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Abstract
The modern integrated circuit is one of the most complex products engineered to date.
It continues to grow in complexity as years progress. As a result, very large-scale
integrated (VLSI) circuit design now involves massive design teams employing state-
of-the-art computer-aided design (CAD) tools. One of the oldest, yet most important
CAD problems for VLSI circuits is physical design automation, where one needs to
compute the best physical layout of millions to billions of circuit components on a
tiny silicon surface (Lim in Practical problems in VLSI physical design automation,
Springer, Dordrecht, 2008). The process of mapping an electronic design to a chip
involves several physical design stages, one of which is clustering. Even for combina-
torial circuits, there exists several models for the clustering problem. In particular, we
consider the problem of clustering in combinatorial circuits for delay minimization,
without permitting logic replication (CN). The problem of clustering for delay mini-
mization when logic replication is allowed (CA) has been well-studied and is known
to be solvable in polynomial time (Lawler et al. in IEEE Trans Comput 18(1):47–
57, 1969; Rajaraman and Wong, in: 30th ACM/IEEE design automation conference,
pp 309–314, 1993). However, unbounded logic replication can be quite expensive.
It follows that CN is an important problem. We show that selected variants of CN
are NP-hard. We also obtain approximability and inapproximability results for some
of these problems. A preliminary version of this paper appears in Donovan et al. (in:
9th International conference on combinatorial optimization and applications, COCOA
2015, Proceedings, pp 334–347, 2015).
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1 Introduction

In this paper, we consider the problem of clustering without replication in combinato-
rial circuits for delay minimization (CN). Combinatorial circuits implement Boolean
functions and produce a unique output for every combination of input signals (Koshy
2004). The gates and their interconnections in the circuit represent implementations of
one ormoreBoolean function(s). TheBoolean functions are realized by the assignment
of the gates to chips.

Due to manufacturing process requirements and capacity constraints, it is generally
not possible to place all of the circuit elements in one chip. Consequently, the circuit
is partitioned into clusters, where each cluster represents a chip in the overall circuit
design. The circuit elements are assigned to clusters while satisfying specific design
constraints (e.g., cluster capacity) (Rajaraman and Wong 1993).

Gates and their interconnections usually have delays. The delays of the intercon-
nections are determined by the way the circuit is clustered. Intra-cluster delays are
associated with the interconnections between gates in the same cluster. Inter-cluster
delays are associated with the interconnections between gates in different clusters. The
delay along a path from an input to an output is the sum of the delays of the gates and
interconnections on the respective path. The delay of the overall circuit, with respect
to a specific clustering, is the maximum delay among all paths that connect an input
to any output in the clustered-circuit.

The problem of clustering combinatorial circuits for delayminimizationwhen logic
replication is allowed (CA) is well-studied (Lawler et al. 1969; Rajaraman and Wong
1993). It frequently arises in VLSI design. In CA, the goal is to find a clustering of a
circuit thatminimizes the delay of the overall circuit.CA has been shown to be solvable
in polynomial time (Lawler et al. 1969; Rajaraman and Wong 1993). However, when
replication is allowed, circuit elementsmay be assigned tomore than one cluster. Thus,
unbounded replication can be quite expensive. As systems become increasingly more
complex, the need for clustering without logic replication is crucial. It follows that
CN is an important problem in VLSI design.

In this paper, we consider several variants of CN and discuss their computational
complexities. We design an approximation algorithm for one of these variants and
obtain inapproximability results for other variants.

The rest of this paper is organized as follows: The problem is formally described
in Sect. 2. We then examine the related work in Sect. 3. In Sect. 4, we give some hard-
ness results for the clustering problem. We also show that our hardness results imply
inapproximability below a certain threshold. In Sect. 5, we propose an approximation
algorithm for solving the clustering problem, when the gates are unweighted and each
cluster has at most two gates. We conclude the paper with Sect. 6, by summarizing
our main results and identifying avenues for future work.
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Fig. 1 A DAG representing a
combinatorial network with two
sources and two sinks
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2 Statement of problems

In this section, we formally describe the problem studied in this paper. We start with
graph preliminaries. Next, we formulate the problem using the language of combi-
natorial circuits. Finally, we represent such circuits as directed acyclic graphs and
formulate the main problem using graph-theoretic terminology.

2.1 Graph preliminaries

In this subsection, we define the main graph-theoretic concepts that are used in the
paper.

Graphs considered in this paper do not contain loops or parallel edges. The degree
of a vertex v of an undirected graph G is the number of edges of G that are incident
with v. The maximum degree of G is denoted by Δ(G) or simply Δ when G is known
from the context.

A directed path (or, just a path) of a directed graph G is a sequence Q =
v0e1v1 . . . elvl , where v0, v1, . . . , vl are vertices ofG, e1, . . . , el are edges (also called
arcs) of G, and e j = (v j−1, v j ), 1 ≤ j ≤ l. We call l the length of the path Q, and
sometimes we say that Q is an l-path ofG. If v0 = vl , then Q is called a directed cycle
(or, just cycle).G is said to be a directed acyclic graph (DAG), if it contains no directed
cycles. For further terminology on directed graphs, one may consult (Bang-Jensen and
Gutin 2010).

A cluster is an arbitrary subset of the vertices of a DAG, and it does not have to be
strongly connected. If C is a cluster in a DAG G, then an edge is said to be a cut-edge
if it connects a vertex of C to a vertex from V (G)\C . The degree of C is the number
of cut-edges incident with a vertex in C .

The indegree and outdegree of a vertex are the number of arcs that enter and leave
the vertex, respectively. A source (sink, resp.) is a vertex with indegree zero (outdegree
zero, resp.). It is well-known that every DAG has a source and a sink (Bang-Jensen
and Gutin 2010). Let I and O be the set of sources and sinks of G, respectively.
Notice that I = {a, b} and O = {e, f } in the DAG of Fig. 1; C1 = {a, c, g} and
C2 = {b, e, f } represent a pair of disjoint clusters.

