
Journal of Combinatorial Optimization (2019) 38:502–544
https://doi.org/10.1007/s10878-019-00396-z

Gene tree reconciliation including transfers with
replacement is NP-hard and FPT

Damir Hasić1 · Eric Tannier2,3

Published online: 22 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Phylogenetic trees illustrate the evolutionary history of genes and species. Although
genes evolve along with the species they belong to, a species tree and gene tree are
often not identical. The reasons for this are the evolutionary events at the gene level,
like duplication or transfer. These differences are handled by phylogenetic reconcilia-
tion, which formally is a mapping between a gene tree nodes and a species tree nodes
and branches. We investigate models of reconciliation with gene transfers replacing
existing genes, which is a biologically important event, but has never been included
in the reconciliation models. The problem is close to the dated version of the classical
subtree prune and regraft (SPR) distance problem, where a pruned subtree has to be
regrafted only on a branch closer to the root. We prove that the reconciliation problem
including transfer with replacement is NP-hard, and that, if speciations and trans-
fers with replacement are the only allowed evolutionary events, it is fixed-parameter
tractable with respect to the reconciliation’s weight. We prove that the results extend
to the dated SPR problem.

Keywords Phylogenetic reconciliation · Dated subtree prune and regraft SPR · Gene
transfer · Transfer with replacement (replacing transfer) · NP hard/complete · Fixed
parameter tractable FPT

B Damir Hasić
damir.hasic@gmail.com; d.hasic@pmf.unsa.ba

1 Department of Mathematics, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia
and Herzegovina

2 Inria Grenoble Rhône-Alpes, 38334 Montbonnot, France

3 Laboratoire de Biométrie et Biologie Évolutive UMR5558, CNRS, Univ Lyon, Université Lyon 1,
69622 Villeurbanne, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-019-00396-z&domain=pdf
http://orcid.org/0000-0002-4756-3092

Journal of Combinatorial Optimization (2019) 38:502–544 503

1 Introduction

Duplications and transfers are events in evolution of genes, and one of the major
reasons for discordance between species and gene trees. These differences aremodeled
by phylogenetic reconciliation (see for example Szöllősi et al. 2015).

The main evolutionary event investigated in this paper is gene transfer (Fig. 1). It
involves two, possibly ancient, species existing at the same moment. The species that
provides a transferred gene is called a donor species, and the species that receives the
gene is called a recipient species.

As phylogenetic analysis never includes the totality of living species, in particular
ancient species which can be extinct or not sampled (see transfer from the dead in
Szöllősi et al. 2013), the donor species is not assumed to belong to the species phy-
logeny, but is related to it through one of its ancestors. By extension, this ancestor
is considered as the donor, which yields a diagonal transfer or transfer to the future
(Fig. 1b–d).

The recipient species either receives a new gene copy, or replaces an existing one
(Fig. 1d). The latter event is called replacement transfer or transfer with replacement.
In Choi et al. (2012) replacement transfer is called replacing horizontal gene transfer
(HGT). They found that the replacingHGT and the additive HGT affect gene functions
differently in Streptococcus. In Rice and Palmer (2006) HGT in plastid genomes is
studied and the evidence of transfer with replacement is found. HGTwith replacement
also occurred in the evolution of eukaryotes (Keeling and Palmer 2008). HGT with
replacement is used in several phylogenetic studies (Abby et al. 2012; Beiko and
Hamilton 2006; Suchard 2005).

In this article we explore the algorithmic aspects of transfers with replacements
when time constraints are imposed on transfers (i.e. they should not be directed to the
past).

(a) (b)

(c) (d)

Fig. 1 The gene transfer. aAhorizontal gene transfer between species existing at the samemoment. Species
A is a donor species, while species B is a recipient species, and it receives a new gene copy. b A gene
exits the observed phylogeny, through a speciation or transfer, then it returns through a horizontal transfer.
c The event from b can be represented with a diagonal transfer. d A transferred gene (x2) replaces already
present gene (l). The replaced gene l is lost. This event is called the replacement transfer or transfer with
replacement, and is represented by a transfer and gene loss. Formally, δT (e) = l, where e = (x1, x2) is a
transfer

123

504 Journal of Combinatorial Optimization (2019) 38:502–544

1.1 A review of previous results

There are two usual ways of detecting transfers by comparing species trees and gene
trees. The one is reconciliation, and the other is computation of SPR (subtree prune and
regraft) scenarios. Our work lies at the intersection of the two. Indeed, reconciliations
can consider time constraints but so far have not included replacing transfers. On
the other hand, SPR scenarios are a good model for replacing transfers, but never
considered time constraints.

Time constraints result in—fully or partially—dated species trees. For a dated
species tree, finding a reconciliation of minimum cost, in model with gene transfers,
is usually polynomial time (Merkle et al. 2010; Doyon et al. 2010; Bansal et al.
2012). With an undated species tree, and partial time constraints it is usually NP-hard
(Hallett and Lagergren 2001; Tofigh et al. 2011; Bansal et al. 2012), and can be fixed
parameter tractable (Hallett andLagergren2001;Tofigh et al. 2011), or inapproximable
(Dasgupta et al. 2006). If a constraint on time consistency of reconciliation scenarios
is relaxed, the problem becomes polynomial (Tofigh et al. 2011; Bansal et al. 2012).

Some results go beyond finding one optimal solution. In Bansal et al. (2013) an
algorithm that uniformly samples the space of optimal solutions is given, and it runs
in polynomial time (per sample). In Chan et al. (2015) the space of all solutions
is explored, while the space of optimal solutions is explored in Scornavacca et al.
(2013). Probabilistic models allow sampling of solutions in larger spaces, according
to likelihood distributions (Szöllősi et al. 2013).

Until now, only reconciliationswith transferswithout replacements are investigated.
However, note that duplications with replacement, i.e. conversions, were recently
introduced by Hasić and Tannier (2019). For a more detailed review on reconciliations
see Szöllősi et al. (2015), Nakhleh (2012), and Doyon et al. (2011).

Transfers that replace existing genes are in close relation to the classical tree rear-
rangement operation subtree prune and regraft (SPR). For the definition of SPR refer
to Song (2006) (for the rooted trees) and Allen and Steel (2001) (for the unrooted
trees). This operation has never been integrated in the reconciliation models but is
used to detect transfers when it is the only allowed evolutionary event at the gene
scale. In consequence, these studies are limited to datasets where genes appear in at
most one copy per species.

Computing SPR distance between two rooted binary phylogenetic trees on the same
label set is NP-hard (Hein et al. 1996; Allen and Steel 2001; Bordewich and Semple
2005). The problem is also NP-hard for the unrooted binary trees (Hickey et al. 2008).
If we take the SPR distance as a parameter, then both rooted (Bordewich and Semple
2005) and unrooted (Whidden andMatsen 2018) versions are fixed-parameter tractable
(FPT).

There is an approximation algorithm of ratio 3 (Hein et al. 1996), as well as an ILP
algorithm for calculating the exact rooted SPR distance (Wu 2009), which can also
be determined by reducing it to conjunctive normal form (Bonet and John 2009) and
using the existing SAT solvers.

123

Journal of Combinatorial Optimization (2019) 38:502–544 505

Rooted SPR distance is equivalent to the number of trees in the maximum agree-
ment forest (MAF) (Bordewich and Semple 2005), while in the unrooted version SPR
distance is greater than or equal to the size of the MAF (Allen and Steel 2001).

A divide and conquer approach with MAF is used for computing the exact SPR
distance in Linz and Semple (2011). A 2.5-approximation algorithm for the MAF
problem on two rooted binary phylogenetic trees is presented in Shi et al. (2016). In
Chen et al. (2015) an FPT algorithm for the rooted SPR, with complexity O(2.344kn)

is presented, which is an improvement compared to O(2.42kn) (Whidden et al. 2010).
The rooted SPR is investigated also for non binary trees (Whidden et al. 2016), and
MAF for multiple trees (Chen et al. 2016). For a more complete review see Shi et al.
(2013), and Whidden et al. (2016).

The SPR distance on a dated species tree, where only contemporaneous or transfers
to the future are allowed, is mentioned in Song (2006), where it is investigated how
many dated trees are one SPR operation away from a given dated tree. The complexity
of the dated SPRdistance computation is left open, and has an answer as a consequence
of our results here.

1.2 The contribution of this paper

In this paper, we analyze the algorithmic complexity of finding a minimum reconcili-
ation with replacing transfers in the presence of a dated species tree. If the speciations
and replacement transfers are the only evolutionary events in a reconciliation, then
finding a minimum dated SPR scenario is an equivalent problem.

We define a model of reconciliation with gene transfer followed by gene replace-
ment, i.e. a transferred gene replaces a gene that is already present in the recipient
species (Fig. 1d). We call this event transfer with replacement, and it is represented
by a transfer and a loss (the gene that is replaced). We prove that finding a mini-
mum reconciliation that includes transfer with replacement is NP-hard. If speciation
and transfer with replacement are the only allowed events, then the problem is fixed
parameter tractable with respect to a minimum reconciliation weight, and it is easily
reducible to the dated SPR problem. Therefore the dated SPR is also NP-hard and FPT.
Note that the hardness of dated SPR is not easily deduced from the hardness of the
general SPR, because all the known proofs make an extensive usage of the possibility
of time inconsistent SPRs.

We prove NP-hardness by a reduction from Max 2- Sat. Gadgets for variables
and clauses are constructed, and used to assemble a reconciliation that we call a proper
reconciliation. Hence the gadgets are subreconciliations of the proper reconciliation.
Next, we state an obvious claim that relates an optimal Max 2- Sat solution with a
minimum proper reconciliation. Then we prove that any minimum reconciliation can
be transformed (in polynomial time) into a proper reconciliation of the same weight
(therefore minimum).

In order to prove parametrized tractability, we introduce the normalized reconcilia-
tion. Intuitively, this reconciliation can be obtained from any reconciliation by raising
nodes of gene tree G as much as possible. We achieve this by mapping the nodes of
G to the species tree nodes and edges closer to the root, without affecting transfers,

123

506 Journal of Combinatorial Optimization (2019) 38:502–544

hence keeping the weight of a reconciliation. Then we give a branch and bound algo-
rithm that returns a minimum reconciliation that is also normalized. Thanks to the
normalization, we can have at most three cases in the branching algorithm, and every
branching produces at least one transfer, so the depth of any branching procedure is
at most k, i.e. 3kn is an approximate complexity of the algorithm.

2 Definitions

Phylogenetic reconciliation is a relation between a gene tree and a species tree. The
gene trees, and species trees are used to explain the evolutions of genes and species.
Because of the gene-level evolutionary events, a gene tree G and a species tree S are
often not identical. This difference can be used to detect the evolutionary events that
caused it. In order to emphasize the difference, we place a gene tree inside a species
tree. Formally, it is done by a mapping ρ : V (G) → V (S) ∪ E(S), that places gene
tree nodes inside the species tree. According to the placement of a gene tree node
(and some other conditions), we infer the type of evolutionary events. For example,
if ρ(x) ∈ V (S), where x ∈ V (G), then x is a speciation. If, on the other hand,
ρ(x) ∈ E(S), then x ′ might represent transfer, duplication or some other event, which
is determined by additional conditions. Also, the mapping ρ determines where inside
S an evolutionary event took place.

More details, and formal definitions are given in the remaining of this section.
A phylogenetic tree here is a rooted tree T such that the root vertex, denoted by

root(T), has degree 1 or 2. If deg(root(T)) = 1, then the incident edge is called the
root edge. If deg(root(T))) = 2, then there is no root edge. We denote the set of all
leaves of the tree T by L(T). Trees are considered binary, meaning that the nodes
have at most two children. We say that they are fully binary when all internal nodes
have exactly two children.

Let x, y ∈ V (T) ∪ E(T). If x is an ancestor of y in T , i.e. if x is in the path from
y to root(T), then we write y ≤T x or y ≤ x , defining a partial order on the nodes
and edges. If y �≤ x and x �≤ y, then we say that x and y are incomparable in T .

Let x ∈ V (T)∪E(T). By pvT (x) = pv(x)we define theminimal node such that x <

pv(x), and by peT (x) = pe(x) theminimal edge of T such that x < pe(x).We call pv(x)
the node parent, and pe(x) the edge parent. Let pT (x) = p(x) = min{pvT (x), peT (x)}.
Note that if x ∈ V (T), then p(x) ∈ E(T), and if x ∈ E(T), then p(x) ∈ V (T).

Let x ∈ V (T) ∪ E(T), and F is a subforest of T . By pvF (x) and peF (x) we define
the minimal node and the minimal edge from F such that x < pvF (x) and x < peF (x),
if they exist. Otherwise, pvF (x) or peF (x) is not defined.

If x is a node/edge in T , then T (x) is themaximal rooted subtreewith root node/edge
x . If A ⊆ L(T), then T (A) is the subtree of T with a root vertex of degree 2, and
L(T (A)) = A.

Let x ∈ V (T), deg(x) = 2, y, z ∈ V (T) are the neighbours of x . If we remove x
from T , and connect y and z, then we say that node x is suppressed.

Let f : A → B, g : C → B, C ⊆ A, and g(x) = f (x) for all x ∈ C . Then we
write g = f /C .

123

Journal of Combinatorial Optimization (2019) 38:502–544 507

Fig. 2 Tree S′ denotes the subdivision of a tree S. To nodes from S′ even dates are assigned, while the edges
are assigned odd dates. The dates are integers from 0 to 2n, where n is the number of the extant species. If
e ∈ E(S′), then ve is the maximum node from S such that ve < e. Here, τ(ve) = 2, and τ(e) = 5

The next definition extends the partial order on the set V (T) ∪ E(T) to the total
order by introducing the date function. Intuitively, to every node and edge from T a
date (i.e. a point in the past) is assigned. This derives from the fact that phylogenetic
trees and reconciliations represent evolutionary events that happened at some point in
the past. Figure 2 depicts a date function for trees S and S′.

Definition 1 (Date function. Dated tree) Let T be a rooted tree and τ : V (T) ∪
E(T) → [0,+∞) such that τ(L(T)) = {0}, x1, x2 ∈ V (T) ∪ E(T), x1 < x2

⇒ τ(x1) < τ(x2). Function τ = τT is a date function on the tree T , and T is a
dated tree.

Note that the edges of T are assigned a date. Although it might seem more natural
to assign an interval to an edge, here is more convenient to assign a point (i.e. a date).

By a species tree S we mean a dated, fully binary tree with function τS = τ , and
τ(s1) �= τ(s2), for all s1, s2 ∈ V (S)\L(S), such that s1 �= s2.

Subdividing an edge means that a vertex is added to the edge. Formally, edge
e = (x, y) is subdivided if a node z is added to the graph alongwith edges (x, z), (z, y),
and the edge e is removed.

Definition 2 (Subdivision of a species tree) Let S′ be a tree obtained from S by
subdividing some edges, and ∀e = (pv(s), s) ∈ E(S), and ∀s1 ∈ V (S) for which
τ(s) < τ(s1) < τ(pv(s)), ∃s′ ∈ V (S′)\V (S), τ(s1) = τ(s′), and s < s′ < pv(s).
Tree S′ with these properties, and with the minimum number of nodes is called the
subdivision of the species tree S.

Note that the node s′ from Definition 2 is obtained by subdividing some edge, and
deg(s′) = 2. Subdivision of a species tree is unique (Fig. 2). Also, L(S′) = L(S) and
root(S′) = root(S). If e ∈ E(S′), then ve denotes the maximum element from the
set {x ∈ V (S) | x < e}. We assume that τ(V (S′) ∪ E(S′)) = {0, 1, . . . , 2n}, where n
is the number of the extant species in S, τ(L(S)) = {0}, τ(root(S)) = 2n. Therefore
if x ∈ V (S′) ∪ E(S′), then τ(p(x)) = τ(x) + 1.

We now define a gene tree species tree reconciliation. A gene treeG is a fully binary
tree, which comes with a mapping φ : L(G) → L(S) that indicates the species in
which genes are found in the data.

123

508 Journal of Combinatorial Optimization (2019) 38:502–544

In the reconciliations that include evolutionary events where one gene replaces
another (like conversions or replacement transfers) parts of a gene tree G that are not
reconstructed can be important. Therefore, if a gene tree G is given, in order to find a
reconciliation, we need to find a gene tree G ′ that contains G. We call G ′ an extension
of G.

