problem on two
identical parallel machines. Eur J Oper Res 187:660–666

Lee CY, Massey JD (1988) Multiprocessor scheduling: combining LPT and MULTIFIT. Discrete Appl
Math 20(3):233–242

Mireault P, Orlin JB,VohraRV (1997)A parametricworst-case analysis of the LPT heuristic for two uniform
machines. Oper Res 45(1):116–125

Sahni S (1976) Algorithms for scheduling independent tasks. J ACM 23:116–127
Walter R (2017) A note on minimizing the sum of squares of machine completion times on two identical

parallel machines. Cent Eur J Oper Res 25:139–144

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10951-018-0597-6

	A tight linear time 1312-approximation algorithm for the P2 || Cmax problem
	Abstract
	1 Introduction
	2 A linear time 1312-approximation algorithm
	2.1 Preliminaries
	2.2 The approximation algorithm

	3 Improving the FPTAS of Sahni
	4 Conclusions
	Acknowledgements
	Appendix: Extended linear formulation of constraint (10)
	References