2.2 Formulation using combinatorial circuits

A combinatorial circuit can be represented as a DAG G = (V , E). In G, each vertex
v ∈ V represents a gate, and each edge (u, v) ∈ E represents an interconnection
between gates u and v. In general, each gate in a circuit has an associated delay
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(Murgai et al. 1991). In the model that we consider in this paper, each interconnection
has one of the following types of delays: (1) an intra-cluster delay, d, when there is
an interconnection between two gates in the same cluster, or (2) an inter-cluster delay,
D, when there is an interconnection between two gates in different clusters.

The delay along a path from an input to an output is the sum of the delays of the
gates and interconnections that lie on the path. The delay of the overall circuit is the
maximum delay among all source to sink paths in the circuit.

A clustering partitions the circuit into disjoint subsets. A clustering algorithm tries
to achieve one or both of the following goals, subject to one or more constraints:

(1) The delay minimization through the circuit (Rajaraman and Wong 1993).
(2) The minimization of the total number of cut-edges (Hwang and Gamal 1995).

In this paper, we study CN under the delay model described as follows:

1. Associated with every gate v of the circuit, there is a delay δ(v) and a size w(v).
2. The delay of an interconnection between two gates within a single cluster is d.
3. The delay of an interconnection between two gates in different clusters is D, where

D � d.

The size of a cluster is the sum of the sizes of the gates in the cluster. The precise
formulation of CN is as follows:

Given a combinatorial circuit, with each gate having a size and a delay, maximum
degree Δ, intra- and inter-cluster delays d and D, respectively, and a positive integer
M called cluster capacity, the goal is to partition the circuit into clusters such that

1. The size of each cluster is bounded by M ,
2. The delay of the circuit is minimized.

2.3 Graph-theoretic formulation

In the rest of the paper, we focus on a graph-theoretic formulation of CN. Given a
clustering of a combinatorial circuit represented as a DAG G = (V , E), the delays on
the interconnections between gates induce an edge-delay function δ : E → {d, D} of
G. The weight of a cluster is the sum of the weights of the vertices in the cluster. The
delay-length of a directed path P = v0e1v1 . . . elvl of G is

∑l
i=0 δ(vi )+∑l

i=1 δ(ei ),
where δ(ei ) is equal to d if vi−1 and vi are inside the same cluster, or D, otherwise.

We also employ the following notations and concepts. The symbol X below can
be either W , which means that the vertices are weighted, or N , which means that the
vertices are unweighted, the symbol M is the cluster capacity, and Δ is the maximum
number of arcs entering or leaving any vertex of the DAG (i.e., the maximum degree
Δ of the underlying undirected graph of the DAG).

CN〈X , M,Δ〉 is formulated (graph-theoretically) as follows: Given a DAG G =
(V , E),with vertex-weight functionw : V → N, delay function δ : V → N,maximum
degree Δ, constants d and D, and a cluster capacity M , the goal is to partition V into
clusters such that

1. The weight of each cluster is bounded by M ,
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Fig. 2 An example of a DAG and clustering of the DAG

2. The maximum delay-length of any path from a source to a sink of G is minimized.

A clustering of G, such that the weight of each cluster is bounded by M , is called
feasible. Given a feasible clustering of G, one can consider the corresponding edge-
length function δ : E → {d, D} of G. A clustering of G is optimal if the maximum
delay-length of any path from a source to a sink is the minimum among all clusterings.

In Fig. 2, we consider a simple example of clustering a combinatorial circuit repre-
sented by aDAG,when logic replication is not allowed. In this example, the delays and
weights of all vertices are equal to 0 and 1, respectively (i.e., δ(v) = 0 and w(v) = 1
for all vertices v in the DAG), the cluster capacity is M = 2, the intra-cluster delay
is d = 0; and, the inter-cluster delay is D = 1. It can be easily seen that the partition
� = {{s, a}, {b, e}, {c, t}} forms a feasible clustering such that the longest delay-
length of any path from s to t is 2. Moreover, we can quickly check to see that this
clustering is optimal.

In this paper, we focus on a restriction of CN〈X , M,Δ〉, when δ(v) = 0 for every
vertex v of G.

The main contributions of this paper are as follows:

1. Establishing the NP-hardness of several variants of CN〈W , M,Δ〉 (Sect. 4).
2. Proof of inapproximability for several variants of CN〈W , M,Δ〉 (Sect. 4).
3. Design and analysis of a 2-approximation algorithm for CN〈N , 2,Δ〉 (Sect. 5).

3 Related work

In this section, we describe some related work in the literature.
Lawler et al. (1969) were the first to present an exact polynomial time algorithm for

CA. They also show that in the special case when the undirected underlying graph is a
tree,CN is polynomial time solvable. We refer to the model under which the problems
were studied in Lawler et al. (1969) as the “unit delay model” (Murgai et al. 1991),
where δ(v) = 0, ∀v ∈ V and D = 1. A more general delay model is presented by
Murgai et al. (1991), where δ(v) ≥ 0, ∀v ∈ V and D ≥ 0. As per Rajaraman and
Wong (1993), this extension of the unit delay model is said to be more powerful and
realistic. The algorithm for the general delay model proposed in Murgai et al. (1991)
does not always return an optimal solution, although they specify the conditions under
which their algorithm returns an optimum. Rajaraman and Wong (1993) consider CA
under the more general delay model proposed in Murgai et al. (1991), and discuss an
algorithm that returns an optimal clustering in polynomial time.
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Yang and Wong (1997) extend the work done in Rajaraman and Wong (1993), and
consider both area and pin constraints. Note that Murgai et al. (1991) and Rajaraman
and Wong (1993) consider area constraints only. In Yang and Wong (1997), they
propose an efficient clustering algorithm that achieves an optimal solution under either
the area constraint only or the pin constraint only. However, when both constraints are
present, the algorithm does not always return the optimal solution. They specify the
rare condition under which the algorithm fails to do so.