Definition 3 (Extension) Let T be a tree, and deg(root(T)) = 1. A tree T ′ is said
to be an extension of a tree T if root(T ′) = root(T), deg(root(T ′)) = 1, T can be
obtained from T ′ by pruning some subtrees and suppressing nodes of degree 2.

Figure 3, among other things, depicts G and G ′. In Fig. 3b we have L(G) =
{l1, . . . , l6}, V (G) = {x1, . . . , x6} ∪ L(G), L(G ′) = L(G) ∪ {l7, l8, l9}, V (G ′) =
V (G)∪{x7, x8, x9, l7, l8, l9}. We always have root(G ′) = root(G), V (G) ⊆ V (G ′),
and L(G) ⊆ L(G ′).

Note pvG(l2) = x3, pvG ′(l2) = x8, peG(l2) = (x3, l2), and peG ′(l2) = (x8, l2). Let
e = (x8, l2), then pvG(e) = x3, pvG ′(e) = x8, peG(e) = (x2, x3), and peG ′(e) = (x7, x8).

A fundamental notion, in a reconciliation between a species tree and a gene tree, is
the mapping of nodes of G the edges and vertices of S, denoted by ρ.

Definition 4 (Semireconciliation) Let G ′ be an extension of a gene tree G, S be a
species tree, and S′ be a subdivision of S. Next, let τ be a date function on S′, φ :
L(G) → L(S), and ρ : V (G ′) → V (S) ∪ E(S′) such that ρ/L(G) = φ and
ρ(root(G ′)) = ρ(root(G)) = root(S). If x, y ∈ V (G ′), x < y, and ρ(x) and ρ(y)
are comparable in S, then ρ(x) ≤ ρ(y). We call a semireconciliation the 6-tuple
R = (G,G ′, S, φ, ρ, τ).

We say that a node x ∈ V (G ′) is positioned or placed in s ∈ V (S) ∪ E(S′), if
ρ(x) = s.

In Fig. 3 we have L(S) = {L1, . . . , L5}, V (S) = {X1, . . . , X5} ∪ L(S),
E(S) = {E1, . . . , E9}. For S′ (Fig. 3d) we have: L(S′) = L(S), V (S′) contains
V (S) and some other non-labeled nodes, E(S′) = {E1, E2, E3,1, E3,2, E4, E5, E6,

E7,1, E7,2, E8,1, E8,2, E9,1, E9,2, E9,3, E9,4}.
Regarding mapping ρ, we have: ρ(x1) = X1, ρ(x2) = X2, ρ(x3) = E2, ρ(x10) =

E9,4, ρ(x11) = E5, ρ(l10) = E7,2 (but it could be ρ(l10) = E7,1 as well).
Mapping ρ, together with the model’s set of evolutionary events, determines which

evolutionary event corresponds to nodes of G ′. We will give more details after each
definition.

Note that the nodes of G ′ are not mapped into V (S′)\V (S). If ρ(x) = e′ ∈ E(S′)
and e′ is a part of e ∈ E(S), then we will write ρ(x) ∈ e.

The next definition introduces subtrees of G ′ that are not in G.

Definition 5 (Lost subtree) A maximal subtree T of G ′ such that V (T) ∩ V (G) = ∅
is called a lost subtree. An edge from a lost subtree we call a lost edge.

Figure 3b contains three lost subtrees (dashed lines). Every lost subtree has exactly
one edge. Figure 3c also has three lost subtrees, but one of them has three edges (the
subtree with vertices x7, x14, l10, l11).

123

Journal of Combinatorial Optimization (2019) 38:502–544 509

(a) (b)

(c) (d)

Fig. 3 Examples of reconciliations. A species tree is S, gene tree is G, the subdivision of S is S′,
and an extension of the gene tree is G′. The gene tree G in b is different from the gene tree G
in (c). a A species tree S. V (S) = {X1, . . . , X5, L1, . . . , L5}, root(S) = X1, rootE (S) = E1,
E(S) = {E1, . . . , E9}, L(S) = {L1, . . . , L5}. bAn LCA reconciliation. V (G) = {x1, . . . , x6, l1, . . . , l6},
V (G′) = V (G) ∪ {x7, x8, x9, l7, l8, l9}, L(G) = {l1, . . . , l6}, L(G′) = L(G) ∪ {l7, l8, l9}. Duplications
are x3, x6. Speciations in G are x2, x4, x5, while speciations in G′ that are not in G are x7, x8, x9. Losses
are l7, l8, l9. We have three lost edges/subtrees (dashed lines). Node placement: ρ(x1) = X1, ρ(x2) = X2,
ρ(x3) = E2, ρ(l9) = E5, etc. c The edge (x12, x13) is a transfer. Since the loss l9 is paired with x11,
(x10, x11) is a transfer with replacement, i.e. (gene) x11 replaces l9. Node x6 is a conversion (and is paired
with l11). We have three lost subtrees. One lost subtree (with vertices x7, x14, l10, l11) has three edges. We
have two non-free losses (l8 and l10), and two free losses (l9 and l13). d Tree S′ is the subdivision of S.
Edge E9 is subdivided into four parts, while each of the edges E3, E7, E8 is subdivided into two parts. The
rest of the edges are not subdivided

A semireconciliation is a reconciliation without established gene evolutionary
events. The next definitions introduce these events. We define evolutionary events
only for genes. Every internal node of S is a speciation, which is an event where one
species splits into two.

Gene speciation occurs when a species is split into two, and each species receives
a copy of the gene. In Fig. 3b speciations are x2, x4, x5, x7, x8, x9.

Note that by ρ(x)l , ρ(x)r ∈ V (S) we denote the children of ρ(x) ∈ V (S)\L(S).

Definition 6 (Speciation) Let R be a semireconciliation, x ∈ V (G ′), and ρ(x) ∈
V (S)\L(S). If the children of x in G ′ can be labeled x ′

l , x
′
r so that ρ(x)l ≤ ρ(x ′

l) <

ρ(x), ρ(x)r ≤ ρ(x ′
r) < ρ(x), then x is called a speciation. The set of all speciations

is denoted by Σ(R) or Σ .

123

510 Journal of Combinatorial Optimization (2019) 38:502–544

After introducing the remaining evolutionary events, we will see that x ∈ V (G ′) is
a speciation if and only if ρ(x) ∈ V (S).

Gene duplication is an event where one gene is replaced by two identical gene
copies. In Fig. 3b duplications are x3 and x6.

Refer to Fig. 2 and the comment after Definition 2 for ve.

Definition 7 (Duplication) Let R be a semireconciliation, x ∈ V (G ′), x ′
l , x

′
r be the

children of x in G ′, ρ(x) = e ∈ E(S′). If ve ≤ ρ(x ′
l), ve ≤ ρ(x ′

r), deg(x
′
l) > 2 or

x ′
l ∈ L(G ′), and deg(x ′

r) > 2 or x ′
r ∈ L(G ′), then x is called a duplication. The set

of all duplications is denoted by Δ(R) or Δ.

From now on, we will assume τ(x) = τ(ρ(x)) for all x ∈ V (G ′).
Gene transfer is explained in Sect. 1 and Fig. 1. In Fig. 3c the edges (x10, x11) and

(x12, x13) are transfers. Vertices x10 and x12 are transfer parents, where x11 and x13
are transfer children.

Definition 8 (Transfer) Let R be a semireconciliation, x ∈ V (G ′), x ′
l , x

′
r be the chil-

dren of x in G ′, ρ(x) = e ∈ E(S′). For one of the x ′
l , x

′
r (say x

′
l) holds ve ≤ ρ(x ′

l) and
deg(x ′

l) > 2. For the other one (i.e. x ′
r) we have ρ(x ′

r) = e′ ∈ E(S′), τ(e′) ≤ τ(e),
deg(x ′

r) = 2, and ve′ ≤ ρ(x ′′
r), where x ′′

r is the only child of x ′
r in G

′. Then x is called
a transfer parent, x ′

r is a transfer child, and the edge (x, x ′
r) ∈ E(G ′) is a transfer. If

τ(x ′
r) = τ(x), the transfer is a horizontal transfer, and if τ(x ′

r) < τ(x), the transfer
is a diagonal transfer or transfer to the future. The set of all transfers is denoted by
Θ(R) or Θ .

We say that transfer (x, x ′
r) belongs to edge (a, b) ∈ E(G) if x and x ′

r belong to
(a, b), i.e. b <G ′ x ′

r <G ′ x ≤G ′ a.
In Fig. 3c nodes l8, l9, l10, l11 are gene losses.

Definition 9 (Loss) Let R be a semireconciliation, and x ∈ L(G ′)\L(G). Then x is
called a loss. The set of all losses is denoted by Λ(R) or Λ.

The next two events that we define are created by pairing some of the previously
defined events with a loss.

The replacement transfer is explained in Sect. 1 and Fig. 1. In Fig. 3c a replacement
transfer is (x10, x11), i.e. x11 replaces l9.

Definition 10 (Replacement transfer) LetR be a semireconciliation, δT : Θ → Λ be
an injective partial function such that for all transfers e = (x1, x2) ∈ δ−1

T (Λ) holds
ρ(x2) = ρ(δT (e)), and x2 and δT (e) are incomparable in G ′. If e ∈ δ−1

T (Λ), then e is
called a replacement transfer or transfer with replacement, and δT (e) is its associate
loss. The set of all replacement transfers is denoted by Θ ′(R) or Θ ′, and the set of all
associate losses by Λ′

T (R) or Λ′
T .

In the previous definition, themapping δT pairs transfer e (or we can say the transfer
child x2) with the loss l = δT (e) (see Fig. 1). In this way, we get that the gene x2 is
replacing l, hence the name transfer with replacement. Requirement ρ(x2) = ρ(l) is
necessary if x2 replaces l. In our example (Fig. 3c) δT (x10, x11) = l9.

Conversion is to duplication what replacement transfer is to transfer. Node x6 is a
conversion (Fig. 3c).

123

Journal of Combinatorial Optimization (2019) 38:502–544 511

Definition 11 (Conversion) Let R be a semireconciliation, δD : Δ → Λ be an injec-
tive partial function such that ρ(x) = ρ(δD(x)), and x and δD(x) be incomparable
in G ′ for all x ∈ δ−1

D (Λ). If x ∈ δ−1
D (Λ), then x is called a conversion, and δD(x) is

its associate loss. The set of all conversions is denoted by Δ′(R) or Δ′, and the set of
associate losses by Λ′

D(R) or Λ′
D .

We have δD(x6) = l11 (Fig. 3c).
The elements ofΛ′ = Λ′

T ∪Λ′
D are called free losses, because we will assign them

zero cost (see the comment after Definition 13). The set of all (evolutionary) events is
{S, D, T , L,C, TR}. Free losses in Fig. 3c are l9 and l11, while l8 and l10 are non-free
losses.

Intuitively, a reconciliation between gene tree G and species tree S is a placement
of G inside S. The most important part is the function ρ, which defines the placement.
If events that replace existing genes (like conversions or transfer with replacement)
are included in the reconciliation, a reconstruction ofG ′ is also important. Figure 3b–c
depicts reconciliations. The following definition is an extension of the definition from
Hasić and Tannier (2019).

Definition 12 (Reconciliation) Let (G,G ′, S, φ, ρ, τ) be a semireconciliation, and
X ⊆ {D, T , L,C, TR}. To every node from V (G ′)\L(G) some event from X ∪ {S}
is attached, and Λ′

T ∩ Λ′
D = ∅. ThenR = (G,G ′, S, φ, ρ, τ, δT , δD, A) is called an

X reconciliation.

If the set X is not important in the context, or it is known, then we will use just
reconciliation instead of X reconciliation. If we wish to emphasize that G ′ and ρ are
from reconciliation R, then we write G ′

R and ρR.
If the transfers with replacement, or conversions are not included in a reconciliation,

then δ−1
T (Λ) = ∅, or δ−1

D (Λ) = ∅. Note that if x ∈ V (G ′) and deg(x) = 2, then x is
a transfer child.

Speciations, duplications, transfers, losses, conversions, and transfers with replace-
ment are called evolutionary events. A reconciliation can allow only some of these
events. For example, if a reconciliationR allows speciations, duplications and losses,
we will call it a DL reconciliation. IfR also allows transfers, we call it a DTL recon-
ciliation. Speciations are assumed to be allowed in every reconciliation, so they are
not emphasized in the type of a reconciliation. If transfers are not allowed in a recon-
ciliation, then the date function is not necessary, and can be disregarded. Note that if
X ⊆ Y , then any X reconciliation is also a Y reconciliation. If conversions or transfers
with replacement are included in a reconciliation, then we assume that free losses are
allowed. Therefore TR reconciliation allows speciations, replacement transfers, and
free losses, while TRL reconciliations additionally allow non-free losses.

Not every semireconciliation can produce a reconciliation. For example, if a node
from G ′ is mapped under its LCA (Last/Lowest Common Ancestor—see Goodman
et al. 1979; Chauve and El-Mabrouk 2009) position, then the transfers must be allowed
as an event in order to obtain a reconciliation. Figure 3b depicts an LCA reconciliation.

We introduce the weight of a reconciliation as a way to compare them.

Definition 13 (Weighted reconciliation) Let R be an X reconciliation, and X =
{a1, . . . , ak}. If ci ≥ 0 are associated with the events ai (i = 1, . . . , k), then

123

512 Journal of Combinatorial Optimization (2019) 38:502–544

ω(R) = ∑
ci · |ai | is called the weight or cost of R, where |ai | denotes the number

of nodes in G ′ that are associated with the event ai (i = 1, . . . , k).

The speciations do not affect the weight of a reconciliation, thus their weight is 0.
In this paper, the free losses (losses assigned to a conversion or replacement transfer)
have weight 0. The rest of the evolutionary events have weight 1.

Definition 14 (Minimum X Reconciliation problem) Let G and S be a gene and a
species trees. The problem of finding an X reconciliation with the minimum weight
we call the Minimum X Reconciliation.

The next definition introduces theweight of a subtree ofG ′.We need this to estimate
the weight of a reconciliation by decomposing G ′ into subtrees and evaluating the
weight of every subtree.

Definition 15 (The weight of a subtree) Let R be a reconciliation and T be a subtree
of G ′. By ωR(T) or ω(T) we denote the sum of weights of all events assigned to the
nodes and edges of T .

Let T1 be a subtree of G ′ (Fig. 3c), where V (T1) = {x2, x10, x11, l1, l12}. It has one
transfer with replacement, hence ω(T1) = tr , where tr is the weight of a replacing
transfer.

Let T2 be a subtreewith V (T2) = {x4, x5, x12, x13, x6, l4, l5, l6, l13}. Thenω(T2) =
t + c, where t and c are the weights assigned to a transfer and a conversion.

3 Finding aminimumDTLCTR reconciliation is NP-hard

In this section, and the rest of the paper, we assume that all events have weight 1,
except the speciations and free losses, which have weight 0. We prove that finding
a minimum reconciliation that includes transfers with replacement is NP-hard. We
first prove the NP-hardness of the problem of finding a minimum reconciliation that
includes all events (duplication, transfer, loss, conversion, transfer with replacement).

Let F be a logical expression/formula, or simply formula, in conjuctive normal
form with (logical) variables x1, . . . , xn . If x is a variable, then x is called a positive
literal, and ¬x is a negative literal. Literals x1i , x

2
i , x

3
i are assigned to the variable xi .

We can assume that x1i and x2i have the same logical value, which is different from
the logical value of x3i . Variables can be true or false. A literal is true if it is positive
and the variable is true, or if it is negative and the variable is false. Similarly, a literal
is false if it is positive and the variable is false, or if it is negative and the variable is
true.

We will use a reduction from the Max 2- Sat.
Max 2- Sat:
Input: F = C1 ∧ C2 ∧ . . . ∧ Cm ; C j = x ′

j1
∨ x ′

j2
, j = 1, . . . ,m; K ≤ m.

Output: Is there a truth assignment for logical variables x1, . . . , xn such that there are
at least K true clauses.

This problem is NP-hard (Garey et al. 1976; Garey and Johnson 1979), solvable in
polynomial time if K = m (Even et al. 1976; Garey and Johnson 1979). It remains

123

Journal of Combinatorial Optimization (2019) 38:502–544 513

NP-hard even if every variable appears in at most three clauses (Raman et al. 1998).
We assume that every variable appears in exactly three clauses, and both positive and
negative literals are present (Lemma 1). We also assume the optimization version of
this problem that asks for the minimum number of false clauses.

The next lemma proves the NP-completeness of the reduced problem.

Lemma 1 The Max 2- Sat is NP-hard if every variable appears in exactly three
clauses, and both positive and negative literal of every variable is present.

Proof See Appendix. ��

3.1 Variable and clause gadgets

In order to construct a polynomial reduction from the Max 2- Sat to the Minimum
DT LCTR Reconciliation, suppose we have a logical formula F as an instance of
the Max 2- Sat, with n variables and m clauses, such that each variable appears
exactly three times as a literal, and both positive and negative literals are present. We
will construct a species tree, gene tree, and function φ mapping the gene tree leaves
to the species tree leaves as an instance of the reconciliation problem.

First, we introduce the border line that corresponds to some date, depicted by
horizontal dashed line in Figs. 4, 5, 6, 7, and 8. Some nodes of the constructed gene
tree will be assigned to literals of xi (i = 1, . . . , n), and in a minimum reconciliation,
their mapping above or under this border line will decide if the literals are true or false.
In consequence, the positive and negative version of a same variable must be mapped
on the opposite sides of the border line in reconciliations.

For each variable and each clause we define a piece of a gene tree and a piece of a
species tree with appropriate function φ.

A gadget for a variable xi is illustrated in Fig. 4. The species subtree Sxi consists in
28 leaves named Ai

1, . . . , A
i
28, organized in two subtrees. Seven cherry trees are under

the border line on each part, and then linked by two combs, one fully above and one
fully under the border line.

The gene subtree Gxi is also organized in two subtrees, each consisting in 7 cherry
trees linked by a comb. One of the subtrees is identified as the “true literal subtree”
and the other as the “false literal subtree”.

Let (li,k, ri,k) be the kth cherry of the gene tree Gxi (i.e. li,k, ri,k are the children
of bki assigned to the left and right subtree of Sxi , and k = 1, . . . , 14). The function
φ, mapping the leaves of the gene tree to the leaves of the species tree, is such that
φ(li,k) = Ai

2k−1 and φ(ri,k) = Ai
29−2k (k ∈ {1, . . . , 7}); φ(li,k) = Ai

30−2k and
φ(ri,k) = Ai

2k (k ∈ {8, . . . , 14}).
Edges/transfers incident with x1i , x

2
i , x

3
i (horizontal full lines in Fig. 4) are also

included in Gxi .
Next, both trees G and S (Fig. 5) are anchored by an outgroup comb of size

P(n), a polynomial with sufficient size, with respective leaf sets a1i , . . . , a
P(n)
i and

Ai,1, . . . , Ai,P(n), and φ(aki) = Ai,1 (k = 1, . . . , P(n)).
Figure 6 illustrates a gadget for a clause C j = x ′

j1 ∨ x ′
j2. A subtree SC j of the

species tree is a fully balanced binary tree with 8 leaves, denoted by B j
1 , . . . , B j

8 . The

123

514 Journal of Combinatorial Optimization (2019) 38:502–544

Fig. 4 A variable gadget denoted by Gxi . It is composed of Sxi (a part of the species tree S) and Gxi (a part

of the gene tree G). The border line is the horizontal, dashed line. Nodes Ai1, . . . , A
i
28 are the leaves of Sxi .

Nodes C ′
i,1, . . . ,C

′
i,12 are some of the inner nodes of Sxi , and s0xi is the root of Sxi . The rest of the labels

denote some of the nodes of Gxi . Variable xi has two true (represented by x1i , x2i ∈ V (G)) and one false

literal (represented by x3i ∈ V (G)). Edges (transfers) incident with x1i , x2i , x3i are also included in Gxi

Fig. 5 A variable gadget with an anchor. We have P(n) species in the anchor, where P is sufficiently large

polynomial. Nodes d1i , . . . , dP(n)
i , a1i , . . . , aP(n)

i belong to the gene tree that is part of the anchor

internal nodes of the subtree leading to B j
1 , . . . , B j

4 are all above the border line, while

the internal nodes of the subtree leading to B j
5 , . . . , B j

8 are all under the border line.
To each literal from the clause corresponds a fully balanced gene tree with a

root of degree two, and four leaves, respectively mapped by the function φ to

123

Journal of Combinatorial Optimization (2019) 38:502–544 515

(a) (b)

(c) (d)

Fig. 6 A clause gadget that corresponds to a clause C j = x ′
j1

∨ x ′
j2
. a The literal x ′

j1
is true, and x ′

j2
is

false. b The literal x ′
j2

is true, and x ′
j1

is false. c Both literals are true. d Both literals are false, hence the
clause is false. In this case we have an extra transfer, which is incident with r j2

((B j
1 , B j

7), (B j
2 , B j

6)) and ((B j
3 , B j

5), (B j
4 , B j

8)) (which is an arbitraryway ofmapping
each cherry to the two different species subtrees). The roots of the two gene subtrees
are respectively labeled r j1 and r j2. The internal nodes are r0j1, r

1
j1, and r

0
j2, r

1
j2. The

forest of these two gene subtrees is denoted by Fj .
The clause and variable gadgets are linked to form the full trees G and S (Fig. 7).

Observe the gadget for C j = x ′
j1 ∨ x ′

j2 (Fig. 6). It has two gene tree subtrees rooted
at r j1, r j2. These subtrees represent literals x ′

j1, x
′
j2, and are linked to x ′

j1 and x ′
j2

that are literals of variables xi1 and xi2, i.e. x ′
j1 ∈ {x1i1, x2i1, x3i1}, x ′

j2 ∈ {x1i2, x2i2, x3i2}.
Hence the gene tree subtrees rooted at r j1 and r j2 are linked to Gxi1 and Gxi2 .

The species subtrees and the gene subtrees are linked by the comb containing all
variables and clauses in the order x1, . . . , xn,C1, . . . ,Cm .

123

516 Journal of Combinatorial Optimization (2019) 38:502–544

(a) (b) (c)

Fig. 7 A variable and clause gadget are merged, and G and S are formed. a A variable gadget with anchor.
For i = n, di (i.e. dn) does not exist. b A clause gadget. c A proper reconciliation. Nodes sαβ (α ∈ {0, 1},
β ∈ {x1, . . . ,Cm }) belong to the species tree

Fig. 8 Aproper reconciliation assigned to formula F1 = (x1∨¬x2)∧(x1∨x2)∧(¬x1∨x2), with the values
x1 = 1, x2 = 0. Some other formulas are also possible, like F2 = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ x2),
with the values x1 = 0, x2 = 0. Clauses C1 and C2 are true, and clause C3 is false

3.2 Proper reconciliation

Now that we have constructed an instance for the reconciliation problem from a logical
formula, we need to be able to translate a reconciliation into an assignment of the vari-
ables. This is possible for a type of reconciliation named proper. Proper reconciliations
are illustrated in Figs. 7 and 8 .

Trees G and S on the one hand, and their proper reconciliation, on the other hand
are formed in the same way—by merging all gadgets. For the sake of formalism, we
first introduced G and S, and now we introduce the proper reconciliation.

In the next definition, B j
1,2 = lca(B j

1 , B j
2), i.e. B j

1,2 is the minimal node (in S) that

is an ancestor of B j
1 and B j

2 . Similarly, B j
5,6,7,8 = lca(B j

5 , B j
6 , B j

7 , B j
8) is the minimal

node (in S) that is an ancestor of B j
5 , B

j
6 , B

j
7 , and B j

8 .

Definition 16 (Proper reconciliation) Let G and S be a gene and species tree con-
structed from a logical formula. We call a reconciliation R = (G,G ′, S, φ, ρ, τ,

δT , δD, {TR}) a proper reconciliation if:

– all transfers are horizontal;
– in the variable gadgets, the gene tree vertices in the anchor comb are mapped by ρ

to the species tree vertices in the anchor comb, that is, ρ(c0i) = s0xi , ρ(dki) = Di
k

(for all k ∈ {1, . . . , P(n)}), ρ(di) = s1xi ;

123

Journal of Combinatorial Optimization (2019) 38:502–544 517

– in the variable gadgets, the two gene tree comb internal vertices (cki in Fig. 4) are
mapped to the two species tree combs (vertices C ′

i,k in Fig. 4), in one of the two
possible combinations (the two gene tree combs may map to either species tree
combs).

– in the clause gadgets, the mapping φ corresponds to one of the four cases drawn
in Fig. 6, that is:

– (Fig. 6a) ρ(r j1) = B j
1,2, ρ(r j2) = B j

5,6,7,8, ρ(r0j1) ∈ (B j
1,2, B

j
1), ρ(r1j1) ∈

(B j
1,2, B

j
2), ρ(r0j2) ∈ (B j

5,6, B
j
5), ρ(r1j2) ∈ (B j

7,8, B
j
8);

– (Fig. 6b) ρ(r j1) = B j
5,6,7,8, ρ(r j2) = B j

3,4, ρ(r0j1) ∈ (B j
5,6, B

j
6), ρ(r1j1) ∈

(B j
7,8, B

j
7), ρ(r0j2) ∈ (B j

3,4, B
j
3), ρ(r1j2) ∈ (B j

3,4, B
j
4);

– (Fig. 6c) ρ(r j1) = B j
1,2, ρ(r j2) = B j

3,4, ρ(r0j1) ∈ (B j
1,2, B

j
1), ρ(r1j1) ∈

(B j
1,2, B

j
2), ρ(r0j2) ∈ (B j

3,4, B
j
3), ρ(r1j2) ∈ (B j

3,4, B
j
4);

– (Fig. 6d) ρ(r j1) = B j
5,6,7,8, ρ(r j2) ∈ (B j

3,4, B
j
3), ρ(r0j1) ∈ (B j

5,6, B
j
6), ρ(r1j1) ∈

(B j
7,8, B

j
7), ρ(r0j2) ∈ (B j

3,4, B
j
3), ρ(r1j2) ∈ (B j

3,4, B
j
4).

– the only transfers are the one depicted by variable and clause gadgets.

Note that a proper reconciliation is a TR reconciliation, i.e. the only events are
speciations, replacement transfers, and free losses. Hence the weight of a proper rec-
onciliation is the number of transfers.

Let F be a logical formula and G, S be the gene and species tree assigned to F ,
as previously described. There is an obvious relation between a value assignment to
logical variables and a proper reconciliation between G and S.

Lemma 2 Let F be a 2- Sat formula with n variables and m clauses. Trees G and
S are the gene and species tree assigned to F. Let R be a proper reconciliation
between G and S. There is an assignment of the logical variables which satisfies
exactly 17n + 5m − ω(R) clauses.

Proof The assignment is constructed from the proper reconciliation according to the
positions of the corresponding vertices above or under the border line.

The definition of a proper reconciliation ensures that two opposite literals are always
on the opposite side of the border line.

Every variable gadget has 17 transfers (counting the ones incident with x1i , x
2
i , x

3
i),

and the total number of transfers generated by these gadgets is 17n.
Clause gadget has 5 or 4 transfers (not counting the incoming transfers, because

they are already counted in the variable gadgets), depending if the clause’s literals are
both false or not. Let f be the number of the false clauses. Then we have f clause
gadgets with 5 transfers corresponding to false clauses.

Hence the number of transfers, generated in the clause gadgets, is 4(m− f)+5 f =
4m + f . This yields ω(R) = 17n + 4m + f , so there are m − f = m − (ω(R) −
17n − 4m) = 17n + 5m − ω(R) true clauses. ��

We see that, if we minimize the cost of a proper reconciliation, we also minimize
the number of false clauses in the logical formula. We say that, for a given G and S,

123

518 Journal of Combinatorial Optimization (2019) 38:502–544

R is a proper reconciliation of minimal weight if it has the minimal weight among all
proper reconciliations between G and S.

As an immediate consequence of Lemma 2, we have the next lemma.

Lemma 3 To a proper reconciliation ofminimalweight corresponds an optimal 2- Sat
formula.

In order to prove NP-hardness, we need to show that there is a minimum reconcil-
iation that is also proper, which can be easily (in polynomial time) obtained from an
arbitrary minimum (DT LCTR) reconciliation.

3.3 Proper minimum reconciliation

If a minimum reconciliation is also a proper, then we will call it a proper minimum
reconciliation. At this point, we do not know if this reconciliation always exists. In this
section, we describe how to construct this reconciliation, given a a minimum recon-
ciliation, thus proving its existence. After this, the notions of a proper reconciliation
of minimal weight and a proper minimum reconciliation become identical. Again, we
always assume that G and S are constructed from a given 2- Sat formula.

We say that a node x ∈ V (G ′) is placed in s ∈ V (S) ∪ E(S′) if ρ(x) = s.
IfR is a proper reconciliation, thenω(Gxi) = 17 (here we also count three transfers

incident with x1i , x
2
i , x

3
i), and ω(Fj) ∈ {4, 5} for all variable and clause gadgets.

Lemma 4 Let R be a minimum X reconciliation between G and S, where G and S
are a gene and a species trees constructed from a logical formula, and i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}. Then we have:

(a) ω(Fj) ≥ 4;
(b) if both r j1 and r j2 are under the border line, then ω(Fj) ≥ 5;
(c) ω(Gxi) ≥ 17;
(d) if x1i or x2i is on the same side of the border line as x3i , then ω(Gxi) ≥ 19.

Proof See Appendix. ��
The proof of next theorem describes a polynomial algorithm that transforms a

minimum reconciliation R into a reconciliation R′ that is both minimum and proper.

Theorem 1 Let G and S be a gene and a species tree constructed from a logical
formula. There is a minimum DT LCTR reconciliation between G and S that is a
proper reconciliation.

Proof See Appendix. ��
Theorem 2 The Minimum DT LCTR Reconciliation is NP-hard.

Proof We will use a reduction from the optimization version of Max 2- Sat. Let
F = C1 ∧ C2 ∧ . . . ∧ Cm , C j = x ′

j1
∨ x ′

j2
, j = 1, . . . ,m be an instance of Max

2- Sat. Trees S and G can be obtained from F in polynomial time. After obtaining

123

Journal of Combinatorial Optimization (2019) 38:502–544 519

a minimum reconciliation between S and G as an output of the Minimum DT LCTR
Reconciliation,we can (in polynomial time) obtain a properminimumreconciliation
(the proof of Theorem 1), and from it an optimal logical formula, i.e. a logical formula
F with the minimum number of false clauses (Lemma 2). ��

Since a proper reconciliation is a TR reconciliation, i.e. it has only transfers with
replacement and all losses are free, then the next theorem can be proved in the same
manner as Theorem 2.

Theorem 3 Let X ⊆ {D, T , L,C, TR} and TR ∈ X. Then the Minimum X Recon-
ciliation is NP-hard.

Proof We will reduce the Max 2- Sat to the Minimum X reconciliation. Let F
be an instance of theMax 2- Sat, and G and S be a gene and a species tree obtained
from F (as described earlier).

LetR1 be aminimum X reconciliation, andR2 be aminimum DT LCTR reconcilia-
tion betweenG and S. ThenR1 is a DT LCTR reconciliation, henceω(R2) ≤ ω(R1).

LetR3 be a minimum proper reconciliation obtained fromR2, as described in the
proof of Theorem 1. Then ω(R3) = ω(R2).

SinceR3 is a proper reconciliation, it is a TR reconciliation, hence an X reconcili-
ation, and therefore ω(R3) ≥ ω(R1).

From the previous inequalities, we obtain ω(R1) = ω(R2) = ω(R3), i.e. R1 is a
minimum DT LCTR reconciliation.

Nowwe can repeat the earlier procedure. FromR1 we construct a proper minimum
reconciliation, which we can use to find an optimal assignment for F . ��

Note that in the proof of Theorem 3 we have that a minimum X reconciliation is
also a minimum DT LCTR reconciliation. This claim is true in our case, when G and
S are obtained from F . It does not hold for an arbitrary G and S.

4 TheMinimum TR Reconciliation is fixed-parameter tractable

We will give a branch and bound algorithm that solves the Minimum TR Recon-
ciliation, with complexity O(f (k)p(n)), where p is a polynomial, k is a parameter
representing an upper bound for the reconciliation’s weight, and f is a (computable)
function.

We give some basic properties of the (minimum) TR reconciliations that will be
used in the proofs.

Lemma 5 Let R be a minimum TR reconciliation, and e ∈ E(G ′)\E(G). Then e
cannot be a transfer.