Cong and Romesis extend the study of CA to multi-level circuit clustering, with
application to hierarchical field programmable gate array (FPGA) architecture, where
clustering is applied recursively in two stages (Cong and Romesis 2001). They show
that the multi-level clustering problem for delay minimization with replication is NP-
hard. They also propose an efficient heuristic for two-level clustering, providing a
trade-off between area and delay by controlling the amount of replication.

Goldschmidt and Hochbaum (1988) studied the multiway partition problem, where
the goal is to find a partition of an edge-weighted graph G into some non-empty
clusters, such that the total edgeweight between the clusters isminimum. This problem
remainsNP-hard, even when the input graph is unweighted, and there is no restriction
on the cluster capacity. If the number of clusters is fixed (say r ), then there is an
algorithm that runs in time O(nr

2
) that solves this restriction exactly. Here n is the

number of vertices of G. The case of the multiway partition problem, in which r = 2,
is frequently encountered in the literature. This case is called the bipartition problem.
It is NP-hard for d-regular graphs (Bui et al. 1987), where d ≥ 3 is a fixed constant.
On the positive side, there is a dynamical programming based algorithm for solving
this problem in the case of trees (Bui and Jones 1989; Goldberg and Miller 1988;
MacGregor 1988).

Mak and Wong (1996) examine the amount of replication needed for clusterings
that reduce the cut size. They focus on the bipartition problem with the goal of finding
a minimum-cut that minimizes the size of the replication set. They present an efficient
network-flow based algorithm that finds a min-cut partitioning which requires the
least amount of replication to separate the gates of the circuit into two subsets. They
also show how their algorithm applies to the problem of area-constrained min-cut
partitioning with replication.

Kagaris (2003) considers CN under both area constraints and pin constraints,
separately. Both area-constrained and pin-constrained problems are shown to be
NP-hard, even for the unit delay model. Although not explicitly stated, the proof
for the area-constrained problem establishes the NP-completeness of the decision
version of CN〈{1, 2, 3, 4}, 5,Δ〉 – a restriction of CN〈W , M,Δ〉. This implies that
CN〈W , M,Δ〉 is NP-hard (cf. Theorem 1). They present an efficient heuristic which
makes use of the clustering algorithm described in Rajaraman andWong (1993). Their
experimental results show that the delay is about 1.5 times the optimum (on average)
for small inter-cluster delays, but increases with large inter-cluster delays and large
cluster capacities. However, they do not establish provable bounds.
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Fig. 3 Reduction from
Partition to CNdec〈W , M, Δ〉 s

u1 u2 un

t

. . .

4 Computational complexity of CN

In this section, we obtain the main results that deal with the computational complexity
of CN. We prove theorems that establish the NP-hardness of some variants of CN.
Our reductions imply that CN is inapproximable within a certain factor.

In order to formulate the results,we considerCNdec,which is formulated as follows:
Given a DAG G = (V , E), with vertex-weight function w : V → N, delay function
δ : V → N, maximum degree Δ, constants d and D, cluster capacity M , and a
positive integer k, decide whether we can partition V into clusters such that

1. The weight of each cluster is bounded by M ,
2. The longest delay-length of any path from a source to a sink of G is at most k.

It is not hard to see that CNdec is the decision version of CN〈W , M,Δ〉. We make
this correspondence explicit by writingCNdec asCNdec〈W , M,Δ〉. We use the same
notation for restrictions of CN〈W , M,Δ〉. If A is a subset of positive integers, then
CNdec〈A, M,Δ〉 denotes the restriction of CNdec〈W , M,Δ〉, when the weights of
verticies of the input DAG are from A.

Our first theorem establishes the NP-completeness of CNdec〈W , M,Δ〉. Clearly,
this means that CN〈W , M,Δ〉 is NP-hard.

Theorem 1 CNdec〈W , M,Δ〉 is NP-complete.

Proof We recallCNdec〈W , M,Δ〉 as follows: Given aDAGG = (V , E), with vertex-
weight function w : V → N, delay function δ(v) = 0, maximum degree Δ, constants
d and D, cluster capacity M , and a positive integer k, decide whether we can partition
V into clusters such that the weight of each cluster is bounded by M , and the longest
delay-length of any path from a source to a sink of G is at most k.

It is clear that CNdec〈W , M,Δ〉 is in NP since it follows from the well-known fact
that finding a maximum weighted path in an edge-weighted DAG is polynomial time
solvable.

In order to establish NP-hardness of CNdec〈W , M,Δ〉, we present a reduction
from Partition. For that purpose, we recall Partition as follows: Given a set
A = {a1, a2, . . . , an}, the goal is to check whether there is a set A1 ⊂ A, such
that

∑
ai∈A1

ai = ∑
ai∈A\A1

ai , where i ∈ {1, 2, . . . , n}. Without loss of generality,
we assume that

∑
ai∈A ai = B is even, otherwise the problem is trivial.

We now construct an instance I ′ ofCNdec〈W , M,Δ〉 as shown in Fig. 3. There is a
source s connected to a sink t through n vertices labeled u1 through un . LetU denote
the set of all vertices ui (1 ≤ i ≤ n). The vertices inU are pairwise nonadjacent. Each
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vertex ui ∈ U has a weight ai , and both s and t have weight B
2 . We set d = 0 and let

D be any positive integer. All vertices are given a delay of 0. The cluster capacity is
set to B, and we set k = D. The description of I ′ is complete.

Observe that I ′ can be constructed from an instance I of Partition in polynomial
time. In order to complete the proof of the theorem, we show that I is a “yes” instance
of Partition if and only if I ′ is a “yes” instance of CNdec〈W , M,Δ〉.

Assume that I is a “yes” instance of Partition. This means that there exists a
partition of A into A1 and A \ A1 such that

∑
ai∈A1

ai = ∑
ai∈A\A1

ai = B
2 . Group

the vertices corresponding to the elements in A1 with s, and the remaining vertices
with t . Observe that the cluster capacity constraint is met. Moreover, the longest
delay-length of any path from s to t is D. This means that I ′ is a “yes” instance of
CNdec〈W , M,Δ〉.