Proof Assume the opposite, i.e. e is a transfer. Figure 9a depicts the construction of a
reconciliation with a smaller weight, which contradicts the minimality of R. ��

Every edge of S contains exactly one lineage from G ′. To state and prove this
fact more formally, we introduce the notion of aligned edges. Intuitively, two edges
e1, e2 ∈ E(G ′) are aligned if they are inside a same edge E1 ∈ E(S′), and are
connected, in some way, by a sequence of vertices of G ′ contained in E1 (Fig. 10).

123

520 Journal of Combinatorial Optimization (2019) 38:502–544

(a) (b)

Fig. 9 a Aminimum (TR) reconciliation cannot have transfers that are not in G. Edge (x1, x2) is a transfer,
and l1 is a loss (assigned to the transfer). First, remove (x1, x2), connect vertices x2 and l1, then suppress
x1, x2, l1. In this way we obtain a reconciliation with a smaller weight. b Loss extension. A loss l1 is
assigned to E1 ∈ E(S). Insert new vertices l2, l3 such that ρ(l2) = E2, and ρ(l3) = E3. Connect l2 and
l3 with l1, and take ρ(l1) = X1. In this way we extend the loss l1

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10 Aligned edges. For edges e1 = (x1, x2), e2 = (y1, y2) ∈ E(G′) we have s1 ≥ ρ(x1) ≥ ρ(x2) ≥
s2, and s1 ≥ ρ(y1) ≥ ρ(y2) ≥ s2, where E1 = (s1, s2) ∈ E(S′). a–c Edges e1 and e2 are not aligned. d
Here we have a transfer leaving E1, and returning later. Although there is a sequence a0, . . . , ak between
y2 and x1, edges e1 and e2 are not aligned, since ρ(a2) /∈ {s1, E1, s2}. e Edges e1 and e2 are aligned.
Sequence a0, . . . , ak contains a1 and l. f, g Here, e1 and e2 are also aligned

Definition 17 (Aligned edges) Let R be an X reconciliation, E1 = (s1, s2) ∈ E(S′),
e1 = (x1, x2), e2 = (y1, y2) ∈ E(G ′), s1 ≥ ρ(x1) ≥ ρ(x2) ≥ s2, s1 ≥ ρ(y1) ≥
ρ(y2) ≥ s2, and e1 �= e2 (Fig. 10). If there are a0, . . . , ak ∈ V (G ′) (k ≥ 0) such that:

– s1 ≥ ρ(ai) ≥ s2 (i = 0, . . . , k);
– a0 = x2 and ak = y1, or a0 = y2 and ak = x1;
– (ai , ai+1) ∈ E(G ′) or ai is a loss assigned to ai+1 (i = 0, . . . , k − 1);

then we say that e1 and e2 are edges aligned inside E1, or just aligned edges.

The next lemma basically states that every edge of S contains exactly one lineage
of G ′. Equivalently, if we remove all the transfers from G ′, and suppress all the nodes
of degree 2, the obtained tree is identical to S.

Lemma 6 Let R be a TR reconciliation, (s1, s2) ∈ E(S′), e1 = (x1, x2), e2 =
(y1, y2) ∈ E(G ′) such that s1 ≥ ρ(x1) ≥ ρ(x2) ≥ s2, and s1 ≥ ρ(y1) ≥ ρ(y2) ≥ s2.
Then e1 and e2 are aligned edges.

123

Journal of Combinatorial Optimization (2019) 38:502–544 521

(a) (b)

Fig. 11 a There are no unaligned edges in a TR reconciliation, because if there is an edge E1 ∈ E(S′) with
two unaligned edges from G′, then the parent edge E2 also contains two unaligned edges from G′. b If
we raise a speciation, then we obtain a new transfer. Therefore, by raising a speciation we cannot obtain a
minimal TR reconciliation

Proof Assume the opposite. Let E1 be a maximal edge from E(S′) that contains two
unaligned edges e1, e2 ∈ E(G ′) (Fig. 11a). Observe two cases.

Case 1. Assume that E1 �= rootE (S). Let E2 ∈ E(S′) be the parent of E1. Then
E2 does not contain two unaligned edges from E(G ′). This is possible only if e1 or e2
are neighbours to a transfer. But, every transfer has a loss assigned, therefore we again
have two unaligned edges (counting the lost ones) in E2, which is a contradiction.

Case 2. Assume that E1 = rootE (S). Since the only way to obtain two unaligned
edges is a duplication or transfer, it is obvious that this case is also impossible. ��
Lemma 7 IfR is a TR reconciliation of a gene tree G and a species tree S, then every
extant species has exactly one extant gene assigned, i.e. for every s ∈ L(S) there is
exactly one x ∈ L(G) such that φ(x) = s.

Proof Let us prove that every extant species has at least one extant gene assigned.
Assume the opposite. Let s1 ∈ L(S) be an extant species with no assigned extant
gene. Let f ∈ E(S′) ∪ V (S) be the minimal element satisfying s1 < f , and there is
x ∈ V (G ′) such that ρ(x) = f . As a result of the minimality of f , we have that x is
not a speciation. Therefore f ∈ E(S′). Assume that x is a minimal element of V (G ′)
assigned to f . Then x is a loss, and it is not assigned to a transfer, i.e. x is a non-free
loss. Since R is a TR reconciliation, it cannot have non-free losses. A contradiction.

Now we will prove the lemma’s claim. Assume the opposite. Let s2 ∈ L(S) be
a species with at least two genes assigned (say x1, x2 ∈ L(G)). Let E2 ∈ E(S′) be
the edge incident with s2. Then E2 contains at least two edges e1, e2 ∈ E(G) (edges
incident with x1, x2). This contradicts Lemma 6. ��

We need the notion of extending losses in order to explain some of the properties
of TR reconciliation. The loss extension is depicted in Fig. 9b.

Definition 18 (Loss extension) Let l1 ∈ E(G ′) be a loss assigned to E1 ∈ E(S′),
E2, E3 ∈ E(S′) be the children of E1, and X1 ∈ V (S) be the common vertex of
E1, E2, E3. Insert new vertices l2, l3 into V (G ′), and connect them with l1. Next, take
ρ(l1) = X1, ρ(l2) = E2, ρ(l3) = E3. This procedure we call a loss extension, and we
say that the loss l1 is extended.

The next lemma states that if we have only transfers, losses, speciations (i.e. we
have a T L reconciliation), and every edge of S′ has at most one lineage from G ′, then

123

522 Journal of Combinatorial Optimization (2019) 38:502–544

(a) (b)

Fig. 12 Extending losses to obtain a TR reconciliation. a A TL reconciliation (it has only transfers, losses
and speciations) and every edge of species tree S contains at most one edge from G′. b Losses can be
extended, and assigned to transfers in a unique way to obtain a TR reconciliation

we can extend these losses in a unique way to obtain a TR reconciliation (this is not
necessarily minimum TR reconciliation). Figure 12 depicts this fact.

Lemma 8 LetR be a T L reconciliation such that every extant species has exactly one
extant gene assigned, every E1 ∈ E(S′) contains at most one edge from E(G ′), and
every lost subtree has only one edge. Then there is a TR reconciliation R′, such that
G ′

R′ is an extension of G ′
R, ρR = ρR′/G ′

R. Among all TR reconciliations obtained
in this way, there is only one of minimal weight, and it is obtained by extending losses.

Proof Let l be a loss, and ρ(l) = E1 ∈ E(S′). If there is a transfer child in E1, then
assign l to the transfer child.

If there is no transfer child in E1, then extend l.
Repeat the previous process until all losses are assigned to the transfer children. In

this way, by extending losses, we obtain a TR reconciliation R′. Since every extant
species has exactly one extant gene assigned, during the process of extension every
loss will encounter a lineage from G, i.e. a transfer child. Therefore every (extended)
loss can be assigned to a transfer child.

Since all transfers inR are from G, they are also transfers inR′. Hence the weight
of R′ is not less than the number of transfers. On the other hand, all losses in R′ are
free, therefore ω(R′) equals to the number of transfers, i.e. R′ is a TR reconciliation
of minimal weight obtainable from R.

If R′′ is another TR reconciliation of minimal weight obtained from R, then R′′
does not contain extra transfers, i.e. all lost subtree of G ′

R′′ contain only speciations,
i.e. all lost subtrees are obtained by extending losses.

Since a TR reconciliation does not contain more than one edge of G ′ per edge in
S′ (Lemma 6), there is a unique reconciliation obtained by extending losses. With this
we conclude the proof. ��

From the previous lemmaswe have that, when observing TR reconciliationswithout
additional lost transfers (the minimum reconciliations are among them), it is enough
to observe G instead of G ′, i.e. we are interested only in positions of V (G) inside S′.

4.1 Normalized reconciliation

In order to reduce the search space of the algorithm that searches for a minimum TR
reconciliation, we introduce the notion of normalized reconciliation. The algorithm

123

Journal of Combinatorial Optimization (2019) 38:502–544 523

Fig. 13 Transfer adjustment. Transfer (x0, x
′
1) has the transfer parent x0 /∈ V (G). Next, x1, x2, x3 /∈ V (G)

and x0 < x1 < x2 < x3 < x , where x = pvG (x0). a Node x is a transfer parent, and (x, x ′
2) is a

transfer. After the adjustment, the new transfer (x ′′, x ′
2) needs adjusting. bNode x is a speciation. After the

adjustment, x becomes a transfer parent, and no new transfer needs adjusting

we give can output every normalized reconciliation with a non-null probability. Every
minimum reconciliation can be transformed into a normalized one, without chang-
ing its cost, by the operations we call transfer adjustment, node raising, and node
translocation. Formally, we perform these operations by modifying G ′ and ρ.

The next definition introduces transfer adjustment (Fig. 13). The purpose of this
operation is to obtain that all transfer parents are in V (G).

Definition 19 (Transfer adjustment) Let R be a minimum TR reconciliation, (x0, x ′
1)

be a transfer and x0 /∈ V (G), x = pvG(x0), x1, . . . , xk ∈ V (G ′) such that x0 < x1 <

· · · < xk < x , x ′
2 be another child of x in G ′ (x ′

2 �= xk), and x ′′
i be the child of x ′

i
(i = 1, 2).

Let R′ be a TR reconciliation obtained from R by modifying G ′ and ρ in the
following way.

If x is a transfer parent, let fi = ρ(x ′
i) ∈ E(S′) (i = 1, 2); fmin ∈ { f1, f2} such that

τ(fmin) = min{τ(f1), τ (f2)}; fmax ∈ { f1, f2} such that fmax �= fmin ; x ′ = pvG ′(x).
Transform G ′ as follows: remove all the edges (from G ′) incident with x ; remove
the edges (x ′

max , x
′′
max), (x0, x ′

1); suppress x0, and insert x ′′; connect x with x ′
max ,

x ′′
max , and x ′

min ; connect x
′′ with xk , x ′, and x ′

max . Define ρR′ : ρR′(x ′′) = ρR(x);
ρR′(x) = ρR(x ′

max); ρR′(y) = ρR(y) for all y ∈ V (G ′
R)\{x0}.

If x is a speciation, let s0 = ρR(x); f ∈ E(S′) be the parent edge of s0. Transform
G ′ as follows: remove the edges (x0, x ′

1), (x, xk), and (x, x ′
2); suppress x0, and insert

xk+1; connect x and x ′
1; connect xk+1 with x , xk , and x ′

2. Define ρR′ : ρR′(x) = f ;
ρR′(xk+1) = s0; ρR′(y) = ρR(y) for all y ∈ V (G ′

R)\{x0}.
In Fig. 13a we have fmin = f1, fmax = f2, and k = 3. After adjusting (x0, x ′

1)

(Fig. 13a), the new transfer (x ′′, x ′
2) needs adjusting.

Since the number of transfers is not changed by transfer adjustments, the next
lemma is obvious, and we omit a proof.

Lemma 9 If R′ is obtained from a minimum TR reconciliation by transfer
adjustments, then R′ is also a minimum TR reconciliation.

The next notion is depicted in Fig. 14.

123

524 Journal of Combinatorial Optimization (2019) 38:502–544

(a) (b)

Fig. 14 Node raising (x ∈ V (G′) is raised). a Node x is a transfer parent, x1, x2, x3 ∈ V (G′)\V (G),
x ′′ = min{y | x < y ∧ (y ∈ V (G) ∨ y is a transfer child)}. Node x cannot be raised higher than x ′′. b
Now x ∈ V (G′)\V (G) is a transfer child, l is the loss assigned to x , and Tl is the lost subtree with a leaf l.
Node x cannot be raised higher than pvG′ (x), and it must stay below root(Tl)

Definition 20 (Node raising) Let R be a TR reconciliation with all transfer parents
from V (G), and x ∈ V (G ′) be a transfer parent or transfer child. We can create a new
reconciliation R′ in the following way.

Assume that x ∈ V (G) is a transfer parent, (x, x ′) is a transfer, x ′′ is the minimal
node such that x < x ′′ and (x ′′ = pvG(x) or x ′′ is a transfer child). Let f be themaximal
edge from E(S′) such that ρ(x) ≤ f ≤ ρ(x ′′). Let x1, . . . , xk ∈ V (G ′)\V (G) such
that x < x1 < · · · < xk < x ′′.

Define ρR′ as ρR′(x) = f , ρR′(y) = ρR(y) for all y ∈ V (G ′)\{x}, (x, x ′) is also
a transfer in R′. Reattach x1, . . . , xk below x so that x1 < · · · < xk < x < x ′′.

Now, assume that x ∈ V (G ′) is a transfer child, l ∈ V (G ′) is a loss assigned to x ,
and l is a leaf of a lost subtree Tl . Let f be the maximal edge from E(S′) such that
ρ(x) ≤ f < ρ(root(Tl)), and τ(f) ≤ τ(pvG ′(x)). Also x1, . . . , xk ∈ V (G ′)\V (G)

such that l < x1 < · · · < xk < root(Tl) and ρ(xk) ≤ f .
Define ρR′ as ρR′(x) = f , ρR′(y) = ρR(y) for all y ∈ V (G ′)\{x}, (pvG ′(x), x) is

a transfer in R′. Reattach x1, . . . , xk below x so that x1 < · · · < xk < x .

Note that we do not raise speciations, because it would create a new transfer
(Fig. 11b) and increase the weight of a reconciliation.

We do not place a raised node in a speciation from S. If we raise a transfer parent
x , then it remains a transfer parent, i.e. adjusted transfers remain adjusted.

From the previous comments we have the following lemma.

Lemma 10 IfR′ is obtained from a minimum TR reconciliation by raising nodes, then
R′ is also a minimum TR reconciliation.

Proof Note that in a TR reconciliation, ω(R) is the number of transfers. By raising
nodes, we do not raise speciations, hence we do not create new transfers. Therefore
ω(R′) ≤ ω(R). SinceR is a minimum TR reconciliation, we obtain ω(R′) = ω(R),
i.e. R′ is a minimum TR reconciliation. ��

We cannot raise a node if its parent from G is in the same time interval, or its parent
(from G) is a speciation in the next time interval.

Sometimes, nodes of G ′ can be raised only if moved to another edge of S′ in the
same time interval (Fig. 15). That is why we introduce node translocation.

123

Journal of Combinatorial Optimization (2019) 38:502–544 525

(a) (b)

Fig. 15 Node translocation. Node y′ is a diagonal transfer child. Transfer (x, x ′) is horizontal. Nodes x and
x1 are horizontal transfer parents, and x2 is a diagonal transfer parent. a We cannot raise nodes x, x1, x2.
bWe move x, x1, x2, and y′ to E2. The number of transfers does not change. Now we can raise x , x1, and
x2

Definition 21 (Node translocation)LetRbe aTR reconciliation, (x, x ′)be ahorizontal
transfer, x ∈ V (G), y′ ∈ V (G ′) be a transfer child, ρR(x) = ρR(y′) = E1 ∈ E(S′),
xi ∈ V (G) such that x < xi < y′ (i = 1, . . . , k), ρ(x ′) = E2 ∈ E(S′). LetR′ be a TR
reconciliation obtained fromR bymodifyingG ′ and ρ as follows. Insert a new node y′′
into G ′, suppress x ′, remove edge (x, x ′′), where x ′′ is a child of x in G ′ and x ′′ �= x ′.
Insert edges (x, y′′) and (y′′, x ′′). Define ρR′(x) = ρR′(xi) = E2 (i = 1, . . . , k),
ρR′(y′′) = E1, ρR′(y) = ρR(y) for all y ∈ V (G ′)\{x, y′, x1, . . . , x}. This operation
we call a node translocation, and we say that nodes x and xi (i = 1, . . . , k) are
translocated to E2.