For the proof of the converse statement, assume that I ′ is a “yes” instance of
CNdec〈W , M,Δ〉. This means that there is a way of partitioning the vertices of G
into clusters such that the longest delay-length of any path from s to t is at most D. We
observe that every vertexmust be packedwith either s or t , otherwise the longest delay-
length must equal 2 · D > k. LetUs andUt denote the subsets of the vertices inU that
are packedwith s and t , respectively. Letw(s) andw(t) be theweights of vertices s and
t , respectively. Letw(Us) andw(Ut ) be the sums of theweights of the vertices inU that
are packed with s and t , respectively. Clearly, w(s)+w(Us)+w(t)+w(Ut ) = 2 · B.

Since w(s)+w(Us) ≤ B and w(t)+w(Ut ) ≤ B, we have w(Us) ≤ B
2 and w(Ut ) ≤

B
2 . This implies thatw(Us) = B

2 and w(Ut ) = B
2 . Thus, we have obtained the desired

partition of A. Hence, I is a “yes” instance of Partition. �
The proof of Theorem 1 implies NP-hardness of CN〈W , M,Δ〉, even for planar

networks and therefore, strengthens the result in Kagaris (2003). Moreover, we obtain
the following inapproximability result.

Corollary 1 CN〈W , M,Δ〉 does not admit a (2−ε)-approximation algorithm for each
ε > 0, unless P = NP.

Proof Byway of contradiction, suppose there exists a (2−ε)-approximation algorithm
for CNdec〈W , M,Δ〉. We construct a polynomial time algorithm for Partition as
follows:

Algorithm 4.1: A polynomial time algorithm for Partition

input : An instance I of Partition.
output: “Yes” or “No”.

1 Construct an instance I of Partition, we construct an instance G of
CNdec〈W , M,Δ〉 using the reduction described in the proof of Theorem 1.

2 Run the (2 − ε)-approximation algorithm for CNdec〈W , M,Δ〉 to get a
clustering � for G.

3 return “Yes” if and only if the maximum delay induced by � is less than or
equal to (2 − ε) · D.

Let OPT denote the delay of the optimal clustering of G. If I is a “yes” instance of
Partition, then OPT ≤ D. Moreover, themaximum delay of any clustering solution
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of G returned by the (2−ε)-approximation algorithm for CNdec〈W , M,Δ〉 is at most
(2 − ε) · D. Otherwise, the maximum delay of any clustering solution of G must be
at least 2 · D. Thus, the (2 − ε)-approximation algorithm solves the instance I of
Partition exactly. �

The next theorem serves to strengthen Theorem 1.

Theorem 2 CNdec〈W , M, 3〉 is NP-complete.

Proof We recall CNdec〈W , M, 3〉 as follows: Given a DAG G = (V , E), with vertex-
weight function w : V → N, delay function δ(v) = 0, maximum degree Δ = 3,
constants d and D, cluster capacity M , and a positive integer k, decide whether we
can partition V into clusters such that the weight of each cluster is bounded by M , and
the longest delay-length of any path from a source to a sink of G is at most k.

It is clear that CNdec〈W , M, 3〉 is in NP since it follows from the well-known fact
that finding a maximum weighted path in an edge-weighted DAG is polynomial time
solvable.

In order to establish NP-hardness of CNdec〈W , M, 3〉, we present a reduction
from Partition. For that purpose, we recall Partition as follows: Given a set
A = {a1, a2, . . . , an}, the goal is to check whether there is a set A1 ⊂ A, such
that

∑
ai∈A1

ai = ∑
ai∈A\A1

ai , where i ∈ {1, 2, . . . , n}. Without loss of generality,
we assume that

∑
ai∈A ai = B is even, otherwise the problem is trivial.

We now construct an instance I ′ of CNdec〈W , M, 3〉 as shown in Fig. 4. Let U
denote the set of all vertices ui (1 ≤ i ≤ n). The vertices inU are pairwise nonadjacent.
Each vertex ui ∈ U belongs to a distinct path that connects the source s to the sink
t . Let S denote the set of all vertices that are predecessors of the vertices in U . Let T
denote the set of all vertices that are successors of the vertices in U . Note that in the
underlying undirected graph, the subgraphs induced by S and T are isomorphic. Let
m denote the size of S and T . Each vertex ui ∈ U has a weight of ai . Every vertex in
S and T has weight 1. We set d = 0 and let D be any positive integer. Every vertex is
given a delay of 0. The cluster capacity M is set to

( B
2 + m

)
, and we set k = D. The

description of I ′ is complete.
Observe that I ′ can be constructed from an instance I of Partition in polynomial

time. In order to complete the proof of the theorem, we show that I is a “yes” instance
of Partition if and only if I ′ is a “yes” instance of CNdec〈W , M, 3〉.

Assume that I is a “yes” instance of Partition. This means that there exists a
partition of A into A1 and A \ A1 such that

∑
ai∈S1 ai = ∑

ai∈A\A1
ai = B

2 . Group the
vertices corresponding to the elements in A1 with S, and the remaining vertices with
T . Observe that the cluster capacity constraint is met. Moreover, the longest delay-
length of any path from the source s to the sink t is D. This means that I ′ is a “yes”
instance of CNdec〈W , M, 3〉.

Conversely, assume that I ′ is a “yes” instance ofCNdec〈W , M, 3〉. This means that
there is away of partitioning the vertices of theDAG in Fig. 4 into clusters, such that the
cluster capacity constraint is satisfied, and the longest delay-length of any path from s
to t is at most D. Since S and T have the same underlying structure and |S| = |T |, then
without loss of generality, we may assume that every vertex in S is clustered together,
and every vertex in T is clustered together. Furthermore, each vertex ui ∈ U must be
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Fig. 4 Reduction from Partition to CNdec〈W , M, 3〉

clusteredwith the vertices in either S or T . Otherwise, the delay-length of the path from
s to t is strictly greater than D. LetUS andUT denote the subsets of the vertices inU
that are packed with S and T , respectively. Observe thatUS ∪UT = U . Notice that the
delay-length of any path from s to a vertex inUS is 0, and the delay-length of any path
from a vertex in UT to t is also 0. Let w(S) and w(T ) denote the sum of the weights
of all vertices in S and T , respectively. Notice that w(S) = w(T ) = m. Let w(US)

and w(UT ) denote the sum of the weights of all vertices in US and UT , respectively.
Clearly,w(US)+w(UT )+w(S)+w(T ) = B+2·m.Sincew(US)+w(S) ≤ ( B

2 + m
)

and w(UT ) + w(T ) ≤ ( B
2 + m

)
, then w(US) ≤ B

2 and w(UT ) ≤ B
2 . This implies

that w(US) = B
2 and w(UT ) = B

2 . Thus, we have obtained the desired partition of A.
Hence, I is a “yes” instance of Partition. �

The proof of Theorem 2 implies an inapproximability result for CN〈W , M, 3〉.
Corollary 2 CN〈W , M, 3〉 does not admit a (2−ε)-approximation algorithm for each
ε > 0, unless P = NP.
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Proof Byway of contradiction, suppose there exists a (2−ε)-approximation algorithm
for CNdec〈W , M, 3〉. We construct a polynomial time algorithm for Partition as
follows:

Algorithm 4.2: A polynomial time algorithm for Partition

input : An instance I of Partition.
output: “Yes” or “No”.

1 Construct an instance I of Partition, we construct an instance G of
CNdec〈W , M, 3〉 using the reduction described in the proof of Theorem 2.

2 Run the (2 − ε)-approximation algorithm for CNdec〈W , M, 3〉 to get a
clustering � for G.

3 return “Yes” if and only if the maximum delay induced by � is less than or
equal to (2 − ε) · D.

Let OPT denote the delay of the optimal clustering of G. If I is a “yes” instance of
Partition, then OPT ≤ D. Moreover, themaximum delay of any clustering solution
of G returned by the (2− ε)-approximation algorithm for CNdec〈W , M, 3〉 is at most
(2 − ε) · D. Otherwise, the maximum delay of any clustering solution of G must be
at least 2 · D. Thus, the (2 − ε)-approximation algorithm solves the instance I of
Partition exactly. �

The next theorem implies NP-hardness of CN〈{1, 2, 3}, 3, 3〉. In the proof, we use
a 3SAT reduction modeled after the one presented in Kagaris (2003).

Theorem 3 CNdec〈{1, 2, 3}, 3, 3〉 is NP-complete.

Proof We recall CNdec〈{1, 2, 3}, 3, 3〉 as follows: Given a DAG G = (V , E), with
vertex-weight functionw : V → {1, 2, 3}, delay function δ(v) = 0, maximum degree
Δ = 3, constants d and D, cluster capacity M = 3, and a positive integer k, decide
whether we can partition V into clusters such that theweight of each cluster is bounded
by M , and the longest delay-length of any path from a source to a sink of G is at most
k.

It is clear that CNdec〈{1, 2, 3}, 3, 3〉 is in NP since it follows from the well-known
fact that finding a maximum weighted path in an edge-weighted DAG is polynomial
time solvable.

In order to establish NP-hardness ofCNdec〈{1, 2, 3}, 3, 3〉, we present a reduction
from 3SAT. For that purpose, we recall 3SAT as follows: Given a 3-CNF formula φ

with n variables x1, . . . , xn and m clauses C1, . . . ,Cm , the goal is to check whether
φ has a satisfying assignment. Without loss of generality, for all i ∈ {1, . . . , n} we
assume that each variable xi in φ appears at most three times and each literal at most
twice. (Any3SAT instance can be transformed to satisfy these properties in polynomial
time (Papadimitriou 1994).)

Let each variable xi (1 ≤ i ≤ n) be represented by a variable gadget as shown in
Fig. 5a. Let each clause C j (1 ≤ j ≤ m) be represented by a clause gadget as shown
in Fig. 5b. If a variable xi or its complement x̄i is the 1st, 2nd, or 3rd literal of a clause
C j , then the corresponding vertex labeled xi (or x̄i ) is connected to a sink labeled C j
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Fig. 5 Gadgets used to represent variables and clauses
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x4 x̄4

C1

y11 y12 y13

z11 z12 z13

C2

y21 y22 y23

z21 z22 z23

Fig. 6 Simple example

through a pair of vertices labeled {y j1, z j1}, {y j2, z j2}, or {y j3, z j3}, respectively.
A simple example of the construction of an instance I ′ is shown in Fig. 6, where
φ = C1 ∧ C2, with C1 = (x1, x̄2, x3) and C2 = (x2, x3, x4).

We now construct an instance I ′ of CNdec〈{1, 2, 3}, 3, 3〉 as shown in Fig. 7. The
resulting DAGG represents a combinatorial circuit. LetU denote the set of all vertices
labeled xi or x̄i (1 ≤ i ≤ n). There are n sources labeled Ti (1 ≤ i ≤ n) and m sinks
labeled C j (1 ≤ j ≤ m). They are connected through some vertices in U and 3 · m
pairs of vertices labeled {y jp, z jp} (1 ≤ j ≤ m, 1 ≤ p ≤ 3). Each y jp is connected
to exactly one variable gadget. For every j , no two vertices in the set {y j1, y j2, y j3}
are adjacent to both xi and x̄i of the same variable gadget. In other words, xi and
x̄i cannot both be connected to the same clause gadget. Every Ti , z jp, and C j has a
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Fig. 7 Reduction from the 3SAT problem toCNdec〈{1, 2, 3}, 3, 3〉. The edges connecting variable gadgets
to clause gadgets belong in the area with the shaded cloud

weight of 1, every xi , x̄i ∈ U has a weight of 2, and every y jp has a weight of 3. We
set d = 0 and let D be any positive integer. All vertices are given a delay of 0. The
cluster capacity M is set to 3, and we set k = 3 · D. The description of I ′ is complete.