Note that if all transfers incident with x and xi (i = 1, . . . , k) are diagonal, then
we cannot translocate the nodes. Also, if y′ is a diagonal transfer child, then we can
raise x and xi (i = 1, . . . , k) after translocation.

Node translocation does not change the number of transfers. Hence, the next lemma
is obvious, and we do not prove it.

Lemma 11 If R′ is obtained from a minimum TR reconciliation by node
translocations, then R′ is also a minimum TR reconciliation.

The next definition introduces the notion of normalized reconciliation, which rep-
resents the output of the main algorithm. The purpose of introducing this type of
reconciliation is to reduce the search space of the branch and bound algorithm that we
will to give.

Basically, a minimum reconciliation is normalized if we cannot raise any node, i.e.
all nodes are “as high as possible”, and all transfer parents are from V (G). Nodes are
grouped. Every group has one highest node (say y), that “blocks” the other nodes.
Node y can be a speciation, transfer child, or root(G).

Figure 16 depicts a normalized reconciliation. In the group with x2 and x4, y is
a speciation. In the group with x3, y is root(G). Nodes x1 and x5 are blocked by
non-labeled transfer children.

Definition 22 (Normalized reconciliation) Let R be a minimum TR reconciliation
that satisfies the following conditions. Every transfer parent is from V (G). For every

123

526 Journal of Combinatorial Optimization (2019) 38:502–544

(a) (b) (c)

Fig. 16 Anormalization of aminimum reconciliation. aNodes x1, x4 ∈ V (G) are transfer parents.We have
two more transfer parents that are not from V (G), which makes 4 transfers in total. Node x5 is a transfer
child, and x2, x3 ∈ V (G) are speciations. bA reconciliation obtained after adjusting transfers incident with
x1 and x2, and raising nodes x2, x3, x4, x5. c A normalized reconciliation obtained after translocating and
raising node x1

transfer (x, x ′) and y ∈ V (G ′) that is the maximal element such that x ≤ y, ρ(x) ≤
ρ(y), and τ(y) ≤ τ(x) + 1, one of the following conditions is satisfied:

– τ(y) = τ(x) and y is a horizontal transfer child;
– τ(y) = τ(x), y is a diagonal transfer child, and (x, x ′) is a diagonal transfer;
– τ(y) = τ(x) + 1 and y ∈ V (G) is a speciation;
– τ(y) = τ(x) + 1 and y = root(G).

For every diagonal transfer (x, x ′), we have |E(Tl)| = 1 and τ(l) = τ(root(Tl)) −
1, where l is a loss assigned to x ′, and Tl is a lost subtree with a leaf l. Then the
reconciliation R is called a normalized reconciliation.

Note that any normalized reconciliation is also minimum, and has all transfers
adjusted. The proof of Theorem 4 describes how to construct a normalized reconcili-
ation from an arbitrary minimum reconciliation.

Theorem 4 Let R be a minimum TR reconciliation. Then there is a normalized rec-
onciliation R′ that can be obtained from R by adjusting transfers, and raising and
translocating nodes.

Proof See Appendix. ��

4.2 Random normalized reconciliation

In this subsection we describe an FPT algorithm that returns a normalized reconcilia-
tion with weight not greater than k, if there is one.

The problem definition follows.
k- Minimum TR Reconciliation:
Input: S,G, k
Output: A normalized TR reconciliation R such that ω(R) ≤ k, or a message that
there is no such reconciliation.

123

Journal of Combinatorial Optimization (2019) 38:502–544 527

(a)

(c)

(b) (d)

Fig. 17 The description of the algorithm for one time slice-Cases 1 and 2. a The initialization part. To every
extant gene ai (i = 1, . . . , n) an active edge that is incident wiht ai is assigned. b Speciation s0 ∈ V (S) is
in the current time slice. Edges e1, e2, e3 are active edges. c If at least one of the edges e1 and e2 is lost,
then they coalesce at s0, and the non-lost edge is propagated to the next time slice, as well as all other edges
from the current time slice. d If e1 and e2 are incident, then they coalesce at s0

We are given S, G and φ, which is, in this particular case, a bijection between the
leaves ofG and the leaves of S (Fig. 17a). Let Ai be extant species (leaves of S), and ai
be extant genes (leaves of G) (i = 1, . . . , n). We will maintain, during the execution
of the algorithm, a set of active edges which initially contains the terminal edges of
G, i.e. the edges with a leaf as an extremity. Some of the active edges might be lost
edges, but initially none is.

We will first describe the algorithm, give appropriate figures, and in the next sub-
section we will give pseudocodes.

At the beginning, to every extant gene ai , where φ(ai) = Ai (Fig. 17a), an edge
from E(G) that is incident with ai , is assigned. At this moment, these are the active
edges.

We repeat the next part for every time slice, going bottom-up.
Observe one time slice. Let s0 be the internal node of S in this time slice. Let E1, E2

be the edges from S incident with s0, and e1, e2 active edges that belong to E1, E2
(Fig. 17b). We have several cases.

Case 1. At least one of the edges e1 or e2 is lost. Then coalesce them at s0 (meaning
the lca of the two edges in G is mapped to s0 by ρ), and the edge that is not lost
propagate to the next time slice. If both edges e1 and e2 are lost, then their parent
(which is also a lost edge) is propagated to the next time slice. All other edges are
propagated to the next time slice as well (Fig. 17c), where they remain active.

Case 2. Edges e1 and e2 are incident in G. Then coalesce them at s0 (Fig. 17d).
All other active edges propagate to the next time slice, where they remain active. The
parent edge of e1 and e2 is also an active edge in the next time slice.

Case 3. Edges e1 and e2 are neither lost nor incident. Branch and bound tree is
branching into three subtrees (subcases (a1), (a2), and (b)).

Case 3a1. Put e1 on hold (Fig. 18a). This means that e1 is not propagated into the
next time slice, but stays active as long as it does not become a (diagonal) transfer (see

123

528 Journal of Combinatorial Optimization (2019) 38:502–544

Fig. 18 The description of the algorithm for one time slice-Case 3. a Edge e1 is put on hold (staying active),
waiting to become a (diagonal) transfer. Edge e2 is propagated to the next time slice, as well as all other
active edges from the current time slice. b Let x be the minimal ancestor of e1 and e2 in V (G). Assign x
to s0, and randomly expand all nodes between x and e1, and between x and e2

Case 3b). Edge e2 and all other active edges from the current time slice are propagated
into the next time slice.

Case 3a2. The same as Case 3a1, but e2 is on hold instead of e1.
Case 3b. Let x (Fig. 18b) be the minimum node in V (G) that is an ancestor of

both e1 and e2, x ′
1, . . . , x

′
k1

∈ V (G) be the vertices in the path from e1 to x , and
x ′′
1 , . . . , x ′′

k2
∈ V (G) be the vertices in the path from e2 to x . Take ρ(x) = s0. Observe

x ′
1. Let e3 be a random active edge with maximal τ -value that is a descendant of x ′

1,
E3 be the edge from E(S) that contains e3, and x11 , . . . , x

m1
1 (m1 ≥ 0) be the vertices

in the path from e3 to x ′
1. Add these vertices and corresponding edges to E3, as well

as transfer (x ′
1, x

1
1). Repeat the process for every child of x ′

1. It is possible that some
of the added transfers are diagonal. We say that x ′

1 is randomly expanded. In E3 add a
lost edge e′

3. If e3 was on hold, then coalesce e
′
3 with the other lineage at s0. Otherwise

propagate e′
3 to the next time slice as an active edge. Next, randomly expand the

remaining nodes x ′
2, . . . , x

′
k1
, x ′′

1 , . . . , x ′′
k2
.

The condition ofmaximality of τ(e3) is necessary, becausewe cannot have transfers
to the past.

Case 4.We reached rootE (S). Then randomly expand all the remaining nodes from
V (G) and ρ(root(G)) = root(S).

The rest of the procedure is a standard branch and bound. When we reach the first
solution (reconciliation)with atmost k transfers, we denote it byR∗. IfR is some other
reconciliation, obtained in the branch and bound process, such that ω(R) < ω(R∗),
then we take R∗ = R. If ω(R) = ω(R∗), then we randomly take R∗ = R.

If during the branch and bound procedure, we obtain a (partial) reconciliation with
more than k transfers, then we do not branch, and go one step back.

4.3 Pseudocodes and properties

In this section we give pseudocodes, prove some properties of the algorithm, and give
a proof that k- Minimum TR Reconciliation is fixed-parameter tractable.

Theorem 5 LetR be a normalized reconciliation andω(R) ≤ k. ThenR is a possible
output of Algorithm 1.

Proof See Appendix. ��

123

Journal of Combinatorial Optimization (2019) 38:502–544 529

Theorem 6 If Algorithm 1 returns a reconciliation R, then ω(R) ≤ k and R is a
normalized reconciliation.

Proof See Appendix. ��
Theorem 7 Time complexity of Algorithm 1 is O(3kn).

Proof Branching in the algorithm occurs only when we add transfers, i.e. with every
branching we add at least one transfer. Therefore we can have the branch depth at most
k. Since the reconciliation is normalized (hence minimal), one of 3a1, 3a2, 3b holds.
Given that we branch to three cases (a1, a2, and b), the size of the branch and bound
tree is O(3kn). ��
Theorem 8 Minimum TR Reconciliation is fixed-parameter tractable with respect
to the parameter that represents an upper bound for the reconciliation’s weight.

Proof Follows directly from Theorems 4, 5, 6, and 7 . ��

5 TheMinimumDated SPR Scenario is NP-hard and FPT

Finally, we prove that a constrained version of the well known SPR (subtree prune
and regraft) distance problem, the Minimum Dated SPR Scenario, mentioned in
Song (2006), is equivalent to the Minimum TR Reconciliation problem.

Definition 23 (Dated SPR operation) Let T be a dated, fully binary, rooted tree, e1 =
(a2, a1), e2 = (b2, b1) ∈ E(T), where a2 = pvT (a1), b2 = pvT (b1), and τ(a1) < τ(b2).
Delete e1, suppress a2, subdivide e2 with a node a′

2, where τ(a1) ≤ τ(a′
2), connect a1

and a′
2. Denote the obtained tree by T ′. We say that T ′ is obtained from T by a dated

SPR (subtree prune and regraft) operation.

Algorithm 1 ParametricMinimumReconciliation
1: procedure ParametricMinimumReconciliation(G, S, k)
2: create S′ - a subdivision of S;
3: R is a partially constructed reconciliation;
4: R∗ is a current minimum reconciliation;
5: Initialize(R,R∗, curr_time_slice);
6: BranchAndBound(R,R∗, curr_time_slice, k);
7: return(R);
8: end procedure

Algorithm 2 Initialize
1: procedure Initialize(R,R∗, curr_t ime_slice)
2: R∗ ← NULL;
3: ω(NULL) ← +∞;
4: curr_time_slice ← 0;
5: assign the extant genes ai to the corresponding edges Ai (i = 1, . . . , n);
6: edges from E(G) incident with ai (i = 1, . . . , n) declare as active;
7: end procedure

123

530 Journal of Combinatorial Optimization (2019) 38:502–544

Algorithm 3 BranchAndBound
1: procedure BranchAndBound(R,R∗, curr_time_slice, k)
2: curr_time_slice + +;
3: if rootE (S) is in curr_t ime_slice then
4: randomly expand remaining nodes from V (G);
5: if ω(R) < ω(R∗) then
6: R∗ ← R;
7: end if
8: if ω(R) == ω(R∗) then
9: R∗ ← R - random;
10: end if
11: return;
12: end if
13: state1 - the state of reconciliation R;
14: s0 ∈ V (S) - the speciation in curr_t ime_slice;
15: E1, E2 - edges of S incident with s0;
16: e1, e2 - active edges of G′ that are inside E1, E2;
17: if (e1 or e2 is a lost edge) or (e1 and e2 are incident in G) then
18: coalesce e1, e2 into a speciation at s0;
19: all other active edges propagate to the next time slice;
20: BranchAndBound(R,R∗, curr_t ime_slice, k);
21: reset R to state1;
22: else
23: AddBranchAndBoundNode(R,R∗, curr_time_slice, (a1), k);
24: BranchAndBound(R,R∗, curr_t ime_slice, k);
25: reset R to state1;

26: AddBranchAndBoundNode(R,R∗, curr_time_slice, (a2), k);
27: BranchAndBound(R,R∗, curr_t ime_slice, k);
28: reset R to state1;

29: AddBranchAndBoundNode(R,R∗, curr_time_slice, (b), k);
30: BranchAndBound(R,R∗, curr_t ime_slice, k);
31: reset R to state1;
32: end if
33: end procedure

We will denote this SPR operation by spr((a2, a1), (b2, b1)) = a′
2, or by T → T ′.

Note that if spr((a2, a1), (b2, b1)) = a′
2, spr((a2, a1), (b2, b1)) = a′′

2 , and τ(a′
2) �=

τ(a′′
2), then these two SPR operations are different.

Definition 24 (Minimum Dated SPR Scenario problem) Let T and T ′ be rooted, fully
binary trees, where T is a dated and T ′ is undated tree. Assigning dates to V (T ′),
and finding a minimum number (over all possible date assignments to V (T ′)) of SPR
operations that transform T into T ′ is called the Minimum Dated SPR Scenario
problem. The number of SPR operations is called the length of SPR scenario.

Now we introduce a parametrized version of the problem we are interested in.
k- Minimum Dated SPR Scenario:
Input: T—dated, T ′—undated, full binary, rooted trees; k ≥ 0 is a parameter;
Output: A minimum dated SPR scenario with the length not greater than k, or a
message that a scenario like this does not exist.

123

Journal of Combinatorial Optimization (2019) 38:502–544 531

Algorithm 4 AddBranchAndBoundNode
1: procedure AddBranchAndBoundNode(R, curr_time_slice, case, k)
2: if case == (a1) or case == (a2) then
3: if case == (a1) then
4: e′ ← e1;
5: else
6: e′ ← e2;
7: end if
8: put e′ on hold;
9: propagate all other active edges to the next time slice;
10: else if case == (b) then
11: x ← lcaG (e1, e2) ∈ V (G);
12: x ′

1, . . . , x
′
k1

nodes from V (G) in the path from e1 to x ;

13: x ′′
1 , . . . , x ′′

k2
nodes from V (G) in the path from e2 to x ;

14: assign x to s0;
15: randomly expand x ′

1, . . . , x
′
k1

and x ′′
1 , . . . , x ′′

k2
;

16: t ← ω(R) - i.e. the number of transfers in the current partial reconciliation;
17: if t > k then
18: return;
19: end if
20: if R is a (complete) reconciliation then
21: if ω(R) < ω(R∗) then
22: R∗ ← R;
23: else if ω(R) == ω(R∗) then
24: R∗ ← R - random;
25: end if
26: return
27: end if
28: end if
29: end procedure

Lemma 12 The k- Minimum Dated SPR Scenario is (polynomially) equivalent
to the k- Minimum TR Reconciliation.

Proof See Appendix. ��
Theorem 9 The Minimum Dated SPR Scenario is NP-hard.

Proof Since there is a polynomial reduction from Minimum TR Reconciliation to
Minimum Dated SPR Scenario (Lemma 12) and Minimum TR Reconciliation
is NP-hard (Theorem 3), then Minimum Dated SPR Scenario is NP-hard. ��
Theorem 10 TheMinimum Dated SPR Scenario is fixed-parameter tractablewith
respect to parametrized distance.

Proof Since there is a polynomial reduction (which is also an FPT reduction) from k-
Minimum Dated SPR Scenario to k- Minimum TR Reconciliation (Lemma 12)
andMinimum TR Reconciliation is FPT (Theorem 8), thenMinimum Dated SPR
Scenario is FPT. ��

123

532 Journal of Combinatorial Optimization (2019) 38:502–544

6 Conclusion

We propose an integration of two ways of detecting lateral gene transfers, and more
generally to construct gene histories and handle the species tree gene tree discrepan-
cies. On one side, SPR scenarios model transfers with replacements and are limited by
computational complexity issues, the difficulty to include time constraints and other
gene scale events like transfers without replacement, duplications, conversions and
losses. On the other side, reconciliation algorithms usually work with dynamic pro-
gramming, necessitating an independence hypothesis on different gene tree lineages,
incompatible with replacing transfers.

It is a big issue for biological models, because the results can depend on the type
of methodology which is chosen, leading to simplification hypotheses. Moreover,
algorithms are often tested with simulations containing the same hypotheses as the
inference models. This is why it can be important to explore methodological issues at
the edge of both methods, which is what we do here.