Observe that I ′ can be constructed from I in polynomial time. In order to complete
the proof of the theorem, we show that I is a “yes” instance of 3SAT if and only if I ′
is a “yes” instance of CNdec〈{1, 2, 3}, 3, 3〉.

Suppose that I is a “yes” instance of 3SAT. This means that there exists an assign-
ment of φ such that every clause has at least one true literal. If a literal xi is set to
true, then the corresponding vertex xi (or x̄i ) is clustered with Ti . However, if a literal
xi is set to false, then the corresponding vertex xi is clustered alone. Since M = 3,
every y jp must be clustered alone. Since each clause C j has at least one true literal,
the vertex z jp along the path of the vertex xi (or x̄i ) corresponding to that true literal
is clustered alone. The resulting delay-length of the corresponding source to sink path
is 3 · D. It is safe to cluster the remaining two z jp vertices with C j , even if they both
belong to paths corresponding to true literals. In this case, the resulting paths have
delay-length 2 · D < 3 · D = k. However, if either one these two z jp vertices belongs
to a path corresponding to a false literal, then it must be clustered with C j to avoid
exceeding the bound on the delay-length. Observe that the cluster capacity constraint
is satisfied, and the longest delay-length of any path from a source Ti to a sink C j is
3 · D. This means that I ′ is a “yes” instance of CNdec〈{1, 2, 3}, 3, 3〉.

Conversely, suppose that I ′ is a “yes” instance of CNdec〈{1, 2, 3}, 3, 3〉. This
means that there is a way of partitioning the vertices of G into clusters of capac-
ity M = 3, such that the longest delay-length of any path from a source to a sink is at
most 3 · D.
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SinceM = 3, again notice that every y jp must be clustered alone. Each sinkC j may
be clustered with at most two vertices. This means that at least one z jp is clustered
alone. Consider the vertex xi (or x̄i ) along a path corresponding to a z jp clustered
alone. Since any source to sink path with a z jp clustered alone has a delay-length of at
least 3 ·D, then Ti must be clustered with vertex xi (or x̄i ). Otherwise, the delay-length
of the path would be 4 · D > 3 · D = k. Furthermore, since the cluster capacity is
satisfied, either xi or x̄i (but not both) can be clustered with Ti . Take each literal that
corresponds to a vertex xi clustered with Ti , and set its value to true. Now, notice that
any z jp along a path in which xi (or x̄i ) is clustered alone, must be clustered with the
sink C j . Otherwise, the delay-length of the path would be 4 · D > 3 · D = k. Take
each literal that corresponds to a vertex xi not clustered with Ti and set its value to
false. Notice that at least one true literal appears in every clause. Thus, a satisfying
clustering for G yields a satisfying assignment for φ. Hence, I is a “yes” instance of
3SAT. �

The proof of Theorem 3 implies an inapproximability result for CN〈{1, 2, 3}, 3, 3〉.
Corollary 3 CN〈{1, 2, 3}, 3, 3〉 does not admit a ( 43 − ε)-approximation algorithm for
any ε > 0, unless P = NP.

Proof Byway of contradiction, suppose there exists a ( 43−ε)-approximation algorithm
for CNdec〈{1, 2, 3}, 3, 3〉. We construct a polynomial time algorithm for 3SAT as
follows:

Algorithm 4.3: A polynomial time algorithm for 3SAT
input : An instance I of 3SAT.
output: “Yes” or “No”.

1 Construct an instance G of CNdec〈{1, 2, 3}, 3, 3〉 using the reduction described
in the proof of Theorem 3.

2 Run the ( 43 − ε)-approximation algorithm for CNdec〈{1, 2, 3}, 3, 3〉 to get a
clustering � for G.

3 return “Yes” if and only if the maximum delay induced by � is less than or
equal to (4 − ε) · D.

Let OPT denote the delay of the optimal clustering of G. If I is a “yes” instance of
3SAT, then OPT ≤ 3 · D. Moreover, the maximum delay of any clustering solution
of G returned by the ( 43 − ε)-approximation algorithm for CNdec〈{1, 2, 3}, 3, 3〉 is at
most (4− ε) · D. Otherwise, the maximum delay of any clustering solution of G must
be at least 4 · D. Thus, the ( 43 − ε)-approximation algorithm solves the instance I of
3SAT exactly. �

The next theorem implies NP-hardness of CN〈{1, 2}, 2, 4〉 – a restriction of
CN〈W , 2,Δ〉.
Theorem 4 CNdec〈{1, 2}, 2, 4〉 is NP-complete.
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Fig. 8 Gadgets used to represent variables and clauses

Proof We recall CNdec〈{1, 2}, 2, 4〉 as follows: Given a DAG G = (V , E), with
vertex-weight function w : V → {1, 2}, delay function δ(v) = 0, maximum degree
Δ = 4, constants d and D, cluster capacity M = 2, and a positive integer k, decide
whether we can partition V into clusters such that theweight of each cluster is bounded
by M , and the longest delay-length of any path from a source to a sink of G is at most
k.

It is clear that CNdec〈{1, 2}, 2, 4〉 is in NP since it follows from the well-known
fact that finding a maximum weighted path in an edge-weighted DAG is polynomial
time solvable.

In order to establish NP-hardness of CNdec〈{1, 2}, 2, 4〉, we present a reduction
from 3- Bounded Positive 1- in- 3SAT (3- BP 1- in- 3SAT). For that purpose,
we recall 3- BP 1- in- 3SAT as follows: Given a 3-CNF formula φ with n positive
variables x1, . . . , xn and m clauses C1, . . . ,Cm , such that each variable appears in at
most three clauses, the goal is to check whether φ has a satisfying assignment such
that every clause of φ has exactly one true literal (Denman and Foster 2009).