Future work include imagining a way to include transfer with replacement in stan-
dard reconciliation software. This will require more integration and probably more
efficient algorithms so that it does not harm the computing time.

Acknowledgements ET was supported by the French Agence Nationale de la Recherche (ANR) through
Grant No. ANR-10-BINF-01–01 ‘Ancestrome’.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Appendix: Proofs

Here we give proofs that are omitted in the main text.

Proof of Lemma 1 Wewill use a reduction from theMax 2- Sat, where every variable
appears in at most three clauses. This problem is NP-hard (Raman et al. 1998).

Let F be an instance of the Max 2- Sat, and every variable appears in at most
three clauses. If there is a variable x that appears exactly once, and it belongs to a
clause C , then we can assign it a value and make C a true clause. Similarly, if there
is a variable y that has only positive, or only negative literals, then we can assign it a
value to make the corresponding clauses true.

In this way we eliminate all the variables that appear exactly once, or have only
positive or only negative literals. Therefore, we can assume that F has variables that
appear two or three times, and have both positive and negative literals.

Let x0 be a variable that appears in exactly two clauses. After inserting (x0 ∨ x01)∧
(x01 ∨ x02)∧ (¬x01 ∨ x03)∧ (¬x02 ∨ x03)∧ (x02 ∨¬x03) into F , we obtain a logical formula
with x0 in exactly three clauses. The new variables x01 , x

0
2 , x

0
3 also appear in exactly

three clauses, and they have positive and negative literal present.
In this way we obtain a logical formula F ′ that has every variable in exactly three

clauses, with both positive and negative literal present. If the added variables are true,

123

Journal of Combinatorial Optimization (2019) 38:502–544 533

Fig. 19 Lemma 4a, b, Case 2. When r j1 and r j2 are positioned in lca(B5, B6, B7, B8) we obtain extra
non-free losses

then all the new clauses will be true. Therefore the number of true clauses in F is
maximized if and only if the number of true clauses in F ′ is maximized.

The previous reduction is obviously polynomial in n and m, where n is the number
of variables, and m is the number of clauses in F . ��

Proof of Lemma 4 To prove (a) and (b), we identify two cases, according to the posi-
tions of r j1 and r j2 .

Case 1. Node r j1 or r j2 is above the border line. In order to obtain ω(Fj) < 4, we
need that some of the nodes r0j1 , r

0
j2
, r1j1 , r

1
j2
is neither a duplication nor incident with

a transfer. The only way to have this is if some of them is placed in s0C j
= root(SC j).

Let us take ρ(r0j1) = s0C j
. Then ρ(r j1) > s0C j

, or ρ(r j1) and s0C j
are incomparable.

If ρ(r1j1) < s0C j
, then (r j1, r

1
j1
) is a transfer, and the weight of Fj is not decreased.

If ρ(r1j1) = s0C j
, then r j1 is a duplication, or one of the edges (r j1, r

0
j1
) and (r j1, r

1
j1
)

contains a transfer. In this way we eliminate two transfers (that were incident with r0j1
and r1j1), and obtain one transfer or duplication. But we generate at least one non-free
loss in SC j . Similar considerations apply to the other nodes of Fj . Hence we cannot
obtain ω(Fj) < 4.

Case 2. Both nodes r j1 and r j2 are under the border line. Then none of the nodes
r0j1, r

1
j1
, r0j2 , r

1
j2
is placed in s0C j

, therefore every one of them is incident with at least
one transfer. If we wish to eliminate transfers starting at r j1 or r j2 , then we need to
place them both in lca(B5, B6, B7, B8), i.e. in the minimal node in SC j that is ancestor
of B5, B6, B7, and B8 (Fig. 19). In this case we increase the number of non-free losses.
Whichever placement we choose, we have ω(Fj) ≥ 5.

(c) The proof is similar in spirit to the proof of (a). See Figs. 4 and 5 . The idea is
to see what happens if some of the 17 transfers, present in a proper reconciliation that
belongs to Gxi , is not present in some other reconciliation.

First, note that if some of the nodes d j
i are not placed in Di

j (j = 1, . . . , P(n)),
then we would have transfers that are not present in a proper reconciliation. Also,
if none of the nodes d j

i is placed in Di
j (j = 1, . . . , P(n)), then we would have a

reconciliation more expensive than any proper reconciliation. Hence we can assume
that, for the anchoring nodes d1i , we have ρ(d1i) = Di

j (j = 1, . . . , P(n)).
In a proper reconciliation, there are 14 transfers incident with bsi (s = 1, . . . , 14). In

an arbitrary reconciliation, we can achieve that no transfer or a duplication is incident

123

534 Journal of Combinatorial Optimization (2019) 38:502–544

with bsi only ifρ(bsi) = s0xi . Then a parent of b
s
i (i.e. c

s−1
i), aswell as c0i , is a duplication,

or is incident with a transfer, and two or more non-free losses are created. Therefore
by having ρ(bsi) = s0xi , for some values of s, does not give ω(Gxi) < 17.

Assume that the nodes bsi (s = 1, . . . , 14) are placed as in the proper reconciliation.
Observe nodes x1i , x

2
i , and assume that they are not incident with a transfer, and the

edge (x2i , x
1
i) does not contain a transfer. Then we have at least two transfers at the

edges (c4i , x
2
i) and (x1i , c

3
i), or at some other edges leading to some of the bsi . Similar

considerations apply for x3i . Therefore, in this case too we cannot decrease the number
of transfers.

Can we have less than 17 transfers if take ρ(bsi) = s0xi , for some values of s, and
eliminate transfers incidentwith x1i , x

2
i ?Let us takeρ(b7i) = s0xi . Then the nodes c

6
i and

c0i are not placed as in the proper reconciliation. Hencewe have at least two transfers or
duplications, and non-free losses not present in the proper reconciliation. Also, if the
nodes x1i , x

2
i are not placed as in the proper reconciliation, we have a transfer, different

from the previous two, that is not present in the proper reconciliation. Therefore, we
have at least three evolutionary events not present in the proper reconciliation, and we
cannot obtain less than 17 events.

(d) Let us take that x1i and x3i are under the border line. Then at least three of
the nodes c1i , . . . , c

12
i are not on the gadgets positions. Some of these nodes are

c1i , c
2
i , c

3
i , because they are descendants of x

1
i inG. Thepaths (c1i , b

2
i , A

3
i), (c

2
i , b

3
i , A

5
i),

(c3i , b
4
i , A

7
i) generate extra three transfers. An extra transfer is created on the edge

(x2i , x
1
i), or on some other edge that is an ancestor of x2i . Even if we we eliminate the

two transfers incident with x1i and x2i , we gain 4 more. Hence ω(Gxi) ≥ 19. ��
Proof of Theorem 1 LetR be a minimum DT LCTR reconciliation. We useR to con-
struct R′ that is both minimum and proper.

The construction of a proper reconciliation is described earlier. The only thing that
we need to specify in R′ is the positions of x1i , x2i , and x3i with respect to the border
line, as well as the positions of r j1 and r j2 .

If x1i and x2i are not on the same side of the border line as x3i (in R), then they are
on the same side in R′ as in R. If x1i or x2i is on the same side as x3i (in R), then x1i
and x2i are above, and x3i is under the border line (in R′).

Next, the vertices of Fj are placed in SC j as in the description of the proper recon-
ciliation (Definition 16), so that the nodes r j1 and r j2 are placed on the same side of
the border line as x ′

j1
and x ′

j2
(in R′), respectively. A reconciliation, obtained in this

way, we denote byR′. By construction, it is a proper reconciliation. Let us prove that
it is a minimum reconciliation.

We have ωR(Gxi) ≥ 17 = ωR′(Gxi), ωR(Fj) ≥ 4, and ωR′(Fj) ∈ {4, 5}
(Lemma 4).

Let i ∈ {1, . . . , n}, x1i , x2i , x3i be connected with ra1 ∈ V (Fa), rb1 ∈ V (Fb),
rc1 ∈ V (Fc) via transfers. We introduce a notation ΩR(i) = ωR(Gxi) + ωR(Fa) +
ωR(Fb) + ωR(Fc).

Case 1. Assume that ωR(Fa) ≥ ωR′(Fa), ωR(Fb) ≥ ωR′(Fb), ωR(Fc) ≥
ωR′(Fc). Then ωR(Gxi) + ωR(Fa) + ωR(Fb) + ωR(Fc) ≥ ωR′(Gxi) + ωR′(Fa) +
ωR′(Fb) + ωR′(Fc), i.e. ΩR(i) ≥ ΩR′(i).

123

Journal of Combinatorial Optimization (2019) 38:502–544 535

Case 2. Assume that ωR(Fa) = 4, ωR′(Fa) = 5, ωR(Fb) ≥ ωR′(Fb), ωR(Fc) ≥
ωR′(Fc). SinceωR′(Fa) = 5, we have that x1i is under the border line (inR

′). Because
of the transformation rules, at the beginning of the proof, we have that x1i , x

2
i are under

the border line (in R and R′), while x3i is above the line (in R and R′).
Let y1 be a literal of variable xs (i.e. y1 ∈ {x1s , x2s , x3s }) connected with ra2 ∈ V (Fa)

via transfer. Since ωR(Fa) = 4, ωR′(Fa) = 5, we have that y1 is above the border
line in R, and under the line in R′, hence y1 = x3s .

Assume that Fa′, Fb′ are connected with x1s , x
2
s via transfers. Then ωR′(Fa′) =

ωR′(Fb′) = 4, ωR(Gxs) ≥ 19. We have ωR(Fa′) ≥ 4 = ωR′(Fa′) and ωR(Fb′) ≥
4 = ωR′(Fb′).

From the previous arguments, ωR(Gxs) + ωR(Fa) + ωR(Fa) ≥ 19 + 4 + 4 =
17 + 5 + 5 = ωR′(Gxs) + ωR′(Fa) + ωR′(Fa).

Finally,
(
ωR(Gxi) + ωR(Fa) + ωR(Fb) + ωR(Fc)

)+ (
ωR(Gxs) + ωR(Fa′) +

ωR(Fb′)+ωR(Fa)
) ≥ (

ωR′(Gxi)+ωR′(Fa)+ωR′(Fb)+ωR′(Fc)
)+ (

ωR′(Gxs)+
ωR′(Fa′) + ωR′(Fb′) + ωR′(Fa)

)
, i.e. ΩR(i) + ΩR(s) ≥ ΩR′(i) + ΩR′(s).

The next cases use the approach of Case 2.
Case 3. Assume that ωR(Fb) = 4, ωR′(Fb) = 5, ωR(Fa) ≥ ωR′(Fa), ωR(Fc) ≥

ωR′(Fc). This case is analogous to Case 2.
Case 4. Assume that ωR(Fc) = 4, ωR′(Fc) = 5, ωR(Fa) ≥ ωR′(Fa), ωR(Fb) ≥

ωR′(Fb). Then x3i is under, and x1i , x
2
i are above the border line in R′. We have two

subcases.
Case 4.1. Assume that x1i or x2i was on the same side of the line as x3i (inR). Then

ωR(Gxi) ≥ 19. Hence ωR(Gxi) + ωR(Fa) + ωR(Fb) + ωR(Fc) ≥ 19+ ωR′(Fa) +
ωR′(Fb) + 4 > 17+ ωR′(Fa) + ωR′(Fb) + 5 = ωR′(Gxi) + ωR′(Fa) + ωR′(Fb) +
ωR′(Fc), i.e. ΩR(i) > ΩR′(i).

Case 4.2. Assume that x1i and x
2
i were not on the same side of the line as x3i (inR).

Then x3i is under the line (in R and R′). Now we proceed similar to Case 2.
Let y3 ∈ {x1l , x2l , x3l } and it is connected with rc2 ∈ V (Fc) via transfer. From

ωR(Fc) = 4, ωR′(Fc) = 5, we have that y3 in R was above the line, and in R′ is
under the line, hence y3 = x3l , ωR(Gxl) ≥ 19, ωR′(Fa′′) = ωR′(Fb′′) = 4, where
Fa′′ and Fb′′ are connected with x1l and x2l via transfers.

It follows that ωR(Gxl) + ωR(Fc) + ωR(Fc) ≥ 19 + 4 + 4 = 17 + 5 + 5 =
ωR′(Gxl) + ωR′(Fc) + ωR′(Fc).

Next,
(
ωR(Gxi) + ωR(Fa) + ωR(Fb) + ωR(Fc)

)+ (
ωR(Gxl) + ωR(Fa′′) +

ωR(Fb′′)+ωR(Fc)
) ≥ (

ωR′(Gxi)+ωR′(Fa)+ωR′(Fb)+ωR′(Fc)
)+ (

ωR′(Gxl)+
ωR′(Fa′′) + ωR′(Fb′′) + ωR′(Fc)

)
, i.e. ΩR(i) + ΩR(l) ≥ ΩR′(i) + ΩR′(l).

Case 5. Assume that ωR(Fa) = ωR(Fb) = 4, ωR′(Fa) = ωR′(Fb) = 5, and
ωR(Fc) ≥ ωR′(Fc). By a similar argument as in the previous cases, we have that
x1i , x

2
i are under the line (in R and R′), while x3i is above the line (in R and R′).

Let y1 ∈ {x1r , x2r , x3r } be connected with ra2 ∈ V (Fa), and y2 ∈ {x1t , x2t , x3t } be
connected with rb2 ∈ V (Fb). As in the previous cases, we have y1 = x3r , y2 = x3t ,
and they were above the line in R, and under the line in R′. Hence ωR(Gxr) ≥ 19
and ωR(Gxt) ≥ 19. Let x1r , x

2
r , x1t , x

2
t be connected with Far , Fbr , Fat , Fbt . Then

ωR′(Far) = ωR′(Fbr) = ωR′(Fat) = ωR′(Fbt) = 4.

123

536 Journal of Combinatorial Optimization (2019) 38:502–544

Therefore ωR(Gxr) + ωR(Gxt) + ωR(Fa) + ωR(Fa) + ωR(Fb) + ωR(Fb) ≥
19 + 19 + 4 + 4 + 4 + 4 = 17 + 17 + 5 + 5 + 5 + 5 = ωR′(Gxr) + ωR′(Gxt) +
ωR′(Fa) + ωR′(Fa) + ωR′(Fb) + ωR′(Fb).

Hence
(
ωR(Gxi) + ωR(Fa) + ωR(Fb) + ωR(Fc)

)+ (
ωR(Gxr) + ωR(Far) +

ωR(Fbr)+ωR(Fa)
)+ (

ωR(Gxt)+ωR(Fat)+ωR(Fbt)+ωR(Fb)
) ≥ (

ωR′(Gxi)+
ωR′(Fa)+ωR′(Fb)+ωR′(Fc)

)+ (
ωR′(Gxr)+ωR′(Far)+ωR′(Fbr)+ωR′(Fa)

)+(
ωR′(Gxt) + ωR′(Fat) + ωR′(Fbt) + ωR′(Fb)

)
, i.e. ΩR(i) + ΩR(r) + ΩR(t) ≥

ΩR′(i) + ΩR′(r) + ΩR′(t).
The next three cases are not possible, because x3i cannot be on the same side of the

line as x1i or x2i in R′.
Case 6. Assume that ωR(Fa) = ωR(Fc) = 4, ωR′(Fa) = ωR′(Fc) = 5,

ωR(Fb) ≥ ωR′(Fb).
Case 7. Assume that ωR(Fb) = ωR(Fc) = 4, ωR′(Fb) = ωR′(Fc) = 5,

ωR(Fa) ≥ ωR′(Fa).
Case 8. Assume that ωR(Fa) = ωR(Fb) = ωR(Fc) = 4, ωR′(Fa) = ωR′(Fb) =

ωR′(Fc) = 5.
Every i ∈ {1, . . . , n} belongs to exactly one case. Variables s (from Cases 2 and

3), l (Case 4.2), t and r (Case 5) are equal to some i ∈ {1, . . . , n}, but are different
among themselves, i.e. there is no value that repeats itself among variables s, l, r , t .
Let A1 be the set of all values of i from the Case 1 that are different from all s, l, r , t .
In a similar manner we introduce sets A2,3, A4.1, A4.2, A5

We will use the previous cases to prove ω(R) ≥ ω(R′). We have 2 · ω(R) =∑
i ωR(Gxi)+

∑
i ΩR(i) = ∑

i ωR(Gxi) + ∑
A1

ΩR(i) + ∑
A2,3

(
ΩR(i)+ΩR(s)

)

+ ∑
A4.1

ΩR(i) + ∑
A4.2

(
ΩR(i) + ΩR(l)

) + ∑
A5

(
ΩR(i) + ΩR(r) + ΩR(t)

)

≥ ∑
i ωR′(Gxi) + ∑

A1
ΩR′(i) + ∑

A2,3

(
ΩR′(i) + ΩR′(s)

) + ∑
A4.1

ΩR′(i) +
∑

A4.2

(
ΩR′(i) + ΩR′(l)

) + ∑
A5

(
ΩR′(i) + ΩR′(r) + ΩR′(t)

) = 2 · ω(R′).
Finally, ω(R) ≥ ω(R′). Therefore R′ is a minimum reconciliation. ��

Proof of Theorem 4 We will transform R into R′ in two steps. First, we adjust all
transfers that need to be adjusted, and then we alternately raise and translocate nodes.

Note that the definitions of the operations give the sufficient conditions for executing
them. We assume that we perform these operations only if the conditions are satisfied.
Additionally,wewill translocate nodes only if y′ (y′ is fromDefinition 21) is a diagonal
transfer child. This results in a raisable node after translocation.

Step 1. We adjust all transfers, with the transfer parent not from G, in an arbitrary
order. This procedure will end in polynomial number of steps.

Indeed, we have two situations. In the first situation (Fig. 13a) we obtain another
transfer that needs adjusting (transfer (x ′′, x ′

2)), but the transfer parent x
′′ is positioned

above x in G ′. In the second situation (Fig. 13b), the total number of transfers waiting
for adjusting decreases by 1. Hence the effect of adjusting transfer is either positioning
transfer parent higher in G ′, or reducing the number of unadjusted transfer. Since we
are bounded by the size of G ′ and the number of transfers, the number of adjustments
is finite and it is polynomial in size of G and S.

Therefore all transfers will be adjusted.

123

Journal of Combinatorial Optimization (2019) 38:502–544 537

Step 2. Take an arbitrary transfer parent or a transfer child x ∈ V (G ′) that we can
raise, and raise it. Repeat the previous procedure, as long as there is a node that we
can raise.

After there are no more transfer parents or children that can be raised, translocate
some node, it there is such a node. Then, again, raise all nodes that can be raised. Note
that we translocate a node only if it results in a raisable node (see the second paragraph
of this proof).

Repeat the previous procedure of raising and translocating nodes as long as possible.
This procedure will end in a polynomial number of steps. Indeed, by raising a

node x , τ(x) increases. Since τ(x) < τ(root(G)), we have that Step 2 must end in
polynomial number of steps, i.e. we will obtain a reconciliation in which no transfer
parent or child can be raised.

By applying Steps 1 and 2 we obtain a reconciliation R′. Since the number of
transfers is not changed (Lemmas 9, 10, and 11), we have ω(R′) = ω(R), i.e. R′ is
a minimum reconciliation. We need to prove that R′ is a normalized reconciliation.

Let (x, x ′) ∈ E(G ′) be a transfer, y ∈ V (G ′) be the maximal element such that
x ≤ y, ρ(x) ≤ ρ(y), and τ(y) ≤ τ(x) + 1.

Let us prove that y is not a transfer parent. Assume the opposite. Then y ∈ V (G).
Let x ′′ be the element as described in Definition 20 obtained by raising y. Then
τ(y) = τ(x ′′) and x ′′ is a transfer parent or child; or τ(y) = τ(x ′′) − 1 and x ′′ is a
speciation or root(G). In both cases we obtain a contradiction with the maximality of
y.

Let y be a transfer child. We need to prove that τ(x) = τ(y). Assume the opposite,
i.e. τ(x) < τ(y). Let us take the maximal x1 such that x ≤ x1 ≤ y and τ(x1) = τ(x).
Since all the transfers are adjusted, we have x1 ∈ V (G) and x1 is a transfer parent.
Since τ(x1) < τ(y), node x1 can be raised, which is a contradiction with Step 2, where
we raise and translocate nodes as long as possible. Therefore τ(x) = τ(y).

Let y be a diagonal transfer child.We need to prove that (x, x ′) is a diagonal transfer.
Assume the opposite, i.e. τ(x) = τ(x ′). Let ρ(y) = E1 ∈ E(S′) and ρ(x ′) = E2 ∈
E(S′). We have τ(E1) = τ(E2) = τ(x). Since there are no speciations from S with
the same date (see a comment after Definition 1), one of the edges E1 or E2 is not
incident with a speciation from S. If E1 is not incident with a speciation, then we can
raise y. If E2 is not incident with a speciation, then we can translocate x to E2 and
raise x . In both situations we have a contradiction with Step 2. Therefore, (x, x ′) is a
diagonal transfer.

Let y be a speciation, or y = root(G). Then τ(x) < τ(y). Since τ(y) ≤ τ(x) + 1,
we have τ(y) = τ(x) + 1.

Let (x, x ′) be a diagonal transfer, l a loss assigned to x ′, Tl a lost subtree with a leaf
l. FromStep 2we have that we cannot raise x ′. This is possible only if τ(Tl) = τ(l)+1,
and therefore Tl has only one edge.

We proved that the properties of a normalized reconciliation are satisfied. Hence
R′ is a normalized reconciliation. ��

Proof of Theorem 5 Since R is a normalized reconciliation, it is also, by definition,
minimum. If I is a time slice, then RI denotes the partial reconciliation induced by
I , i.e. the part ofR that is inside I , and all other time slices before I , where “before”

123

538 Journal of Combinatorial Optimization (2019) 38:502–544

(a)

(c) (d) (e)

(b)

Fig. 20 Situations that cannot occur in a normalized reconciliation. Time slice Ik contains E1, E2, and s0.
Edges e1, e2 are active edges, and are incident with x . Edges E1, E2 ∈ E(S′) are incident with s0. Node
x ∈ V (G) must be positioned in s0 ∈ V (S), i.e. ρ(x) = s0. a If ρ(x) = E1, then the reconciliation is not
minimal, since we can eliminate one transfer by taking ρ(x) = s0. Here, x ′′ = pvG′ (x) is a transfer child,
and x ′ = pvG′ (x ′′) is a transfer parent. b In a similar way we obtain a reconciliation with smaller weight.
c, d These situaions are not possible, since the reconciliation is normalized, and we cannot have a transfer
(x1, x2) with x1 /∈ V (G). Also, we could obtain a reconciliation with smaller weight, by taking ρ(x) = s0.
eHere we have τ(x ′) = τ(x). Since the reconciliation is normalized, and we have only one speciation from
S (i.e. s0) in the time slice Ik , then we have τ(x ′) > τ(s0), hence this situation is not possible

refer to those lower in the tree. We will prove that the algorithm constructsRI during
the execution. We will use mathematical induction on I .

Let I0 be the first time slice (i.e. the lowest time slice), and s0 ∈ V (S) be a speciation
such that τ(s0) ∈ I0 (Fig. 17), E1, E2 ∈ E(S) are incident with s0. Next, e1, e2 are
the minimal edges of G ′ contained in E1 and E2. More precisely, e1 = (x1, x2),
e2 = (y1, y2) are the minimal edges of G ′ such that ρ(x2) ≤ E1 ≤ ρ(x1) and
ρ(y2) ≤ E2 ≤ ρ(y1). Edges e1 and e2 are unique (Lemma 6).

Let us prove that we can obtainRI0 during the execution of the algorithm. We have
several cases.

Case 1. Edges e1 and e2 are incident. Let us prove that e1 and e2 coalesce at s0.
Assume the opposite, ρ(x) �= s0, where x ∈ V (G) is incident with both e1 and e2.
Then e1 or e2 is a transfer, hence we can construct a reconciliation with smaller weight
by placing x in s0, which contradicts the minimality of R. Figure 20 depicts a more
detailed argumentation.

Case 2. Edges e1 and e2 are not incident. We will investigate subcases. Some
subcases are not obtainable by the algorithm. For them, we will prove they cannot
occur inR. Let x be the minimal element from V (G) that is an ancestor of e1 and e2.

Case 2.1. Let ρ(x) = s0, ρ(x ′
i1
) = E1, ρ(x ′′

i2
) = E2 (i1 = 1, . . . , k1; i2 =

1, . . . , k2.), where x ′
i1
and x ′′

i2
are explained in Sect. 4.2. This case refers to Case 3b

of Sect. 4.2.
We will prove that there is a random choice such that the random expansion of x ′

1
produces placement of the nodes identical to the one inR.

Assume the opposite, there is no such random choice. This means that we cannot
obtain a situation depicted by Fig. 18b. Then there are descendants of x ′

1, denoted
by y′

j (j = 1, . . . , k) (Fig. 21) such that y′
1, . . . , y

′
k−1 ∈ V (G), y′

j = pG ′(y′
j+1)

(j = 1, . . . , k − 1), y′
k is a transfer parent, y′

k ∈ V (G ′)\V (G), and ρ(y′
1) = . . . =

123

Journal of Combinatorial Optimization (2019) 38:502–544 539

(a) (b)

Fig. 21 a A situation impossible for an optimal TR reconciliation. Node y′
1 is a transfer child, and its

descendant y′
k ∈ V (G′)\V (G) is a transfer parent. b If we translocate y′

1, . . . , y
′
k to E4, we eliminate one

transfer, hence obtain a reconciliation with smaller weight

ρ(y′
k) = E3. Let E4 ∈ E(S′) be the edge that contains y′

k+1, which is a child of y
′
k . By

translocating y′
1, . . . y

′
k to E4 we obtain a reconciliation with one transfer less, which

contradicts the minimality of R. Another reason why this case is not possible is that
transfer (y′

k, y
′
k+1) is not adjusted, which contradicts the fact that R is a normalized

reconciliation.
Therefore, we can obtain the expansion of x ′

1. The same reasoning applies for
x ′
2, . . . , x

′
k1

and x ′′
1 , . . . , x ′′

k2
and their children.

Case 2.2. Assume that Ei ∈ E(S′) receives a diagonal transfer and e3−i ∈ E(G)

is propagated to the next time slice (i = 1 or i = 2). This case is also obtainable by
the algorithm (Cases 3a1 and 3a2).

Case 2.3. Both e1 and e2 are propagated to the next time slice. Then s0 contains
two unaligned edges from G, which is impossible for a TR reconciliation (Lemma 6).
Therefore this case cannot occur.

Case 2.4We have ρ(x) = s0, and there is y1 ∈ {x ′
1, . . . , x

′
k1

}, or y2 ∈ {x ′′
1 , . . . , x ′′

k2
}

such that ρ(y1) �= E1, or ρ(y2) �= E2. Since s0 is the only speciation in S in the
current time slice, then all x ′

1, . . . , x
′
k1

and x ′′
1 , . . . , x ′′

k2
are transfers.

Let R′ be a reconciliation such that ρR′(x ′
1) = . . . = ρR′(x ′

k1
) = E1, ρR′(x ′′

1) =
. . . = ρR′(x ′′

k2
) = E2, and ρR′(y) = ρR(y) for all the remaining y ∈ V (G). ThenR′

is a reconciliation with smaller weight thanR, which contradicts the optimality ofR.
Case 2.5. Assume that τ(x) > τ(s0), τ(y1) ≤ τ(s0), and τ(y2) ≤ τ(s0) for some

y1 ∈ {x ′
1, . . . , x

′
k1

}, y2 ∈ {x ′′
1 , . . . , x ′′

k2
}. Then R is not a normalized reconciliation.

Hence this case is not possible.
Case 2.6. If x is in I0 andρ(x) �= s0, thenby takingρ(x) = s0 weget a reconciliation

with fewer transfers (similarly to Case 1 and Fig. 20), contrary to the minimality of
R.

For the inductive hypothesis part, assume that the statement is true for time slices
I0, I1, . . . , Ik−1. Let us prove that it is true for Ik . Proving the statement for Ik is the
same as for I0, therefore we will not repeat it.

Hence RI is obtainable by the procedure. Since RI = R for the final time slice
I , R is also obtainable by the algorithm. Since it is a minimal reconciliation, R is a
possible output of the algorithm. ��

123

540 Journal of Combinatorial Optimization (2019) 38:502–544

(a) (b)

Fig. 22 Case 3b of the algorithm from Sect. 4.2. When randomly expanding x ′
1, we can have more than

one candidate for e3 (denoted by e31 and e32). The choice of e3 does not affect minimality of an output
reconciliation. a We choose e31. bWe choose e32. We can obtain this choice from (a) by translocating x11 .
A transfer is lost, and another is gained. Hence the number of transfers is unchanged

We will use the next lemma in the proof of Theorem 6. Basically, it states that
it is not important which random choice we select in Case 3b of the algorithm (see
Sect. 4.2).

Lemma 13 The random choice in Case 3b of the algorithm does not affect the weight
of an output reconciliation.

Proof Let Ik be the observed time interval, and I0, . . . , Ik−1 be the time intervals
before Ik (Fig. 22).

Let x ′
1 be a node that we randomly expand, and assume we have more than one

choice for a random active edge with maximal τ -value that is a descendant of x ′
1. Let

e31 and e32 be two of those edges.
We will use notations from Sect. 4.2. When constructing RIk from RIk−1 , we are

adding some new nodes fromG. Only x is a speciation, and all other nodes are transfer
parents. Since every transfer has a parent from V (G), we obtain that the number of
newly added transfers is equal to the number of newly added nodes from V (G) minus
one. Therefore ω(RIk) is not affected by a choice of e3.

Note that the active edges in Ik+1 are not affected by a choice of e3. ��

Proof of Theorem 6 It is obvious that ω(R) ≤ k, because the algorithm cuts an edge
of the branch and bound tree if t > k, where t is the number of transfers in a partially
constructed reconciliation.

Now we will prove that the conditions of Definition 22 are satisfied. Let (x, x ′) ∈
E(G ′) be a transfer in R, and y ∈ V (G ′) be the maximal element such that x ≤ y,
ρ(x) ≤ ρ(y), τ(y) ≤ τ(x) + 1.

In the algorithm, transfers are created when nodes are randomly expanded. Since
only nodes in V (G) are randomly expanded, every transfer starts in a node from V (G).
Hence x ∈ V (G).

Transfers are constructed in Cases 3b and 4 (see Sect. 4.2). Therefore, y can
be a speciation from G, transfer child, or root(G). If y is a speciation, then x ∈
{x ′

1, . . . , x
′
k1

, x ′′
1 , . . . , x ′′

k2
}, where x ′

1, . . . , x
′
k1

, x ′′
1 , . . . , x ′′

k2
are explained in Sect. 4.2,

and τ(y) = τ(x) + 1. If y is a transfer child, then τ(y) = τ(x). If y is root(G), then
τ(y) = τ(x) + 1.

123

Journal of Combinatorial Optimization (2019) 38:502–544 541

Let y be a diagonal transfer child. Diagonal transfers are made by using edges from
G that were on hold. From Case 3a we have that a loss l, assigned to y, belongs to
a lost subtree Tl with one edge and τ(root(Tl)) = τ(y) + 1. Also, (x, x ′) cannot
be a horizontal transfer, because when we put an edge on hold all other edges are
propagated to the next time slice, leaving no room for accepting a transfer.

Now we will prove that R is a minimal reconciliation. The algorithm given in
Sect. 4.2 is branch and bound, and it exhaustively observes every case possible for a
normalized reconciliation, whichwe stated in the proof of Theorem5.Also, which ran-
dom option it takes in Case 3b does not affect the optimality of an output (Lemma 13).
The algorithm always chooses a reconciliation of a smaller weight, if it finds one.
Therefore, if it returns a reconciliation as a output, then it is a minimal reconciliation.
i.e. R is a minimal reconciliation. ��

Proof of Lemma 12 Note that if (a2, a1) ∈ E(G), then there is a path in G ′
(a2, b1, . . . , bs, a1). The length of this path is at least 1, i.e. s ≥ 0. Hence every
edge from G is a path in G ′. Also, (a2, a1) can contain a transfer. In this proof we
assume that all transfers are adjusted (as described by Definition 19 and Fig. 13), i.e.
all transfers start in V (G).