Let each variable xi (1 ≤ i ≤ n) be represented by a variable gadget as shown
in Fig. 8a. Let each clause C j (1 ≤ j ≤ m) be represented by a clause gadget as
shown in Fig. 8b. If a variable xi is the 1st, 2nd, or 3rd literal of a clause C j , then the
corresponding vertex labeled xi is connected to a sink labeled C j through a pair of
vertices labeled {y j1, z j1}, {y j2, z j2}, or {y j3, z j3}, respectively.

We now construct an instance I ′ of CNdec〈{1, 2}, 2, 4〉 as shown in Fig. 9. The
resulting DAGG represents a combinatorial circuit. LetU denote the set of all vertices
labeled xi or x̄i (1 ≤ i ≤ n). There are n sources labeled Fi (1 ≤ i ≤ n) and m sinks
labeled C j (1 ≤ j ≤ m). They are connected through some vertices in U and 3 · m
pairs of vertices labeled {y jp, z jp} (1 ≤ j ≤ m, 1 ≤ p ≤ 3). Each y jp is connected
to exactly one variable gadget. Every xi , x̄i ∈ U , every Fi , z jp, and C j has a weight
of 1. Every y jp has a weight of 2. We set d = 0 and let D be any positive integer. All
vertices are given a delay of 0. The cluster capacity M is set to 2, and we set k = 3 ·D.
The description of I ′ is complete.

Observe that I ′ can be constructed from I in polynomial time. In order to complete
the proof of the theorem, we show that I is a “yes” instance of 3- BP 1- in- 3SAT if
and only if I ′ is a “yes” instance of CNdec〈{1, 2}, 2, 4〉.
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Fig. 9 Reduction from 3- BP 1- in- 3SAT to CNdec〈{1, 2}, 2, 4〉. The edges connecting variable gadgets
to clause gadgets belong in the area with the shaded cloud

Suppose that I is a “yes” instance of 3- BP 1- in- 3SAT. This means that there
exists an assignment of φ such that every clause has exactly one true literal. If a
literal xi is set to true, then the corresponding vertex xi is clustered alone. However,
if a literal xi is set to false, then the corresponding vertex is clustered with Fi . Since
M = 2, every y jp must be clustered alone. Since each clause C j has exactly one true
literal, the vertex z jp along the path of the vertex xi corresponding to that true literal
is clustered with C j . The resulting delay-length of the corresponding source to sink
path is 3 · D. The other two vertices belonging to the same clause gadget are clustered
alone. Observe that the cluster capacity constraint is satisfied, and the longest delay-
length of any path from a source Fi to a sink C j is 3 · D. This means that I ′ is a “yes”
instance of CNdec〈{1, 2}, 2, 4〉.

Conversely, suppose that I ′ is a “yes” instance of CNdec〈{1, 2}, 2, 4〉. This means
that there is a way of partitioning the vertices of G into clusters of capacity M = 2,
and the longest delay-length of any path from a source to a sink is at most 3 · D.

Since M = 2, again notice that every y jp must be clustered alone. Each sink C j

is clustered with at most one vertex, so the remaining two z jp vertices are clustered
alone. Consider a vertex xi along a path corresponding to a z jp that is clustered alone.
Since such a source to sink path has a delay-length of at least 3 · D, then the source
Fi must be clustered with vertex xi . Otherwise, the delay-length of the path would
be 4 · D > 3 · D = k. Furthermore, since the cluster capacity is satisfied, Fi can be
clusteredwith either xi or x̄i (but not both). Take each literal that corresponds to a vertex
xi clustered with Fi and set its value to false. Take each literal xi that corresponds to a
vertex xi clustered alone and set its value to true. Notice that any z jp along a path in
which vertex xi is clustered alone must be clustered with the sink C j . Otherwise, the
delay-length of the path would be 4 · D > 3 · D = k. Observe that exactly one true
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literal appears in every clause. Thus, a satisfying clustering for G yields a satisfying
assignment for φ. Hence, I is a “yes” instance of 3- BP 1- in- 3SAT. �

The proof of Theorem 4 implies an inapproximability result for CN〈{1, 2}, 2, 4〉.
Corollary 4 CN〈{1, 2}, 2, 4〉 does not admit a ( 43 − ε)-approximation algorithm for
each ε > 0, unless P = NP.

Proof Byway of contradiction, suppose there exists a ( 43−ε)-approximation algorithm
for CNdec〈{1, 2}, 2, 4〉. We construct a polynomial time algorithm for 3- BP 1- in-
3SAT as follows:

Algorithm 4.4: A polynomial time algorithm for 3- BP 1- in- 3SAT

input : An instance I of 3- BP 1- in- 3SAT.
output: “Yes” or “No”.

1 Construct an instance G of CNdec〈{1, 2}, 2, 4〉 using the reduction described in
the proof of Theorem 4.

2 Run the ( 43 − ε)-approximation algorithm for CNdec〈{1, 2}, 2, 4〉 to get a
clustering � for G.

3 return “Yes” if and only if the maximum delay induced by � is less than or
equal to (4 − ε) · D.

Let OPT denote the delay of the optimal clustering of G. If I is a “yes” instance
of 3- BP 1- in- 3SAT, then OPT ≤ 3 · D. Moreover, the maximum delay of
any clustering solution of G returned by the ( 43 − ε)-approximation algorithm for
CNdec〈{1, 2}, 2, 4〉 is at most (4− ε) · D. Otherwise, the maximum delay of any clus-
tering solution of G must be at least 4 · D. Thus, the ( 43 − ε)-approximation algorithm
solves the instance I of 3- BP 1- in- 3SAT exactly. �

5 A 2-approximation algorithm for CN〈N, 2,1〉
In this section, we present a 2-approximation algorithm for CN〈N , 2,Δ〉. It is impor-
tant to note that the computational complexity of this problem is unknown.1 Our
algorithm makes use of the fact that there is a polynomial time algorithm for finding a
path with maximum edge-weight in DAGs. The algorithm tries to construct a so-called
dominating matching of the input DAG G. If it succeeds, then the algorithm returns
an optimal clustering of G. Otherwise, it returns some feasible clustering of G. We
prove that this algorithm has a performance ratio of 2.

We start with the following:

Definition 1 Amatching in a DAGG is a collection of edges that do not share a vertex.
A matching of a DAG G is perfect if any vertex of G is incident to an edge from the
matching.

Let G = (V , A) be a DAG. Clearly, any perfect matching of G contains exactly |V |
2

edges. Let l be the length of a longest path in G.

1 Recently we were able to show that CN〈N , 2, 3〉 is NP-hard.
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Definition 2 A matching I in G is dominating, if every longest path of G contains
more than l

2 edges of I .

It is easy to see that if G contains a dominating matching, then l has to be odd.

Lemma 1 Let G = (V , A) be a DAG and let l be the length of a longest path in G.
There is a polynomial algorithm which decides whether G has a dominating matching
and finds one if it exists.

Proof We may assume that G is connected, i.e., its undirected underlying graph is
connected. If l is even, then there is no dominating matching. So we may assume that
l is odd.

Let I = ∅. Construct a longest path P in G and add odd edges to I . Construct a set
S initially consisting of the edges of P . Note that I is a perfect matching in G[S], the
subgraph of G induced by S. This property of I in G[S] is maintained.

Consider an edge a in A\S such that only one end-vertex of a is in S. If there is not
such an edge a, remove the edges of A\S from G. Also, remove the resulting isolated
vertices of G. If a does not belong to a longest path of G, delete it from G and remove
the resulting isolated vertices from G. Otherwise, let Q be a longest path of G passing
through a. Add all odd edges of Q to I . If an edge of Q assigned to I is incident to an
edge of I in G[S], then we have that G has no dominating matching. Otherwise, add
all edges of Q to S and observe that I is a perfect matching in G[S]. Continue for as
long as A �= S.

Now we have that A = S and I is a perfect matching in G[S]. Since every longest
path of G must start from an edge in I and end with an edge of I , the only possibility
for a longest path to contain at most l

2 edges of I is if it contains two consecutive edges
that are not from I . Thus, we do the following. Consider every pair of edges not from
I forming a directed path of length 2 and check whether the pair is on any longest path
of G. If so, G has no dominating matching. Otherwise, I is a dominating matching.

The above proof is an algorithm which runs in polynomial time. The proof of the
lemma is complete �

Using Lemma 1, we obtain a 2-approximation algorithm for CN〈N , 2,Δ〉.
Theorem 5 The problem CN〈N , 2,Δ〉 admits a 2-approximation algorithm.

Algorithm 5.1: A 2-approximation algorithm for the clustering problem.
1: Input: a DAG G;
2: Output: a clustering of vertices of G;
3: Check whether G has a dominating matching.
4: If it does not, return an arbitrary feasible clustering of G (for example, put each vertex in a separate

cluster).
5: If G contains a dominating matching I , then for each edge e = uv ∈ I , put u and v in the same cluster,

and put the remaining vertices in a separate cluster.
6: Output the resulting clustering of G.
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Proof Consider Algorithm 5.1, which is a generic algorithm for the problem. For a
path P , let l(P) be the length of P (i.e., the number of edges of P). Moreover, let l
denote the length of a longest path of G.

The following shows a lower bound for OPT , where OPT is the delay of the
optimal clustering of G when M = 2.

OPT ≥
⌈
l(P)

2

⌉

· d +
⌊
l(P)

2

⌋

· D.

Since P represents any path, then the above inequality must also be true for the longest
path. Thus,

OPT ≥
⌈
l

2

⌉

· d +
⌊
l

2

⌋

· D.

Now, let us estimate ALG, where ALG is the delay of the clustering found by the
algorithm. We consider 2 cases.

Case 1 G has no dominating matching. Then if l is even, we have

ALG ≤ l · D
≤ 2 ·

(⌈
l

2

⌉

· d +
⌊
l

2

⌋

· D
)

≤ 2 · OPT .

On the other hand, if l is odd, then since G has no dominating matching, we have

OPT ≥
⌊
l

2

⌋

· d +
⌈
l

2

⌉

· D.

Hence

ALG ≤ l · D
≤ 2 ·

(⌊
l

2

⌋

· d +
⌈
l

2

⌉

· D
)

≤ 2 · OPT .

Case 2 G has a dominating matching I . Then since any path of length l has an edge
from I , we have

ALG ≤ d + (l − 1) · D
≤ 2 ·

(⌈
l

2

⌉

· d +
⌊
l

2

⌋

· D
)

≤ 2 · OPT .

The proof of the theorem is complete. �
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Table 1 Results Problem Inapproximability*

CN〈W , M, Δ〉 2 − ε

CN〈W , M, 3〉 2 − ε

CN〈{1, 2}, 2, 4〉 4
3 − ε

CN〈{1, 2, 3}, 3, 3〉 4
3 − ε

*Assuming that P �= NP

6 Conclusion

In this paper, we studied the problem of clusteringwithout replication in combinatorial
circuits for delayminimization (CN).We proved that several variants ofCN〈W , M,Δ〉
areNP-hard. We also showed that our results imply hardness of approximation within
a certain factor for several variants of CN〈W , M,Δ〉. On the positive side, there exists
a 2-approximation algorithm for CN〈N , 2,Δ〉. Our results are tabulated below in
Table 1.

We are interested in the following open problems:

1. Finding approximation, parameterized, and exact exponential algorithms for sev-
eral variants of CN〈X , M,Δ〉.

2. Establishing the computational complexity ofCN〈N , 2,Δ〉 and finding an approx-
imation algorithm for CN〈N , 2,Δ〉 whose performance ratio is smaller than 2, if
it exists.
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