We introduce a coloring of edges and nodes that were involved in some SPR opera-
tion. Let spr((a2, a1), (b2, b1)) = a′

2 be the i-th SPR operation Ti → Ti+1. Then we
color the edge (a′

2, a1) and node a′
2 with color Ci . If the edge (b2, b1) was colored,

then edges (b2, a′
2) and (a′

2, b1) are colored with the same color. Let c1 be the child of
a2 (in Ti) different from a1, and c2 be the parent of a2 (in Ti). Then c2 is the parent of
c1 (in Ti+1). If edge (c2, a2)was colored with a color, then the edge (c2, c1) is colored
with the same color.

To a minimum SPR scenario we will assign a minimum TR reconciliation. Colored
edges will represent transfers, colored nodes will be transfer parents, non-colored
edges will coincide with the edges of the species tree, and non-colored nodes will be
speciations.

Let us first demonstrate the reduction from k- Minimum TR Reconciliation to
k- Minimum Dated SPR Scenario. Let S and G be a species and gene tree,
S = T0 → T1 → · · · → Tk = G be a minimum SPR scenario transforming S into G.
Using this minimum SPR scenario, we will construct a minimum TR reconciliation.

Note that in Tk we have at most k nodes that are colored. Also, colored edges form
(colored) subtrees of Tk with colored roots and inner nodes, while the leaves of these
trees are not colored.

If a ∈ V (Tk) is a non-colored node, then it can be observed as a node from S and
node from G. Take ρ(a) = a ∈ V (S), for all non-colored nodes a ∈ V (Tk) = V (G).
Non-colored paths connect non-colored nodes. All non-colored edges from Tk = G
place inside S so that they contain no transfer. Note that the leaves of Tk are non-
colored.

Now, inside S wewill place colored nodes and colored edges. Let Tc be an arbitrary
colored tree, and c0 be its root. Then c0 is on a non-colored path ofG, andwewill leave
it there in S. Next, the inner nodes of Tc we place inside S. Let L(Tc) = {l1, . . . , ls},
and τ(l1) ≥ · · · ≥ τ(ls). Assume that c11, c

1
2, . . . , c

1
i1
are inner nodes of Tc in the path

from l1 to c0 whose placement inside S is not defined. Then place these nodes in the

123

542 Journal of Combinatorial Optimization (2019) 38:502–544

edge of S′ just above l1, i.e. ρ(c11) = . . . = ρ(c1i1) = peS′(ρ(l1)). Repeat the previous
process for leaves l2, . . . ls . In this way we obtain a reconciliation with transfers, and
every edge of S at any moment contains at most one lineage from G ′, hence if we
extend losses we obtain a TR reconciliation. Since a transfer can start only at a colored
node, we have at most k transfers, i.e. ω(R) ≤ k.

After the next reduction, we will prove that R is a minimum reconciliation.
In the second part, we demonstrate a reduction from k- Minimum Dated SPR

Scenario to k- Minimum TR Reconciliation. Let T be a dated and T ′ is an undated
binary rooted tree. We need a minimum dated SPR scenario T = T0 → T1 → · · · →
Tk = T ′.

Take S = T and G = T ′. Let R be a minimum TR reconciliation, and ω(R) = k.
We will prove that the length of minimum dated SPR scenario is k, and reconstruct it
using R.

First, let us construct a scenario of the length k. Adjust all transfers in R, so they
start at the nodes from V (G), just like in the first step of the proof of Theorem 4
(Definition 19, Fig. 13).

Take Tk = T ′,Gk = G,G ′
k = G ′, andRk = R. Let (x2, x1)be an arbitrary transfer,

x ′
1 be the child of x1 inG

′, l be the loss assigned to x1, and l0 = root(Tl), where Tl is a
lost subtree such that l ∈ L(Tl). Let pk = (l0, l1, . . . , ls−1, ls = l) be a path in G ′ (i.e.
in Tl), and therefore a lost path. Remove (x2, x1) from G ′

k , suppress x2, include the
path pk into Gk (pk is not a lost path anymore), suppress x1. Thus we eliminate one
transfer, and obtain Gk−1,G ′

k−1,Rk−1, where ω(Rk−1) = ω(Rk) − 1. By repeating
this procedure, we obtain an SPR scenario T ′ = Tk → Tk−1 → · · · → T0 = T , i.e.
T = T0 → T1 → · · · → Tk = T ′.

Since the transfers can be horizontal or diagonal, corresponding SPR operations
are dated. We proved that optimal dated SPR scenario transforming T into T ′ has the
length at most k.

Let us prove that the previous reductions construct a minimum reconciliation (the
first reduction) and a minimum SPR scenario (the second reduction). Let T1 → . . . Tk
be a minimum SPR scenario. Take S = T1,G = Tk andR is a reconciliation obtained
in the first reduction. We have k′ = ω(R) ≤ k. Now, let T1 = T ′

1 → T ′
2 → · · · →

T ′
k′′ = Tk be a SPR scenario obtained from G and S in the second reduction. Then

k′′ ≤ k′ ≤ k. Since there is no SPR scenario, transforming T1 into Tk , with the length
less than k, we have k′′ = k′ = k. ��

References

Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc
Natl Acad Sci USA 109(13):4962–4967. https://doi.org/10.1073/pnas.1116871109

Allen BL, Steel M (2001) Subtree transfer operations and their induced metrics on evolutionary trees. Ann
Comb 5(1):1–15. https://doi.org/10.1007/s00026-001-8006-8

Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation problem with gene
duplication, horizontal transfer and loss. Bioinformatics 28(12):283–291. https://doi.org/10.1093/
bioinformatics/bts225

Bansal MS, Alm EJ, Kellis M (2013) Reconciliation revisited: handling multiple optima when reconciling
with duplication, transfer, and loss. J ComputBiol 20(10):738–754. https://doi.org/10.1089/cmb.2013.
0073

123

https://doi.org/10.1073/pnas.1116871109
https://doi.org/10.1007/s00026-001-8006-8
https://doi.org/10.1093/bioinformatics/bts225
https://doi.org/10.1093/bioinformatics/bts225
https://doi.org/10.1089/cmb.2013.0073
https://doi.org/10.1089/cmb.2013.0073

Journal of Combinatorial Optimization (2019) 38:502–544 543

Beiko RG, Hamilton N (2006) Phylogenetic identification of lateral genetic transfer events. BMC Evol Biol
6(1):15. https://doi.org/10.1186/1471-2148-6-15

Bonet ML, John KS (2009) Efficiently calculating evolutionary tree measures using SAT. vol 5584. LNCS.
Springer, Berlin. pp 4–17. https://doi.org/10.1007/978-3-642-02777-2_3

Bordewich M, Semple C (2005) On the computational complexity of the rooted subtree prune and regraft
distance. Ann Comb 8(4):409–423. https://doi.org/10.1007/s00026-004-0229-z

ChanY,RanwezV, ScornavaccaC (2015) Exploring the space of gene/species reconciliationswith transfers.
J Math Biol 71(5):1179–1209. https://doi.org/10.1007/s00285-014-0851-2

Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolution: losses in reconciliation and a
link with supertrees. Lecture Notes in Computer Science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics) 5541 LNBI, pp 46–58. https://doi.org/10.1007/978-
3-642-02008-7_4

Chen ZZ, Fan Y,Wang L (2015) Faster exact computation of rSPR distance. J Comb Optim 29(3):605–635.
https://doi.org/10.1007/s10878-013-9695-8

Chen J, Shi F, Wang J (2016) Approximating maximum agreement forest on multiple binary trees. Algo-
rithmica 76(4):867–889. https://doi.org/10.1007/s00453-015-0087-6

Choi SC, Rasmussen MD, Hubisz MJ, Gronau I, Stanhope MJ, Siepel A (2012) Replacing and additive
horizontal gene transfer in streptococcus. Mol Biol Evol 29(11):3309–3320. https://doi.org/10.1093/
molbev/mss138

Dasgupta B, Ferrarini S, Gopalakrishnan U, Paryani NR (2006) Inapproximability results for the lateral
gene transfer problem. J Comb Optim 11(4):387–405. https://doi.org/10.1007/s10878-006-8212-8

Doyon JP, Scornavacca C, Ranwez V, Berry V (2010) An efficient algorithm for gene/species trees parsimo-
nious reconciliation with losses, duplications, and transfers. In: Comparative genomics: international
workshop, RECOMB-CG 2010, Ottawa, Canada, October 9–11, 2010 Proceedings (October), pp 93–
108. https://doi.org/10.1007/978-3-642-16181-0_9

Doyon JP, Ranwez V, Daubin V, Berry V (2011) Models, algorithms and programs for phylogeny reconcil-
iation. Briefings Bioinf 12(5):392–400. https://doi.org/10.1093/bib/bbr045

Even S, Itai A, Shamir A (1976) On the complexity of timetable and multicommodity flow problems. SIAM
J Comput 5(4):691–703. https://doi.org/10.1137/0205048

Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. W.
H. Freeman & Co., New York

Garey M, Johnson D, Stockmeyer L (1976) Some simplified NP-complete graph problems. Theor Comput
Sci 1(3):237–267. https://doi.org/10.1016/0304-3975(76)90059-1

GoodmanM,Czelusniak J,MooreGW,Romero-HerreraAE,MatsudaG (1979) Fitting the gene lineage into
its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences.
Syst Biol 28(2):132–163. https://doi.org/10.1093/sysbio/28.2.132

Hallett MT, Lagergren J (2001) Efficient algorithms for lateral gene transfer problems. In: Proceedings of
the fifth annual international conference on computational biology. RECOMB ’01. ACM, New York,
pp 149–156. https://doi.org/10.1145/369133.369188

Hasić D, Tannier E (2019) Gene tree species tree reconciliation with gene conversion. J Math Biol. https://
doi.org/10.1007/s00285-019-01331-w

Hein J, Jiang T, Wang L, Zhang K (1996) On the complexity of comparing evolutionary trees. Discrete
Appl Math 71(1–3):153–169. https://doi.org/10.1016/S0166-218X(96)00062-5

Hickey G, Dehne F, Rau-Chaplin A, Blouin C (2008) SPR distance computation for unrooted trees. Evol
Bioinform 4:17–27. https://doi.org/10.4137/EBO.S419

Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618.
https://doi.org/10.1038/nrg2386

Linz S, Semple C (2011) A cluster reduction for computing the subtree distance between phylogenies. Ann
Comb 15(3):465–484. https://doi.org/10.1007/s00026-011-0108-3

Merkle D, Middendorf M, Wieseke N (2010) A parameter-adaptive dynamic programming approach for
inferring cophylogenies. BMC Bioinf 11(1):S60. https://doi.org/10.1186/1471-2105-11-S1-S60

Nakhleh L (2012) Computational approaches to species phylogeny inference and gene tree reconciliation.
Biophys Chem 34(1):13–23. https://doi.org/10.1016/j.immuni.2010.12.017

Raman V, Ravikumar B, Rao S (1998) A simplified NP-complete MAXSAT problem. Inf Process Lett
65(1):1–6. https://doi.org/10.1016/S0020-0190(97)00223-8

123

https://doi.org/10.1186/1471-2148-6-15
https://doi.org/10.1007/978-3-642-02777-2_3
https://doi.org/10.1007/s00026-004-0229-z
https://doi.org/10.1007/s00285-014-0851-2
https://doi.org/10.1007/978-3-642-02008-7_4
https://doi.org/10.1007/978-3-642-02008-7_4
https://doi.org/10.1007/s10878-013-9695-8
https://doi.org/10.1007/s00453-015-0087-6
https://doi.org/10.1093/molbev/mss138
https://doi.org/10.1093/molbev/mss138
https://doi.org/10.1007/s10878-006-8212-8
https://doi.org/10.1007/978-3-642-16181-0_9
https://doi.org/10.1093/bib/bbr045
https://doi.org/10.1137/0205048
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1093/sysbio/28.2.132
https://doi.org/10.1145/369133.369188
https://doi.org/10.1007/s00285-019-01331-w
https://doi.org/10.1007/s00285-019-01331-w
https://doi.org/10.1016/S0166-218X(96)00062-5
https://doi.org/10.4137/EBO.S419
https://doi.org/10.1038/nrg2386
https://doi.org/10.1007/s00026-011-0108-3
https://doi.org/10.1186/1471-2105-11-S1-S60
https://doi.org/10.1016/j.immuni.2010.12.017
https://doi.org/10.1016/S0020-0190(97)00223-8

544 Journal of Combinatorial Optimization (2019) 38:502–544

Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a
distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol
4(1):31. https://doi.org/10.1186/1741-7007-4-31

Scornavacca C, Paprotny W, Berry V, Ranwez V (2013) Representing a set of reconciliations in a compact
way. J Bioinform Comput Biol 11(02):1250025. https://doi.org/10.1142/S0219720012500254

Shi F, Feng Q, Chen J, Wang L, Wang J (2013) Distances between phylogenetic trees: a survey. Tsinghua
Sci Technol 18(5):490–499. https://doi.org/10.1109/TST.2013.6616522

Shi F, Feng Q, You J, Wang J (2016) Improved approximation algorithm for maximum agreement forest of
two rooted binary phylogenetic trees. J Comb Optim 32(1):111–143. https://doi.org/10.1007/s10878-
015-9921-7

Song YS (2006) Properties of subtree-prune-and-regraft operations on totally-ordered phylogenetic trees.
Ann Comb 10(1):147–163. https://doi.org/10.1007/s00026-006-0279-5

Suchard MA (2005) Stochastic models for horizontal gene transfer: taking a random walk through tree
space. Genetics 170(1):419–431. https://doi.org/10.1534/genetics.103.025692

Szöllősi GJ, Tannier E, Lartillot N, Daubin V (2013) Lateral gene transfer from the dead. Syst Biol
62(3):386–397. https://doi.org/10.1093/sysbio/syt003

Szöllősi GJ, Tannier E, Daubin V, Boussau B (2015) The inference of gene trees with species trees. Syst
Biol 64(1):42–62. https://doi.org/10.1093/sysbio/syu048

Tofigh A, Hallett M, Lagergren J (2011) Simultaneous identification of duplications and lateral gene trans-
fers. IEEE ACM Trans Comput Biol Bioinform 8(2):517–535. https://doi.org/10.1109/TCBB.2010.
14

Whidden C, Matsen F (2018) Calculating the unrooted subtree Prune-and-Regraft distance. IEEE ACM
Trans Comput Biol Bioinform: 1–1. https://doi.org/10.1109/TCBB.2018.2802911

Whidden C, Beiko RG, Zeh N (2010) Fast FPT algorithms for computing rooted agreement forests: theory
and experiments. Springer, Berlin, pp 141–153. https://doi.org/10.1007/978-3-642-13193-6_13

Whidden C, Beiko RG, Zeh N (2016) Fixed-parameter and approximation algorithms for maximum agree-
ment forests of multifurcating trees. Algorithmica 74(3):1019–1054. https://doi.org/10.1007/s00453-
015-9983-z

WuY (2009)A practicalmethod for exact computation of subtree prune and regraft distance. Bioinformatics
25(2):190–196. https://doi.org/10.1093/bioinformatics/btn606

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1186/1741-7007-4-31
https://doi.org/10.1142/S0219720012500254
https://doi.org/10.1109/TST.2013.6616522
https://doi.org/10.1007/s10878-015-9921-7
https://doi.org/10.1007/s10878-015-9921-7
https://doi.org/10.1007/s00026-006-0279-5
https://doi.org/10.1534/genetics.103.025692
https://doi.org/10.1093/sysbio/syt003
https://doi.org/10.1093/sysbio/syu048
https://doi.org/10.1109/TCBB.2010.14
https://doi.org/10.1109/TCBB.2010.14
https://doi.org/10.1109/TCBB.2018.2802911
https://doi.org/10.1007/978-3-642-13193-6_13
https://doi.org/10.1007/s00453-015-9983-z
https://doi.org/10.1007/s00453-015-9983-z
https://doi.org/10.1093/bioinformatics/btn606

	Gene tree reconciliation including transfers with replacement is NP-hard and FPT
	Abstract
	1 Introduction
	1.1 A review of previous results
	1.2 The contribution of this paper

	2 Definitions
	3 Finding a minimum DTLCTR reconciliation is NP-hard
	3.1 Variable and clause gadgets
	3.2 Proper reconciliation
	3.3 Proper minimum reconciliation

	4 The Minimum TR Reconciliation is fixed-parameter tractable
	4.1 Normalized reconciliation
	4.2 Random normalized reconciliation
	4.3 Pseudocodes and properties

	5 The Minimum Dated SPR Scenario is NP-hard and FPT
	6 Conclusion
	Acknowledgements
	Appendix: Proofs
	References

